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Abstract. The LHC is now exploring the 1-3 TeV scale where resonances of the Electroweak
Symmetry Breaking Sector might exist. If so, Unitarized Effective Theory can be used
to describe the data with all the constraints of unitarity, causality and global-symmetry
breaking, and to find the resonance positions in the complex s-plane. From any resonances
found, one can infer the parameters of the universal Effective Lagrangian, and those may
be used to inform higher-energy theories (UV completions) that can be matched to it.
We exemplify with two-body resonances in the coupled channels hh andWLWL − ZLZL
employing the Equivalence Theorem and comment on the apparent excess in the ATLAS
dijet data at 2 TeV.

Povzetek. Pričakuje se, da bodo meritve na pospeševalniku LHC potrdile obstoj resonanc
pri energijah od 1–3TeV. Avtorji uporabijo unitarni efektivni model za opis dvodelčnih
resonanc v dvodelčnih kanalih (hh inWLWL − ZLZL), ki uspešno opiše te vrste resonanc v
energijskem območju nekaj sto GeV, v novem energijskem območju. Komentirajo rezultate
meritev z dvema curkoma na merilniku Atlas pri energiji 2TeV.

8.1 Non-linear EFT forWLWL and hh

The LHC has found a scalar boson with mh = 125 GeV and not much more.
It is natural to describe the Electroweak Symmetry Breaking Sector of the Stan-
dard Model (SM) in terms of the low-energy spectrum alone. The resulting effec-
tive Lagrangian for the Higgs-like particle h and the longitudinal gauge bosons
WL, ZL ∼ ωa in the non-linear representation appropriate for the global symmetry
breaking scheme SU(2) × SU(2) → SU(2)c (leaving the approximate custodial
subgroup as a good isospin symmetry) is as given by us [1], the Barcelona group
[2] and others [3,4],
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8 Describing 2-TeV ScaleWLWL Resonances with Unitarized Effective Theory 79

The parameters of this Lagrangian, neglecting the masses of all quasi-Goldstone
bosonsωa and of the Higgs h, adequate to explore the energy region 1-3 TeV�
100 GeV, are seven. Their status is given in table 8.1.

a b a4 a5 g d e

(0.88, 1.34) ∈ (−1, 3)a2 (this work) 0? 0? 0? 0? 0?

Table 8.1. From the ATLAS and CMS reported [5] hWW, hZZ couplings we infer the
approximate 2σ level constraint on a shown (a recent communication to the LHCP2015
conf. finds similar results [8]). In our recent work [6,7] on unitarized perturbation theory we
could also put a coarse constraint on b due to the absence of a coupled-channel resonance in
hh−ωω (the second channel is visible while the first is much harder). Basically no bounds
have been reported on the NLO parameters: their SM value is zero.

We emphasize that with seven parameters, this is a reasonably manageable
Lagrangian for LHC exploration of electroweak symmetry breaking, granted,
under the approximation ofMW 'MZ ' mh ' 0which is fair enough in the TeV
region, and this is in contrast to the very large parameter space of the fully fledged
effective theory [3].

The perturbative scattering amplitudes AJI(s) = A
(LO)
IJ (s) +A

(NLO)
IJ (s) . . . for

ωω and hh, projected into partial waves, are given to NLO in [6]. For example, the
LO amplitudes of I = 0, 1 and 2, proportional to (1−a2), and the channel-coupling
amplitudeωω→ hh, to (a2 − b),

A00(s) =
1

16πv2
(1− a2)s

A11(s) =
1

96πv2
(1− a2)s

A02(s) = −
1

32πv2
(1− a2)s

M0(s) =

√
3

32πv2
(a2 − b)s

show how a tiny separation of the parameters from the SM value leads to an
energy-growing, eventually strongly interacting set of amplitudes.

Including the NLO, these amplitudes take a form characteristic of chiral
perturbation theory

A
(LO+NLO)
IJ (s) = Ks+

(
B(µ) +D log

s

µ2
+ E log

−s

µ2

)
s2 (8.2)

with a left cut carried by theDs2 log s term, a right cut in the Es2 log(−s) term, and
the Ks+Bs2 tree-level polynomial. B,D and E have been calculated, reported in [6]
and allow for perturbative renormalizability, where the chiral counterterms con-
tained in B absorb one-loop divergences from iterating the tree-level Lagrangian
and run to make Eq. (8.2) scale invariant.

The energy reach of the Effective Theory with the Lagrangian density in
Eq. (8.1) is nominally 4πv ∼ 3 TeV. If the LHC finds no clear new phenomenon
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through this scale, experimental data on WLWL spectra can eventually be com-
pared with the effective theory predictions. In this precision work, separations of
a from 1 or of b from a2 or any NLO parameter from 0 can then be used to predict
the scale of new physics, or if measurements are null, at least to constrain it.

8.2 Resonances

On the other hand, if the LHC finds new resonances that couple to two longi-
tudinal gauge bosons (and potentially also to two Higgs bosons), then a purely
perturbative approach is inadequate. A deffect of the amplitudes in Eq. (8.2) is
that they violate the unitarity relation ImAIJ = |AIJ|

2, which is satisfied only order
by order in perturbation theory, namely ImA(NLO)

IJ = |A
(LO)
IJ |2. This introduces

an error which is only acceptably small when s is much smaller than the mass
of the first resonance in the IJ channel. But of course, since near resonances the
imaginary part of the amplitude is large, the effective theory is of no use there.
The solution is sometimes called Unitarized Effective Theory and is described in
subsection (8.2.1).

8.2.1 Unitarization

Unitarization of effective theory amplitudes is a technique well-known [9] in
hadron physics that we describe only briefly. It is possible because scattering
amplitudes in field theory are very constrained functions due to Lorentz invariance,
causality and unitarity. Dispersion relations, known from old in optics, are a way
of incorporating all the constraints [10] leaving little freedom to determine the
amplitudes, though they remain ambiguous without dynamical knowledge. To
fully obtain them though, one needs a few key numbers which are provided
by the effective theory at low-energy (see the lectures [11] for an introduction).
This powerful method of combining dispersion relations with effective theory,
which basically exhausts all underlying-model independent information in the
experimental data for two-body channels, was deployed for the electroweak
symmetry breaking sector early on [12]. Usually the resulting amplitudes for
WLWL ∼ ωω scattering are encoded in simple algebraic forms that avoid the
complications of the dispersion relations, such as the K-matrix [4] that introduce a
small amount of model dependence in the discussion.

To address this, we have compared [6] three unitarization methods that agree
in predicting the same resonances at the same positions within 1 to 10% when all
three can be used. These are the Inverse Amplitude Method, the N/D method,
and an improved version of the K-matrix method that ensures complex-plane
analyticity where appropriate. Table 8.2 shows the IJ channels where each one is
currently applicable in the Electroweak sector.

As an example, consider the Inverse Amplitude Method. In its simplest form
it requires two orders of the perturbative expansion, that are combined in the
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Table 8.2. Channels where each unitarization method can currently be used.

IJ 00 02 11 20 22
Method All N/D, IK IAM All N/D, IK

following simple formula,

AIJ =

(
A

(LO)
IJ

)2

A
(LO)
IJ −A

(NLO)
IJ

. (8.3)

To obtain it, one realizes that a dispersion relation for A(s) may be exact but
of little use because of insufficient low-energy information. On the contrary, a
dispersion relation for the perturbative A(LO) +A(NLO) can be fully studied, but
it is trivial because the perturbative amplitude is known everywhere. The trick
is to write one for

(
A(LO)

)2
A−1 (hence the name “Inverse Amplitude Method”)

because the integral over the right, unitarity cut of 1/A is exactly calculable when
only two-body channels are important. The result is the formula in Eq. (8.3).
Its generalization to two (massless) channels is straightforward by turning the
quantities therein into matrices, each element being an elasticωω→ ωω, hh→
hh or a cross-channel ωω → hh amplitude. In Fig. 8.1 we show the IAM and
also the other two methods with NLO parameters set to 0 at a scale of µ = 3 TeV
and with LO parameters a = 0.88 and b = 3. This set generates a characteristic
coupled-channel resonance seen in all three amplitudes.

Fig. 8.1. Comparison of three unitarization
methods for the imaginary parts of the IJ =
00 amplitudes. Clockwise from top left,ωω,
hh and channel-coupling ωω → hh (pa-
rameters in the text). A scalar resonance is
visible in all, and the unitarization meth-
ods with correct analytic properties closely
agree.
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The variable s in Eq. (8.3) may be extended to the complex plane, allowing to
search for resonances in its second Riemann sheet. We locate the pole positions
and report selected ones below in subsection 8.2.3.

8.2.2 ATLAS excess in two-jet events

The interest in TeV-scale resonances has recently rekindled because of an apparent
excess in ATLAS data [13] plotted in Fig. 8.2 together with comparable, older CMS
data [16] that does not show such an enhancement.

Fig. 8.2. Left: rerendering of the ATLAS data[13] forWZ→ 2 jet in pp collisions at the LHC,
that shows a slight excess at 2 TeV (same in the other isospin combinationsWW and ZZ,
not shown). Criticism on the jet analysis has been presented in [15]. Right: CMS data [16] in
the same 2-jet channel with jets tagged as vector bosons. Here the collaboration provides
the absolute normalization of the cross-section. No excess is visible at 2 TeV (if at all, a tiny
one at 1.8-1.9 TeV).

The excess is seen in two-jet events, each one containing the entire debris of a
respective gauge boson. Their invariant mass reconstruction allows the assignment
of aW or of a Z tag (82 and 91 GeV respectively) but the experimental error makes
the identification loose, so that the three-channels cross-feed and we should not
take seriously the excess to be seen in all three yet. Because WZ is a charged
channel, an I = 0 resonance cannot decay there. Likewise ZZ cannot come from an
I = 1 resonance because the corresponding Clebsch-Gordan coefficient 〈1010|10〉
vanishes. A combination of both isoscalar and isovector could explain all three
signals simultaneously, as would also an isotensor I = 2 resonance. In the isotensor
case, the resonance should be visible in the doubly charged channel W+W+

whereas not in the other (to tag the charge requires to study leptonic decays
instead of jets, so it is a whole other measurement, but worth carrying out).

Numerous models have been proposed to explain the presumed excess, but
the model-independent information is still sparse [14].

One statement that we can make, based on the so-called KSFR relation that
the IAM naturally incorporates (as do broad classes of theories such as Composite
Higgs models [17] with vector resonances [18]), is that if a ρ-like isovector reso-
nance is in the ATLAS data, it will be quite narrower than the bump seen (perhaps
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broadened due to experimental resolution). The relation, given here in the absence
of further channels [7], links the mass and width of the isovector resonance with
the low-energy constants v and a in a quite striking manner,

Γ IAM =
M3

IAM

96πv2
(1− a2) . (8.4)

ForM ∼ 2 TeV and Γ ∼ 0.2 TeV as obtained by rule of thumb in Fig. 8.2, one gets
a ∼ 0.73which is in tension with the ATLAS-deduced bound a|2σ > 0.88 at 4-5σ
level; Eq. (8.4) predicts that an isovectorWLWL resonance at 2 TeV, with present
understanding of the low-energy constants, needs to have a width of order 50 GeV
at most.

8.2.3 IAM parameter map

At last, we map out part of the seven-parameter space in search for resonances at
2 TeV that can be brought to bear on the new ATLAS data.

For a < 1 the scalar-isoscalar channel can be resonant from the LO Lagrangian
alone (generating a σ-like resonance that was described in [1]). In fact, even for
a = 1, there is a resonance generated for large enough b that oscillates between
theωω and hh, a “pinball” resonance, reported in [6]. This can be seen in the left
plot of Fig. 8.3, where, for a < 1 so that (1− a2) > 1 there is a pole in the second
Riemann sheet.
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Fig. 8.3. We explore the ab parameter space
in search for resonant poles of ωω scatter-
ing; clockwise from top left, IJ = 00, 11 and
20.

The isoscalar wave resonates for a broad swipe of ab parameter space, and
near 2 TeV (the thin band), though the structure is generally broad, and feeds
theWW and ZZ channels seen in the ATLAS data. In that case, the chargedWZ
experimental excess must be ascribed to misidentification of one of the two bosons,
since an isoscalar resonance is of necessity neutral.

For a > 1 an isotensor resonance exists (see again Fig. 8.3, bottom plot).
This is possible for a > 1 (light gray band marked ”LHC compatible”) as the
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LO amplitude in Eq. (8.2) becomes attractive. Of course, for this negative sign of
(1− a2), as seen in Eq. (8.2), the usual roles of the isoscalar and isotensor waves
are reversed, with the first now being repulsive.

In a narrow curved strip (middle gray, immersed in that band) this resonance
appears at about 2 TeV and can decay to all ofWW,WZ and ZZ charge-channels.
The darkest area corresponds here to “LHC ruled out” and means that the reso-
nance is light and might already be excluded.

We need to make sure that the other waves don’t present causality-violating
poles in the first Riemann sheet that rule out a certain parameter region. Returning
to Fig. 8.3 we see that the isovector wave indeed violates causality for much of the
parameter space where the isotensor resonance exists, though there are perhaps
small patches where the isotensor resonance is still allowed, for not too large
values of b.

Since this allowed parameter space is so small and because, even if the isoten-
sor resonance were there its production cross-section would be smaller (requiring
two intermediateW bosons) than the production of an isovector one as reported
in [19], we proceed to the NLO amplitude.

We likewise look for poles in the complex s plane as function of the a4, a5
parameters with fixed a = 0.95 and b = 1, as shown in Fig. 8.4. The bottom plot
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Fig. 8.4. Searches for complex-plane poles
as function of the NLO parameters a4 and
a5 for fixed a = 0.95 and b = a2. Clockwise
from left top, IJ = 00, 11, 20.

shows how a large swath of parameter space towards negative a4 is excluded by
displaying a pole in the first Riemann sheet of the 20 channel. Because here we
chose a < 1, this channel does not resonate in the second sheet, whereas the scalar
one (left, top plot) does, as well as the 11 channel (that is seen, by comparing with
Fig. 8.3, to present “intrinsic” resonances driven by the NLO counterterms).

The two diagonal bands in the 00 and 11 channels that support poles at
around 2 TeV intersect for slightly negative a5 and a4 of order 5× 10−4. There, we
find both isoscalar and isovector poles, that jointly could explain all of the extant
WW,WZ and ZZ excesses in two-jet data.
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8.3 Conclusion

The LHC is now taking data at 13 TeV and production cross-sections sizeably
increase. This is necessary as the typical σ for ωω resonances are currently at
or below the LHC sensitivity limit as shown in Fig. 8.5. The large rate at which
a resonance would have to be produced to explain the ATLAS excess is a bit
puzzling.

Fig. 8.5. Tree-levelW production of
ωω [19] with final-state resonance;
non-zero parameters are a = 0.9,
b= a2, a4 = 7×10−4 (at µ= 3 TeV).
Also shown is the CMS upper bound
on the cross-section obtained from
fig 8.2.

We hope that this ATLAS excess will soon be confirmed or refuted. In any case,
the combination of effective theory and unitarity, as encoded for example in the
IAM, is a powerful tool to describe data up to 3 TeV of energy in the electroweak
sector if new, strongly interacting phenomena appear, with only few independent
parameters. The content of new, Beyond the Standard Model theories, can then be
matched onto those parameters for quick tests of their phenomenological viability.

Acknowledgements

We owe many discussions with J. J. Sanz Cillero and D. Espriu. FLE thanks the
organizers of the Bled workshop “What comes beyond the SM” for their hos-
pitality and encouragement. Work partially supported by Spanish Excellence
Network on Hadronic Physics FIS2014-57026-REDT, and grants UCM:910309,
MINECO:FPA2014-53375-C2-1-P, BES-2012-056054 (RLD).

References

1. R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, J. Phys. G 41, 025002 (2014); [JHEP
1402, 121 (2014)]; R. L. Delgado, A. Dobado, M. J. Herrero and J. J. Sanz-Cillero, JHEP
1407, 149 (2014).

2. P. Arnan, D. Espriu and F. Mescia, arXiv:1508.00174 [hep-ph]. D. Espriu and F. Mescia,
Phys. Rev. D 90, 015035 (2014). D. Espriu, F. Mescia and B. Yencho, Phys. Rev. D 88,
055002 (2013). D. Espriu and B. Yencho, Phys. Rev. D 87, 055017 (2013).



i
i

“proc15” — 2015/12/9 — 10:51 — page 86 — #102 i
i

i
i

i
i

86 F.J. Llanes-Estrada, A. Dobado and R.L. Delgado

3. R. Alonso et al., JHEP 1412, 034 (2014); G.Buchalla, O.Cata, A.Celis and C.Krause,
arXiv:1504.01707 [hep-ph]; see also L. Berthier and M. Trott, JHEP 1505, 024 (2015) and
references therein for the formulation in the linear Higgs representation.

4. W. Kilian, et al., Phys. Rev. D 91, 096007 (2015).
5. The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2014-009, ATLAS-

COM-CONF-2014-013; also the CMS Collaboration report CMSPASHIG-14-009.
6. R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Phys. Rev. Lett. 114, 221803 (2015).
7. R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 91, 075017 (2015).
8. http://press.web.cern.ch/press-releases/2015/09/

atlas-and-cms-experiments-shed-light-higgs-properties
9. H. Lehmann, Phys. Lett. B 41, 529 (1972).

10. S. Mandelstam, Phys. Rev. 112, 1344 (1958); M. GellMann, Proceeding of the Sixth
Annual Rochester Conference High-Energy Physics, 1956 (Interscience Publishers, Ins.,
New York, 1956), Sec. III, p. 30.

11. T. N. Truong, EFI-90-26-CHICAGO, EP-CPT-A965-0490, UCSBTH-90-29, C90-01-25.
12. A. Dobado, M. J. Herrero and T. N. Truong, Phys. Lett. B 235, 129 (1990); A. Dobado

and J. R. Pelaez, Nucl. Phys. B 425, 110 (1994) [Nucl. Phys. B 434, 475 (1995)] [hep-
ph/9401202].

13. G. Aad et al. [ATLAS Collaboration], arXiv:1506.00962 [hep-ex].
14. B.Allanach, B.Gripaios and D.Sutherland, arXiv:1507.01638 [hep-ph].
15. D. Goncalves, F. Krauss and M. Spannowsky, arXiv:1508.04162 [hep-ph].
16. V. Khachatryan et al. [CMS Collaboration], JHEP 1408, 173 (2014).
17. D. B. Kaplan, H. Georgi and S. Dimopoulos, Phys. Lett. B 136, 187 (1984); H. Terazawa,

K. Akama and Y. Chikashige, Phys. Rev. D 15, 480 (1977).
18. D. Barducci et al. Phys. Rev. D 91, no. 9, 095013 (2015).
19. A. Dobado, F. K. Guo and F. J. Llanes-Estrada, arXiv:1508.03544 [hep-ph].


