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 Abstract 

 In the paper theoretical derivation of steady state groundwater well pumping from leaky aquifers with infinite 
and finite radius of influence are presented. Based on the extensive literature review following mainly Jacob and 
Hantush work equations were derived from the cylindrical Bessel partial differential equation and results expressed 
in the combination of modified Bessel functions of zero order of the first and the second kind (I0, K0). We have shown 
that equation for steady state well pumping in the infinite aquifer is infinite limit of Hantush integral. Mathematical 
characteristics of solutions for infinite and finite radius of well influence were combined in the way that they can 
be represented as relative and absolute differences of drawdowns of each model. In the case when available data do 
not allow us to make a decision on the type of the radius of influence of the pumping well, they can help us in the 
interpretation of various errors due to application of different analytical models of pumping test.  

 Izvleček 

 V  članku  je  prikazana  izpeljava  enačb  črpanja  podzemne  vode  iz  vodnjaka  v  polzaprtem  vodonosniku  pri 
stacionarnih pogojih za primer končnega in neskončnega radija vpliva. Na podlagi obsežnega pregleda literature, 
ki izhaja predvsem iz del Jacoba in Hantusha, smo iz cilindrične Besselove parcialne differencialne enačbe izpeljali 
izraze  za  znižanje  podzemne  vode,  ki  predstavljajo  kombinacijo  modificiranih  Besselovih  funkcij  ničelnega  reda 
prve in druge vrste (I0, K0). Pokazali smo, da je enačba stacionarnega črpanja iz neskončnega vodonosnika neskončna 
limita  Hantushevega  integrala.  Matematične  značilnosti  rešitve  za  neskončni  in  končni  radij  vpliva  črpalnega 
vodnjaka  omogočajo,  da  izraze  združimo  tako,  da  lahko  prikažemo  relativne  in  absolutne  razlike  med  obema 
rešitvama.  V  primeru,  da  zaradi  pomanjkanja  podatkov  ne  moremo  sprejeti  odločitve  o  tem,  s  kakšnim  radijem 
vpliva imamo opraviti, nam te razlike omogočajo interpretacijo različnih napak izbranih analitičnih modelov.
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Introduction

The most important and reliable in situ meth-
ods for groundwater investigations are pumping 
tests. During them water is pumped from the well 
constructed in the soil or rock and groundwater 
drawdown in the surrounding of the pumping 
well is observed. Pumping tests are intended for 
determination of aquifer physical characteristics, 

aquifer water balance and groundwater chemical 
status. These are reasons why pumping tests and 
the theory which connected with them is central 
to the hydrogeological science.  The theory of 
pumping test is well developed and very complex. 
Since the very beginning when Theis published 
first mathematical model for unsteady ground-
water flow toward the well (Theis, 1935) many 
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conceptual and mathematical models of pump-
ing tests were developed (for the review see Batu, 
1998; Lebbe, 1999; Yeh & Chang, 2013 and refer-
ences there in).

The appearance of water in intergranular po-
rosity is conceptualized with the aquifer model 
which usually consists of three main elements: 
saturated part, unsaturated part and hydrogeo-
logical barriers. Different combinations of these 
elements represent different hydrodynamical 
models of aquifers. In general, we are talking 
about two main hydrodynamical types of aqui-
fers with transitions between them. The simplest 
one is confined aquifer where saturated part is 
confined between two impermeable hydrogeo-
logical barriers. The other main aquifer type 
is unconfined aquifer where groundwater level 
fluctuates depending on the recharge. In natural 
conditions aquifers are complex entities consist-
ing of beds with very different geometries and 
hydraulic characteristics. Aquifers where sever-
al beds with different hydraulic characteristics 
and contrasts are present are often conceptual-
ised as leaky aquifers. In real aquifers drawdown 
of groundwater level during the pumping test or 
full well operation is complex. 

The very first study on leaky aquifers under 
steady-state groundwater flow was presented by 
De Glee (1930). Jacob (1946) extended the work 
on leaky aquifers by introducing transient effect 
of leakage. In his treatment the key assumption 
was that the vertical flow rate in the upper hy-
drogeological barrier defined as an aquitard is 
proportional to the drawdown distribution in the 
same bed. Later Hantush and Jacob (1955) and 
Hantush (1959) derived analytical solutions for 
unsteady-state groundwater flow in leaky aqui-
fer for fully penetrating well of infinitely small 
diameter. In addition, Hantush (1960, 1964) and 
DeWiest (1965) assumed that the piezometric head 
in the aquitard overlying permeable part of the 
aquifer does not change during water withdraw-
al from the underlying pumped part. The valid-
ity of the assumption that Darcian groundwater 
flow in the permeable pumped part of the aqui-
fer is horizontal and in the overlying aquitard is 
vertical was tested by Neuman and Witherspoon 
(1969). The errors introduced by this assumption 
are less than 5 % if the difference in permeabili-
ty between confined bed and semiconfining beds 
is of at least two orders of magnitude. Herrea 
and Figueroa (1969) and Herrea (1970) presented 
a correspondence principle where only the stor-
age in the confining layers was taken into con-
sideration. Şen (2000) has widened leaky aquifer 

hydraulic theory to non-Darcian flow and latter 
this analysis was extended based on volumet-
ric approach by Birpinar and Şen (2004). For re-
cent review on leaky aquifer hydraulic see Yeh & 
Chang (2013).

During mathematical simulations of the 
drawdown the well radius of influence is very 
often represented as limiting factor in calcula-
tions. This parameter is difficult to determine in 
nature. It is also difficult to determine whether 
to use analytical model of finite or infinite radi-
us of influence. Radius of influence is very often 
defined from empirical formulas such as Sichardt 
equations (Powers et al., 2007) or it’s estimation 
is based on the expert judgement from the field 
study. From the theoretical and practical point 
of view it is interesting to observe differences in 
drawdown calculations between mathematical 
models which include finite or infinite radius of 
influence.

In the paper mathematical analysis of draw-
down in leaky aquifer during pumping test under 
steady-state conditions is presented. The analysis 
for the pumping tests with fully penetrating well 
in leaky aquifers with finite and infinite radius of 
well influence is extended based on solutions of 
Jacob (1946) and Hantush (1960, 1964). The com-
parisons are represented based on the various ra-
tios between the drawdown for each of the differ-
ent radius types under assumption that all other 
physical characteristic and pumping rate are the 
same. Ratios between different drawdowns are 
interpreted with various types of differences that 
can be interpreted as error analysis. Theoretical 
concepts are illustrated with numerical simula-
tion. Finally, theoretical and numerical results 
are discussed.

Mathematical model

Conceptual model

If the aquifer is not perfectly confined with 
upper and lower impermeable hydrogeological 
barrier leakage to the central water yielding 
unit – confined bed – may occur through the un-
derlain or overlain semiconfining layer or aqui-
tard. Leaky aquifers being either single or part 
of multi-layered aquifer systems and the degree 
of leakage between beds may become signifi-
cant depending on the thickness and hydraulic 
conductivity of the confined bed which gives the 
main part of the aquifer yielding water. During 
pumping water from the aquitard water is also 
extracted through the confining layer. The con-
ceptual model of the leaky aquifer is shown in 
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the fig. 1. In parallel to this model several oth-
er leaky aquifer conceptual models are available 
in the literature (Yeh & Chang, 2013) but are not 
taken in consideration.

The leakage rates from the semiconfining lay-
er – aquitard may be significant depending on 
hydraulic gradients around the pumping well. In 
the mathematical model of the pumping test from 
the leaky aquifer the thickness of the saturated 
part b‘ and vertical hydraulic conductivity of the 
aquitard Kz

p are taken into the account. It is hy-
pothesised that leakage of water from the aqui-
tard is strictly vertical and that no storage in this 
bed is present. The latter condition means that 
change of piezometric potential in the aquifer is 
simultaneous to change in the confined part of 
the aquifer. This part has transmissivity T that 
is defined as T=Kb; a product of hydraulic con-
ductivity K and the thickness b of the confined 
part of the aquifer. Storage coefficient S of this 
defines vertical elastic properties of the aquifer. 
As a consequence of pumping from the aquifer 
the drawdown s appears on starting piezometric 
head h0 that is horizontal at any distance r from 
the well. The drawdown s at r at time t is defined 
as s(r,t)=h0-h(r,t). Radius of influence of ground-
water pumping R is defined as the distance from 

the well where s(R,t)=0. Under steady-state 
pumping conditions at any time two models of ra-
dius of influence of groundwater pumping R can 
be defined. In the first mathematical model of the 
leaky aquifer R is finite and constant; R=const. 
In the second mathematical model of the leaky 
aquifer R is infinite; R=∞.

Together with boundary and initial conditions 
already presented in the fig. 1 the following as-
sumptions are applied in the mathematical model 
(Batu, 1998): the confined part of the aquifer is 
homogenous and isotropic, the extraction rate of 
the well Q is constant, the aquifer is horizontal, 
has constant thickness b and is overlain by an 
aquitard with constant vertical hydraulic con-
ductivity Kz

p and constant thickness of the sat-
urated part b’, the well penetrates entirely con-
fined part of the aquifer, the diameter of the well 
is infinitesimally small with no storage and the 
groundwater flow in the confined part of the aq-
uifer is horizontal.

Governing equation

Basic governing equation of the leaky aquifer 
in the vertical plane of the x, y, z Cartesian co-
ordinate system is defined as (for derivation see 
Miletić & Heinrich Miletić, 1981)

Fig. 1. Schematic cross section of a leaky confined aquifer with finite and infinite radius of influence.
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where 

is defined as leakage factor. In the cylindrical 
system of the coordinates r and φ the equation (1) 
can be rewritten as (Hantush, 1964)

and in the case of homogenous and isotropic 
aquifer according to ϕ

Equation (4) can be recognized as modified 
Bessel equation of zero order (Lebedeev, 1970). 
For parameters and other symbols see fig. 1.

Basic solution

In the solution of governing equation (4) fol-
lowing Hantush (1964) valid boundary and ini-
tial conditions are defined as:

In (5) last condition is consequence of Dar-
cy law. Final solution of the governing equation 
(Hantush, 1964) is 

where u is defined as

Integral (6) is known also as Hantush inte-
gral. It is important in many fields of mathemat-
ical physics and hydrology (Harris, 1997, 2001; 
Prodanoff et al., 2006). Detailed derivation of ba-
sic solution of leaky aquifer partial differential 
equation is given elsewhere (Hantush 1964; Batu 
1998; Lebbe, 1999).

Steady state-solution in infinite leaky aquifer

In real aquifers steady-state conditions are 
reached only after longer time t. If we suppose 
that t →∞ than the limit of u is defined as

and at sufficiently large time t u is small 
enough that u≈0. Consequently, integration bor-
ders become from 0 to ∞ and (6) becomes 

Based on Gradshteyn and Ryzhik (1994; equa-
tion 3.471.9)

From (9) and (10) also follows 

and K0 is modified Bessel function of second 
kind of zero order. After short manipulation in 
(10) and (11) it can be shown that drawdown for 
the infinite leaky aquifer sI in steady-state con-
ditions is

Which is the same results as de Glee (1930) 
defined initially through another derivation of 
equations.

Steady state-solution in finite leaky aquifer

General solution of modified Bessel equation 
of zero order (4) is (Lebedev, 1972)

where are

C1,C2 – constants

I0 – modified Bessel function of first kind of 
zero order.

Boundary conditions are defined as (Jacob, 
1946)

Determination of C1 and C2 of (13) from (14) 
leads to the equation of drawdown sF in finite 
leaky aquifer. Constants are determined in the 
area where r ≤ R. Elaboration of constants is not 
simple and straightforward, it is based on deriv-
atives of s and limit properties of K0(x) and I0(x) 
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functions. Derivation of C1 and C2 is first given 
in Jacob (1946) and thoroughly summarised and 
elaborated in Batu (1998) and Miletić and Hein-
rich-Miletić (1981). Presentation of this deriva-
tion is out of the paper’s scope. After definition of 
constants it follows:

Comparison of the drawdown for finite and 
infinite radius of influence

Definitions

In hydrogeology we are frequently encoun-
tering problem of choosing a proper aquifer con-
ceptual model. Dealing with results of pumping 
test it is a question whether to use finite or in-
finite model of well radius of influence. Available 
geological data are often not detailed enough or 
some information are missing for choosing the 
proper conceptual model. In such situation for 
calculations several models are used and their 
results are compared with the actual field mea-
surements. 

In the engineering practice measurements and 
calculated values are often expressed together 
with certain errors, among them are relative dif-
ference εr or absolute difference εa. The expres-
sion of those help us to understand the reliability 
of predictions preformed based on measurements 
and differences among them in their application 
of the mathematical models. These concepts can 
be used also in the comparison between draw-
down calculations in leaky aquifers with finite 
and infinite radius of well influence under steady 
state pumping conditions. 

We can define following differences and quo-
tients. If x is any quatitative measure absolute 
difference εa is defined as the absolute difference 
between two measured values x1 and x2

If reference value xref is present absolute dif-
ference εa’ is defined as

where x is any value from the model. The gen-
eralized relative difference εr is defined as 

Alternatively, average relative difference εr
avg 

can be defined as

If the reference value xref is defined than rela-
tive difference εr’ is

Sometimes εr’ is defined as

 

Differences and ratios between sF and sI

From mathematical point of view equations 
(12) and (15) are bearing some similarities. They 
can be easily used for the comparison between 
the modelled drawdown s in the aquifer with fi-
nite radius of influence - sF with the aquifer with 
infinite radius of influence - sI under steady state 
conditions and the same pumping rate Q.

After short manipulation it can be shown from 
(12) and (15) that

From that point right hand part of the (22) in 
the brackets can be understood as factor which 
is correcting infinite aquifer drawdown sI to the 
finite aquifer drawdown sF. Based on this we can 
define correction factor cF

and consequently

cF is independent of Q and depends only on B 
and R which are geometrical and physical charac-
teristics of the leaky aquifer. Due to aquifer physi-
cal characteristics relation sI ≥ cF is always present 
and due to the characteristics of modified Bessel 
functions K0(x) and I0(x) functional relation sI ≥ sF 
is always valid. Consequently, head in the leaky 
aquifer with the same hydraulic characteristics 
under the same pumping rate Q is higher in the 
aquifer with finite radius of influence than in the 
aquifer with infinite radius of influence. It can be 
illustrated that under some circumstance heads 
around the well in both cases can be nearly equal.

𝑠𝑠e =
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g (15)

𝜀𝜀i = |𝑥𝑥b − 𝑥𝑥"|	 (16)𝜀𝜀i = |𝑥𝑥b − 𝑥𝑥"|	 (16)

𝜀𝜀i3 = k𝑥𝑥 − 𝑥𝑥Dlmk	 (17)𝜀𝜀i3 = k𝑥𝑥 − 𝑥𝑥Dlmk	 (17)

𝜀𝜀D3 =
k𝑥𝑥 − 𝑥𝑥Dlmk

𝑥𝑥Dlm
= p

𝑥𝑥
𝑥𝑥Dlm

− 1p (20)𝜀𝜀D3 =
k𝑥𝑥 − 𝑥𝑥Dlmk

𝑥𝑥Dlm
= p

𝑥𝑥
𝑥𝑥Dlm

− 1p (20)

𝜀𝜀D =
𝜀𝜀i

|𝑥𝑥b + 𝑥𝑥"|
=
|𝑥𝑥b − 𝑥𝑥"|
|𝑥𝑥b + 𝑥𝑥"|

	 (18)𝜀𝜀D =
𝜀𝜀i

|𝑥𝑥b + 𝑥𝑥"|
=
|𝑥𝑥b − 𝑥𝑥"|
|𝑥𝑥b + 𝑥𝑥"|

	 (18)

𝜀𝜀D
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2𝜀𝜀i
|𝑥𝑥b + 𝑥𝑥"|

=
2|𝑥𝑥b − 𝑥𝑥"|
|𝑥𝑥b + 𝑥𝑥"|

=
𝜀𝜀D
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(19)𝜀𝜀D
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2𝜀𝜀i
|𝑥𝑥b + 𝑥𝑥"|

=
2|𝑥𝑥b − 𝑥𝑥"|
|𝑥𝑥b + 𝑥𝑥"|

=
𝜀𝜀D
2

(19)

𝜀𝜀D3 =
qr

stu|vw,vx|
= |vwyvx|

stu|vw,vx|
	 (21)𝜀𝜀D3 =

qr
stu|vw,vx|

= |vwyvx|
stu|vw,vx|

	 (21)
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(23)

𝑠𝑠e =
𝑄𝑄
2𝜋𝜋𝜋𝜋

[𝑠𝑠` − 𝑐𝑐e] (24)𝑠𝑠e =
𝑄𝑄
2𝜋𝜋𝜋𝜋

[𝑠𝑠` − 𝑐𝑐e] (24)
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We can further elaborate relations by dividing 
equation (15) with (12) and gaining

or

From the properties of I0(x) and K0(x) in (25) 
and (26) follows

From mathematical point of view equations 
(20) and (26) are similar. If we accept sI as a ref-
erence value than (27) is relative error with sI as a 
reference value xref can be defined as

Because sI ≥ sF same conclusion as in (28) fol-
lows from (21). 

Equation (28) is not just a mere mathemati-
cal expression. It explains relation between two 
drawdown curves. If we have two leaky aquifers; 
with infinite and finite radius of influence under 
the same pumping rate and the same hydraulic 
characteristics εr’(sI) explains relative difference 
between both drawdown curves. Depending on r 
in the interval 0< εr’(sI)<1 ratio explains relative 
differences between both drawdown curves. If 
the εr’(sI) is close or equal to 1 the curves have the 
same spatial distribution, and if εr’(sI)=0 draw-
down curve of sI is beyond the radius of influence 
R of the finite leaky aquifer. 

With the analogies of equations from (16) to 
(19) and according to the definition in (16) sub-
tracting (15) from (12) following expression for εa 
can be derived

Absolute difference εa is expressed in length 
units. Comparing to εr’(sI) in (28) which is inde-
pendent on pumping rate Q absolute difference 
εa depends on it. Relation between εa and εr’(sI) is 
also obvious.

Generalized relative difference εr from (18) 
and with the help of (12) and (15) can be defined 
as

Generalized relative difference εr is also di-
mensionless quantity. It can be applied for anal-
ysis when no preference to sI or sF are given. This 
is the case when we are not sure if model of fi-
nite or infinite radius of influence is valid and we 
want to keep both results. Consequently, average 
relative difference εr

avg followed from definitions 
above is defined as 

Results and discussion

In the following chapter we are presenting 
numerical simulation results based on the pre-
vious mathematical theory. Simulations were 
performed with build in numerical functions of 
modified Bessel functions of the first kind I0 and 
the second kind K0 in Excel for Mac 16.16.1. and 
with the program for symbolic and numerical 
computation Mathematica for Mac version 11.3.0. 
Numerical results are discussed from the hydro-
geological point of view.

Estimation of leakage factor B

Main physical parameter in simulations is 
leakage factor B defined in (2) which is combi-
nation of two other physical parameters and one 
variable which in our simulation can be consid-
ered as a constant. Those parameters are: trans-
missivity T of the confined unit and Kz

p which 
is vertical permeability of semi-confining layer 
while b‘ defines head in the later. Based on the ex-
pert judgement of T, Kz

p and b‘ we have estimated 
values of B. For simulations b‘ = 2 m was used. As 
expected in the real aquifers T was considered on 
the interval between 5⋅10-2 m2/s and 10-5 m2/s and 
Kz

p was considered in the interval from 10-9 m/s 
to 10-6 m/s. Calculated values of B are represent-
ed on double logaritmic scale in fig. 2.
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In the range of applied T highest values of B 
are present at Kz

p = 10-9 m/s. In this case B val-
ues are calculated in the interval between 173 m 
and 12,247 m. Lowest B values are present at Kz

p 
= 10-6 m/s. In this case B values are calculated 
in the interval between 5.5 m and 387 m. There-
fore, total simulated range of B is from 5.5 m to 
12,247 m. From the simulated values we can see 
that B is influenced by the Kz

p. In leaky aqufers 
semi-confining layer with vertical permeability 
Kz

p = 10-6 m/s due to the depression in confined 
layer it is highly unlikely that vertical flow will 
appear. Consequently, values of B in real aquifers 
tend to be in the higher part of the interval.

Estimated values of B can be considered also 
in the evaluation of ratio R/B which is import-
ant in presentation of simulation results on the 
relative scale r/R. Expected radius of influence 
R in real aquifers under the steady state condi-
tions are in the range of 500 m to 20,000 m. Con-
sequently, expected approximate range of R/B is 
in the interval from 0.005 to 20. 

Simulation of relative difference εr’(sI)

To illustrate behaviour of εr’(sI) given by equa-
tion (28) we have chosen aquifer with influence 
radius R of 5,000 m. Such radius of influence can 
be expected in many natural aquifers. Results of 
calculations are presented in the fig. 3 for leak-
age factors B from 50 m to 20,000 m. At relatively 
small values of B large part of the curve is flat-
ter reflecting εr’(sI)=0. At higher r curve sharply 
turns up to values near εr’(sI)=1. With higher val-
ues of B curvature is becoming flatter and values 
of εr’(sI) are becoming to rise slowly. Curves below 

B=5,000 m which is the same value as chosen R 
are concave with higher B they become convex. 
For high B values and at lower r values εr’(sI) starts 
to rise quickly and then at middle values of r the 
curve flattens and become nearly linear.

By simple reasoning it can be shown from (28) 
that results for different radius of influence R can 
be presented on the relative scale r/R. Diagram 
presented in fig. 4 is valid for any R at the same 
ratio R/B between radius of influence and leakage 
factor. Shape of lines are the same as they are on 
the fig. 3 and therefore reflecting the same rela-
tions as they are in the diagram for exact radius 
of influence. The diagram in fig. 4 can be under-
stood as scaled diagram. Similarly, as before at 
relatively small values of B large part of the curve 
is equal to εr’(sI)=0 and then at the right side of the 
diagram the curve sharply turns up to values near 
εr’(sI)=1. From the diagram we can observe that for 
values of R/B < 1 the curves are concave and for 
values R/B > 1 the curves turn to be convex.

Curves on both figures (figs. 3 and 4) are rep-
resenting comparison of the drawdown sF in the 
aquifer with finite influence of well and the draw-
down sI in the aquifer with infinite radius of in-
fluence. Values around 0 are showing that practi-
cally no difference is present among drawdowns 
when values of B or R/B are relatively small. 
Consequently, if we are dealing with relatively 
extensive leaky aquifer it is not important if we 
calculate drawdowns for finite or infinite radius 
model. In such cases the difference among draw-
downs become important only near the radius of 
influence R. Estimation whether we can describe 
aquifer with finite or infinite aquifer radius of in-

Fig. 2. Estimation of lea-
kage factor B at different 
transmissivity values T for 
confined layer and permea-
bility of Kz

p of semi-confi-
ning layer at b’=2 m.
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fluence becomes important with larger B values. 
Therefore, when semiconfining layer has several 
orders of magnitude lower vertical permeability 
than in confined layer it become important which 
analytical model for radius of influence is used. 
Differences become bigger close to the well com-
paring to higher B values where differences are 
important far away from the pumping well.

Simulation of generalized relative difference

Generalized relative differences are present-
ed only for relative distance r/R and are given in 
the fig. 5. Shape of the lines for different ratios 
R/B are nearly similar to the lines in fig. 4 where 
relative difference is shown. They are more con-
vex comparing to relative difference εr’(sI).

Comparison between relative differences

Lines in fig. 4 and fig. 5 have similar shape 
therefore one may ask question whether there is 
any difference between the lines. For the compar-
ison we have calculated both differences for two 
different ratios R/B = 1 and R/B = 0.25 respectively. 
Results are shown on the fig. 6. In spite of the sim-
ilar shapes of the curves differences among curves 
exist. From the equations (28) and (30) it can be 
shown that for the same physical parameters R and 
B relative difference εr’(sI) is always larger than εr. 
In the theoretical part of the paper we are not rep-
resenting derivatives of (28, 30) but it can be illus-
trated that εr’(sI) always approach value of 1 (right 
part of the curve) slowly than εr. Behaviour of εr is 
the consequence of its definition in (18) where com-
paring to (20) value is weighted by sI.

Fig. 3. Relative difference 
εr’ with reference value sI 
plotted on the regular dis-
tance scale.

Fig. 4. Relative difference 
εr’ with reference value sI 
plotted on the relative dis-
tance scale
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Fig. 5. Relative difference 
εr’ plotted on the relative 
scale r/R.

Conclusions

In spite of the fact that in hydrogeological 
quantification of aquifers and their groundwater 
flow numerical models are widely applied, devel-
opment of analytical mathematical models is still 
important. Analytical approach to groundwater 
flow enables different and deeper insight into the 
relations between different geometrical elements 
in the aquifers and their conceptual models. An-
alytical models are important for the control of 
numerical results and are very often applied as 
a scoping calculation representing first step in 
the consideration of hydraulic conditions in the 
aquifer. 

In the paper we have presented classical der-
ivation of the head distribution in the leaky aq-
uifer under steady state pumping conditions. We 
have shown that infinite limit of Hantush inte-
gral which represents solution of the non-steady 
state pumping conditions in the leaky aquifer 
is solution for the steady state conditions. We 

have shown that solutions for steady state con-
ditions under finite and infinite pumping well 
radius of influence are mathematically similar 
and that based on this characteristics compari-
son between them can be performed. They can be 
represented as relative and absolute differences 
of drawdowns for each model. In the case when 
available data do not allow us to make a decision 
on the type of the radius of influence of the pump-
ing well, they can help us in the interpretation of 
various errors due to application of different an-
alytical models of pumping test. We have shown 
that at larger leakage factors B determination of 
radius of influence R for the large part of the aq-
uifer is not important, they become important at 
larger factors B when contrast between permea-
bilities in the semi-confining unit and confined 
unit becomes larger. Under such condition differ-
ences in drawdown are important in the vicinity 
of the pumping well.

Fig. 6. Comparison of simulation between εr’(sI) and εr with the same ratio R/B plotted on the relative scale r/R.
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For further consideration similar relation for 
non-steady solutions of the leaky aquifer are also 
interesting. 
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