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COMPUTATION OF ELECTRIC CHARGE ON POWER
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Abstract: A system of paraliel lines above a conducting or insulating plane serves as a model of a transmission line system. We present a few computa-
tional steps and results that address the question of the synchronicity of electric potential and charge on a given wire of the power line system. The
differences in phase angles of the oscillating charge and the associated potential depend on the geometry of the system. For a benchmark and three
additional cases the charges on the wires were computed using the described procedure. They are presented in the results section.

Izracun elektricnega naboja na mocnostnih prenosnih linijah

Kjuéne besede: kvazistati¢ni izracuni elektri¢nega naboja, daljnovodni sistemi

lzvleéek: Dvodimenzionalni sistem vzporednih vrvi konénih polmerov, ki se razpenjajo nad prevodno ali véasih neprevodno ravnino, sluzi kot osnovni
model pri obravnavi sistemov daljnovodnih napetostnih vodov.

V ¢&lanku pokazemo, da naboj danega vodnika in njegov potencial v splosnem ne nihata sofazno. Razlika med faznima Kotoma potenciala in njemu
pripadajo¢ega naboja je odvisna od geometrije sistema. Prediagamo ustrezno pot do iskanih nabojev. Le-ti so osnova za izradun ostalih elektri¢nih kolicin,

predvsem elektricne poliske jakosti v okolici sistema, in prikazemo nekaj rezultatov za izbrane postavitve daljinovodnih vrvi.

1 Introduction

The most basic among the models of power transmission
line systems is two-dimensional. It consists of conducting
parallel straight lines with known phase angles and r.m.s.
values of electric potentials. The diameters of the lines are
small compared to the distances between wires. The task
is to determine linear charge densities on the lines from
the given electric potentiais of the lines.

There are more realistic models of power transmission lines,
for instance, the diameter of the conductors may not be
small compared to the distances between the lines, or the
gravity and string forces may be included, which distort
the straight lines into the chain curves. Further more, some
computer programs consider the electrical properties and
geometry of the pylons and even terrain.

For all the cases mentioned the computational algorithm is
basically the same, although the matrix coefficients may
be a way more difficult to compute and the size of the ma-
trix tends to grow considerably /1/.

2 Methods

The notation used in this article for a-priori known guantities is:
ri.  position of the h wire, (xi, vi),

Vi:  electrical potential of the i-th wire,

O phase angle of the electrical potential V; , and for
a-priori unknowns:

Qk: linear charge density of the k-th wire,

@x. phase angle of the linear charge density g« .
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The potential of the i-th wire has a form Vi - cos(wt+3y),
where w =2nv and v is the frequency.

The frequency v = 50 Hz justifies a quasi-static approach
for power transmission lines, so at any given time the po-
tential of i-th wire may be written as a superposition of the
charge on all wires /5/:

i - cos(wt + ;) 1

Vi - cos(wt+ &) = 4 In —+
271’60 Tio
Z Gk - COS (Wt + k) In 1 (1)
2meg ri—rd

k#i

The introduction of parameter Py defined as

1 1 C -
2men Tio poi=k
Py = 1 1
i In el 1=k
gives a shorter form of equation (1):
Vi cos(wttd) = Z By qc cos(witpy). (2)

k
The identity cos (o0 + B) = cos o cos B - sin o sin B and
equation (2) lead to two separate parts of the system of
equations, the first oscillating as cos(wt),the second as
sin(awt):

W - cos®; = ZPik-Qk-COSSOk (3)
k

Vi sing; = ) Pk ge-singk ()

K
Any attempt to solve equations (3) and (4) directly for un-
known gk and px is bound to fail for almost any set of input
parameters r;, V;, and 9;. However, with the introduction of
new variables, as shown in the following paragraph, the
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system of equations can be linearized, its matrix becomes
diagonally dominant, and therefore suitable for further nu-
merical manipulation.

The system of equations (3) and (4) can be linearized by
introducing variables

ak = gk - COSgx
by = gk - Sinlpk
Vei = Vi -cosd,
Vei = V- singy,

and takes the form of two separate sets of linear equa-
tions:

Ve = P-a (5)
Vg = P-b, (6)
where a = (a1, az,...}, b = (b1, bo,...), and
Py Py

p= |1 Pa

Since g <K |ri—rkl for each i and k it follows that P is
diagonally dominant.

After solving (5) and (6) one can obtain the unknown linear
charge densities gk and phase angles ¢k as:

= yJai+ bf

b
arctan -~
ak

Pk

3 Results

This section presents computational outcomes - the line-
ar charge densities and their phase angles - for three dif-
ferent systems of power transmission lines. All cases deal
with 400 kV systems, with wires of 1 centimeter in diame-
ter, but differ in some other aspects. The zeroth example
serves as a benchmark. It is followed by the first case,
which is a realistic example of the 400 kV system. The
second example and the third example are a bit exotic: the
second only because of the geometry chosen, while the
third deals also with the number of the wires and their po-
tentials that can hardly be found in practice.

In a view of the conductivity of the ground both extreme
possibilities were taken into account. When the ground is
considered to be a perfect insulator the computations are
performed as explained in the previous section, and their
results in the examples section may be found under Gmin/
(2meo) and @min. With the ground as a perfect conductor
the solution is obtained by applying the method of images,
and the results for each wire in these cases may be found
iN Qmax/{27€0) and Pmax columns. No additional unknowns
are infroduced in the case of a perfectly conducting ground,
since the image charge of gi-th linear charge density at
time ¢ has a value g - cos(mt + @k + T).

Each of the following examples has three parts: input data,
two-dimensional (x, y) sketch of the wires with the ground,

and the resulting qx and @« for all the wires in cases of
insulating and conducting grounds.

3.1 Example O

Table 1
input data
i {x[m] |ylm] Vinax [V] 6]
0 0.0 10.0 100000.0 0.0
10 b [:‘G .........................
Q b
= 67
£
g b ]
P Y S
0
10 5 0 5 10
X [m]
Table 2
F output data
Pl o VI | @min ] [ 22 VT [ Omax[°] ]
[0 188739 0.0 | 12056.8] 00]

Consider a wire with potential V= Vg - cos(wt), where Vo =
100 kV. We can obtain an analytical result for the charge
on the wire if it is suspended above a conducting piane by
the method of images

_ qo - cos(wt + o) 2h

Vo cos(wt) = B — In o’ (7)

where ro is the radius of the wire, and h is the ele-vation of
the wire above the ground. The solution of (7) gives ¢g =
0, where for given ro = 5 mm and h = 10 m we get:

sk = Y/ % =~12.057kV.

2ney

The results of the computational algorithm below give the
same result for gmax/(21eg). The charge of the wire above
a conducting ground matches the analytical result, but the
result for an insulating ground should be ignored, since a
single infinite conducting line does not have a uniquely
defined electric potential. The numerical value gmin in the
output data equals - In(1/ro) and cannot be connected
to the electric potential of the wire.

3.2 Example 1

Six parallel wires serve as a first model for a double 400
kV power transmission line system.

Table 3
input data
i x[m] | yim] Vimax [V] 0[]
0 -1.0 6.0 230940.0 0.0
1 0.0 6.0 230940.0 -120.0
2 1.0 6.0 230940.0 120.0
3 -1.0 10.0 230940.0 120.0
a 0.0 10.0 230940.0 -120.0
5 1.0 10.0 230940.0 0.0
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T L . Table 6
8T output data
R N T S P VT i O | e V] Qe [0
E L [¢] 34911.5 2.6 35897.4 0.7
4 1 36301.6 -121.2 37000.7 -119.7
o 2 34183.5 119.9 33535.9 120.1
3 38125.3 120.4 37194.1 120.1
0 ; 4 37119.6 ~-123.9 37348.7 -122.4
5 37314.3 2.2 37808.8 1.3
-10 -5 0 3 10
x [m]
Table 4 3.4 Example 3
output data As the last one, yve present a highly exotic gxgmplg in the
Py Zmnmg | @ 7| 2 0] | Qumex [ theory and practice of 400 kV power transmission line sys-
o 570559 237 713970 7 tems. It conszstg of nine .wnres with some unusual phase
1 | 258539 1120.0 | 44887.5 21200 angles of electric potential, and therefore represents an
2_| 57059.9 96.6 | 41393.0 115.3 electrically non-symmetric case. There is no apparent ge-
3 57055.9 96.6 41291.5 115.4 . .
4 25853.9 -120.0 44983.3 -120.0 ometrical symmetry, either.
5 57059.9 23.4 41291.5 4.6
Table 7
The maximum value of the electric potential of the wires is -
input data
Vinax = 400000=+/3 =230.94kV, conside-ring the electric po- i xIml | yIm] Verar [V] 01°]
tential of the conducting ground is zero. o -3.0 5.0 | 230940.0 0.0
1 0.0 4.0 230940.0 -120.0
The results show that the phase angles of the middle wires 2 4.0 6.0 | 2309400 | 120.0
A . X . 3 -1.0 8.0 230940.0 120.0
i=1and/i= 4 are the same for the input potentials and for 4 00| 11.0| 3309400 | -120.0
the resulting charges, but differ for other wires, as one 5 2.0 10.0 230940.0 0.0
: : : : 6 6.0 2.0 230940.0 50.0
would expect considering the geometr:cal symmetries of = =0 50 2365400 176.6
the system. For any taken wire the difference between the 8 8.0 50 530940.0 2800

phase angle of the electric potential and the phase angle
of the line charge does not exceed 5°.

3.3 Example 2

In the next example we consider six scattered parailel wires
ofthe 400 kV power line system. The geometry we choose
introduces no symmetries, and the results show none.
Nevertheless, the differences between the phase angles

y [m]

of the potential and charge again do not exceed 5. 0 ; ,
-10 -5 0 5 10
Table 5 xfm]
- Table 8
input data
i x [m] y [m] Vimax V] 0[] output data
0 3.0 5.0 | 230940.0 0.0 Pl 225 v 0 11| 2220 | @ [
1 0.0 4.0 230940.0 -120.0
2 4.0 6.0 | 230940.0 | 120.0 0 | 342076 3.7 360384 1.1
3 1.0 3.0 330940.0 120.0 1 36981.1 -122.2 36893.5 -119.5
P 0.0 11.0 230940.0 1200 2 34012.1 117.3 33301.3 115.8
S 2.0 10.0 230940.0 0.0 3 39140.8 119.9 37643.3 119.1
4 35552.5 -125.8 35909.1 -123.0
5 37776.4 6.0 38716.0 4.5
2 6 | 33940.1 46.8 | 36733.5 458
x 7 34302.0 169.8 | 33058.4 170.0
10 Foie IR & 7 8 32441.4 -75.5 33802.6 -73.9
T 6t As shown before, for a given wire the phase angles of the
= it | potential and the charge do not differ significantly. In this
particular case the differences are larger than in the previ-
2 . .
- v , : ous examples, but still below 10°. Given a set of values of
0 ; ; i potential phase angles and a set of phase angles of line
-10 -5 0 5 10 charges, the matching pairs can be found only by check-

x [m] ing input and output tables even for this geometry. Howev-

180



A. Berkopec:

Computation of Electric Charge on Power Transmission Lines

Informacije MIDEM 39(2009)3, str. 178-181

er, one can easily imagine an example where this is not
80, no matter how more exotic it might be.

4 Discussion

The importance of the electric charge computation for
quasi-static low-frequency sources, like power transmis-
sion lines, is vast. Since the charge is the source of the
electric field, its distribution only enables us to find the
appropriate values of the surrounding field. Traditionally,
the electric field values were used for the estimation of the
loses due to corona discharges, while today with the in-
creasing interest in possible health issues associated with
the non-thermal effects of electromagnetic radiation they
play a role in the design of power line grids /3, 2, 4/.

As shown in the article, the charge is not oscillating syn-
chronously with the electric potential in general, so its com-
putation is a task on its own. The system of equations is
non-linear, but can be linearized, or it better should be, in
order to avoid computational problems. Even the simplest
of models, the model of infinite straight lines presented
here, gives us the elliptically polarized results for the elec-
tric field strength vector. This we intend to discuss in our
future work.
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