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Mechanisms Generating Asymmetric
Core-Cohesive Blockmodels

Marjan Cugmas'  Ale§ Ziberna>  Anuska Ferligoj®

Abstract

The paper addresses the relationship between different local network mecha-
nisms and different global network structures, described by blockmodels. The re-
search question is narrowed to the context of preschool children networks. Based on
the studies regarding friendship, liking and interactional networks among preschool
children, the popularity, transitivity, mutuality and assortativity mechanisms are as-
sumed to be important for the evolution of such networks. It is assumed that the
global network structure is defined by an asymmetric core-cohesive blockmodel
consisting of one core group of units and two or more cohesive groups of units.
Therefore, the main research question is whether the emergence of an asymmetric
core-cohesive blockmodel can be a result of the influence of the listed mechanisms.
Different initial global network structures are considered. Monte Carlo simulations
were used. The relative fit measure is proposed and used to compare different block-
model types on generated networks. The results show that the listed mechanisms
indeed lead to the assumed global network structure.

1 Introduction

This paper discusses how different local network mechanisms affect a global network
structure, which is described by a blockmodel. A blockmodel is defined as a network in
which the nodes represent groups of equivalent units (according to their structure of rela-
tionships) and the links that represent relationships between and within the groups. The
term block refers to a submatrix that shows the relationships between units of two groups
or within one group. Typical blockmodel types are cohesive, core-periphery, hierarchical
and transitive (Doreian, Batagelj and Ferligoj, 2005).

Knowing the relationship between micro social network mechanisms and global net-
work structures is useful while analyzing empirical networks and it helps to select mecha-
nisms when using the exponential random graph modelling (Hunter, Goodreau and Hand-
cock, 2013) or stochastic actor-based modelling (Snijders, Van de Bunt and Steglich,
2010).
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As there are many possible blockmodel types and many different local network mech-
anisms, the focus of the paper is narrowed on a specific blockmodel type and local net-
work mechanisms, which are relevant for preschool liking, popularity and friendship net-
works.

When children enter to the kindergarten, they start forming groups. Children within
such groups spend more time with each other than with those from other groups. At the
same time, a group (popular group) of children is formed with whom all the others want to
spend considerable amount of time. Therefore, the assumed blockmodel is the asymmet-
ric core-cohesive blockmodel type, which is assumed to be present in empirical preschool
children networks. This blockmodel type is a mixture of two very common blockmodel
types, namely asymmetric core-periphery blockmodel type and cohesive blockmodel type
(see Section 1.1).

Based on the studies regarding friendship, liking and interactional networks among
preschool children, the popularity, transitivity, mutuality and assortativity mechanisms
are assumed to be important for the evolution of such networks (see Section 1.2). An-
other reason for choosing the selected mechanisms is that the popularity mechanism leads
toward the asymmetric core-periphery blockmodel type and the transitivity-related mech-
anism leads toward the cohesive blockmodel type. All of the mentioned mechanisms and
the proposed blockmodel type are described in details below. The study is limited to
binary networks.

Even though this paper is limited to only one particular global network structure and
several well-known local network mechanisms, the proposed methodology can be applied
to study other local network mechanisms and global network structures. Of course, the
global network structures and the local mechanisms should be chosen within a specific
context of a study.

1.1 Core-Cohesive Blockmodel

The core-cohesive blockmodel type consists of at least three groups of units. The units
of each group are internally well linked. All units are linked to the core group of units.
Such a blockmodel type with three groups is graphically represented in Figure 1. Here,
the nodes represent the groups of units. Group 1 consists of internally highly linked units
and is called a core group. The units in cohesive groups are internally highly linked and
are linked to the core group. The blockmodel may be extended in such a way that the
units from one cohesive group would not be highly internally linked.

The core group can be named the popular group since the term “popularity” is often
associated with the high in-degree, which is a characteristic of the core group of units.
The term core is more general than the term popular.

1.2 Mechanisms that Lead to a Core-Cohesive Blockmodel

Because the social mechanisms are very content-specific, it is sometimes not trivial to
select mechanisms that would drive a network towards a specific global structure. Since
the core-cohesive global network structure has not been formally presented in the form of
a blockmodel yet, it has not been mentioned in empirical studies concerning the evolution
of global network structures.
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Figure 1: Graphic (left) and matrix (right) representation of the core-cohesive blockmodel
with three groups

On the assumption the proposed blockmodel type is present in the liking friendship
networks among the preschool children (or, more precisely, among children at kinder-
garten), several mechanisms that might lead towards the proposed blockmodel type can
be identified. As shown later, the popularity and transitivity-related mechanisms have
been extensively studied in this context. While the first one leads to the asymmetric core-
periphery blockmodel type, the second one is associated with the cohesive blockmodel
type. At this point, it must be emphasised that the units’ characteristics are not considered
in this study, even though they can play an important role in the formation of links in real
networks.?

When evaluating studies of networks among preschool children in the context of a
global network structure, one must differentiate between popularity and friendships.?
Popularity refers to how a group views an individual, according, according to liking and
disliking, while friendship is conceptualised as a bilateral construct (although empirical
friendship networks are usually asymmetric). Considering liking as being the basic link
between popularity and friendship, Bukowski et al. (1996) showed that the positive asso-
ciation between popularity and friendships decreases with age.

Snyder et al. (1996) noticed that preschool children spend a lot of time with selected
friends and less with others. Schaefer et al. (2010) studied three of the most common net-

ZKerns (2000) studied the friendships among children aged 42 to 84 months and confirmed the existence
of several types of friendships (e.g., a cluster of harmo nious, responsive and interactive friendships and a
cluster of harmonious but independent friendships). Some types are expected to last a longer time while
others are expected to last a shorter period. However, also for the latter it can happen that they last relatively
long, which may be a consequence of some personal characteristics, e.g., in some cases friendships can be
the result of geographical space between two children or the result of lacking social skills of one or both
children in a current frien dship. Similarly, Proulx and Poulin (2013) confirmed that personal characteristics
such as aggressiveness, social pro - activeness and shyness affect the number and stability of friendships
among children at kindergarten (also see Engle, McElwain and Lasky (2011)). Depending on the age
of children, gender is also an important personal characteristic when forming cohesive groups of friends
(Johnson et al., 1997). Adams and Torr (1998) highlighted that friendships are much more affected by the
cultural context than any other institutionalised relationships.

3This was also considered when operationalising popularity through in-degree in empirical networks.
For example, when thinking about friendships in a preschool environment the number of peer contacts
relates more to the perception of popularity among peers than the quality of contacts. Those with a higher
number of peer contacts and those who in the centre of the network are therefore seen as more popular while
the isolates are seen as less popular by others (LaFontana and Cillessen 2002). Popularity can be achieved
via positive or negative behaviour (Cillessen and Rose 2005).
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work formation mechanisms (reciprocity, popularity and triadic closure) among preschool
children throughout a school year in four waves using SIENA (a program for statistically
analysing network data based on stochastic actor-oriented models, see Snijders, Van de
Bunt and Steglich (2010)). They found the reciprocity effect is constant over time while
the importance of popularity is highest midway through the school year. The importance
of the triadic closure effect increases in time, which is expected since very early friend-
ships are typically play-oriented dyads that primarily socialise children into group life
(Hartup and Stevens, 1997). When children gain more social contacts and greater confi-
dence, they move into larger groups (Hartup, 1993).

Daniel et al. (2013) used Exponential Random Graph Models (ERGM) to study reci-
procity, popularity and transitivity in relation to the formation of affiliative ties in 19
Portuguese preschool peer groups. ERGMs were estimated with the same network effects
for all 19 classes. They found positive popularity and triadic closure effects which, as they
reported, may indicate the existence of a core-periphery global network structure. Since
they found some children with a very high in-degree, the true underlying global network
structure might be close to core-cohesive.

1.3 Research Question

The study of the relationship between local network (social) mechanisms and the global
network structure is based on the following research question: Can the selected mech-
anisms lead the network towards the core-cohesive blockmodel structure? The research
question is then broken up into parts. Therefore, we consider the following sub-questions
concerning whether a core-cohesive blockmodel can emerge: (i) from an empty network;
(i1) from a cohesive blockmodel; or (iii) from an asymmetric core-periphery blockmodel.
All of these cases consider popularity, assortativity, two transitivity-related mechanisms,
outgoing shared partners and mutuality mechanisms as local network mechanisms.

1.4 Structure of the Article

This article is divided into several sections. The algorithm for generating the networks
is proposed and described in Section 2.1 while the mechanisms used in this algorithm
are formally defined in Section 2.2. Methods for evaluating the global network structures
are presented in Section 2.4, with the results being given in Section 3. The latter is fur-
ther organised in several subsections according to the initial networks’ global network
structure, followed by a section that discusses the ways in which different mechanisms
simultaneously affect the global network structure.

2 Methods

Probability models have already been proposed for friendship networks, consisting of a
given number of cliques (Jansson, 1997), and for the popularity structure in social net-
works, where popularity is defined by the in-degree (Jansson, 2000). Our analysis pro-
poses and uses a more deterministic model from the family of network evolution models
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(NEM) (Toivonen, et al., 2009). The global network structure is tested by the relative
value of the criterion function, called “relative fit” (RF).

The model imposes two main assumptions that are also common in the continuous-
time Markov process: two relationships cannot simultaneously change and the probability
of a link changing can be expressed as a function of the entire network at a certain point
in time (Zeggelink, 1994). In our proposed network evolution model, the global network
structure in the following step depends on the global network structure in the current step.

The units’ actions are goal-oriented (Snijders, 1996), meaning that “each unit takes ac-
tions in order to fulfil his own goals; these actions are in the domain of his own behaviour
or of the directed relationships from him to others”. The actions are operationalised using
selected mechanisms.

2.1 Network Evolution Model

Before applying the iterative algorithm for generating random networks (Algorithm 1),
one must specify the initial network X, in the form of a binary n X n adjacency matrix
X, the vector of the weights of the local mechanisms 6, the probability of establishing
a link at each iteration ¢ and the number of iterations m. The algorithm is as follows:
at each iteration, unit ¢ is randomly selected with probability !/». Then, the network
statistics .S are obtained based on the operationalised selected mechanisms presented in
the next subsection. These network statistics are weighted by the vector of weights of
local mechanisms 6 producing vector ¢ = SHT. These units, for which it holds ¢ >
Q3() (Q3 stands for the 3rd quartile), are classified in set C and are candidates to accept
the incoming tie from unit . The other units, for which it holds ¢ < Q1(¢) (Q; stands for
the 1st quartile), are classified in set F and are candidates for being dissolved by incoming
tie by unit ¢. With probability ¢, the link from ¢ to randomly selected j from set C is set
and with the probability 1 — ¢ a non-link from ¢ to randomly selected j from set F is
established. The fact the unit can establish a link to already existing links can result in
no visible change of a link upon a given iteration. The links in the resulting network are
represented by 1s while the non-links are represented by Os.

2.2 Local Mechanisms

Different mechanisms can be considered in the proposed NEM. The term “mechanism”
describes a process that drive the concrete actions by units in the networks (e.g., creating
a link to a highly-popular unit). These mechanisms can be operationalised by different
statistics (e.g., in the alter in-degree) that reflect the mechanisms.

As described in the previous section, the proposed network statistics S are weighted
by a given vector 6. A higher positive weight is associated with the greater importance
of a given mechanism while a lower positive weight is associated a given mechanism’s
reduced importance. Higher negative weights are also associated with a mechanism that is
more important, but the interpretation of the mechanism’s effect is different. For example,
a negative weight for the popularity mechanisms is interpreted as a tendency to avoid
creating links to highly popular others.

In the current study, the following mechanisms are defined and used: mutuality (M),
assortativity (A), popularity (P), transitivity (T) and outgoing shared partners (OSP). They
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Algorithm 1

10:
11:
12:

set initial network X

set vector of weights of the mechanisms 6
set probability of establishing a link ¢

set number of iterations m

repeat m-times

A A o ey

randomly select unit ¢

calculate network statistics according to the selected mechanisms for unit ¢ and
all other units; save it to .S

calculate p = SOT

classifiy unit j into set C if ¢ > @Q3(p), where Q)3 is the 3rd quartile

classifiy unit j into set F if ¢ < Q1(p), where )y is the 1st quartile

with probability ¢ set : — ;7 where j is randomly selected from set C

with probability 1 — ¢ set ¢ 4 j where j is randomly selected from set F

13: return generated network

are defined on a network with n units (nodes), represented by the binary n x n adjacency
matrix X, and are normalised in such a way that the minimum corresponding values are
0 and the maximum values are 1. The different mechanisms considered are schemati-
cally shown in Figure 2 where dashed lines illustrate the links under evaluation appear,
are confirmed or disappear. The mechanism presented in Figure 2a corresponds to the
tendency of having a link. Since this is not a focal mechanism, it is implemented in the
NEM algorithm as parameter q. The following mechanisms are considered in this paper:

1. The mutuality mechanism (Figure 2b) reflects the tendency to reciprocate links. It

is operationalised by asymmetric in-ties statistic as

. 1, ifa;+(=1)-25=1
asymIn(i,j) =<’ J I
Y (i) {O, otherwise
The first condition would be satisfied only in the case when there would be a non-
reciprocal link from unit j to unit . We are using normalised statistic (}/) defined
as
asymIn(i, )

> iy asymlIn(i, j)

M, j) =

. The alter popularity mechanism (Figure 2c) (referred to as the “popularity mecha-

nism” below) reflects the tendency of creating links to the most popular ones. The
popularity statistic (P) is calculated for ¢-th unit as the ratio between the in-degree
of the i-th unit and the total number of units

> i1 Tij

. The assortativity mechanism (Figure 2d) reflects the tendency to create links to

those units with the same level of popularity (in-degree). Assortativity statistic (A)
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18 defined as

2
D i1 Tij — D Tij
4 bl

A(i,j) =max | 1 —

and can be calculated for each pair of units: if + and j have the same in-degree,
then they have the same assortativity with all other units. The function A(z, j) has
the value 1 when units 7 and j do not differ in the number of incoming ties. In our
model, the unit that has a chance to change a tie is chosen and therefore for only
this unit and all the others the function A(%, 7) is applied.

4. The transitivity-related mechanisms reflect the tendency to create links to those
units with whom a unit shares a higher number of reciprocated or non-reciprocated
links to other units in a network. The concept of the selected mechanisms gen-
eralises the ideas of triangles and 2-stars (Snijders, Pattison, Robins and Hand-
cock, 2006). It is very common, especially when analysing the networks by ERGM
(Robins, Pattison, Kalish and Lusher, 2007) or SIENA (Snijders, Van de Bunt, and
Steglich, 2010). There are four types of shared partners (Robins et al. 2009), yet
just two of them are considered in this paper:

* Transitivity (T) also referred to as an outgoing two-path (OTP) (Figure 2e):
a transitivity relation is defined as + — j where also ¢ — k£ — j. That is,
transitivity is a tendency for a unit to directly connect to units to which it is
indirectly connected with (one or more) paths of length two (with more paths
increasing the tendency).

* Outgoing shared partner (OSP) (Figure 2f): unit £ is a shared partner of the
ordered pair (i,j) if ¢ — k and j — k; the OSP represents a “structural
homophily” effect which is traditionally based on similarity according to the
units’ attributes. In the case of the OSP, it is defined by similar choices of
partners (Robins, Pattison and Wang, 2009).

To compute the statistics associated with these mechanisms on the selected pair of
units ¢ and 7, one must identify the other units (not < and not 7) which are linked
with ¢ and j (shared partners) in a given way. When the transitivity statistic is
considered, the number of alternative intermediaries on two paths from ¢ to j are

computed as
T(i,§) = Y Tni - Tk
ki,

Similarly, the number of outgoing shared partners is computed as
k#i,j

Both functions give the number of shared partners of a given type between ¢ and ;.
By fixing unit ¢, one can obtain vector V' with n elements where each value stands
for the number of common friends between the unit and all other units. The i-th



24 Cugmas et al.

value of vector V' can be normalised as Vi/>>7 , vi. Such normalised statistics are
used as the operationalisations of the transitivity and OSP mechanisms.

In this paper, it is assumed that the mechanisms’ weights are the same for all units
regardless of their position in the network. However, the position of a unit in a network
indirectly influences others to whom a unit sets a tie or a non-tie. This is because the
selected units are chosen based on the weighed network statistics (). While the weights
are the same for all units, the network statistics can vary among units in the network,
depending on their position in the network.*

OO L

(a) parameter q (b) mutuality
(c) popularity d) assortativity

(e) transitivity (f) outgoing shared partners

Figure 2: Illustrations of the different mechanisms considered

Preliminary analysis (not included in this paper) shows that considering only the pop-
ularity mechanism results in networks with the asymmetric core-periphery blockmodel
type, while considering only the OSP mechanism results in networks with the cohesive
blockmodel type. The global network structures of the generated networks when consid-
ering the mutuality and assortativity mechanisms do not end in any known blockmodel
type (e.g., cohesive, core-periphery, transitivity, hierarchy).

4There are some other considerations, which are also common for most of the empirical studies that
are using SIENA or ERGM. For example, the weights of the mechanisms are fixed for all units regard-
less of their attributes. In addition, a global network structure can influence the importance of the selected
mechanisms. For example, some empirical studies on friendship networks show that the mutuality mecha-
nism might be weaker for those units involved in transitive triplets, compared to the others (Block, 2015).
However, differentiating between the strength of the impact of a global network structure to the set of
mechanisms’ strengths of a given unit and vice versa is hard and very context- specific.
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2.3 Selecting the Weights of the Mechanisms

One way to select the set of mechanisms’ weights is to generate networks using the pro-
posed model with different sets of the mechanism’ weights (in this study, 30 networks
were generated with each set of the mechanisms’ weights). To access whether the gen-
erated networks have the asymmetric core-cohesive blockmodel structure, non-specified
generalised blockmodeling (Doreian, Batagelj and Ferligoj, 2005; Batagelj, Ferligoj and
Doreian, 1992) is applied. Blockmodeling is an approach for reducing large, potentially
incoherent networks to smaller, comprehensible and interpretable structures. In the case
of direct blockmodeling, the units are relocated from one to another cluster in such a way
that minimises the value of a criterion function CF (Batagelj, 1997; Doreian, Batagelj
and Ferligoj, 1994). The CF must be in line with the selected equivalence. Structural
equivalence is used in this study. By definition, two units are structurally equivalent if
they are linked to the same others (Lorrain and White, 1971). The term “non-specified”
refers to the instance when only the number of clusters is pre-specified along with the
allowed block types. When structural equivalence is used, only null and complete block
types are possible. On the other hand, the term “pre-specified” refers to the case when the
number of clusters, the allowed block types as well as their position in the network are
pre-specified.

To perform blockmodeling, the “blockmodeling” (Ziberna, 2018) package for the R
programming language is used. The blockmodels obtained are compared to the ideal
asymmetric core-cohesive blockmodel. The number of different types of blocks according
to the ideal blockmodel structure is used as the fit function called “inconsistent blocks”.
For a given network, 1 or more inconsistent blocks mean different blockmodel. In the case
of many generated networks (generated in the same way, including the same selected local
network mechanisms and their weights) the mean number of inconsistent blocks, higher
than 0.5, indicates a high probability that the selected mechanisms and their corresponding
weights generate the networks with other blockmodel type as desired (or, as compared to).
The overall number of errors of the blockmodeling structure obtained vis-a-vis the ideal
one is analysed by using the relative fit function described in the following section.

In order to reduce the computational burden, only 300 randomly selected s are con-
sidered in the current study. The mechanisms’ weights are selected so that the condition
>~ 602 = 1 is satisfied. The random values are generated by firstly sampling five values
from the standard normal distribution ¢ and then multiplying them by scalar = ¢/,/5" ¢,
(Marsaglia, 1972; Muller, 1959).

2.4 Evaluating the Global Network Structure

The first step in evaluating how close blockmodels obtained from empirical networks are
to the asymmetric core-cohesive blockmodel type was described in the previous section.
Although the proposed approach is sufficient for evaluating the presence of a given block-
model type in the empirical data, it does not reflect the overall number of errors across
blocks.

To this end, the value of the criterion function (CF) (Batagelj, 1997; Doreian, Batagelj
and Ferligoj, 1994), defined as the total number of inconsistencies with a pre-specified
blockmodel, is typically used. The value of this CF must be as low as possible. CF val-
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ues obtained for different types of blockmodels (including different numbers of clusters)
are not directly comparable (e.g., increasing the number of clusters lowers the value of
the CF). To avoid this issue, the relative fit function (RF) can be defined. Here, the CF
value obtained on an empirical network can be compared with the expected or minimal
and maximal value of the empirical function obtained on many randomised networks.
Simulations confirm that a higher number of iterations is needed in order to estimate the
maximum value of a CF (in the case of a random network under the assumed blockmodel)
than to estimate the expected value of the CF. Therefore, the RF is defined as

Pm
k I
P> P

where P™ is the value of the CF obtained on the empirical network and P is the value of
the CF obtained on the i-th randomised network. There are k£ randomised networks. The
mean value of the CF in the case of random networks is estimated by simulations since it
depends on many factors (e.g., the algorithm implemented for generalised blockmodeling
or the density) and cannot therefore be analytically calculated. The networks used to
estimate the mean CF value can be randomised in different ways, e.g., by preserving
the degree (Rao, Jana and Bandyopadhyay, 1996) or by preserving the density of the
network (Erdos and Rényi, 1959). As proposed by Boyd et al. (2006) for a core-periphery
structure, the density is considered as fixed, while the distribution of the degrees can vary.

In either way, the maximum value of the RF equals 1 when there are no inconsistencies
while the value of 0 indicates that the fit of the pre-specified blockmodel to empirical
network is the same as it would be expected when the same pre-specified blockmodel
would be applied on a randomised empirical network.

When defining the RF as described above, the RF values should be comparable across
different types of blockmodels with different numbers and sizes of clusters. Interpreting
RF values is the most suitable when the assumed blockmodel type can be found with the
non-specified blockmodeling approach.

Observing the RF values after each of the several iterations in the algorithm used can
help to evaluate the convergence of the network’s global structure (i.e., when the global
network structure stopped changing significantly). One way or the other is assumed to be
the case when the RF values stop changing significantly (in this study, this was done by
visually observing the trajectories of the mean RF values for different blockmodel types,
Figure 3, Figure 5 and Figure 7). Another way of assessing the convergence of the global
network structure is by observing the distribution of different types of triads since they
can be used to generate the most common blockmodels (Cugmas, Ferligoj and Ziberna,
2018).

RF =1—

3 Results

The section has three parts. Different initial global network structures are assumed in
each part (empty networks, networks with a cohesive blockmodel structure and networks
with an asymmetric core-periphery blockmodel structure). The remaining methodology
is the same for all three parts: 300 vectors containing the randomly selected mecha-
nisms’ weights are generated; 30 networks are generated for each set of the mechanisms’
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weights; each network is generated upon 32 269 iterations.’ The intermediate generated
networks are also analysed. Specifically, non-specified generalised blockmodeling is ap-
plied to the empirical networks with three groups assumed and null and complete blocks
allowed (structural equivalence is considered). Based on this, the average number of
inconsistent blocks is calculated as described in the previous sections. The ten s, gener-
ating networks with the lowest number of inconsistent blocks, are selected for each type
of initial global network structure (the results for other s are given in Appendix 1). The
networks are then generated again, based on the selected # with an increased number
of iterations up to 108 694 iterations. The pre-specified blockmodeling (an asymmetric
core-cohesive and asymmetric core-periphery with three groups, and a cohesive block-
model with two groups are assumed) is applied and the RF values are calculated in order
to more precisely evaluate the global network structure.

3.1 From an Empty Network to an Asymmetric Core-Cohesive Block-
model

The mean number of inconsistent blocks along with the corresponding weights of the
mechanisms in instances where the initial networks are empty networks are presented in
Table 1. Note that only the results for the first ten best fs (according to the mean number
of inconsistent blocks after 32 269 iterations) are given.

The mechanisms’ weights shown in Table 1 are not directly comparable. One reason
for this is that the mechanisms are interdependent while the other reason is that they are
not defined for absolute comparability. The highest weights are usually for the transitivity,
mutuality and assortativity mechanisms. The values of the popularity mechanism are
generally lower, especially when the value of the transitivity mechanism is high.

The mean number of inconsistent blocks is relatively low for the generated networks
according to the mechanisms’ weights given in Table 1. Yet the mean number is especially
low for those networks generated according to the first five best fs. The mean RF values®
are similar for the networks generated by the first ten sets of mechanisms’ weights.

The mean RF values for the first set of mechanism weights (in Table 1) are visualised
in Figure 3: the log x-axis represents the number of iterations while the mean RF val-
ues are on the y-axis. Usually, the mean RF values, corresponding to the asymmetric
core-periphery, are around zero until iteration 686. On the other hand, the mean RF val-
ues, corresponding to the asymmetric core-cohesive and cohesive blockmodel types, are
increasing with the same speed (the mean values, corresponding to the cohesive block-
model type, are usually slightly higher). This might indicate that cohesive groups are

5The intermediate number of iterations m, at which the global network structure is analysed, is de-
termined as m; = m;_1 + m;_1 - 1.9, where m; = 100 and in the case of mq1,...,m15, the values are
calculated as m; = m;_1+mjo. Such an approach is used since the preliminary analyses showed the global
network structure changes more rapidly at a lower number of iterations. Therefore, more frequent insights
into the global network structures are needed at a lower number of iterations. The values miq, ..., my5 are
calculated differently in order to avoid a high number of iterations implied by the constant 1.9.

5For the selected sets of the mechanisms’ weights (given in Table 1, Table 2 and Table 3), the RF values
are distributed symmetrically around the mean RF across simulations, yet there are some networks with the
extreme values of the RF. This can also be seen in Figure 3, Figure 5 and Figure 6 and in the figures given
in Appendix 2.



Table 1: Mean number of inconsistent blocks and the corresponding mechanisms’ weights () for the best ten sets of the mechanisms’ weights

according to the mean number of inconsistent blocks (initial is an empty network)

0 Number of iterations
ID M P A T (0] 100 190 361 686 1303 2478 4705 8939 16984 32269
224 045 0.10 0.77 044 -0.08 4.30 3.67 337 277 1.12 090 040 0.37 0.20 0.07
226 0.65 -0.04 0.11 0.71 023 420 347 3.00 220 223 123 043 023 0.10 0.13
228 0.59 0.12 0.24 0.76 —0.08 4.43 4.03 320 247 160 103 0.63 027 020 0.17
136 0.41 -0.18 0.37 0.74 =034 4.57 430 3.57 283 1.57 080 0.60 033 0.33 0.20
238 0.37 061 035 0.00 061 443 407 340 237 1.67 127 050 040 0.30 0.20
153 0.84 -0.14 0.36 0.32 -0.21 423 447 350 297 190 1.03 053 037 033 0.27
286 0.52 026 033 0.72 0.16 4.03 407 333 243 163 140 0.60 040 040 0.27
259 0.51 057 0.60 025 0.02 423 393 347 260 153 147 057 043 027 0.33
40 -0.13 -0.06 0.49 0.85 0.10 420 447 3.17 253 1.10 053 053 050 043 0.40
57 -0.37 -0.33 0.59 063 0.09 4.80 437 347 280 150 037 043 047 040 0.43

Note: M = mutuality, P = popularity, A = assortativity, T = transitivity, O = OSP

8¢

‘1D 12 SPwdn))



Mechanisms generating asymmetric core-cohesive blockmodels 29

formed at very early stages before the most popular group emerges, which is not in line
with Schaefer et al.’s (2010) observations about the mechanisms’ strength, where they ex-
pected the most popular group would have emerged first. However, the networks are very
sparse (the distribution of the generated networks’ density is visualised by the boxplots in
Figure 3) at this early stage and the mean RF values are very low (less than 0.3).

At between 1303 and 2476 iterations, the mean RF values for all three blockmodel
types are relatively close. The common global network structure cannot easily be seen by
visually observing some generated networks since they look very heterogeneous. Some
generated networks are shown on Figure 4. They are drawn at different number of itera-
tions in line with the blockmodels obtained by generalised blockmodeling (non-specified
model).

Common to all networks at this number of iterations is that they become much denser.
In some networks, this is expressed in the global network structures, which are close to
the asymmetric core-periphery blockmodel type with the core group having half of the
units. In some other cases, the global network structure, which is close to the asymmetric
core-cohesive blockmodel type, appears. When this is the case, there are usually many
links from the popular group to the largest cohesive group. Later, the mean RF values for
the cohesive and asymmetric core-periphery largely remain constant while the mean RF
values, corresponding to the asymmetric core-cohesive blockmodel type, increase. This
is primarily due to the decrease in the number of errors in the null blocks.

The networks generated by considering the second and fifth fs are outstanding (not
shown in the paper). The first entails very low variability of the RF values and the second
one a very high RF mean for the asymmetric core-cohesive blockmodel type. The global
network structures of the networks generated by these mechanisms’ weights are very close
to the proposed blockmodel type. One very typical observation for most of the generated
networks is that one cohesive group is usually smaller than another, while the size of the
core group is less variable across the different generated networks.

3.2 From the Asymmetric Core-Periphery to the Asymmetric Core-
Cohesive Blockmodel Type

In this section, it is assumed the initial network has an asymmetric core-periphery block-
model (the core group consists of 8 units) with 11 or 12 randomly relocated links. The
number of inconsistent blocks is low after the first 100 iterations. Since the initial net-
work’s blockmodel is asymmetric core-periphery, a low number of inconsistent blocks
is expected (the asymmetric core-periphery blockmodel is part of the asymmetric core-
cohesive blockmodel). The number of inconsistent blocks decreases very quickly. Specif-
ically, four fs generate networks where the mean number of inconsistent blocks is very
close to zero after the first 4705 iterations.

The mean RF values are very similar for the networks generated by considering the
first best ten #s. The main differences lie in the variability of the RF' values. By looking
at the RF values (Figure 5) for those networks generated by considering the first fs given
in, one can notice the expected decrease of the mean R’ value for the asymmetric core-
periphery blockmodel type. On the other hand, the RF values for the asymmetric core-
cohesive and cohesive blockmodel types are increasing with the number of iterations. The
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Figure 3: Mean RF for each blockmodel type visualised by lines (upper plot) and the distri-
bution of the density visualised by boxplots (lower plot) for § = {M = 0.45, P = 0.10, A =
0.77, 7 =0.44,05P = —0.88}, ¢ = 5/9, dy = 0

ITERATIONS
0 100 190 361 686 1303 2476 4705 8939 16984 32269 108694

1st
network
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3rd
network

4th
network

Figure 4: Some generated networks by considering § = {M = 0.45,P = 0.10,A =
0.77,T = 0.44,05P = —0.88} and ¢ = 5/9; the networks are drawn in line with the
blockmodels obtained (non-specified model); initial is an empty network



Table 2: Mean number of inconsistent blocks and the corresponding mechanisms’ weights () for the best ten sets of the mechanisms’ weights
according to the mean number of inconsistent blocks (initial is the asymmetric core-periphery blockmodel type)

0 Number of iterations
ID M P A T O 100 190 361 686 1303 2478 4705 8939 16984 32269

9 0.10 029 0.72 058 023 1.00 1.00 1.00 0.87 0.60 0.37 030 0.03 0.00 0.00
40 -0.13 -0.06 049 085 0.10 143 1.00 1.00 0.60 0.53 023 0.03 0.00 0.00 0.00
193 -0.03 0.21 044 0.28 083 1.17 1.00 097 0.73 050 0.10 0.00 0.00 0.00 0.00
226 0.65 -0.04 0.11 0.71 0.23 1.10 1.07 097 0.77 0.53 030 027 0.07 0.03 0.00

8 0.11 -0.03 042 066 0.61 1.00 1.07 1.00 047 030 0.07 0.00 0.03 0.03 0.03
57 -037 =033 0.59 0.63 0.09 1.63 1.13 1.00 0.77 030 0.03 0.03 0.03 0.03 0.03
48 044 0.15 026 0.79 -032 1.00 1.00 097 0.77 037 047 053 040 0.23 0.07
73 001 044 043 036 0.70 1.00 1.00 1.00 087 0.73 047 0.17 0.10 0.10 0.10
134 -0.18 0.20 0.60 0.21 0.72 1.27 1.00 1.00 0.73 0.60 030 0.13 0.10 0.10 0.10
202 -0.28 048 047 0.15 067 1.83 1.07 1.13 0.77 0.77 0.23 033 020 0.10 0.10

Note: M = mutuality, P = popularity, A = assortativity, T = transitivity, O = OSP
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curves are parallel. This is the logical implication of the emergence of cohesive groups in
the initial asymmetric core-periphery blockmodel type.
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Figure 5: Mean RF for each blockmodel type visualised by lines (upper plot) and the distribu-
tion of the density visualised by boxplots (lower plot), initial are networks with an asymmetric
core-periphery blockmodel (with some number errors) for ¢ = {M = 0.10, P = 0.29, A =
0.72,T = 0.58, OSP = 0.23}, ¢ = 5/, dy = 3/9

This can be confirmed by observing some randomly chosen generated networks for
the first selected 6 (Figure 6). The initial global network structure remains relatively
unchanged after the first 100 iterations. Soon, one cohesive group emerges while the other
one (which is usually smaller) becomes more prominent at a higher number of iterations.

3.3 From the Cohesive Blockmodel to the Asymmetric Core-Cohesive
Blockmodel Type

The initial networks have a cohesive blockmodel type with 3 groups and approximately
11 randomly relocated links. Each group consists of eight units. The mean number of
inconsistent blocks is 2 until 361 iterations for all best ten fs that generate networks with
the lowest mean value of the number of inconsistent blocks at the last iteration. This
is expected, as explained in the previous section (the asymmetric core-periphery block-
model and the asymmetric core-cohesive blockmodel differ in two blocks). However, the
mean number of inconsistent blocks decreases faster with the asymmetric core-periphery



Mechanisms generating asymmetric core-cohesive blockmodels 33

ITERATIONS

100 190 361 1303 2476 4705

0 8939 16984 32269
o B
network Hl—

2nd ]
network -]

3rd —= RS
network [
ath B R
network EEN:

Figure 6: Some networks generated by considering 6 = {M = 0.10,P = 0.29,4 =
0.72, T = 0.58, OSP = 0.23} and ¢ = 5/9; the networks are drawn in line with the block-
models obtained (non-specified model); initial blockmodel is core-periphery

blockmodel type. In addition, it seems the global network structures generally do not
reach equilibrium. The number of iterations is therefore increased, when calculating the
RF values, to 108 694 (see Table 3).

After the first 100 iterations, the mean RF for the cohesive blockmodel type is the
highest, as expected. Until 686 iterations, the values decrease while at a higher number
of iterations they remain relatively stable. On the other hand, the mean RF values for the
asymmetric core-periphery blockmodel type are increasing with the number of iterations
- mostly between iteration 361 and 4705. This pattern is similar for the other 10 selected
mechanisms’ weights. The mean RF for the asymmetric core-cohesive blockmodel type
is the highest after 62 839 iterations.

When looking at some generated networks (Figure 8), it becomes clear that the asym-
metric core-cohesive blockmodel type can be seen after 8939 iterations in most networks.
Between 361 and 2476 iterations, there is no recognisable global network structure for
three groups. This transition phase is common for many of the other selected 6s.

4 Discussion on the Mechanisms

In order to determine the best set of the mechanisms’ weights that generate networks
with the global structure closest to the asymmetric core-cohesive blockmodel, 300 dif-
ferent sets of mechanisms’ weights were randomly selected. The same values were used
to generate the networks for different initial global structures. Based on the number of
inconsistent blocks, the ten best sets of mechanisms’ weights were chosen for each initial
structure. In total, only 19 different sets of mechanisms’ weights were chosen.

To be more precise, when the initial network is a cohesive or empty network it is
possible to generate networks with a global network structure sufficiently close to the
asymmetric core-cohesive blockmodel type by considering eight different set of mecha-
nisms’ weights (see Figure 9). The asymmetric core-periphery initial network structure
shares only one common set of mechanisms’ weights with the cohesive initial global
network structure and two sets of mechanisms’ weights with the empty network as an
initial network. The seven sets of mechanisms’ weights, which were selected only where
the global network structure of the initial networks was asymmetric core-periphery, are
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Figure 7: Mean RF for each blockmodel type visualised by lines (upper plot) and the distri-
bution of the density visualised by boxplots (lower plot), initial are networks with a cohesive
blockmodel type (with some number errors) for § = {M = 0.37,P = 0.61, A = 0.35,T =
0.00,0S8P = 0.61}, ¢ = 5/9, dy = 3/9
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Figure 8: Some generated networks by considering 6 = {M = 0.37,P = 0.61,A =
0.35,7 = 0.00,0SP = 0.61} and ¢ = 5/9; the networks are drawn in line with the block-
models obtained (non-specified model); initial blockmodel is cohesive



Table 3: Mean number of inconsistent blocks and the corresponding mechanisms’ weights () for the best ten sets of the mechanisms’ weights
according to the mean number of inconsistent blocks (initial is the cohesive blockmodel type)

0 Number of iterations
ID M P A T O 100 190 361 686 1303 2478 4705 8939 16984 32269

238 0.37 0.61 035 000 061 200 200 200 1.77 140 1.00 047 030 0.13 0.10
136 0.41 -0.18 0.37 0.74 -0.34 2.00 2.00 2.00 1.63 093 0.67 057 0.17 0.17 0.17
228 0.59 0.12 024 0.76 -0.08 2.00 2.00 2.00 1.87 147 0.87 047 033 0.23 0.17
224 045 0.10 0.77 044 -0.08 2.00 2.00 200 1.87 1.00 090 037 027 0.23 0.20
153 0.84 -0.14 036 0.32 -0.21 2.00 2.00 197 1.67 0.83 047 030 057 0.60 0.23
286 0.52 026 033 072 0.16 2.00 2.00 2.00 2.00 153 130 0.60 033 0.37 0.27
226 0.65 -0.04 0.11 0.71 023 2.00 2.00 2.00 2.07 283 127 070 033 0.37 0.30
259 0.51 057 060 025 0.02 200 200 200 157 110 130 050 0.67 0.53 0.33
163 044 0.15 049 041 061 2.00 200 200 217 157 127 067 053 0.37 0.37
172 0.28 0.80 0.17 =0.01 0.51 2.00 2.00 200 190 1.63 150 1.03 0.83 0.67 0.50
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Note: M = mutuality, P = popularity, A = assortativity, T = transitivity, O = OSP
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strongly characterised by high values on the transitivity and/or OSP mechanisms, which is
expected since these promote the forming of cohesive groups while the most popular one
already exists. In short, the same set of mechanisms’ weights can lead to a network with
the same global network structure, especially when the initial global network structure is
a cohesive or empty network.

Figure 10 illustrates the associations between different weights of the five mecha-
nisms considered. The same 19 chosen sets of the mechanisms’ weights are presented as
described in the previous paragraph. The sizes of the points are proportional to the mean
RF values. Since most of the mean RF values are very similar (and high), the sizes of the
points are similar. Different colours indicate the different global structures of the initial
networks.
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Figure 9: Number of the best common selected sets of the mechanisms’ weights according
to the initial networks with different global structures

A relatively strong linear negative correlation is observed between the popularity and
transitivity mechanisms. This indicates that when one mechanism has a high weight, the
other one becomes less important for the asymmetric core-cohesive blockmodel to appear.
The transitivity mechanism is generally known, in the case of undirected networks, as be-
ing responsible for the formation of cohesive groups, yet, in the case of directed networks
considered in this study, it also promotes links from the units of cohesive groups to the
units of the core group. Let us assume that unit 7 (in Figure 2, OTP) is a unit from the
core group and units ¢ and k are from the same cohesive group (a reciprocated or non-
reciprocated link exists between them). In such a case, when the transitivity mechanism
is applied a link from ¢ to 57 would be promoted (if 7 — j exist), that is the link between
the unit from the cohesive group to the unit from the core group. The OSP mechanism,
on the other hand, is also related to the formation of the cohesive groups, but does not
promote the (since it is a symmetrical characteristic) establishing links to the units of the
core group. Therefore, when the OSP mechanism is strong, the popularity mechanism
is usually also strong. Based on the presented principles, the correlation between the
popularity mechanism and the OSP mechanism is expected to be positive.

The mutuality mechanism is considerably (negatively) correlated only with the OSP
mechanism and assortativity. Since the OSP is a very symmetric mechanism, unit j can be
selected in the proposed algorithm in a specific iteration while, in another iteration, unit
J can be randomly selected. In both cases, the link from one unit to another unit would
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Figure 10: The associations between the mechanisms’ weights (only selected sets of the
mechanisms’ weights are shown; the points are coloured according to the global structures
of the initial networks; the sizes of the points are proportional to the mean RF values) (red =
empty network; green = cohesive; blue = asymmetric core-periphery)

be promoted if they have a sufficient number of links to the same others. This eventually
results in a symmetric link between units ¢ and j and therefore the additional mutuality
mechanism becomes less important for the asymmetric core-cohesive blockmodel type to
appear.

The given interpretation is only valid when generating networks with the asymmetric
core-cohesive blockmodel type. The results would be different if generating networks
with different global network structures.

Depending on the initial network’s global structure, one mechanism or the other might
be more or less efficient in generating the asymmetric core-cohesive blockmodel type. For
example, when the initial network is cohesive the popularity mechanism might be more
important since the links within cohesive groups are already formed. On the contrary,
when the global network structure of the initial network is asymmetric core-cohesive the
shared partners’ related mechanisms, i.e. the transitivity and OSP mechanisms, are im-
portant for forming the cohesive groups.
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5 Conclusions

The paper addresses the relationship between different local network mechanisms and
global network structures. Since this is a very general aim, it is narrowed to the selected
mechanisms based on the field of interest (that is preschool children networks) that can
lead towards the proposed asymmetric core-cohesive blockmodel type. Understanding
this relationship is necessary for studying empirically obtained networks.

The relationship between the local network mechanisms and the global network struc-
ture can be better studied when the context of the study is also considered. Therefore, the
local network mechanisms are selected based on the previous studies on the network evo-
lution of the liking, popularity and friendship networks among children in kindergarten.
The selected mechanisms are: popularity (the tendency to create links to more popular
ones), transitivity (the tendency to create links with those with whom a higher number
of friends is shared), outgoing shared partners (the tendency to create links to those who
“like the same others”) and assortativity (the tendency to create links to others with the
same level of popularity, i.e. in-degree).

The proposed global network structure (the asymmetric core-cohesive blockmodel) is
assumed to emerge in such networks. It is a combination of two well-known blockmodel
types, namely cohesive and asymmetric core-periphery.

The research question is addressed by employing the proposed algorithm, which sim-
ulates the evolution of a network based on the weights of the selected local mechanisms.
Different global network structures are used for the initial networks (empty network, net-
work with a cohesive blockmodel and network with an asymmetric core-periphery block-
model) and 300 random sets of mechanisms’ weights are generated. For each set of
weights and each starting global structure, 30 networks are simulated. To evaluate the
obtained global network structure, the number of inconsistent blocks, where the obtained
blockmodel structure is compared to the ideal asymmetric core-cohesive blockmodel type,
is considered. The proposed relative fit function is also applied for each generated net-
work structure. Based on these two criteria the sets of mechanisms’ weights that lead to
the desired global network structure are evaluated for each initial network.

The major finding is that the selected five mechanisms with different mechanisms’
weights can lead the networks to the asymmetric core-cohesive blockmodel. This is true
for each of the considered initial global network structure. Yet, the sets of the mecha-
nisms’ weights are very similar if the initial network is empty or it has a cohesive net-
work structure. The weights are different when the initial network has asymmetric core-
periphery structure. The findings are especially relevant as it is assumed, in this study, that
the only information that units have about the other units is their position in the network.

Over the course of evolutionary process, it takes time for a blockmodel to become
apparent. In the case when the asymmetric core-cohesive blockmodel is the final one, the
time (i.e., number of iterations) needed to reach this blockmodel type is longer when the
initial network is cohesive blockmodel, compared to other studied initial global network
structures (empty network and asymmetric core-periphery blockmodel). Also, “transi-
tion” global network structures might appear in some cases. For example, when the ini-
tial network is empty, the network structure, which is close to the, for example, cohesive
blockmodel, might appear after some iterations. When studding empirical networks, a
researcher usually does not know at which stage of the network evolution the data were
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collected. This confirms that such studies, as the one in the proposed paper, are important
for the considered specific context.

The applied methodology can be used to study the relationships between other global
network structures and local network mechanisms. It is important that they are carefully
chosen according to the context of the study. The proposed algorithm for generating
networks could be also adjusted or extended to different assumptions (e.g., in such a way
that the mechanisms’ weights are considered as being variable in time or across the units
or that the valued networks are generated.
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