
Metodološki zvezki, Vol. 1, No. 1, 2004, 131-142

Discovery of Polynomial Equations

for Regression

Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič1

Abstract

Both equation discovery and regression methods aim at inducing models
of numerical data. While the equation discovery methods are usually evalu-
ated in terms of comprehensibility of the induced model, the emphasis of the
regression methods evaluation is on their predictive accuracy. In this paper,
we present Ciper, an efficient method for discovery of polynomial equations
and empirically evaluate its predictive performance on standard regression
tasks. The evaluation shows that polynomials compare favorably to linear
and piecewise regression models, induced by the existing state-of-the-art re-
gression methods, in terms of degree of fit and complexity.

1 Introduction

Equation discovery (Langley et al., 1987) aims at developing methods for computa-
tional discovery of quantitative laws or models, expressed in the form of equations,
in collections of measured numerical data. Equation discovery methods are mainly
used for automated modeling of real-world systems from measurements and ob-
servations. Since they operate on numerical data, they are strongly related to the
regression methods used in statistics and data mining for inducing predictive models
of an observed numerical variable (Hastie et al., 2001).

Although the methods for equation discovery and regression methods are highly
related, they differ mainly in the application focus. The focus of equation discovery
is on inducing comprehensible and general quantitative laws or models of the ob-
served real-world system or phenomena. The emphasis is on the comprehensibility
of the induced model and especially its ability to reveal the structure of the observed
real-world system. On the other hand, regression methods focus on the problem of
inducing accurate predictive models of the observed system variable. While the com-
prehensibility, explanatory power, generality, and predictive accuracy of the induced
models are equally important for measuring the performance of equation discovery
methods, the predictive accuracy is the most important (or the only) criterion of
success for the regression methods. Due to the difference between these two kinds
of methods, outlined above, they are usually evaluated on different kinds of prob-
lems. While equation discovery methods are evaluated on the tasks of rediscovering

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia;
ljupco.todorovski@ijs.si, saso.dzeroski@ijs.si, peter.ljubic@ijs.si

132 Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič

existing or building new models of real-world systems (Todorovski and Džeroski,
1997; Washio and Motoda, 1997), regression methods are evaluated on the tasks of
predicting a value of a numeric variable (Blake and Merz, 1998).

However, existing equation discovery methods would not be directly applicable
on standard regression tasks. A main reason is their computational complexity,
since they typically explore large space of potentially very complex candidate equa-
tion structures. In order to approach the regression task efficiently, we develop an
equation discovery method Ciper that heuristically search through a space of poly-
nomial equations. Ciper can be seen as a stepwise regression method for inducing
polynomial equations — the differences to standard stepwise regression methods
will be discussed further in Section 3. We evaluate the of Ciper on fourteen stan-
dard regression tasks from the UCI Repository of Machine Learning Databases and
Domain Theories (Blake and Merz, 1998) and compare its performance to the per-
formance of standard state-of-the-art regression methods built in the Weka data
mining suite (Frank and Witten, 1999).

The paper is organized as follows. First, equation discovery methods and their
relation to the methods for inducing predictive regression models is introduced in
Section 2. In Section 3 we introduce Ciper, an efficient search-based method for
discovery of polynomial equations. Section 4 presents the results of the empirical
evaluation of the proposed method as well as the results of its comparison with
standard regression methods. Finally, Section 5 concludes the paper with a brief
summary and directions for further work.

2 Equation discovery and regression

The task of equation discovery can be defined as follows: Given measurements of
a set V of observed system variables {v1, v2, . . . , vn}, find a set of equations of the
form f(v1, v2, . . . vn) = 0 that summarize the observations.

Early approaches to equation discovery dealt with rediscovering empirical laws
from the history of science. Experiments with early equation discovery methods
showed that a small set of data-driven heuristics can be used to rediscover many
apparently complex physical laws including the ideal gas law, the law of gravitation,
the law of refraction and Black’s specific heat law (Langley et al., 1987). The
performance of the early equation discovery methods was assessed as the success of
rediscovery, i.e., by comparison of the discovered equations with the original ones.

In the process of development from early approaches to the present, the focus
of the equation discovery methods shifted from rediscovering known quantitative
laws to discovering new laws and inducing mathematical models of complex real-
world systems (Džeroski, 1995; Washio and Motoda, 1997; Todorovski and Džeroski,
1997). However, the main emphasis remained on inducing comprehensible and gen-

eral models of the observed systems, rather than models that have high predictive
power. Following this, the performance of the equation discovery methods is as-
sessed by means of the comprehensibility of the model and especially its ability to
explain (or to reveal the structure of) the observed real-world system.

Since they deal with modeling numerical variables, equation discovery methods

Discovery of Polynomial Equations for Regression 133

are strongly related to the regression methods from the area of statistics and data
mining. The regression methods are used to induce predictive models of an observed
numerical variable. More formally, the regression task can be defined as follows:
Given measurements of a set V of system variables {v1, v2, . . . , vn}, find a model
that predicts the value of a designated system variable vd ∈ V on the basis of the
values of the independent variables in V \ {vd}.

Unlike equation discovery, which does not focus on any particular variable, re-
gression focuses on the dependent variable vd. Explicit models that express vd as
a function of the independent variables from V \ {vd} are considered. Classical re-
gression approaches from statistics consider mostly linear regression, where a linear
function of the independent variables is used. The approaches based on regression
trees employ piece-wise linear functions of the independent variables. The success
of induced model is measured in terms of its accuracy.

Note that regression can be formulated as an equation discovery task. In that
case the predictive regression model is an equation of the form y = f(v1, v2, . . . , vn),
where f comes from the class of functions considered by the equation discovery
method. In this paper, we will consider the simple and yet general class of mul-
tivariate polynomial functions. An efficient method for discovery of polynomial
equations is presented in the next section.

3 Discovery of polynomial equations

In this section, we present a heuristic search algorithm Ciper that searches through
the space of polynomial equations and finds the one that has an optimal value of the
heuristic function. First, we introduce a refinement operator that orders the space
of polynomial equations. Then, we present the heuristic function used to measure
the quality of each equation considered during the search along with the stopping
criterion. After presenting the search algorithm based on beam search strategy, we
discuss the relation of Ciper to stepwise regression methods.

3.1 The language of polynomial equations

We focus here on discovery of polynomial equations that can be used to predict the
value of a dependent variable vd. Given a set of variables V , and a dependent variable
vd ∈ V , a polynomial equation has the form vd = P , where P is a polynomial over
V \ {vd}, i.e.,

P =
r∑

i=1

consti · Ti,

where each Ti is a multiplicative term, r is the number of such terms, and consti are
real-valued constants. Each term is a finite product of variables from V \ {vd}:

Ti =
∏

v∈V \{vd}

vdv,i,

where dv,i is (a non-negative integer) degree of the variable in the term. The degree
of 0 denotes that the variable does not appear in the term. The sum of degrees of

134 Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič

Table 1: The refinement operator for ordering the space of polynomial equations.

original (current) equation

vd =
∑r

i=1 consti · Ti

refined equations that increase r (one for each v ∈ V \ vd)

vd =
∑r

i=1 consti · Ti + constr+1 ∗ v, where ∀i : v 6= Ti

refined equations that increase d (one for each Tj and v ∈ V \ vd)

vd =
∑r

i=1,i6=j consti · Ti + Tj ∗ v, where ∀i 6= j : Tj ∗ v 6= Ti

all variables in a term is called the degree of the term, i.e., deg(Ti) =
∑

v∈V \{vd} dv,i.
The degree of a polynomial is the maximum degree of a term in that polynomial,
i.e., deg(P) = maxr

i=1 deg(Ti). The length of a polynomial is the sum of the degrees
of all terms in that polynomial, i.e., len(P) =

∑r
i=1 deg(Ti).

For example, consider a set of variables V = {x, y, z}, where z is chosen to be a
dependent variable. The term x (that is equivalent to x1y0) has degree 1, the term
x2y has degree 3, while x2y3 is a term of degree 5. An example polynomial equation
is z = 1.2x2y + 3.5xy3. It has degree 4 and length 7.

3.2 The refinement operator

In order to apply heuristic search methods to the task of inducing polynomial equa-
tions, we first have to order the search space of candidate equations. We intro-
duce a refinement operator that orders this space according to equation complexity.
Starting with the simplest possible equation and iteratively applying the refinement
operator, all candidate polynomial equations can be generated.

Assume we measure the complexity of the polynomial equation vd = P as len(P).
The refinement operator increases the complexity of the equation by 1, either by
adding a new linear term or by adding a variable to an existing term. First, we can
add an arbitrary linear (first degree) term (that is a single variable from V \{vd}) to
the current equation as presented in the first (upper) part of Table 1. Special care is
taken that the newly introduced term is different from all the terms in the current
equation. Second, we can increase the complexity len(P) by adding a variable to
one of the terms Tj in the current polynomial equation. Again, care should be taken
that the changed term is different from all the other terms in the current equation.
Note that the refinements of a given polynomial P are super-polynomials of P . They
are minimal refinements in the sense that they increase the complexity of P by one
unit.

The branching factor of the presented refinement operator depends on the num-
ber of variables |V | and number of terms in the current equation r. The upper
bound of the branching factor is O((|V | − 1)(r + 1)) = O(|V |r), since there are at
most |V | − 1 possible refinements that increase r and at most (|V | − 1)r possible
refinements that increase d.

The ordering of the search space of polynomial equations, defined on the set of
variables V = {x, y, z}, where z is the dependent variable, is presented in Figure 1.

Discovery of Polynomial Equations for Regression 135

Figure 1: The search space of polynomial equations over the set of variables
V = {x, y, z}, where z is the dependent variable, as ordered by the refinement

operator from Table 1. Note that for simplicity, real-valued constants are

omitted from the equations.

It shows that the defined refinement operator is not optimal, in sense that each
polynomial equation can be derived more than once. This is due to the commuta-
tivity of the addition and multiplication operators. An optimal refinement operator
can be easily obtained by taking into account the lexical ordering of the variables
in V . Then, only variables (and/or terms) with higher lexical rank should be added
to the terms and/or equations. The dotted nodes in the graph in Figure 1 denote
equations that would not be generated by the refinement operator that takes into
account lexical order. However, the redundancy due to the sub-optimality of the
refinement operator can be avoided during the search procedure, as we will point
out in the following section.

While an optimal refinement operator is desired for complete/exhaustive search,
it may prevent the generation of good equations in greedy heuristic search. Suppose
the polynomials x and z have low heuristic value, while y has a high heuristic value
and x + y is actually the best. Greedy search would choose y and the optimal
refinement operator that takes into account lexicographic order would not generate
x + y.

3.3 The search heuristic

Each polynomial equation structure considered during the search contains a number
of generic constant parameters (denoted by consti). In order to evaluate the quality
of an equation, the values of these generic constants has to be fitted against training
data consisting of the observed values of the variables in V . Since the polyno-
mial equations are linear in the constant parameters, the standard linear regression
method can be used for this purpose.

The quality of the obtained equation is evaluated using a degree of fit measure
that measures the discrepancy between the observed values of vd and the values
predicted using the equation. One such measure is mean squared error (MSE),
calculated as: MSE(vd = P) = 1

m

∑m
i=1(vd(i) − v̂d(i))

2, where vd(i) is the value of
vd for the i-th training example, v̂d(i) is the value of vd for the same example, but
predicted using equation vd = P , and m is the number of training examples.

Ciper uses an MDL (minimal description length) based heuristic function for
evaluating the quality of equations that combines the degree of fit with the complex-

136 Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič

Table 2: A top-level outline of Ciper’s beam search procedure.

procedure Ciper(D, vd, b)
1 E0 = simplest polynomial equation (vd = const)
2 E0.MDL = FitParameters(E0, D)
3 Q = {E0}
4 repeat

5 Qr = {refinements of equation structures in Q}
6 foreach equation structure E ∈ Qr do

7 E.MDL = FitParameters(E, D)
8 endfor

9 Q = {best b equations from Q ∪ Qr}
10 until Q unchanged during the last iteration
11 print Q

ity of the equation. In the literature, the following combination has been considered:
based on Akaike and Bayesian information criteria for regression model selection
(Hastie et al., 2001):

MDL(vd = P) = len(P) log m + m log MSE(vd = P).

where len(P) is the length of the P , and m number of training examples. While the
second term the MDL heuristic function measures the degree of fit of a given equa-
tion, the first term introduces a penalty for complexity of the equation. Through this
penalty the MDL heuristic function introduces preference toward simpler equations.

3.4 The search algorithm

Ciper employs beam search through the space of possible equations using the search
algorithm presented in Table 2. The algorithm takes as input a training data set D

containing the values of independent variables and the dependent variable vd. The
output of Ciper consists of the b best polynomial equations according to the MDL
heuristic function defined in the previous section.

Before the search procedure starts, the beam Q is initialized with the simplest
possible polynomial equations of the form vd = const. The value of the constant
parameter const is fitted against the training data D using linear regression. In
each search iteration, the refinements of the equations in the current beam are
generated (using the refinement operator from Table 1) and collected in Qr (line 5).
In case when redundant equations are generated due to the sub-optimality of the
refinement operator, the duplicate equations are filtered out from the set Qr (each
refined equation structure is compared to the equations from the current version of
Qr: if it is already included in Qr, we skip it and proceed with the next refinement).
Again, linear regression is used to fit the constant parameters of the refinements
against the training data D (lines 6-8). Finally, at the end of each search iteration,
only the best b equations, according to the MDL heuristic function, are kept in the
beam (line 9). The search stops when the performed iteration does not change the
beam.

Discovery of Polynomial Equations for Regression 137

3.5 Stepwise regression and MARS

The Ciper search algorithm is similar in spirit to the forward stepwise method for
linear regression (Hastie et al., 2001). As Ciper, the stepwise regression method also
starts with the simplest model vd = const and sequentially adds those independent
variables to the model that most significantly improve its fit to the training data.
To avoid overfitting, stepwise regression methods test the significance of the MSE
improvement gained by refining the current equation and do not take into account
those refinements that do not lead to significant improvements. The significance of
the MSE improvement is based on F statistic:

F =
MSE(vd = P) − MSE(vd = P ′)

MSE(vd = P ′)
· (m − r − 2),

where vd = P is the current equation, vd = P ′ is the candidate equation with the
newly added term, r is the number of terms in the current equation, and m is the
number of training examples. The improvement is significant, if the obtained F

value is greater than the 95th percentile of the F (1, m− r − 2) distribution (Hastie
et al., 2001). Stepwise regression method proceed with greedy search by choosing the
best significant improvement and stops, if no significant improvement is available.

Ciper can be viewed as a stepwise method for polynomial regression with MDL
heuristic function. However, there are several other important differences between
Ciper and the stepwise regression method.

The refinement operator used in Ciper is better suited for polynomial regression.
While the stepwise regression method can only refine the current equation by adding
a new term to it, Ciper can also add a variable to an existing term in the current
equation. Using this second kind of refinement, Ciper can generate polynomials of
arbitrary degree. On the other hand, to use forward stepwise method for polynomial
regression, terms of degree two and more have to be precomputed and introduced
as new independent variables. However, this is a serious limitation of the stepwise
method, since precomputation of higher degree terms requires user to specify their
maximal degree of the introduced terms and it introduces potentially huge number
of independent variables. The number of independent variables is of order O(|V |d),
where d is the maximal degree of precomputed terms.

The huge number of precomputed higher degree terms is reflected in the high
branching factor of the stepwise refinement operator. Since it adds a new term to
the current equation, its branching factor equals the number of independent vari-
ables, i.e., O(|V |d). Note that the branching factor of Ciper’s refinement operator
(O(|V |r)) is linear with regards to the number of independent variables. The lower
branching factor of the refinement operator permits the use of higher beam widths
in Ciper, which is in contrast with beam width of one used for stepwise regression
methods.

Similar refinement operator has been also used in the MARS (multivariate adap-
tive regression splines) method (Friedman, 1991). The difference is however that
the MARS refinement operator adds all possible piecewise linear terms of a form
max(v − t, 0) or max(t− v, 0), where v is an independent variable v ∈ V \ {vd} and
t is one of its values, to a current equation. Since each example in the training set

138 Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič

Table 3: Properties (number of variables n, number of examples m, and class variance

VAR(vd)) of the thirteen regression data sets used in the experiments.

Dataset m n VAR(vd)

autoprice 159 15 3.433·107

baskball 96 4 0.01173
bodyfat 252 14 69.76
elusage 55 3 565.96
fruitfly 125 5 250.12
housing 506 14 84.42
mbagrade 61 3 0.1063
pollution 60 16 3805.13
pwlinear 200 11 19.92
quake 2178 4 0.03587
sensory 576 12 0.6758
strike 625 7 313837
veteran 137 8 24724.3
vineyard 52 4 18.94

defines a potential break point (knot) t in the piecewise linear term, the branching
factor of MARS refinement operator is much higher since it also depends on the
number of examples in the training set m. The branching factor of MARS refine-
ment operator is of order O(|V |rm), which can be quite prohibitive for large data
sets.

4 Experimental evaluation

The main goal of the performed experiments is to evaluate the predictive perfor-
mance of equation discovery method Ciper especially in comparison with the stan-
dard regression methods for inducing linear and piecewise models, implemented in
the data mining suite Weka (Frank and Witten, 1999). The performance of the
methods is evaluated on thirteen data sets from the UCI Repository (Blake and
Merz, 1998). These data sets have been widely used in other comparative studies.
Table 3 presents the basic properties the data sets.

4.1 Experimental methodology and settings

In all the experiments presented here, regression performance is estimated using
10-fold cross validation. The regression performance is measured in terms of RE

defined as:

RE =

∑m
i=1(vd(i) − v̂d(i))

2

∑m
i=1(vd(i) − vd)2

,

where vd(i) and v̂d(i) are the observed and predicted values of the dependent variable
for the i-th training example, m is the number of examples, and vd is the average

Discovery of Polynomial Equations for Regression 139

Table 4: Predictive performance of Ciper in terms of relative mean squared
error (RE), as compared to three regression methods implemented in Weka:

linear regression LR, regression trees RT, and model trees MT.

Dataset Ciper LR RT MT

autoprice 0.1503 0.2345 0.3242 0.1463
baskball 0.6116 0.6651 0.7845 0.6310
bodyfat 0.0282 0.0273 0.1097 0.0252
elusage 0.1751 0.2254 0.4365 0.2780
fruitfly 1.0074 1.1025 1.0132 1.0258
housing 0.1912 0.2891 0.2750 0.1666
mbagrade 0.7760 0.8342 1.0505 0.8342
pollution 0.5456 0.5513 0.7741 0.4187
pwlinear 0.1484 0.2479 0.3266 0.1062
quake 0.9959 0.9982 1.0010 0.9926
sensory 0.8879 0.8688 0.8463 0.7548
strike 0.9489 0.8386 0.8665 0.8295
veteran 0.8970 0.9226 0.9077 0.8789
vineyard 0.2869 0.4336 0.7281 0.4776

Average 0.5465 0.5885 0.6746 0.5404

value of the dependent variable. Note that RE gives a normalized value of the
mean squared error, that is independent on the magnitude of the dependent variable
vd. The normalization allows for comparison and aggregation of the performance
measure across different data sets.

We compare the performance of our approach based on polynomial equations
to the performance of three standard regression methods implemented in Weka

(Frank and Witten, 1999): linear regression, regression trees, and model trees. The
tree-based models are induced with the M5’ algorithm (Wang and Witten, 1997).
All algorithms have been used with their default parameters’ settings. The default
beam width in Ciper is 16.

4.2 Experimental results

The results of the experiments are presented in Tables 4 and 5. The first table
compares the regression methods in terms of their predictive error and the second
one compares the complexity of the induced models.

From the results on predictive accuracy of the models induced with different
regression methods in Table 4, we can see that our approach based on polynomial
equations performs better than linear regression and regression trees. Ciper per-
forms much better then regression trees on smaller data sets. A possible explanation
for this is that Ciper induces a single equation/model over the entire data set, as
opposed to a number of partial models induced for data subsets in regression trees.
Finally, to our surprise, the overall accuracy of Ciper is comparable to the accuracy
of model trees. Note that we also compared the predictive error of models induced
using Ciper with MDL heuristic to the error of models induced using Ciper with

140 Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič

Table 5: Complexities of the models induced with Ciper as compared to the linear and
tree-based models in terms of number of constant parameters in the equation #P,

polynomial length LEN and degree DEG, as well as number of decision nodes

#DN for tree-based piecewise models.

Dataset Ciper LR RT MT
DEG #P (r) LEN #P #DN #P #DN #P

autoprice 2 5 5 16 7 8 6 19
baskball 1 3 2 5 1 2 0 3
bodyfat 3 8 11 15 15 16 5 12
elusage 2 3 3 13 2 3 1 6
fruitfly 0 1 0 7 0 1 0 1
housing 4 15 32 14 25 26 18 56
mbagrade 1 3 2 3 0 1 0 3
pollution 1 5 4 16 6 7 0 10
pwlinear 2 10 12 11 13 14 1 12
quake 1 2 1 4 0 1 5 10
sensory 2 4 4 26 7 8 3 27
strike 1 4 3 23 9 10 7 22
veteran 1 2 1 10 1 2 0 3
vineyard 2 4 4 4 3 4 1 6

Average 1.64 4.93 6.00 11.93 6.36 7.36 3.36 13.57

F statistics as heuristic (used in stepwise regression methods, see Section 2.5). The
results, which due to lack of space are not included in the paper, show that Ciper

with MDL outperforms Ciper with F .

Furthermore, Table 5 presents a comparison of the complexities of different mod-
els. The complexity of polynomial equations is assessed in terms of polynomial de-
gree DEG, number of terms r (which equals the number of constant parameters in
the equations #P), and polynomial length LEN, defined in Section 3.1. The com-
plexity of linear regression is assessed in terms of number of constant parameters.
Finally, the complexity of tree models is measured in number of decision nodes and
number of constant parameters used in the leaf nodes. While regression trees use
one constant parameter in each leaf node, model trees use linear regression model
in each leaf node. Thus, the number of the constant parameters in the model trees
is higher compared to the number of constant parameters in the regression trees.

The results show that the average complexity of the polynomial models compares
favorably with complexities of the other regression methods. The average model tree
consists of 3 decision nodes and includes 14 constant parameters in the leaf nodes.
This means that the average number of constant parameters in the model tree is 17,
since each decision node include one constant parameter (the splitting boundary).
Similarly, the average number of constant parameters in regression tree models is
13. Both numbers are significantly higher than the average of 6 parameters in the
polynomial models, even if the average length of the equations (5) is taken into
account.

Discovery of Polynomial Equations for Regression 141

5 Summary and further work

This paper presents Ciper, a method for efficient induction of polynomial equations
that can be used as predictive regression models. Ciper employs heuristic beam
search through the space of candidate polynomial equations. The search is based on
a refinement operator with low branching factor that makes it much more suitable
for polynomial regression compared to much complex refinement operators used
in stepwise regression methods and MARS. Evaluation of Ciper on a number of
standard predictive regression tasks shows that it is superior to linear regression
and stepwise regression methods as well as regression trees. Ciper appears to be
competitive to model trees too. The complexity of the induced polynomials, in terms
of number of parameters, is much lower than the complexity of piecewise models.

First direction for further and ongoing work is an extensive empirical evaluation
of Ciper on which involves larger sample of data sets, its comparison with other
methods, such as MARS (Friedman, 1991) and kernel methods for regression (Hastie
et al., 2001), and bias-variance analysis of the predictive error (Geman et al., 1992).
Other directions for further research include integration of efficient methods for
partitioning the data set in Ciper and use them to induce piecewise polynomial
models (one piece for each partition). The partitioning of the data set can be based
on Euclidean proximity of training examples: clustering methods can be used for this
purpose as in Torgo and da Costa (2000) and Falkenhainer and Michalski (1990).
Finally, since linear regression method is used for fitting the model parameter in
Ciper, it is fairly straightforward to develop a version of Ciper that is capable
of incremental induction of regression models from numeric data streams. The
development can be based on the incremental linear regression method presented in
Chen et al. (2002).

Acknowledgments

This work was supported in part by the project cInQ (Consortium on discovering
knowledge with Inductive Queries), funded by the European Commission under the
FET arm of the IST programme.

References

[1] Blake, C.L. and Merz, C.J. (1998): UCI repository of machine learning
databases. http://www.ics.uci.edu/˜mlearn/MLRepository.html.

[2] Chen, Y., Dong, G., Han, J., Wah, B., and Wang, J. (2002): Multidimen-
sional regression analysis of time-series data streams. In Proceedings of the

Twentyeighth International Conference on Very Large Data Bases, 323-334,
San Mateo: Morgan Kaufmann.

[3] Džeroski, S. and Todorovski, L. (1995): Discovering dynamics: from inductive
logic programming to machine discovery. Journal of Intelligent Information

Systems, 4, 89-108.

142 Ljupčo Todorovski, Sašo Džeroski, and Peter Ljubič

[4] Falkenhainer, B. and Michalski, R. (1990): Integrating quantitative and quali-
tative discovery in the abacus system. In Y. Kodratoff and R. Michalski (Eds.):
Machine Learning: An Artificial Intelligence Approach. San Mateo: Morgan
Kaufmann.

[5] Frank, E. and Witten, I.H. (1999): Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations. San Mateo: Morgan Kauf-
mann.

[6] Friedman, J. (1991): Multivariate adaptive regression splines (with discussion).
Annals of Statistics, 19, 1-141.

[7] Geman, S., Bienenstock, E., and Doursat, R. (1992): Neural networks and the
bias/variance dilemma. Neural Computation, 4, 1-58.

[8] Hastie, T., Tibshirani, R., and Friedman, J. (2001): The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Berlin: Springer.

[9] Langley, P., Simon, H.A., Bradshaw, G.L., and Żythow, J. M. (1987): Scientific

Discovery. Cambridge: MIT Press, Cambridge.

[10] Todorovski, L. and Džeroski, S. (1997): Declarative bias in equation discov-
ery. In Proceedings of the Fourteenth International Conference on Machine

Learning, 376-384, San Mateo: Morgan Kaufmann.

[11] Torgo, L. and da Costa, J.P. (2000): Clustered partial linear regression. In
Proceedings of the Eleventh European Conference on Machine Learning, 426-
436. Berlin: Springer.

[12] Wang, Y. and Witten, I.H. (1997): Induction of model trees for predicting con-
tinuous classes. In The Proceedings of the Poster Papers of the Eighth European

Conference on Machine Learning, 128-137, University of Economics, Faculty of
Informatics and Statistics, Prague.

[13] Washio, T. and Motoda, H. (1997): Discovering admissible models of complex
systems based on scale-types and identity constraints. In Proceedings of the

Fifteenth International Joint Conference on Artificial Intelligence, 2, 810-817,
San Mateo: Morgan Kaufmann.

