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We study theoretically the biaxial bending of symmetric, flat layered ceramic composites (laminates) due to external loading.
We focus on three-layered alumina/zirconia laminates. We compare the principal stresses in the samples in the case of static and
harmonic dynamic loading. The dynamic equation within the Kirchhoff theory for thin homogeneous plates is first generalized
to the case of multilayered plates. It is solved numerically with the relaxation method, which we have developed for this pur-
pose.
Keywords: layered ceramic composites, Kirchhoff theory of plates, biaxial stress, principal stresses

Teoreti~no smo {tudirali dvoosni upogib simetri~nih ravnih plastovitih kerami~nih kompozitov (laminatov) zaradi zunanje
obremenitve. Osredoto~ili smo se na triplastne laminate iz aluminijevega in cirkonijevega oksida. Primerjali smo lastne
vrednosti napetosti za stati~no in harmoni~no dinami~no obremenitev. Dinami~no ena~bo v okviru Kirchhoffove teorije za
homogene tanke plo{~e smo najprej generalizirali za primer ve~plastnih plo{~. Ena~bo smo re{evali numeri~no z relaksacijsko
metodo, ki smo jo razvili v ta namen.
Klju~ne besede: plastoviti kerami~ni kompoziti; Kirchhoffova teorija plo{~; dvoosna napetost; lastne vrednosti napetosti

1 INTRODUCTION

Alumina (Al2O3) based ceramics are frequently used
in various applications, such as cutting tools and biomed-
ical implants, because of their good mechanical proper-
ties. Pure alumina has high hardness and low weight, but
a relative moderate bend strength and fracture toughness.
Zirconia (ZrO2) can have significantly higher fracture
toughness and bend strength than alumina. Therefore,
composites of alumina with an appropriate volume frac-
tion of tetragonal zirconia (zirconia toughened alumina,
ZTA) are promising materials due to a high bend
strength and fracture toughness, as well as wear resis-
tance.1–6 F. Sommer et al.6 have reported that using
1 mol. % of yttria can raise the bend strength of ZTA ce-
ramics (containing 17 vol. % of yttria stabilized zirconia)
up to nearly 1200 MPa and the ISB fracture toughness
up to 8.5 MPa m.6 Multi-layered alumina/zirconia com-
posites (laminates) have been studied particularly in re-
gard to residual and loading stresses.7–12 Thermal resid-
ual stresses within individual layers arise upon cooling
the material after the sintering process because of the
mismatch of the thermal expansion coefficients of alu-
mina and zirconia.

Various static uniaxial or biaxial bending tests are
used to measure the strength of ceramic samples. E.

Carrera and A. Ciuffreda13 compared a three-dimensional
stress distribution in composite plates from different the-
ories and validated their results for different static load-
ings with the finite-element method (FEM). However,
the ceramic and other engineering products/components
are often subjected to dynamic loads in everyday use.
Therefore, different aspects of the dynamics of elastic
plates, shells and beams have been investigated thor-
oughly. A particular interest has been devoted to the
propagation of traction-free elastic waves in thin flat
plates, theoretically with a finite thickness but infinite
lateral dimensions. An analytical approach shows that
even for homogeneous and symmetric three-layered
plates the ordinary equations for dispersion relations and
the corresponding strains and stresses are complex.14–16

Different analytical or semi-analytical approaches for fi-
nite plates can be used only when the problem is effec-
tively one-dimensional (1D) and the boundary conditions
are simple. Z. J. Ai et al.17 studied the problem of an
elastic plate on the stack of layers with the uniformly
moving load on the plate, where they used the Fourier
transformation and analytical layer method. An interest-
ing idea for the partially analytical approach for the
two-dimensional (2D) problem of multilayered plate dy-
namics was given by M. Sharyjat and M. Roshanfar.18

They expanded the deflection of the plate with sine func-
tions of coordinates and with time-dependent coeffi-
cients.
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Numerical calculations for the biaxial deformations
of finite plates include several variants of FEM methods.
Zhang et al. have developed an efficient two-step FEM
method for the calculation of the dynamics and stresses
in multilayered plates: the method is composed of a
fine-scale computation for parts of the system, followed
by a coarse-scale computation for the whole system.19

Among various numerical methods for the three-dimen-
sional (3D) problem of multilayered plates we mention a
very sophisticated sampling surface method, where the
basic variables are a dense set of inner sampling sur-
faces. T. Ye et al.20 implemented this method with the
spectral expansion technique where the basic orthogonal
functions are Chebyshev polynomials. Using this ap-
proach, they were able to reach a highly accurate numer-
ical precision, even for relatively thick plates with vari-
ous boundary conditions. There are several other
approaches and techniques to attack the problem of mul-
tilayered plates, but they are not focused directly on the
simple single equation for the dynamic bending of the
plate as a whole.21–24 As regards the parabolic-type
fourth-order classic equation for bending deformation of
thin plates within the Kirchhoff theory, several attempts
have been made to refine the theory, particularly for infi-
nite plates, including Timoshenko-Reissner-Mindlin type
theories.25

In this paper we use the simple Kirchhoff theory for
pure 2D bending deformation and generalize the dy-
namic equation of a homogeneous plate to the case of
multilayered plates. The dynamic equation is solved nu-
merically on a discrete network with a relaxation
method. We are particularly interested how the frequency
of the external load and the composition of the sample
influence the stress magnitude in the 3-layered alu-
mina/zirconia sample. A benefit of our approach is that
we present the vibration of the plate as a single object.
The parameters of different layers enter a single dynamic
equation only through the composed flexural rigidity,
without the necessity of solving the coupled system of
equations for different layers simultaneously. After the
dynamic equation is solved, the stress tensor is calcu-
lated in each layer separately. It may be interesting from
the mathematical point, that the efficiency of the relax-
ation method for the fourth-order equation is not signifi-
cantly different from that for elliptic-type equations of
the second order.

2 NUMERICAL MODEL

Let us first consider the case of a homogeneous, thin
square plate subject to bending deformation. Its Young’s
modulus, Poisson’s ratio and mass density are E, � and �,
respectively. The thickness of the plate is h, while its side
is 2a. We choose the Cartesian coordinate system with
the origin at the center of the plate, the z–axis is perpen-
dicular to the plate, and the other two axes parallel to the

sides of the plate. The neutral plane is at z = 0. The de-
formation according to the Kirchhoff theory for a thin
plate is characterized by the displacement w(x, y, t) of the
points on the neutral plane in the direction of z–axis. The
corresponding dynamic equation for the "displacement
function" w is:
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where �2 = �2/�x2 + �2/�y2 is the 2D Laplacian.26,27 The
quantity p on the right side of Equation (1) is the exter-
nal pressure difference on both sides of the plate. In
general, it can be a function of x, y and t. The flexural ri-
gidity (bending stiffness) for a homogeneous plate is:

D
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A convenient numerical form of Equation (1) and its
extension to a layered plate in dimensionless units (de-
noted by *) are given in Appendix A. We take some refer-
ence Young’s modulus E0 and density �0, so that
E* = E/E0, p* = p/E0 and �* = �/�0. We introduce the ref-
erence flexural rigidity as D0 = E0h3 instead of Equation
(2), and the dimensionless flexural rigidity is D* = D/D0.

The coordinates and displacement are normalized as:
x* = x/a, y* = y/a, z* = z/h and w* = w/h. We define the ra-
tio � = h/a, which is supposed to be small. A suitable
choice for the dimensionless time is t* = t/t0, where the
characteristic time is:
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This expression gives a correct order of magnitude of
the lowest eigenfrequency � = 1/t0. When the function w*

is found, the components of the strain and stress tensors
can be calculated; see the explanation in the textbook of
by Landau and Lifshitz26 and additional details in the pa-
pers of V. V. Vasiliev27 and N. I. Robinson.28 The basic
assumption in the derivation of equations for thin plates
is that the stress components �xz, �yz and �zz can be ne-
glected in comparison with �xx, �yy and �xy. The eigen-
values �1 and �2 (principal stresses) of the remaining 2D
stress tensor can finally be calculated. The direct rela-
tionship between the stress tensor and the displacement
function w* is given in Appendix A.

We present in this paper the results for homogeneous
pressure over the plate. For static loading the constant
pressure p*

0 is applied. In the case of harmonic dynamic
loading we take: p* = p*

0 sin(2��appt), with applied fre-
quency �app and the corresponding period Tapp = 1/�app.
We present the results for clamped edges (rigid boundary
with zero values of displacement and its normal deriva-
tive): (I) w = 0 and �w/�x = 0 for x = � a; (II) w = 0 and
�w/�y = 0 for y = � a.
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3 RESULTS AND DISCUSSION

3.1 Analysis of a homogeneous plate

Typical symmetrically positioned representative
points of the plate at z = 0 are indicated in Figure 1.

First, we consider a homogeneous "plate". We choose
a homogeneous alumina sample with the following pa-
rameters (Table 1): 2a = 100 mm, h = 5 mm (� = 0.1),
E = E0 = 390 GPa, � = 0.238, � = �0 = 3.98 kg/dm3, p0 =
1 MPa. The time dependence of the displacement of
three representative points in the harmonic loading is
compared in Figure 2, where we choose Tapp

* = 10.
The period of the basic eigenmode is estimated: T* =

2.32 or TA = T*t0 = 117 �s (Equation (3)); the corre-
sponding eigenfrequency is �A = 1/TA = 8.53 kHz (the in-
dex "A" stands for alumina).

To represent the distribution of stress we take a static
loading with pressure p0 = 1 MPa. Figure 3 shows the
profile of both principal stresses along two symmetry

lines: y = 0 (horizontal line through points N, P3, P0, P1

and L); 2) and y = x (diagonal line through points A, P7,
P0, P5 and C). The principal stresses �1 and �2 at the cen-
tral point P0 are equal due to symmetry (x* = 0 in Fig-
ure 3).

The lines on the top plate’s surface are taken (z = h/2)
in Figure 3. We are interested in positive (tensile)
stresses, which are much more detrimental for ceramic
materials than compressive stresses. However, the
strongly negative value �2 � –120 MPa at the edges
means that the corresponding principal stress is +120
MPa on the opposite surface (z = –h/2), at the point with
the same coordinates x* and y*. The largest stresses thus
correspond to edge points K, L, M and N in Figure 1,
not to the central point P0. The static displacement of P0

is w*
stat = w*(0, 0) = 0.0057, or �0.03 mm in physical

units.

3.2 Analysis of 3-layered plate

Now, we focus on the ZTA composites and we keep
the same dimensions as given above. We take a symmet-
ric 3-layered composite with alumina outer layers and a
ZTA inner layer. The corresponding material parameters,
presented in Table 1, can be obtained from several refer-
ences.10,11 Only the value 500 MPa for the strength of
pure alumina has been chosen rather arbitrarily. This is,
because the data from literature vary significantly due to
different fabrication procedures.1,10,11

Table 1: Material parameters of pure alumina (A) and a particular
ZTA composite: Young’s modulus, Poisson’s number, density and ap-
proximate bend strength

Material E (GPa) � � (g/cm3) �b (MPa)
A 390 0.238 3.98 500

ZTA24 338 0.264 4.48 850
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Figure 3: Line profile of both principal stresses: dependence on x* =
x/a. Here, �1 > �2 is chosen, regardless of the corresponding
eigenvectors. The symbol (x) attached to graphs denotes the y = 0 line,
and the symbol (d) the y = x diagonal line. Solid and dashed curves: �1
and �2 on y = 0 line, respectively; dash-dotted and dotted lines: �1 and
�2 on y = x line, respectively

Figure 1: Location of representative points on the square plate

Figure 2: Time-dependent displacements of the plate at points P0
(solid line), P1 (dashed line) and P5 (dash–dotted line) located at z = 0
plane for harmonic pressure variation; Tapp

* = Tapp/t0 = 10



We have varied systematically the thickness of the
middle layer (keeping the total thickness as 5 mm) as
well as the frequency of the pressure oscillation. Besides
the pure alumina plate, we choose a ZTA24 composite
(with 24 % of mass fractions of yttria stabilized zirconia)
for the middle layer.6 The lowest eigenfrequency
�A = 8.53 kHz for the alumina sample is the basis for the
set of testing applied frequencies for all the samples. The
maximum value of the larger value of the pair (�1, �2)
over testing time and over the whole sample is traced.
We call this "maximum stress" for briefness and denote
it with �max. The simulation time is several periods Tapp.
The graphs for three compositions are presented in Fig-
ure 4. It has been verified in all cases that the maximum
stress appears at the edge points K, L, M and N in Fig-
ure 1, both for static and dynamic pressure. The maxi-
mum stress at the point P0 is roughly twice smaller. The
maximum stress increases steadily with the frequency
�app. It also slightly increases with the thickness of the
ZTA middle layer. The exception is the largest frequency
�app = �A, where the maximum stress of pure alumina is
the largest. This is easily explained, since the calcula-
tions show that when the thickness of the ZTA middle
layer increases, the corresponding period T* for the first
eigenmode increases from 2.32 for alumina to 2.61 for
composite with 4.8 mm ZTA inner layer. Thus, for
�app = �A the two comparable ZTA composites are
slightly out of their own eigenfrequencies.

Finally, we should stress another point. No damping
of the plate oscillation has been considered in the pre-
sented results for two reasons: (1) because of the lack of
corresponding data for ceramics, (2) because the inclu-
sion of the contribution of the individual layers to total
damping is not straightforward. We have nevertheless
tried to make a simple modification of the dynamic equa-
tion in order to get some insight how the damping could

influence the stresses in the material. Damping can be in-
troduced by an additional term 
*�w*/�t* on the left side
of the dimensionless Equation (A.1). The dimensionless
parameter 
* represents the strength of damping, and the
two terms with time derivatives on the left side of the up-
graded equations compete. To test the case of moderate
damping, we have chosen a particular value 
* = �*/10,
just for the pure alumina sample. As expected, the maxi-
mum stress in the sample is decreased when the damping
is present. For frequency �app = �A/8, the maximum stress
is 2 % lower than without damping. Even at �app = �A/2
the difference in maximum stress is only 4 %, while for
�app = �A this difference becomes more significant: 20 %.
We note that our criterion for the maximum stress is not
the steady state, when the vibration eigenmodes cease,
but we have checked the stresses from the beginning of
vibration. The stresses in the steady state instead of the
transient part of vibration can be simply traced, after
many periods Tapp are elapsed.

4 CONCLUSIONS

We have found that by increasing the frequency of
the applied harmonic pressure from zero (static load) up
to the “resonant” frequency the stresses in the ceramic
composite laminate are increased by an order of magni-
tude. For the frequencies about 1/8 of eigenfrequency,
i.e., of the order kHz in our case, the dynamic stresses in
the composite differ from the corresponding static values
only by 10 %. Furthermore, while for static loading the
differences in maximum stresses are relatively small
when the thickness of the middle ZTA layer is increased,
these differences are larger for dynamic loading. When a
moderate damping is included, the results do not seem to
change significantly up to half the resonant frequency, as
simple calculations indicate.

Some of our findings may serve researchers in the ce-
ramic society, which work with composite materials.
One of the goals is to optimize the composition of differ-
ent layers to obtain the maximum strength of the lami-
nates.9–11 Although the loading in the uniaxial or biaxial
tests is usually static and similar to point-like, the de-
pendence of the stresses on frequency may be qualita-
tively similar to the one presented in Figure 4. For in-
stance, up to frequencies one order of magnitude smaller
than the lowest eigenfrequency, the increment of stress
can be safely ignored. For larger frequencies appropriate
correction factors can be used: for instance, when the ap-
plied frequency is half the lowest eigenfrequency, in our
calculations the maximum stress has roughly twice the
value corresponding to static loading. The order of mag-
nitude of resonant frequency may be estimated from the
characteristic time in Equation (3).

We have also touched on some other aspects, e.g.,
boundary conditions, distribution of pressure and the
elongation of the square into rectangle. If the boundary
condition with the clamped edges is replaced by the con-
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Figure 4: Dependence of maximum stress on the applied frequency;
three samples are presented, all with thickness 5 mm: (1) pure alumina
(squares); (2) composite with 4 mm ZTA inner layer and two 0.5 mm
alumina outer layers (triangles); (3) composite with 4.8 mm ZTA inner
layer and two 0.1 mm alumina outer layers (diamonds).



dition of freely (simply) supported edges, the deflection
of P0 increases as well. The increase of the deflection of
P0 is accompanied with the increase of the local stress.
Furthermore, if the same force is locally distributed over
the small area, the local stress is significantly increased.
In general, we must keep in mind that the stress may not
be the largest at the central point of the sample. When
the square is elongated, so that the sides 2b in y–axis di-
rection are many times larger than the sides 2a in x–axis
direction, the solution for w essentially depends only on
x–coordinate in the most part of the rectangle (when the
y–coordinate is not near the values ±b). In this way we
come to quasi-one-dimensional problem, which has ana-
lytical solutions for some specific problems. For in-
stance, the static solution for w* in Equation (A.1) with
constant pressure in one dimension is a polynomial of
the fourth order. We have used such analytical 1D solu-
tions as a test for the reliability of our numerical proce-
dure.
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APPENDIX A: Dimensionless form of dynamic equa-
tion

Using the dimensionless quantities Equation (1)
transforms into:

D w
w

t
p* * * *

*

*

*( )∇ + =2 2
2

2 4

1
�

�

∂
∂

(A.1)

The Laplacian �*2 contains derivatives with respect
to renormalized coordinates x* and y*.

Let’s take the symmetric composite with N layers (N
is odd), denoted from "bottom" to "top" by indices i from
1 to N. Their parameters are hi

* = hi/h, Ei
* = Ei/E0, �i

* =
�i/�0 and �i. The total thickness h is the sum of thick-
nesses hi of all layers. The dimensionless flexural rigid-
ity is:
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Their symbols ziT
* and ziB

* mean the dimensionless
z–coordinates of the top and the bottom side of the i–th
layer, respectively. The neutral plane is at z* = 0 due to
symmetry. We have derived Equation (A.2) in a similar
manner as the derivation of flexural rigidity for homoge-
neous plate in the textbook of Landau and Lifshitz.26 The
case with N = 1 (homogeneous plate) gives the expres-
sion according to Equation (2) in physical units. The ef-
fective density is:

� ��* *=
=
∑ i
i

N

ih
1

(A.3)

The 2D stress tensor in i-th layer is:
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(A.4)

We give a few notes about the numerical procedure
that we have developed. A discrete quadratic network of
equidistant points, typically with size 201×201, was
used. Fourth-order spatial derivatives of w*, appearing in
the double-Laplacian term, were derived on the basis of
finite differences for neighboring points, in analogy to
elliptic equations. As regards the time relaxation proce-
dure, the problem of the second order in time derivative
was transformed into the problem of first order by trac-
ing variables w and the derivative �w/�t at all discrete
points in network. This enabled us to use a kind of
Runge-Kutta method of second order, but simultaneously
for all points in network. The numerical reliability for an
appropriately chosen small time step was checked by
halving the time step and comparing the results.
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