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In this work an approach to solving coupled micro-macro problems was developed that enables efficient analyses of modern
heterogeneous materials. It provides an efficient problem-solving tool for problems with complex microstructures, which are
used in demanding structural components. An effective way of transferring the microscale information to the macroscale
analysis is to use a multilevel finite-element approach-FE2. Within the FE2 framework one conducts an embedded micro-scale
computation in order to extract the quantities required at a point of the macroscale finite-element mesh. The aplication of FE2
circumvents the need to construct an explicit macroscale constitution formulation, though at an increased computational cost.
Here, a general method for the calculation of the consistent macroscopic stiffness matrix via a sensitivity analysis at the micro
level was developed. The performance of the proposed method was studied for different microstructures with porosities and stiff
inclusions.
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V tem delu je bila razvita metoda za u~inkovito re{evanje vezanih mikro-makro sodobnih heterogenih materialov. Nova metoda
je inovativno orodje pri re{evanju problemov s kompleksno mikrostrukturo, uporabljeno pri zahtevnih in`enirskih komponentah.
Za prenos informacij med mikroskopskim in makroskopskim nivojem smo izbrali ve~nivojsko metodo kon~nih elementov (FE2).
V FE2-shemi re{evanja je v vsaki Gaussovi to~ki makroskopskega kon~nega elementa izvedena mikroskopska analiza, ki
prispeva potrebne neznane vrednosti. Pri FE2-metodi re{evanja ne potrebujemo ve~ makroskopske konstitutivne zveze, saj je
le-ta na ra~un pove~anega ra~unskega ~asa pridobljena z natan~no mikroskopsko analizo v posamezni to~ki makroskopskega
kon~nega elementa. Metoda je splo{en na~in re{evanja makroskopske togostne matrike z ob~utljivostno analizo mikroskopskega
nivoja. Lastnosti metode so bile preizku{ene za razli~ni mikrostrukturi: za porozno mikrostrukturo in mikrostrukturo s togimi
vklju~ki.

Klju~ne besede: heterogeni materiali, mikro-makro analize, makroskopska togost, ob~utljivostna analiza

1 INTRODUCTION

Materials used in engineering sciences and industrial
applications prove to be heterogeneous at some scale.
This heterogeneous nature, such as inclusions, pores, fi-
bers and grain boundaries, has a significant impact on
the observed macroscopic behaviour of multi-phase ma-
terials. Typical examples are metal alloy systems, various
composites, porous and cracked structures, polymeric
blends and polycrystalline materials. Processing and ad-
vanced forming operations force a material to undergo
complex loading paths. This results in varying micro-
structural responses and easily provokes the evolution of
the microstructure. Because of time and cost require-
ments, straightforward experimental measurements on a
number of material samples including various phase pro-
perties, volume fractions and loading histories are highly
unlikely. On the other hand, it is still impossible to
discretize the macrostructure so that it accurately repre-
sents the microstructure and at the same time allows a
numerical solution within a reasonable amount of time.
To determine the overall macroscopic characteristics of
heterogeneous structures, the effective numerical models

have to be developed. Conventionally, in structural me-
chanics the hierarchical approach is used, especially
when the scales are significantly separated. By employ-
ing micromechanical models, the material behavior at
the microscale is efficiently transferred to the macroscale
analysis and used for all the structural calculations. The
most straightforward way is to use the multilevel fi-
nite-element method ML-FEM,1–5 whereby the behavior
of each volume element results from a finite-element
computation of the microscopic structure. When analy-
ses at both levels are made in the context of the FEM, it
can be referred to as the FE2 method.6, 7 This new type of
model falls within the general category of multiscale
models. The aplication of the FE2 method removes the
need to construct an explicit macroscale constitution for-
mulation, though at an increased computational cost. The
constitutive equations are written only on microscopic
scale and homogenisation and localisation equations are
used to compute the macroscopic strains and stresses
knowing the mechanical state at the microscopic level.

The aim of this work stems from the need for a gen-
eral and effective way of computing the macroscopic
tangent, since this represents the main part of the FE2
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method. A conventional way of computing the macro-
scopic tangent in a condensation procedure necessitates
the computation of a Shur complement. It inflicts for in-
creasingly complex microstructure higher memory-allo-
cation demands that may not be met by today’s comput-
ers. Therefore, as an alternative, a tangent-computation
technique based on a sensitivity analysis at the micro-
scopic level will be presented.

2 MULTISCALE MODELING

2.1 Basic hypotheses

The material under consideration is assumed to be
macroscopically homogeneous, so that continuum me-
chanics can be used to describe the macroscopic behav-
ior. However, at the microlevel the material configuration
is heterogeneous, consisting of many distinguishable
components, e.g., grains, cavities, and hard inclusions.

In order to estimate the effective properties of a het-
erogeneous material, most of the micro-macro methods
assume the existence of a micromechanical sample that
is statistically representative of the microstructural fea-
tures. The identification of such a representative volume
element (RVE) is a somewhat delicate task and is outside
the scope of this work. The RVE is considered both
smaller enough than the macroscale media and larger
enough than the heterogeneities on the micro scale, with-
out introducing non-existing properties (e.g., anisotropy).
For further issues associated with the identification pro-
cedure the reader is referred to.8–12

Here, the existence of an appropriate RVE is sup-
posed. Then the problem on the RVE level can be formu-
lated as a standard problem in quasi-static continuum
solid mechanics, where kinematic, equilibrium and con-
stitutive equations are needed.

In the computational homogenization technique, a
macroscopic deformation gradient tensor (FM) is calcu-
lated for every integration point of the macrostructure.
From the macroscopic deformation tensor the appropri-

ate boundary conditions are derived to be imposed on the
RVE that is assigned to this point. After the solution of
the boundary-value problem for the RVE, the macro-
scopic stress tensor (PM) is obtained by averaging the re-
sulting RVE stress field over the volume of the RVE. Ad-
ditionally, the local macroscopic consistent tangent is
derived from the sensitivity analysis of the RVE. This
framework is schematically illustrated in Figure 1. In the
subsequent sections these issues are discussed in more
detail.

2.2 Coupling of the macroscopic and microscopic lev-
els

The actual coupling between the macroscopic and
microscopic scales is based on averaging theorems. The
energy averaging theorem, known in the literature as the
Hill condition or macrohomogeneity condition,12,13 re-
quires that the macroscopic volume average of the varia-
tion of the work performed on the RVE is equal to the lo-
cal variation of the work on the macroscale. Formulated
in terms of a deformation gradient tensor and the first
Piola-Kirchhoff stress tensor, the work criterion in differ-
ential form is written:

P F P Fm m M Md d⋅ = ⋅ (2.1)

It is well known that this criterion is not satisfied for
arbitrary boundary conditions (BCs) applied to the RVE.
Classically, three types of RVE boundary conditions are
used, i.e., prescribed displacements, prescribed tractions
and prescribed periodicity. Periodicity here is referring to
an assumption of the global periodicity of the micro-
structure, suggesting that the whole macroscopic speci-
men consists of spatially repeated unit cells. Among
them the periodic BCs show a more reasonable estima-
tion of the effective properties. This was supported and
justified by a number of authors.8–11 The periodicity con-
ditions for the microstructural RVE are written in a gen-
eral format as:
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equation (2.1) the macroscopic first Piola-Kirchhoff
stress tensor (PM) and the macroscopic deformation
gradient tensor (FM) are the fundamental kinetical and
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F F
V

F V
V

xNM m RVE
RVE

m
RVE RVE

d d= = =∫ ∫
1 1

�

�

G
G

(2.3)

M. LAMUT et al.: MULTISCALE MODELLING OF HETEROGENEOUS MATERIALS

422 Materiali in tehnologije / Materials and technology 45 (2011) 5, 421–426

Figure 1: Shematic diagram of the FE2 model
Slika 1: Shema FE2-modela
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Here, VRVE is the undeformed RVE, and Pm and Fm

are the microscopic stress tensor and deformation gradi-
ent tensor, respectively, G represents the boundary of the
RVE, while

�

N represents the normal vector to the surface
of the RVE.

2.3 Macroscopic tangent computation (consistent stiff-
ness)

In the realization of the multilevel FEM approach, the
macroscopic constitutive formulation is not explicitly ob-
tained from the experimental data. Instead, the needed
stiffness matrix at every macroscopic integration point
has to be determined directly from the numerical relation
of the macroscopic stress (PM) and macroscopic defor-
mation gradient (FM) at that point.11,14,15 The weak form
of the macroscale problem in the absence of body forces
and acceleration can be written in the variational form
as:

�� �= ⋅∫ F P V
V
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(2.5)

To solve the macroscopic primal problem within the
FE2 setting, at the i-th iteration step of a standard New-
ton-Raphson solution scheme, the following linearization
needs to be computed.
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The macrolevel element tangent stiffness matrix and
the residual force vector can be obtained with the knowl-
edge of the stress (PM) and macroscopic tangent (∂ ∂P / FM M )
obtained from the RVE analysis, since FM is an explicit
function of the node displacements. The (PM) can be ob-
tained directly from the RVE analysis by using averaging
theorem equation (2.4), while for the determination of
the macroscopic tangent a RVE sensitivity analysis is
performed. For the sensitivity problem16 the residuals
and the vector of unknowns are defined as a function of
the sensitivity parameters, which are in this case the ele-
ments of the tensor (FM). The sensitivity problem can
then be obtained from the primal problem by differenti-
ating the response functional and the residuals with re-
spect to the macroscopic deformation gradient (FM), and
the following system on the microlevel has to be solved:
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where, �m represents the response functional on the
microlevel, a is a set of unknowns (displacements),
while � represents an arbitrary sensitivity parameter, in
our case FM.

With the assembling of the macroscopic stiffness ma-
trix, the problem on the macro level is fully described
and can be solved to produce an update of the macro-
scopic displacement field.

Remark 1: for consistency the particular type of BC
employed for the computation of K must match the type
of BC employed in the computation of P.

2.4 Finite-element implementation

The multiscale algorithm has been implemented into
the computer program AceFEM,17 where a special mac-
roscopic element can be readily defined in open-source
code. The mechanical characterizations of the micro-
structural components are modeled as Neo-Hook isotro-
pic hyperelastic material for which the strain-energy
function takes the form:
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where J = detF, C is the right Couchy-Green deforma-
tion tensor, with �g and μg as the first Lame constant and
shear modulus.

The efficiency of the FE2 method was enhanced by
developing a framework that allows the micro-macro ap-
proach to be applied only at critical regions of the
macrostructure, while for the other domains, the effec-
tive macroscopic properties are derived by the numerical
homogenization of the micromechanical model. In order
to evaluate the presented method a tree-point bending
test, Figure 2, with a height-to-length ratio of 0.25 and
unit thickness, load displacements � = 1 unit, under
plain strain condition, has been examined. In the exam-
ple two heterogeneous microstructures of a homoge-
neous matrix material with 6 % volume fraction of ran-
domly distributed voids or stiff inclusions are studied.
The tests were made in 2D and 3D geometry. The mate-
rial parameters for the calculations are as follows: shear
modulus of the matrix material and stiff inclusions are
Gm = 77 GPa and Gi = 307 GPa, respectively, and the
bulk modulus of the matrix material and stiff inclusions
are Km = 167 GPa and Ki = 667GPa, respectively. For the
homogenized part the effective material constants are as
follows: voided microstructure G = 72 GPa and K = 156
GPa, microstructure with stiff inclusions G = 90 GPa and
K = 194 GPa.
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Figure 2: Three-point bending test
Slika 2: Trito~kovni upogibni preizkus



3 RESULTS – EXAMPLE OF MICRO-MACRO
MODELING

Micro-macro calculations for a heterogeneous struc-
ture with voids and homogenized structure for the
three-point bending test were carried out. In Figure 3 the
undeformed and deformed states of the two cases are

presented. The contour plots of the equivalent Misses
stress are compared. It is shown that in the case of mi-
cro-macro analysis, higher effective stresses occur than
in the homogenized macrostructure.
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Figure 5: Loading force vs. displacement of a critical point from the
micro-macro and homogenized problem, microstructure with stiff in-
clusions
Slika 5: Sila obremenjevanja glede na pomik kriti~ne to~ke za
homogeniziran in mikro-makro problem, mikrostruktura s togimi
vklju~ki

Figure 6: Effective stress in the RVE from the critical point of the
macrostructure 2D a) stiff inclusions, b) voided microstructure.
Slika 6: Primerjalna napetost v RVE, vzet iz kriti~ne to~ke makro
strukture, a) mikrostruktura s togimi vklju~ki, b) mikrostruktura s
porami

Figure 4: Loading force vs. displacement of a critical point from the
micro-macro and homogenized problem, voided microstructure.
Slika 4: Sila obremenjevanja glede na pomik kriti~ne to~ke za homo-
geniziran in mikro-makro problem, mikrostruktura s porami

Figure 3: Macroscopic effective stress in micro-macro and homoge-
nized problem, voided microstructure
Slika 3: Makroskopska efektivna primerjalna napetost za homogeni-
ziran in mikro-makro problem, mikrostruktura s porami



Figure 4 shows a comparison of the load-displace-
ment curve for micro-macro and homogenized analyses
with a voided microstructure. The same situation for a
microstructure with stiff inclusions is presented in Fig-
ure 5. The results imply that for the correct calculations,
needed in precision-forming operations, the use of the
micro-macro approach could provide a better estimation
of the real situation. Namely, the results obtained with
the micro-macro approach showed a softer response than
the homogenized macrostructure.

The detailed analysis of the RVE in the critical point,
the lower point in the middle of the three-point bending
test, for both microstructures in 2D geometry are shown
in Figure 6. It can be seen that the voids act as a stress
concentrator and that some stress-concentration regions
can be seen between the neighboring voids, Figure 6b.
By comparing the stress field with the one in Figure 3,
substantially higher stresses are observed. So by simulta-
neously examining the RVE at critical macro points,
while deforming the macrostructure, a deeper under-
standing of the real deformation mechanisms is gained.
In the case of stiff inclusions a detailed RVE analysis re-
vealed the stress peaks in the inclusions, which can be
very helpful in studying the damage mechanisms.

In addition to the 2D tests, some 3D tests were made.
In Figure 7 an effective Misses stress is shown for the
two considered microstructures. By comparing the mac-
roscopic stress field with the RVE stress field, Figure 8,
again much higher stresses are observed.

4 CONCLUSIONS

In this work numerical models of heterogeneous ma-
terials were adapted to a multilevel finite-element frame-
work called the FE2 method. The key importance of this
method is the efficient calculation of the macroscopic
stiffness matrix, which can be done in various ways.
Here, a general method for a calculation of the consistent
macroscopic stiffness matrix via a sensitivity analysis of
the micro level was developed. It enables a problem-
solving tool for a wide variety of different micro-macro
problems. Furthermore, the FE2 method makes it possi-
ble to study easily the complex microstructural morphol-
ogy and with a detailed RVE analysis it provides useful
information for investigating damage mechanism at the
micro level. Microstructures with stiff inclusions and
voids were tested. The results showed that by using the
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Figure 8: Effective stress in the RVE from the critical point of the
macrostructure 3D a) stiff inclusions, b) voided microstructure
Slika 8: Primerjalna napetost v RVE, pripadajo~ kriti~ni to~ki makro
strukture, a) mikrostruktura s togimi vklju~ki, b) mikrostruktura s
porami

Figure 7: Macroscopic effective stress in the micro-macro and ho-
mogenized problems, voided microstructure
Slika 7: Makroskopska efektivna primerjalna napetost za homogeni-
ziran in mikro-makro problem, mikrostruktura s porami



FE2 method more accuracy and a deeper understanding
of deformation mechanisms can be obtained.
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