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0  INTRODUCTION

In rotor systems, the friction created between a 
rotational part and a stationary part, such as a rotating 
disk and the surrounding air, is called external 
friction, and another friction that works within two 
rotating parts is called internal friction. In addition, 
the internal friction is further classified into hysteretic 
damping, which works in the inside part of the shaft 
material, and structural damping, which occurs due to 
the sliding between the shaft and mounted elements 
such as bearings and gears. It is well known that the 
self-excited vibration occurs above the major critical 
speed when the internal friction works in the rotor 
system [1]. Regarding the self-excited vibration 
caused by internal friction, many scholars have 
conducted extensive research. Queiroz [2] studied 
flow-induced instabilities known as “whirl” and 
“whip” on the lightly-loaded shaft supported by fluid-
film bearings and analysed self-excited vibrations. 
Bonello and Pham [3] presented a generic technique 
for the transient nonlinear dynamic analysis (TNDA) 
and the static equilibrium stability analysis (SESA) of 
a turbomachine running on foil air bearing (FABs). 
Their research revealed stabilities and self-excited 
vibrations of the rotor system. Boyaci et al. [4] carried 
out an investigation of the stability and bifurcation 
phenomena of the rotor-bearing system and found 

self-excited vibrations with very high amplitudes. 
Bykov and Tovstik [5] studied synchronous whirling 
and asynchronous self-excited vibrations on the 
statically imbalance rotor under action conditions of 
external and internal damping forces. Because the 
nonlinear characteristics of the internal friction are 
very complicated, obtaining succinct expression of 
the theory is very difficult. The mechanism of self-
excited vibrations caused by the internal friction 
was understood [1] to [5]. Ishida and Yamamoto 
[6] investigated characteristics of the subharmonic 
resonance of the order of 1/2 on the rotor-bearing 
system with a nonlinear spring-restoring force and 
an internal damping force. The phenomena were 
understood that self-excited vibrations occurred 
under the forced autonomous system. In addition, 
many researchers studied self-excited vibrations due 
to other causes on the rotor system. Coudeyras et al. 
[7] presented a novel nonlinear method called the 
Constrained Harmonic Balance Method (CMBM), 
which is applied to solve the specific problem of 
disc brake squeal with extensive parameters and to 
predict self-excited vibrations. Han et al. focused on 
the experimental study for the dynamic characteristics 
of a permanent magnet (PM) disk-type motor rotor 
supported by an aerostatic gas bearing and analysed 
low-frequency vibrations caused by self-excited 
gas films [8]. Vlajic et al. [9] studied dynamic 

Suppression of Self-Excited Vibrations in Rotating Machinery 
Utilizing Leaf Springs

Wang, C. – Liu, J. – Luo, Z.
Chang Wang1 – Jun Liu1,2,* – Zhiwei Luo3

1Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,  
Tianjin University of Technology, China 

2National Demonstration Centre for Experimental Mechanical and Electrical Engineering Education,  
Tianjin University of Technology, China 

3Organization of Advanced Science and Technology, Kobe University, Japan

When rotating machinery is operated above the major critical speed, self-excited vibrations appear due to internal friction of the shaft. Internal 
frictions are classified into hysteretic damping due to the friction in the shaft material and structural damping due to the dry friction between 
the shaft and the mounted elements. In this paper, a method to suppress the self-excited vibration using leaf springs are proposed. The 
structural damping is considered as the internal damping. The characteristics of a rotor with leaf springs are investigated systematically by 
using simulative and theoretical analyses. The validity of the proposed method is also proved by experiments.
Keywords: self-excited vibration, internal damping, vibration suppression, leaf spring, experiment

Highlights
• A rotor system with internal frictions and leaf springs is analysed by using numerical simulations and theoretical analyses 

systematically, and self-excited vibrations occur above the major critical speed.
• The self-excited vibrations can be suppressed by using leaf springs on the rotor system with internal frictions.
• The effectiveness of the proposed suppressing method is verified by experiments, simulations, and theoretical analyses.



Strojniški vestnik - Journal of Mechanical Engineering 65(2019)10, 599-608

600 Wang, C. – Liu, J. – Luo, Z.

characteristics of a modified Jeffcott rotor with the 
torsional deformation and the rotor-stator contact 
and investigated self-excited backward whirling 
motions with the continuous stator contact. Hua et 
al. [10] presented the basic excitation mechanism and 
vibration characteristics on the coupled bending and 
torsional nonlinear dynamic model of a rotor system 
with a nonlinear friction, and the results revealed 
multiform complex nonlinear dynamic responses of 
the rotor system under rubbing. Nishimura et al. [11] 
explained self-excited vibrations in the vertical pump 
with a journal bearing and demonstrated the nonlinear 
steady-state vibration analysis of self-excited 
vibrations. Tadokoro et al. [12] focused on self-excited 
vibrations induced by the velocity-weakening friction 
in rotary contact systems. Chouchane and Amamou 
[13] analysed the bifurcation of the steady-state 
equilibrium point of the journal centre and predicted 
stable or unstable limit cycles from the equilibrium 
point at the major critical speed. Peletan et al. [14] 
proposed a quasi-periodic harmonic balance method 
(HBM) to deal with self-excited vibrations of the 
steady-state dynamic behaviour of rotor-stator contact 
problems.

It is well known that harmonic resonances can be 
avoided by controlling rotational speeds. However, 
since the self-excited vibrations occur within a wide 
range of rotational speeds, it is difficult to escape the 
occurrence of self-excited vibrations. In addition, the 
amplitude of vibrations increases with exponential 
growth if there is no limit cycle. Based on the two 
characteristics mentioned above, it is concluded that 
self-excited vibrations are more dangerous than the 
harmonic resonance. Some methods of suppressing 
self-excited vibrations have been proposed. Kligerman 
et al. [15] investigated the nonlinear behaviour of shaft 
supports at the boundaries and stability of a rotating 
system with an electromagnetic noncontact damper, 
and a closed-form solution for the radius of the limit 
cycle and the frequency of self-excited vibrations are 
obtained. Inoue et al. [16] researched the occurrence 
region and vibration characteristics of self-excited 
vibrations caused by the ball balancer. The results 
are also validated experimentally. However, the 
theoretical analyses of self-excited vibrations have 
been less commonly proposed.

In this paper, based on self-excited vibrations by 
causing the structural damping, a suppressing method 
by using leaf springs is proposed. The vibration 
characteristics of a rotor with leaf springs are 
systematically investigated using theoretical analyses 
and numerical simulations. The validity of proposed 
method is also verified by experiments.

1  THEORETICAL MODEL

1.1  Dynamic Equations

The theoretical model of the rotor system with leaf 
springs is shown in Fig. 1. The two degrees of freedom 
(2DOF) inclination model with the gyroscopic moment 
is adopted, and a rigid disk is mounted at the centre 
of a massless elastic shaft. To suppress self-excited 
vibrations due to the internal damping, a bearing is 
fitted to the shaft, and four groups of leaf springs are 
placed to contact with the outer race of the bearing 
in four directions shown in Fig. 1. The rectangular 
coordinate system O-xyz is established, and the z-axis 
coincides with the bearing centreline. The point O is 
the geometrical centre of the disk. The line OA is the 
centreline of the disk, and the line OB is the tangent of 
the shaft at Point O. τ is the angle between lines OA 
and OB, which represents the imbalance of the rotor 
system. θ is the angle between lines Oz and OB, and 
it is the inclination angle of the shaft at the position 
of the disk. θx and θy are projections of θ on planes xz 
and yz, respectively.

It is assumed that the internal damping caused 
by the sliding between the disk and the shaft works 
in this system. In addition, the sliding here means 
that the inclined elastic rotor whirls with an angular 
velocity different from the rotational speed ω, and 
the disk cannot move torsionally on the shaft. The 
dimensionless dynamic equations of the 2DOF rotor 
system can be obtained by reference to the study [1]. 
Considering effects of the internal damping and leaf 
springs, the dimensionless equations of motion of the 
rotor system are shown as follows:

  

  

θ ωθ θ θ θ ω

θ ωθ θ θ
x p y x x L x ix Lx

y p x y y

i c k D D F t

i c

+ + + + − − =

− + +

cos

++ − − =





 k D D F tL y iy Lyθ ωsin
,  (1)

where F ip= −( )1
2τω , c is the coefficient of the 

external damping, and ip is the ratio of the principal 
axis of the polar moment of inertia of the disk and the 
diametrical moment of inertia of the disk. Dix and Diy 
represent the internal damping force in x and y 
directions, and DLx and DLy represent the damping 
force of leaf springs in x and y directions. kL is the 
increase of spring stiffness of the rotor due to leaf 
springs. They will be illustrated later in this paper. 

1.2  Internal Damping (Structural Damping)

The pre-tightening force needs to be large enough 
to mount the disk on the shaft. When the deflection 
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of the shaft is comparatively large, the fibres of the 
shaft elongate or contract with the changes of the 
shaft orbit, which causes the pre-tightening force to 
be insufficient. Thus, the static friction cannot prevent 
the sliding between the shaft and the disk, and the type 
of friction has been transformed into dry friction. The 
dry friction, as internal friction, will cause structural 
damping. In addition, a large deflection of the shaft 
means that there is hysteretic internal damping due 
to frictions in the shaft material. In order to discuss 
influences of the structural damping on self-excited 
vibrations, it is necessary to eliminate the effects of the 
hysteretic internal damping caused by the deflection 
motion, which is the reason that the 2DOF model with 
an inclination motion is adopted.

Here, the Coulomb friction is applied to 
approximate the dry friction between the shaft and 
the disk. The internal damping force is determined 
by the difference in the whirling angular velocity and 
rotational speed.

Fig. 1.  Rotor model with leaf springs and coordinate system

Therefore, the internal damping force is discussed 
in the rotational coordinate system O – θ′xθ′y shown 
in Fig. 1. For simplicity of representation, complex 
variables z = θx + iθy in the coordinate system O – θxθy 
and z′ = θ′x + iθ′y in the coordinate system O – θ′xθ′y 
are introduced. Based on the previous studies [1], 
the expression of the internal damping force in the 
rotational coordinate system O – θ′xθ′y is obtained as 
follows:

 ′ = ′ + ′ = −
′
′

D D iD h z
zi ix iy




.  (2)

The expression of the internal damping force 
is converted to the expression in the stationary 
coordinate system O – θxθy as follows:
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where h is a constant coefficient.

1.3  Damping Force and Elastic Force of the Leaf Spring

The damping force and elastic force of leaf springs 
work on the elastic shaft by the contact between the 
bearing and leaf springs shown in Fig. 1.

Under the condition with effects of the elastic 
force of leaf springs, the spring stiffness of the rotor 
system becomes larger. It is considered that the change 
of the spring stiffness is linear, and the increase of the 
restoring force of the rotor system are as follows:

 
F k
F k
Lx L x

Ly L y

= −
= −







θ
θ

.  (4)

The leaf springs periodically deform with the 
motion of the rotor system. The dry friction of leaf 
springs is not negligible in the system. The restoring 
force has a hysteresis characteristic due to the dry 
friction, as shown in Fig. 2. The damping forces of leaf 
springs can be approximately described as follows:

 D h D hLx L
x

x
Ly L

y

y

= − = −








θ
θ

θ

θ
, ,  (5)

where hL is a function of the magnitude of a relative 
velocity θx  or θ y . 

This damping force increases with the increase 
of the preload between leaves, and the viscous 
damping force increases in proportion to the 
velocity of the movement. Here, the dry friction is 
also approximated by the Coulomb friction. With 
the above approximation, hL is considered as a 
constant coefficient, and coulomb damping force is 
independent of the velocity.

1.4  Natural Frequency Equation and Major Critical Speed

With regard to leaf springs, the natural frequency 
equation of the rotor system is obtained as follows:
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 ( ) .1 0
2+ + − =h i p pL pω  (6)

Fig. 2.  Hysteretic characteristic of leaf springs

The relationship between natural frequencies and 
the rotational speed is obtained by solving Eq. (6), and 
the results are shown in Fig. 3. There are two natural 
frequencies pf  < 0 and pb > 0 shown in Fig. 3. The pf  
is a natural frequency of a forward whirling mode and 
pb is that of  a backward whirling mode. In addition, 
the major critical speed can be expressed as follows:

 ωc
L

p

h
i

=
+
−

( )

( )
.

1

1
 (7)

Fig. 3.  Natural frequency of the 2 DOF system

2  THEORETICAL ANALYSIS WITHOUT IMBALANCE

In this chapter, the theoretical analysis is executed 
under the case without an imbalance (τ = 0). Because 
self-excited vibrations occur above the major critical 
speed, the following analyses will set the case of  

ω > ωc. In addition, because the self-excited vibration 
does not appear under the case of ω < ωc, the solutions 
with zero-amplitude are stable.

2.1  Theoretical Analysis

When the imbalance is not considered, and the 
rotational speed considers the case of ω > ωc, solutions 
for self-excited vibrations are as follows:
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.  (8)

Substitute solutions Eq. (8) into the equations 
of motion, and represent the order of magnitude 
by the notation O(ε) in this following. Based on the 
assumption that the amplitude R and the phase angle 
δ change slowly, the cos( pf t + δ) and sin( pf t + δ) will 
be compared with the accuracy of O(e2) to obtain their 
coefficients.

The internal damping force can be expanded as 
follows:
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The damping force of the leaf spring can be 
expanded as follows:
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where α δ
=

+
arctan

( )R p
R





.

As a result, the equations of theoretical solutions 
can be obtained following:

 

− + +

+
−

+
+ +

=

− +

R p i R cR

h R
R p

h R
R R p

Rp i

p

L

p

2

4
0

2

2 2 2

  

 

 



δ ω δ

ω π δ

ω

( ) ( )

 



 

R cR p

h h R p
R R p

L

− +

+ −
+

+ +
=

















( )

( )

( )

.
δ

π
δ

δ

4
0

2 2 2

 (11)

2.2  Steady-state Solution

If the convergence of self-excited vibrations 
approaches a limit cycle, the steady-state solutions 
can be obtained as follows:

 R R= =
0
, .δ δ

0
 (12)

The steady-state solutions can be obtained from 
equations given by setting derivatives of the left-hand 
sides of Eq. (11), which equals zero. The solution is 
shown as follows:
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.  (13)

2.3  Stability Analysis of the Solution

To investigate the stability of solutions, we consider 
small variations ξ(t) and η(t) of O(ε) as follows:
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Substituting Eq. (14) into Eq. (11), the small 
terms O(ε3) will be neglected, and the equations of 
solutions are obtained following:
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Assuming variations ξ(t) and η(t) to be ξ(t)=Aest 
and η(t) = Best, and substituting them into Eq. (15), Eq. 
(16) can be obtained as follows:

 s
cp
p i

f
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( )
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2
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ω

 (16)

Obviously, the solutions are always stable 
because ξ(t) and η(t) are convergent.

The resonance response curves are obtained by 
numerical simulations and the theoretical analysis, 
and the results are shown in Fig. 4. The solid lines 
represent stable solutions. Fig. 4 shows three cases 
of the damping force of leaf springs, such as hL = 0 
with kL = 0, hL = 0.005 with kL = 0.25 and hL = 0.01 with 
kL = 0.25. The dotted line I represents the case without 
leaf springs, and the dotted line II represents the case 
with leaf springs. The figure shows that each case of 
the system always has a stable solution in the wide 
rotational speed range and the amplitude gradually 
becomes smaller when the rotational speed increases. 
Under the conditions with leaf springs, the amplitude 
of self-excited vibrations significantly reduced with 
the increase of the parameter hL. It is concluded that 
the leaf springs can effectively suppress self-excited 
vibrations.

Based on Eq. (13), self-excited vibrations do not 
occur under the case of hL > πh/4. The results of the 
above analyses show that leaf springs can effectively 
suppress self-excited vibrations in the wide rotational 
speed range.

3  THEORETICAL ANALYSIS WITH IMBALANCE

Due to the existence of internal damping terms, the 
multi-scale perturbation method and the harmonic 
balance method, it is difficult to theoretically analyse 
the vibration characteristics of the rotor system. In this 
paper, the improved shooting method is used to solve 
approximate solutions of the harmonic component.

3.1  Theoretical Analysis

Firstly, we reduce the order of Eq. (1). Putting 
∆ ∆θ θθ θ

x yx y= = , , Eq. (17) with four variables can be 
obtained as follows:
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where D hix
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The components of the harmonic vibration are 
the main interest in the theoretical analyses, and it 
is considered that vibration components of constant 
terms are small. Therefore, we can assume the 
solutions to be as follows:
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Substituting the solution Eq. (18) into Eq. (17), 
we make ωt=2nπ (n represents the number of cycles in 
the system response) to eliminate time parameters in 
the system. Nonlinear equations of five variables can 
be obtained as follows:
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Therefore, the optimal numerical solution of 
each parameter in Eq. (19) can be solved by using the 
genetic algorithm.

3.2  Stability Analysis of the Solution

This paper applies the first Lyapunov method for 
the stability of approximate solutions. According to 
Eq. (17), the Jacobian matrix A can be obtained as 
follows:

 A =
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.  (20)

Substituting theoretical solutions into matrix 
A to obtain the coefficient matrix, the characteristic 
equation of the rotor system can be obtained as 
follows:

 

a a a a
a a a a
a a a a
a a a a

11 12 13 14

21 22 23 24

31 32 33 34
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−
−

−
−
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
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
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









= 0.  (21)

The stability of theoretical solutions can be 
investigated by judging the positive and negative of 
the real part of the eigenvalue λi. If all the real parts 
of eigenvalues are negative, the solution is stable. If 
there is at least one positive real part and others are 
negative, the solution is unsteady.

Fig. 4. Resonance responses without an imbalance

Through the above process, theoretical solutions 
are obtained and shown in Fig. 5. In the figure, the 
solid lines represent the stable solutions. The results 
show that the resonance curve of the harmonic 
vibration is a typical resonance curve of the 2DOF 
rotor, and the harmonic vibration and self-excited 
vibration are mutually independent.
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Fig. 5.  Resonance responses with an imbalance

4  NUMERICAL SIMULATION

4.1  Simulation without Imbalance

Based on Eq. (1) with τ = 0, results of the numerical 
simulation without considering an Imbalance are 
shown in Fig. 4. The self-excited vibration occurs on 
the line I under the case without a leaf spring in the 
rotor system, and the vibration response appears on the 
line II under the case with leaf springs. The results of 
simulations consist well with results of the theoretical 
analysis in Chapter 3. When hL = 0.005 and ω = 2, the 
frequency components of the response are shown in 
Fig. 6. This frequency corresponds to the frequency pf 
shown in Fig. 3, indicating that self-excited vibrations 
occur in the rotor system.

Fig. 6.  Spectrum of the response

4.2  Simulation with Imbalance

Based on Eq. (1) with τ ≠ 0, numerical simulations 
considering an Imbalance are shown in Fig. 7. The 
almost-periodic motions occur above the major critical 

speed, and the range of the amplitude becomes smaller 
with the increase of the rotational speed. Fig. 6 shows 
frequency components of the system response, and it 
is found that the frequency of self-excited vibrations 
remain unchanged under the case with the imbalance 
or without the imbalance. In addition, Fig. 8 shows 
that beat vibrations occur in the vicinity of the major 
critical speed because the frequency of self-excited 
vibrations is close to the frequency of the harmonic 
vibration.

Fig. 7.  Simulation with an imbalance

Fig. 8. Vibration response (with an imbalance); a) time history; and 
b) spectrum of respond
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Response curves of the harmonic vibration and 
self-excited vibrations obtained by simulations and 
theoretical analyses are shown in Fig. 5. Results show 
that self-excited vibrations appear above the major 
critical speed and the amplitude gradually decreases 
with the rotational speed increasing. Approximate 
solution curves of the harmonic vibration and self-
excited vibrations obtained in Chapter 3 are stable and 
consistent with the results of numerical simulations.

According to the above analyses, the harmonic 
vibration and self-excited vibrations are basically 
independent, and the almost-periodic motions occur 
due to the superposition of the harmonic vibration and 
self-excited vibrations.

5  EXPERIMENTS

5.1  Experimental Device

The structure of the experimental setup is shown in 
Fig. 9. The downside of the rotor system is free, which 
is called a cantilevered rotor system. The length of 
the shaft is 760 mm, and the diameter is 12 mm. The 
diameter of the disk is 260 mm, and the thickness is 
10mm. There is a collar to adjust the pre-tightening 
force on the rotor, and the internal damping force can 
be obtained by changing the fastening force of the 
collar. The ball bearing (#6205) is installed on the 
downward direction from the disk by about 60 mm. 
Four groups of leaf springs are provided in contact 
with the outer race of the bearing from four directions. 
Each group of leaf springs is composed of three leaves 
with different lengths. The dry friction can be created 
between leaves. In addition, two laser sensors are 
applied to measure radial displacements of the disk 
on the two orthogonal directions, and the vibration 
amplitude R of the rotor system can be obtained.

Fig. 9.  Experimental setup

5.2  Experimental Results

The response curve of the experiment without the 
leaf springs is shown in Fig. 10a. The arrows indicate 
that the amplitude of self-excited vibrations gradually 
increases from the initial amplitude presented by 
symbol ×. It can be seen that self-excited vibrations 
occur when the rotational speed is higher than the 
major critical speed. Because it is very dangerous, the 
experiment was stopped when the amplitude is over 
approximately 2 mm. The limit cycle is not validated. 
In addition, the time history of Point A is shown in 
Fig. 10b, and the amplitude of the vibration gradually 
increases from the initial amplitude.

Fig. 10.  Self-excited vibration (Without a leaf spring);  
a) resonance curve; b) time history

The response curve of the experiment with leaf 
springs is shown in Fig. 11. Due to the damping force 
of leaf springs, the resonance amplitude in the vicinity 
of the major critical speed becomes smaller and 
self-excited vibrations do not occur above the major 
critical speed. The measurement results are whole 
harmonic vibrations. For the comparison, the response 
curve of the experiment with leaf springs and a larger 
imbalance is shown in Fig. 12. Under the condition 
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of Fig. 12, the major critical speed can be determined 
clearly, and no self-excited vibrations occur above 
the major critical speed. When disturbances were 
repeatedly applied to the rotor system, self-excited 
vibrations did not occur above the major critical 
speed.

The above experimental results show that 
proposed leaf springs can effectively suppress self-
excited vibrations. 

Fig. 11.  Experimental result (With leaf springs)

Fig. 12.  Experimental result (Addition a large imbalance)

6  CONCLUSIONS

The self-excited vibrations caused by the structural 
damping occur above the major critical speed of 
rotating machinery. In this research, we propose a 
method to suppress self-excited vibrations by using 
leaf springs. The conclusions are as follows.
(1) The self-excited vibrations occurring above the 

major critical speed can be suppressed by using 
leaf springs.

(2) Under conditions with an imbalance, the rotor 
system becomes a forced autonomous system. 
The almost-periodic motions occur above the 

major critical speed due to the superposition of the 
harmonic vibration and self-excited vibrations.

(3) The theoretical analyses and numerical 
simulations can be confirmed well by 
experiments.

7  ACKNOWLEDGEMENTS

Thanks the National Key Research and Development 
Program of China (No.2017YFB1303304) and 
the Tianjin Natural Science Foundation of China 
(No.17JCZDJC38500) which give this paper’s 
support.

8  NOMENCLATURES

O – xyz rectangular coordinate system in fixed space
θ   inclination angle of the shaft at the position 

 of the disk
θx, θy projections of θ onto the xz- and yz-planes
θ′x, θ′y parameters in rotational coordinate system
D′ix, D′iy parameters in rotational coordinate system
ip  ratio of the principal axis of the polar moment  

 of inertia of the disk and the diametrical  
 moment of inertia of the disk

c  damping coefficient
Dix, Diy internal damping forces
DLx, DLy damping forces of the leaf spring
KL  increase of the spring stiffness
F  amplitude of the excitation
φ  initial phase angle of the excitation
t  time
ω  rotational speed, [rpm]
ωc  major critical speed, [rpm]
τ  inclined angle of the rotor (imbalance)
h, hL constant coefficients of the internal damping  

 force
p, pf, pb natural frequencies of the rotor system
R  amplitude of vibrations of the rotor system,  

 [mm]
Pθx, Pθy amplitude of vibrations in x and y directions
Px, Py first derivative term of amplitude of 

 vibrations in x and y directions
δ, φ1  phase angle of vibrations of the rotor system
O(ε)  orders in magnitude of parameters
ξ, η  small variations of O(ε)
s  variation in the complex field
λ  eigenvalue of the characteristic equation of 

 the rotor system



Strojniški vestnik - Journal of Mechanical Engineering 65(2019)10, 599-608

608 Wang, C. – Liu, J. – Luo, Z.

9  REFERENCES

[1] Yamamoto, T., Ishida, Y. (2012). Linear and Nonlinear 
Rotordynamics: A Modern Treatment with Applications. Wiley, 
New York.

[2] De Queiroz, M. (2013). An active hydrodynamic bearing for 
controlling self-excited vibrations: theory and simulation. 
Journal of Vibration and Control, vol. 19, no. 14, p. 2211-
2222, DOI:10.1177/1077546312458945.

[3] Bonello, P., Pham, H.M. (2014). The efficient computation 
of the nonlinear dynamic response of a foil-air bearing rotor 
system. Journal of Sound and Vibration, vol. 333, no. 15, p. 
3459-3478, DOI:10.1016/j.jsv.2014.03.001.

[4] Boyaci, A., Lu, D.X., Schweizer, B. (2015). Stability and 
bifurcation phenomena of Laval/Jeffcott rotors in semi-
floating ring bearings. Nonlinear Dynamics, vol. 79, no. 2, p. 
1535-1561, DOI:10.1007/s11071-014-1759-5.

[5] Bykov, V.G., Tovstik, P.E. (2018). Synchronous whirling 
and self-oscillations of a statically unbalanced rotor in 
limited excitation. Mechanics of Solids, vol. 53, p. 60-70, 
DOI:10.3103/S0025654418050047.

[6] Ishida, Y., Yamamoto, T. (1993). Forced oscillations of a 
rotating shaft with nonlinear spring characteristics and 
internal damping (1/2 order subharmonic oscillation and 
entrainment). Nonlinear Dynamics, vol. 4, no. 5, p. 413-431, 
DOI:10.1007/BF00053689.

[7] Coudeyras, N., Sinou, J.J., Nacivet, S. (2009). A new treatment 
for predicting the self-excited vibrations of nonlinear systems 
with frictional interfaces: The constrained harmonic balance 
method, with application to disc brake squeal. Journal 
of Sound and Vibration, vol. 319, no. 3-5, p. 1175-1199, 
DOI:10.1016/j.jsv.2008.06.050.

[8] Han, D.J., Tang, C.L., Hao, L., Yang, J.F. (2016). Experimental 
studies on the effects of bearing supply gas pressure on 
the response of a permanent magnet disk-type motor rotor. 
Journal of Mechanical Science and Technology, vol. 30, no. 
11, p. 4887-4892, DOI:10.1007/s12206-016-1008-6.

[9] Vlajic, N., Champneys, A.R., Balachandran, B. (2017). 
Nonlinear dynamics of a Jeffcott rotor with torsional 
deformations and rotor-stator contact. International Journal 
of Non-linear Mechanics, vol. 92, p. 102-110, DOI:10.1016/j.
ijnonlinmec.2017.02.002.

[10] Hua, C.L., Cao, G.H., Rao, Z.S., Ta, N., Zhu, Z.C. (2017). 
Coupled bending and torsional vibration of a rotor system 
with nonlinear friction. Journal of Mechanical Science and 
Technology, vol. 31, no. 6, p. 2679-2689, DOI:10.1007/
s12206-017-0511-8.

[11] Nishimura, A., Inoue, T., Watanabe, Y. (2018). Nonlinear 
analysis and characteristic variation of self-excited vibration 
in the vertical rotor system due to the flexible support of the 
journal bearing. Journal of Vibration and Acoustics, vol. 140, 
no. 1, DOI:10.1115/1.4037520.

[12] Tadokoro, C., Nagamine, T., Nakano, K. (2018). Stabilizing 
effect arising from parallel misalignment in circular 
sliding contact. Tribology International, vol. 120, p. 16-22, 
DOI:10.1016/j.triboint.2017.12.003.

[13] Chouchane, M., Amamou, A. (2011). Bifurcation of limit cycles 
in fluid film bearings. International Journal of Non-linear 
Mechanics, vol. 46, no. 9, p. 1258-1264, DOI:10.1016/j.
ijnonlinmec.2011.06.005.

[14] Peletan, L., Baguet, S., Torkhani, M., Jacquet-Richardet, G. 
(2014). Quasi-periodic harmonic balance method for rubbing 
self-induced vibrations in rotor-stator dynamics. Nonlinear 
Dynamics, vol. 78, no. 4, p. 2501-2515, DOI:10.1007/s11071-
014-1606-8.

[15] Kligerman, Y., Gottlieb, O., Darlow, M.S. (1998). Nonlinear 
vibration of a rotating system with an electromagnetic damper 
and a cubic restoring force. Journal of Vibration and Control, 
vol. 4, no. 2, p. 131-144, DOI:10.1177/107754639800400203.

[16] Inoue, T., Ishida, Y., Niimi, H. (2012). Vibration analysis of 
a self-excited vibration in a rotor system caused by a ball 
balancer. Journal of Vibration and Acoustics, vol. 134, no. 2, 
DOI:10.1115/1.4005141.


