Informacije MIDEM 32(2002)3, Ljubljana UDK621.3:(63+54+621+66), ISSN0352-9045

OPTIMAL ALGORITHM MAPPING FOR FAST SYSTOLIC ARRAY
IMPLEMENTATIONS

Igor Ozimek

Institute Jozef Stefan, Ljubljana, Slovenia

Key words: systolic arrays, parallel algorithm mapping, microcycled dependence graph (itDG), optimal scheduling, loop-extraction algorithm (LEA), VLSI

Abstract: There are a number of algorithms which are described by a set of recursive equations of regular dependences. Examples are certain filtering
algorithms. These algorithms can be efficiently mapped to the systolic array structure, which can then be implemented in VLSl technology. This paper
deals with the problem of finding optimal scheduling for a given algorithm, taking into account its exact computational requirements. First we introduce
microcycled Dependence Graph (DG) and, using the notion of microcycles, define the speed of its execution that has to be maximised. Then, using
Reduced Dependence Graph (RDG), we express the upper bound on the computation speed as a set of inequalities defined by the loops in RDG. To find
these loops, we define a Loop Extraction Algorithm (LEA). Solving the set of inequalities obtained does not conform exactly to the linear programming
problem. We describe a procedure that makes it possible to use the linear programming method to find the optimal scheduling vector.

Optimalna preslikava algoritmov za hitro izvajanje v
sistoliCnem polju

Klju€ne besede: sistolicna polja, vzporedne preslikave algoritmov, mikrokoraéni graf odvisnosti, optimalno ¢asovno razvrééanje, algoritem odkrivanja
zank, VLS!

lzvleCek: Mnogo algoritmov lahko zapi§emo kot sistem rekurzivnih enab z regularnimi odvisnostmi. Primer so razni filtri. Take algoritme lahko uéinkovito
preslikamo v sistoli¢na polja, ki jih lahko nato izvedemo v tehnologiji VLSI. Ta prispevek se ukvarja s problemom iskanja optimalnega ¢asovnega razvrééan-
ja racunskih operacij danega algoritma z natanénim upostevanjem njegovih ra¢unskih zahtev. Najprej vpeliemo mikrokoraéni graf odvisnosti in z uporabo
pojma mikrokoraka dolo¢imo hitrost izvajanja, ki naj bo ¢im vecja. Potem z uporabo reduciranega grafa odvisnosti izrazimo zgornjo mejo hitrosti radunanja
kot sistem neenacb, ki jih dolo&ajo zanke v reduciranem grafu odvisnosti. V ta namen dolodimo algoritem odkrivanja zank. Dobljeni sistem neenaéb ne
ustreza povsem postopku redevanja z metodo linearnega programiranja. S pomocjo dodatnega postopka omogodéimo uporabo te metode za dolocitev
optimalnega vektorja izvajanja algoritma.

1. Introduction ing vector that guarantees the fastest possible computa-
‘ tion of the algorithm. Space mapping can then be accom-
Certain real-time applications, such as signal filtering and plished using methods known from the literature /2/.
processing in a digital communication system, require the
use of a special, massively parallel computing structure .
P y P puting 2. DG and microcycled DG

called the systolic array structure to achieve acceptable

performance.. To implement an algorithm in this Wa_y we DG (Dependence Graph) is one of the basic tools in the

negd a map.pmg proced‘ure to map the. set of qua’nons, systolic array mapping process. To describe it and its mod-

whoh desgnbe the algon?hm,'to a §ystoho array. This m?p' ification, uDG (microcycled DG), we shall take a simple

ping consists of sohedluhng (z..e. t,'me mapping, mapping example of matrix-vector multiplication:

each DG node to a particular time instant) and space map-

ping (mapping each DG node to a systolic array cell). The c=Ab (1)

methods described in the literature /1,2,3,4,5/ are best

suited for simplified systems of equations that consist of Eqg. (1) can be written as:

one main equation, which describes the algorithm, and a

number of auxiliary equations, which are used to achieve _ s b

the local communication and single assignment proper- ¢ ""z;aij J
=

ties.
or, recursively, as:

In this paper we consider the problem of scheduling, and

develop a new approach to find the optimal scheduling of ¢ =c;+ al.jbj (3)
complicated algorithms described by a set of equations

which have to fulfil the requirement of regularity, i.e. con- To be executed by a systolic array, Eq. (1) must be trans-
stant dependence vectors. Our procedure takes into ac- formed to its equivalent recursive form in such a way that
count the exact computational requirements of the basic broadcasting (variable b in Eq. (3)) and multiple assign-
arithmetic operations used, and yields an optimal schedul- ment (variable ¢ in Eq. (3)) are eliminated:

204

[. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

Informacije MIDEM 32(2002)3, str. 204-212

b, ., =b

i+1,; — Yi,j

=¢,;ta,b,;

c (4)

i,j+
where the first equation is used to eliminate broadcasting
of variable b (for details see /2/).

2.1. Dependence Graph

The corresponding DG of Eq. (4) for the case of a 3x3
matrix A and 3% 1 vectors b and ¢ is shown in Fig. 1. Vari-
ables i and j are indices of the algorithm and DG nodes.
Each DG node represents one iteration of (repetitive) cal-
culations needed by the algorithm. In our case an iteration
consists of a multiplication (ab), an addition (c+...), and a
shift-through (variable b). Each edge of DG represents a
dependence between individual iterations. Since there are
no multiple assignments, DG does not have any loops.
Since there is no variable broadcasting, dependence vec-
tors are local. In addition, as a prerequisite, the given algo-
rithm is regular, i.e. its execution is independent of the in-
dices i and j. Thus, DG is regular, localised and without
loops, and is as such suitable for mapping to the systolic
array structure.

Fig. 1. DG for Eq. (4)

Scheduling for a regular DG can be represented by eg-
uitemporal lines (planes for 3-D DG or hyperplanes for multi-
D DG). In Fig. 2, a simplified DG from Fig. 1 is shown to-
gether with a possible scheduling. The scheduling vector
s is defined as having components equal to the number of
equitemporal lines between neighbouring nodes in the
corresponding directions. Needless to say, these values
are integers. For Fig. 2, s = [1,1]7. By this definition, a
scheduling vector is orthogonal to equitemporal lines and
its size is proportional to the slowness of computing. Thus,
the smaller s becomes, the better.

The execution time index of a particular DG node can be

expressed as:
— o7 i
t=s [. (5)
J

which is true also for the pDG described below.

j
A A
34 N \X
NN
24 N
\\ \ \ A

Fig. 2. Simplified DG for Eq. (4) with scheduling

2.2. Microcycled Dependence Graph

Scheduling in Fig. 2 does not take into account the real
computation requirements within nodes. We can consider
the execution within a node to be performed in microcy-
cles and hidden from the outside world, while DG (and its
corresponding systolic array) shifts data between nodes
(cells) in macrocycles. These shifts can take place only
after a complete (microcycled) computation within a node
is finished. It can be shown that this approach is subopti-
mal. For our purpose it will suffice to take all three opera-
tions (multiplication, addition and shift-through) as being
of equal complexity, i.e. requiring one microcycle each to
execute. The main (second) equation in Eq. (4) involves a
muitiplication and an addition in sequence, thus requiring
two microcycles. The first equation of Eq. (4) can be exe-
cuted in parallel, requiring only one microcycle. There are
5 macrocycles needed for execution of DG in Fig. 2, so
the total number of required microcycles is 10.

A better solution can be found using uDG. It efiminates the
notion of macrocycles and looks at DG entirely in terms of
microcycles. In Fig. 3, uDG is shown which corresponds
to DG in Fig. 2. The black dots along the edges and within
the nodes correspond to the basic arithmetic operations
that can be executed within one microcycle. For the systo-
lic array mapping, the actual execution is placed into the
node to which the corresponding dependence edge is
directed. Fig. 4 illustrates this by showing a node with its
related operations indicated by the shaded area.

J Jy

NN NN
36—\A\ A\

N E\ N

2 a4 \ N
5N NN
\\I\\ \
NONIN TN
N

1 2
1 2 3 1

Fig. 3. DG for Eq. (4)

205

Informacije MIDEM 32(2002)3, str. 204-212

|. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

Fig. 4. A node with its related operations

There are two types of indices in Fig. 3. Indices jand jare
node indices, which are the same as above, while iy and
Jjm are microindices, related to our proposed microcycled
scheme. The relation between them is:

(6)

§= (7)

Using uDG, a better scheduling for the algorithm described
by Eq. (4) can immediately be found. Since in the / direc-
tion only one cycle is needed {propagation of variable b),
scheduling can be as in Fig. 5, s = [2,17, requiring 8 mi-
crocycles for complete execution.

7 gk
- ~ \
36—\ \ g
s |
2 > ~ \
4 —
5 4
1 = ~ >
,
~ ~
I I .
1 2 3 Ty
2 34

Fig. 5. A better scheduling for Eq. (4)

It can readily be shown that even the scheduling in Fig. 5
is not optimal. The optimal one is shown in Fig. 6 and is
achieved by using a pipelined computation path between
variables b and ¢. The relationship between the two varia-
bles is shown in Fig. 7. uDG in Fig. 6 needs a total of 5
microcycles to execute, but since the b and ¢ variable
planes are shifted relative to each other due to pipelining,
6 microcycles are actually needed, outperforming our ini-
tial solution of 10 microcycles by factor of almost 2.

In the sequel, a formal procedure will be developed for
finding the optimal scheduling vector of a given algorithm.

206

Fig. 7. Relationship between variable b and ¢ planes
of DG

3. Finding the optimal scheduling

In this section we first describe RDG (Reduced Depend-
ence Graph), /3/, and show that the maximum speed of
computation is limited by the loops in RDG. Then we pro-
pose an algorithm for automatic extraction of RDG loops.
In this way we obtain a system of inequalities which define
the space of possible scheduling vectors 3. We then use
the linear programming method, with some extensions, to
find the optimal scheduling vector s.

3.1. RDG - Reduced Dependence Graph

RDG is a graph that has a node for every variable of the
given algorithm and an edge for every dependence be-
tween them. lts name (reduced) comes from the fact that,
contrary to DG, nodes and dependences are not repeat-
ed n times but appear only once.

Two data belong to each edge ey,: the dependence vec-
tor dk, denoting the distance in uDG between the input
and output variables, and computational complexity r,
denoting the number of microcycles required to compute
the output variable from the input variable.

RDG for our matrix-vector multiplication example is shown
in Fig. 8.

[. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

Informacije MIDEM 32(2002)3, str. 204-212

Fig. 8. RDG for Eq. (4)

The dependence vectors for RDG in Fig. 8 are:

f] ol ol ol

and the corresponding computational complexities are:
n=1, n=1, =2, =2 (9)

Alternatively, we can write dependences and computational
complexities in the matrix and vector forms respectively:

p[1 000
o1 11 (10)

r=[1 1 2 2] (1)

3.2. RDG loops and the speed of
computation

The fastest computation of an algorithm is defined by the
loops of its RDG. A loop describes the computation of an
instance of a variable on the basis of its previous instance(s).
This is ultimately a sequential process, which limits the
maximum speed of computation. Let us illustrate this by a
simple example of the next circularly dependent algorithm:

al.,j = fa (bi~l,j)
b= fylcii,) (12)
€y = S (@)

Functions f denote arbitrary arithmetic operations. The cor-
responding RDG is shown in Fig. 9.

oo

Fig. 9. RDG forEq. (12)

Fig. 10 shows the corresponding DG, split to its three var-
iable planes. Computation of variable b depends on one
of its previous values, which is located [2,2]" back in DG.
("Previous” here has a somewhat special meaning, since
no time is assigned to the computations at this stage of the
mapping process - indices i and j are not yet related to the
final space or time indices. Naturally, a result that is used
further in another computation has to be computed earlier
in time.) On this computation path (showed as a dashed
line in plane b) there must be enough microcycles availa-
ble to perform all the necessary arithmetic operations.
Since the number of available microcycles depends on the
scheduling vector s, this represents the lower bound on s
or, more exactly, on its components.

J
S GaGSH o) ©
NN A S S
a
| O&E»F 0 OOy S
J
SN S
=
- ST A S
o

NN S
J

b -

1
S NN S
S S S
C@ S S NN

i
Fig. 10. DG for Eq. (12), split to variable planes

The fastest computation can be determined by finding and
taking into account all the loops. For each (/-th) loop, two
additional data are computed: the cumulative dependence
vector, d¢ s, and the computational complexity of the loop,
.. They are calculated as the sum of the dependence
vectors and the sum of the computational complexities,
respectively, of all the edges belonging to the loop.

The number of available microcycles along the th loop
equals sTdL,/. The scheduling vector s must therefore sat-
isfy the following set of inequalities:

s'd,, 2r,, foralll (13)
or, in the matrix form:
s'D, >r (14)
ML =1L
if we return to our matrix-vector multiplication example, we

can easily find two loops. Their corresponding depend-
ences and computational complexities are:

p [0
L_O1 (15)

r, = 1] (16)

207

Informacije MIDEM 32(2002)3, str. 204-212

I. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

The resulting optimal scheduling vector s, which satisfies

(14) with equality, is:
1
T (17)

For our simple matrix-vector mulitiplication example it has
been straightforward, but for a more general case neither
finding the loops of a RDG nor determining the optimal
scheduling vector from them is a trivial task. To illustrate its
complexity it is enough to take a look at the RLSL (Recur-
sive Least Square Lattice) algorithm /6/ in Table 1 and
its corresponding RDG in Fig. 11. Obviously we need a
more powerful approach to tackle such problems.

Prediction recursions:

LY

Ai-l,j i1, j-1
Y it j-i
F.f- —_ Ai~1,j
ij
Bi-t,j-1
b Af“l:J
iy T
iy
_ S
fi,j - fi—:,j + ri.jbi~l,j—1
b
bi,j = bi—l,j—l + Fi,jfi-l,j
A
- i-l,j
‘(’T.',j - 5f—1,j _r
i-1, /-1
A
B, =By iy~ -t
¥ i~1,j~1
3.‘-1,/
X
_ i1, j-
Yijt =Yicym t
@’H,/—l

JPE recursion:

- i
pi,/‘ - }\‘pi‘j—l + €

¥

Table 1. RLSL recursions

3.3. LEA-Loop Extraction Algorithm

To find the loops of an RDG, we propose the loop-extrac-
tion algorithm described in Table 2. With it, a number of
directed trees are built. Their nodes represent the varia-
bles of the given system. Their (towards the root directed)
edges represent inter-variable dependences. The follow-
ing additional data belong to each edge: the dependence
vector, denoting the distance in uDG between the input
and output variables, and computational complexity, de-
noting the number of microcycles required to compute the

208

Fig. 11. RDG for RLSL (Table 1)

output variable from the input variable. Trees are built from
the roots to the leaves. Each path is built until either a node
is repeated or a dead end is reached. Since any repetition
of a node in a path stops its growth, the maximum tree
depths are equal to the number of the variables.

1. Make a list of all non-processed nodes (all_nodes)
and a list of all possible roots (all_roots). At the begin-
ning, both lists are equal and consist of a|l the varia-
bles of the given system of equations.

2. Begin with the first (i=1) TCC (Tightly Connected
Component, /3/).

3. For the i-th TCC, create two empty lists: a list of its
roots (roots(i)) and a list of its loops (loops(i)). Move
the first node from all_roots to roots(i).

4. From roots(i) take the first node (delete it from the
list) and build a tree as described previously, but using
only the nodes from all_nodes.

5. Delete the node just taken from roots(i) from
all_nodes. This serves mainly to reduce the algorithm
complexity by eliminating repetitive loop generation.

6. Each path in the tree with the ending leaf node equal
to the root node represents a loop of the current (i-th)
TCC. Add it to loopst(i).

7. Add to roots(i} every leaf thal is not equal to the root
node but is equal to some previous node on the same
paths (i.e. the node is repeated) and is at the same
time used in at least one loop in loops(i). (These nodes
have their own loops, not containing the current root
node. They will be used later to build more trees for
the current TCC.)

8. lf roots(i) is not empty, go to 4.

9. The current (~th) TCC processing has just been
done. From all_roots delete all the nodes that are used
inany loop in loops(i). if all_roots is not empty, choose
the next TCC (i.e.. i«-i+71) and go to 3.

10. The processing is done. The resultis a set of TCCs
with corresponding sets of loops (loops(i)).

Table 2. LEA algorithm

|. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

Informacije MIDEM 32(2002)3, str. 204-212

The system of inequalities, Eq. (14), can be reduced by
eliminating multiple dependence vectors of the same mag-
nitude. From each set of identical dependence vectors

with different computing complexities, only the highest com-
putational complexity is used.

An example of LEA execution for the case of the RLSL
algorithm from Table 1 is shown in Fig. 12.

All_roots: ATy, T, f,0,F B y,p.x,e

roots(1): A
first root: A

/\ f/l\ y/\:\@
T8 % ARG
A F 4 5 f T F I3

ItA—=A AT, = f—A BiAT, = f—A
2A-T, > f—ob—oA 9:A>B-ST, > f A 9:A=B-T, = f—A
3:A>BoT, » f—b—A 10:A>F BT, - f—A 10:AF—>B-I, - f—A
4 A>F =BT, > f—=b—A 1:AST, 5b— f>A 11:AST, »b—f—>A
5:A-5T, 5b—A 12: A F T, 5b— f—A 12:A>F T, >b—> f > A
6:A>F I, —»b—A 13:A>5B—>F—-=I,»b—-f—A 13:A—=BoF oI, 5b—> oA
7T:A>B->F->T,»>b—A 4: AT, > f2boy—A 14: A>T, = fob—oy—>A
roots(1}. b, f,B,F ¥y roots(1): B, F .,y roots(1): nuit
first root: b first root: B all_roots: p,K,e
X roots(2): p
@ first root: p
T —
®r° S %
AN
X v ol IR
ST AN /f\\
7 % >s</w]\ 2585 8 o o X
; /\;/\ Y8 Xy 268 5>F -8 @(
T
5 X & roots(1): &,y 29:p - p
first root: & 30:p oK —De=p

B:b> f—————) {)— roots(2). e
b4 X first root: e
roots(1). f, B, &Y D‘;—j—_)—fﬂ
first root: f s ST
roots(1): Y VAN
first root: ¥ XX '
X 13lie—e
i X X —
\ roots(2): null
F @ 28y =y all_roots: ¥
VAN roots(3): x
3 F first root:

Fig. 12. LEA execution for RLSL

209

Informacije MIDEM 32(2002)3, str. 204-212

I. Ozimek: Optimal Algorithm
Mapping for Fast Systelic Array Implementations

3.4. Space of possible scheduling vectors

In general, a system of inequalities like Eq. (14) need not
have any solution. However, in the case of parallel algo-
rithm mapping the corresponding DG is checked at the
beginning for computability or causality, in the directions
of infinite or finite dimension respectively. (For computabil-
ity, no DG loops are allowed. For causality, all the edges
must be oriented positively with respect to any infinite DG
dimension.) Since DG is at least computable, a valid sched-
uling vector s, and hence at least one solution of the sys-
tem of inequalities, must exist. Additionally, there is no up-
per limit to the size of s (i.e. the slowness of computing),
providing that s is oriented in an appropriate direction. Eq.
(14) defines the space of valid scheduling vectors 2. This
space is similar to a polygon (for 2-D DGs, polyhedron for
3-D DGs), but is unbounded in certain directions towards
infinity. Fig. 13 illustrates this by showing 8 spaces for four
hypothetical algorithms with different dependences and
computational complexities.

Given the space of possible scheduling vectors 3, the op-
timal scheduling vector s can be found. The optimal s is
the one that guarantees the fastest computation of the giv-
en algorithm (the shortest or the fastest pass through its
D@). For the case (a) in Fig. 13 the solution is unique,
s =[2,3]". The solutions to the other three cases in Fig. 13
are less obvious.

3.5. Finding the optimal scheduling vector

With some modifications, the problem of finding the opti-
mal scheduling vector s in the space of possible schedul-
ing vectors B can be made to conform to the requirements
of the linear programming method.

3.5.1. Linear programming method (LPM)

The linear programming problem is defined by the follow-
ing set of equations, /7/. Eq. (18) restricts the feasible
region to the non-negative portion of RY:

1 01
D, =
0 1 1

r,=[2 3 5]
j
74 &
ol
o
34
24 s
0 1 234567 1

(a) (b)

Fig. 13. Examples of 2-D g spaces

210

x20,...,x,20 (18)

Eqg. (19) is the main system of inequalities, which further
bound the feasible region:

a,x, t...+tayx, 2b

(19)
QX+t ayyxy 20,

and Eqg. (20) is the objective function that has to be mini-
mised (or maximised):

J(xxy)=cx +...Fcyxy (20)

The above equations can be written in the matrix form:

x=20
Ax2>b
f(x)=cx

3.5.2. Applying LPM to the optimal scheduling
problem

The optimal scheduling problem differs from the linear pro-
gramming problem at two points.

The first point is that the space 3 (defined by Eq. (13)) is
not limited to the non negative portion of RY. The problem
can be solved by decomposing it to a number of subspac-
es, asin Fig. 14, so that none of them crosses the quad-
rant boundaries. LPM is then applied to each of these sub-
spaces and the solutions are combined.

By decomposing RY in the way described, we get 2V sub-
spaces, not all of which are occupied by 2. Since the di-
mensionality of algorithms is usually low (typically 2 or 3)
the number of subspaces is not a problem.

|. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

Informacije MIDEM 32(2002)3, str. 204-212

L I T S W
T T N Y S 1
-ttt
- N e by,
PR Yy
—t——t—t

- N e o,
PR S
L e e e

Fig. 14. Decomposition of g space

As we see, the feasible region for our problem is unbound-
ed, but the problem itself is (a minimal s does exist). The
reason for that is that, by definition, a possible scheduling
vector exists (otherwise systolic array implementations
would be impossible - which was checked for at the begin-
ning of the mapping process), and that there certainly ex-
ists a lower bound for it (otherwise computing of the algo-
rithm could be made arbitrarily fast with all DG nodes be-
ing computed in parallel, which is impossible due to the
mutual dependences between them).

The second point of discrepancy between LPM and our
scheduling problem is that the objective function for the
scheduling problem, unlike Eqg. (20), is not linear. For
bounded DGs, the objective function can be defined as
the number of cycles needed to traverse it:

S

n

SGspysy)= max('s)) 1+Z(Zn

n=l

(22)

where s, is the n-th component of the scheduling vector
s, and /, is the size of DG in the n-th direction.

In the first quadrant (according to the decomposition de-
scribed above) s, > 0, and Eq. (22) takes the following
form (for each of the quadrants the form is exactly the same,
provided that the signs of variables are changed accord-

ingly):

f(sp5.058,) = max(s,)~ 1+2(1ﬂ)s,, fors, 20 (23)

I<hsN
n=|

where function max is the only non-linear term.

The cycles needed for the computation to traverse a DG
can be represented by equitemporal lines drawn in the DG.
Fig. 15 shows this for 3x3 DG for case (c) from Fig. 13.
Equitemporal lines are shown for the scheduling vector val-
ues of (a): [1,317, (b): [2,21", (c): (3,117, (d): [4,0)7, and (e):

T

Fig. 15. Scheduling and the exact objective function
Eq. (22)

@//////////

5+t =] LA S et 51—+t -
a4 12 34 N i a4t 23458 7 4 g4 1 2 3 4 i

)
-2 -2t -2—1- 2

By dropping the first term on the right side of Eq. (22) we
obtain:

S(spn8y) = Z(Zn

n=l

n (24)

and Eqg. (23) becomes linear, as required by LPM:

N
fGsinsy) =20, =Ds,, fors, 20 (o5

n=l

Egs. (24) and (25) neglect those starting cycles that take
place before the computation leaves the first DG node.
The situation is illustrated by Fig. 16 and recapitulated in
\\

= NN\ W AW

(o) et e e !

i

\9
=

Fig. 16. Scheduling and the approximate objective
function Eq. (24)

s Exact Approx.

cycle no. cycle no.
(a) (1,317 11 9
(b) 2,217 10 9
(c) (3,117 11 9
(d) [4,017 12 9
(e) [5, 11¥ 17 13

Table 3. Exact and approximate objective functions

The relative error of the approximate objective function can
be expressed as:

1<n<N)

méx(fs ’) + 2 (,- l)ysn

n=l

(26)

which decreases towards zero when DG (coefficients /)
grows towards infinity.

211

Informacije MIDEM 32(2002)3, str. 204-212

I. Ozimek: Optimal Algorithm
Mapping for Fast Systolic Array Implementations

The objective function Eq. (22) has been defined for bound-
ed DGs. A DG can be unbounded in a direction. This hap-
pens in the case of real time signal processing, where the
input signal arrives as a continuous stream of data. The
infinite dimension of DG corresponds to the time axis. For
such a case the value of Eq. (22) is infinite, and the follow-
ing simple objective function can be used:

f(s),...,8,) =5, (27)

where s, is the component of s corresponding to the un-
bounded direction, which is presumed to be positive. This
objective function is, unlike Eqgs. (22) or (24), both linear
and exact.

3.5.3. Refining the LPM solution for optimal
scheduling - sub-decomposition

The solution obtained by using the approximate objective
function Eq. (24) may be sufficiently good, especially for
large DGs. Even for our example of the very small 3x3
DG, the difference between the best approximate (true
optimal) solution (b) and the worst approximate "optimal"
solution (d) is only 20%.

If we nevertheless want to find the true optimal solution,
we can do so by decomposing each subspace from sec-
tion 3.5.2. in the following ways:

1:)i 2]/
2:[j12]i

for the 2-D case,

RN
2: (2D Gl 2 [H)

N RN RE)
for the 3-D case, and so on.

In this way, each subspace from section 3.5.2. is further
decomposed to N sub subspaces. Within each of these
the exact objective function Eq. (23) becomes linear. For
the first sub-subspace, Eq. (23) takes the following form:

N
fGpensy) =8 =14 2., =Ds,, fors, 25,20 (2g)

n=]

LPM can then be applied, the solutions obtained combined
together and, from them, the best one taken. Since the
dimensionality of algorithms is usually small (e.g. N = 3)
the number of subspaces to be processed is not so great
as to constitute a problem.

3.5.4. Integer programming methods

The components of scheduling vector s are constrained to
take only integer values. This requirement is not fulfilled by

212

the general LPM, so integer programming methods have
to be used (e.g. branch-and-bound algorithm, cutting plane
algorithm) the details of which can be found in /8/ and
/9/. Integer programming is an extension to LPM; if the
original LPM solution does not satisfy the integer require-
ment, additional constraints are imposed to force an inte-
ger solution.

4. Conclusions

We have developed a procedure for finding the optimal
scheduling for a systolic array implementation of an algo-
rithm. The procedure has been manually tested on the
RLSL algorithm from Table 1. In its RDG (Fig. 11), 31 loops
have been found. The complexity of this problem is suffi-
ciently great to make it difficult to handle without the pro-
cedures described above.

The need for sophisticated signal processing algorithms is
increasing with the introduction of more and more com-
plex communication systems. At the same time, VLSl tech-
nology is becoming capable of implementing complex com-
puting hardware on a chip. The procedures described in
this paper can be used as a tool for designing such spe-
cialised VLSI circuits.

References

/1/ Dan |. Moldovan, "On the Design of Algorithms for VLSI Systolic
Arrays", Proceedings of the IEEE, Vol.71, No.1, January 1983

/2/ S. Y. Kung, VLS/ Array Processors, Prentice-Hall, 1988

/3/ Sailesh K. Rao, Regular lterative Algorithms and Their Imple-
mentations on Processor Arrays, Ph.D. 1986, Stanford Uni-
versity

/4/ Martin D. Meyer, Dharma P. Agrawal, "Adaptive Lattice Filter Im-
plementations on Pipelined Multiprocessor Architectures", IEEE
Transactions on Communications, Vol. 38, No. 1, January
1990

/5/ Michael K. Birbas, Dimitrios J. Soudris, Costas E. Goutis, "A
New Method for Mapping lterative Algorithms on Regular Arrays",
Communication, Control, and Signal Processing, Elsevier Sci-
ence Publishers B. V., 1990

/6/ Simon Haykin, Adaptive Filter Theory, Prentice-Hall, 1986

/7/ Walter J. Meyer, Concepts of Mathematical Modelling, Mc-
Graw-Hill Book Company, 1985

/8/ Frank S. Budnick, Finite Mathematics with Applications, Mc-
Graw-Hill Book Company, 1985

/9/ S. 8. Rao, Optimization - Theory and Applications, Wiley East-
ern Limited, 1984

Dr. Igor Ozimek

Institut JoZef Stefan, Jamova 39, Ljubljana
tel.: +386 1 477-3900

fax.: +386 1 251-9385, 426-2102

email: igor.ozimek@ijs.si

Prispelo (Arrived): 10.05.2002 Sprejeto (Accepted): 28.06.2002

