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Abstract

We prove that for n ≥ 5, every element of the alternating group An is a commutator
of two cycles of An. Moreover we prove that for n ≥ 2, a (2n + 1)-cycle of the per-
mutation group S2n+1 is a commutator of a p-cycle and a q-cycle of S2n+1 if and only
if the following three conditions are satisfied (i) n + 1 ≤ p, q, (ii) 2n + 1 ≥ p, q, (iii)
p+ q ≥ 3n+ 1.
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1 Introduction
In 1951 O. Ore [9] conjectured that in a finite simple non-abelian group every element is
a commutator. In the same paper he proved that the conjecture holds for the alternating
group An, where n ≥ 5, but the result had already been proved by G. A. Miller half a
century earlier [7]. After Ore published the paper there were many papers devoted to the
Ore conjecture: R. C. Thompson proved the Ore conjecture for the projective special linear
groups PSLn(q) [10], [11], [12], R. Gow proved it for the projective simplectic groups
PSp2n(q), where q ≡ 1 (mod 4) [4], O. Bonten for the exceptional groups of Lie type of
low rank [2], J. Neubüser, H. Pahlings, E. Cleuvers proved it for the sporadic groups [8],
E. W. Ellers, N. Gordeev handled the finite simple groups of Lie type over a finite field Fq ,
whenever q ≥ 9, ... M. W. Liebeck, E. A. O’Brien, A. Shalev, P. H. Tiep proved the Ore
conjecture for the remaining cases [6] and the conjecture became the theorem. We refer
the reader to the survey paper [5] for more historical notes about commutators and the Ore
conjecture.

In this paper we prove a stronger version of the Ore conjecture for the simple alternating
group An. In Section 2 it is shown that, for n ≥ 5, every permutation of An is actually a
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commutator of two cycles of An. In particular, every even permutation of the symmetric
group Sn is a product of two conjugate cycles. Namely, if ρ = [σ, τ ] = σ−1τ−1στ ,
then ρ is a product of σ−1τ−1σ and τ (and also a product of σ−1 and τ−1στ ). Note that
permutations τ and τ−1 are conjugate in Sn. In [1] it is proved that a (2n + 1)-cycle of
A2n+1 is a product of two conjugate l-cycles of A2n+1 if and only if l ≥ n + 1. Hence
this is a necessary condition for the existence of two l-cycles σ and τ such that [σ, τ ] is a
(2n + 1)-cycle. In Section 3 it is shown that this is far from being a sufficient condition.
More precisely, it is shown that, for n ≥ 2, a (2n + 1)-cycle of A2n+1 is a commutator
of a p-cycle and a q-cycle of S2n+1 if and only if n + 1 ≤ p, q and p + q ≥ 3n + 1. In
particular, a (2n+ 1)-cycle of A2n+1 (n ≥ 2) is a commutator of l-cycles of S2n+1 if and
only if l ≥ 3n+1

2 .
The image of an element a under a permutation σ is denoted by aσ . Permutations are

executed from left to right. The support suppσ of a permutation σ is the set of all elements
which are not fixed by σ.

Let σ be a permutation, a ∈ suppσ and x1, . . . , xn 6∈ suppσ. We define permutations
ϕ(σ; a, x1, . . . , xn) and ε(σ; a) by

tϕ(σ;a,x1,...,xn) =


x1, t = a,

xi+1, t ∈ {x1, . . . , xn−1},
aσ, t = xn,

tσ, t 6∈ {a, x1, . . . , xn},

and

tε(σ;a) =


a, t = a,

aσ, t = aσ
−1

,

tσ, t 6∈ {a, aσ−1}.

If σ is the k-cycle (a1, . . . , ak), then ϕ(σ; ak, x1, . . . , xn) is the (k+n)-cycle (a1, . . . , ak,
x1, . . . , xn) and ε(σ; ak) is the (k − 1)-cycle (a1, . . . , ak−1).

Let σ and τ be permutations such that suppσ ∩ supp τ = ∅. For a ∈ suppσ and
b ∈ supp τ , let ψ(σ, τ ; a, b) denote the permutation defined by

tψ(σ,τ ;a,b) =


tσ, t ∈ suppσ − {a},
bτ , t = a,

tτ , t ∈ supp τ − {b},
aσ, t = b.

If τ is a k-cycle then ψ(σ, τ ; a, b) = ϕ(σ; a, bτ , bτ
2

, . . . , bτ
k

), and if σ is a k-cycle then
ψ(σ, τ ; a, b) = ϕ(τ ; b, aσ, aσ

2

, . . . , aσ
k

).

2 Permutations as commutators of cycles
The proof that every permutation of An (n ≥ 5) is a commutator of two cycles is based
on induction on the number and the lengths of cycles in the cycle decomposition of the
permutation. In the following lemmas we describe how the application of ϕ, ψ, and ε
modify commutators.
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Lemma 2.1. Let σ, τ be permutations, x ∈ suppσ, y ∈ supp τ , and (suppσ ∪ supp τ) ∩
({x1, . . . , xn} ∪ {y1, . . . , ym}) = ∅. Then for t 6∈ {xσ, xτσ, yτσ, yσ−1τσ, x1, . . . , xn,
y1, . . . , ym} we have t[σ,τ ] = t[ϕ(σ;x,x1,...,xn),ϕ(τ ;y,y1,...,ym)].

Proof. Denote σ̃ = ϕ(σ;x, x1, . . . , xn) and τ̃ = ϕ(τ ; y, y1, . . . , ym). For t 6∈ {xσ, xτσ,
yτσ, yσ

−1τσ, x1, . . . , xn, y1, . . . , ym} we have tσ
−1

= tσ̃
−1

. Since t 6∈ {yτσ, y1, . . . , ym},
also tσ

−1 6∈ {yτ , y1, . . . , ym} and therefore tσ
−1τ−1

= tσ̃
−1τ̃−1

. Since tσ
−1τ−1 6∈ {x,

x1, . . . , xn} we have tσ
−1τ−1σ = tσ̃

−1τ̃−1σ̃ . And finally tσ
−1τ−1σ 6∈ {y, y1, . . . , ym},

hence t[σ,τ ] = t[σ̃,τ̃ ].

We record the following immediate consequence.

Corollary 2.2. Let σ, τ be permutations. Suppose that a, b ∈ suppσ such that aσ =
aτ = b, and (suppσ ∪ supp τ) ∩ ({x1, . . . , xn} ∪ {y1, . . . , ym}) = ∅. Then for t 6∈
{bσ, bτσ, x1, . . . , xn, y1, . . . , ym} we have t[σ,τ ] = t[ϕ(σ;b,x1,...,xn),ϕ(τ ;b,y1,...,ym)].

Lemma 2.3. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ and
c, d 6∈ suppσ ∪ supp τ . Then

[ϕ(σ; b, c, d), ϕ(τ ; b, d, c)] = ϕ([σ, τ ]; bτσ, c, d).

Proof. Denote σ̃ = ϕ(σ; b, c, d) and τ̃ = ϕ(τ ; b, d, c). By Corollary 2.2, we have t[σ̃,τ̃ ] =
t[σ,τ ] for t 6∈ {bσ, bτσ, c, d}. Because

(bτσ)[σ̃,τ̃ ] = (bτ )τ̃
−1σ̃τ̃ = cσ̃τ̃ = dτ̃ = c,

c[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = aσ̃τ̃ = bτ̃ = d,

d[σ̃,τ̃ ] = cτ̃
−1σ̃τ̃ = dσ̃τ̃ = (bσ)τ̃ = bστ = (bτσ)[σ,τ ],

(bσ)[σ̃,τ̃ ] = dτ̃
−1σ̃τ̃ = bσ̃τ̃ = cτ̃ = bτ = (aσ)τ = (bτ

−1

)στ = (bσ)[σ,τ ],

we have [ϕ(σ; b, c, d), ϕ(τ ; b, d, c)] = ϕ([σ, τ ]; bτσ, c, d).

Lemma 2.4. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ and
c, d 6∈ suppσ ∪ supp τ . Then

[ϕ(σ; b, c, d), ϕ(τ ; b, d)] = ϕ([σ, τ ]; bσ, c, d),

[ϕ(σ; b, d), ϕ(τ ; b, c, d)] = ϕ([σ, τ ]; bσ, d, c).

Proof. Denote σ̃ = ϕ(σ; b, c, d) and τ̃ = ϕ(τ ; b, d). By Corollary 2.2, we have t[σ̃,τ̃ ] =
t[σ,τ ] for t 6∈ {bσ, bτσ, c, d}. Because

(bσ)[σ̃,τ̃ ] = dτ̃
−1σ̃τ̃ = bσ̃τ̃ = cτ̃ = c,

c[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = aσ̃τ̃ = bτ̃ = d,

d[σ̃,τ̃ ] = cτ̃
−1σ̃τ̃ = cσ̃τ̃ = dτ̃ = bτ = (aσ)τ = (bτ

−1

)στ = (bσ)[σ,τ ],

(bτσ)[σ̃,τ̃ ] = (bτ )τ̃
−1σ̃τ̃ = dσ̃τ̃ = (bσ)τ̃ = bστ = (bτσ)[σ,τ ],

we have [ϕ(σ; b, c, d), ϕ(τ ; b, d)] = ϕ([σ, τ ]; bσ, c, d).
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Because [σ, τ ]−1 = [τ, σ] and (bτ )[τ,σ] = bσ , we have

[ϕ(σ; b, d), ϕ(τ ; b, c, d)] = ([ϕ(τ ; b, c, d), ϕ(σ; b, d)])−1 =

= ϕ([τ, σ]; bτ , c, d)−1 =

= ϕ([σ, τ ]; bσ, d, c).

Corollary 2.5. Let ρ be a (2n+ 1)-cycle and n ≥ 2. For p, q ∈ N such that p, q ≤ 2n+ 1
and p + q ≥ 3n + 2, there exist a p-cycle σ, a q-cycle τ , and a ∈ suppσ such that
[σ, τ ] = ρ, supp ρ = suppσ ∪ supp τ , and aσ = aτ . In the case q 6= 2n + 1 we arrange
that aσσ 6∈ supp τ .

Proof. If n = 2 and p ≥ q then (p, q) ∈ {(5, 5), (5, 4), (5, 3), (4, 4)} and we have

(a1, a2, a3, a4, a5) = [(a1, a4, a2, a3, a5), (a1, a4, a3, a5, a2)] =

= [(a1, a4, a2, a5, a3), (a1, a4, a3, a5)] =

= [(a1, a2, a4, a5, a3), (a1, a2, a5)] =

= [(a1, a5, a2, a3), (a1, a5, a3, a4)].

If n = 2 and p < q, then q = 2n+ 1 = 5 and we can use the equality [σ, τ ]−1 = [τ, σ]. In
all cases aσ1 = aτ1 and if q 6= 5, also aσσ1 6∈ supp τ .

Let n > 2. The proof is divided into 3 cases.
Case 1: Suppose q ≤ 2n. Let p1 = p − 2, q1 = q − 1, and n1 = n − 1. Then

p1 + q1 = p − 2 + q − 1 ≥ 3n1 + 2 and p1, q1 ≤ 2n1 + 1. By the inductive hypothesis
there exist a p1-cycle σ, a q1-cycle τ , and a ∈ suppσ such that [σ, τ ] is a (2n1 + 1)-
cycle, suppσ ∪ supp τ = supp[σ, τ ], and aσ = aτ . Let x, y 6∈ suppσ ∪ supp τ , σ̃ =
ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y). Then σ̃ is a p-cycle, τ̃ is a q-cycle, aσ̃ = aσ = aτ =
aτ̃ , aσ̃σ̃ = x 6∈ supp τ̃ , and by Lemma 2.4, [σ̃, τ̃ ] is a (2n+1)-cycle and supp σ̃∪supp τ̃ =
supp[σ̃, τ̃ ].

Case 2: Suppose q = 2n+1 and p 6= 2n+1. This case follows from the previous case
and equality [σ, τ ]−1 = [τ, σ].

Case 3: Suppose p = q = 2n + 1. By the inductive hypothesis there exist (2n − 1)-
cycles σ, τ , and a ∈ suppσ such that [σ, τ ] is a (2n − 1)-cycle, suppσ = supp τ =
supp[σ, τ ], and aσ = aτ . Let x, y 6∈ suppσ, σ̃ = ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y, x).
Then σ̃ and τ̃ are (2n + 1)-cycles, aσ̃ = aσ = aτ = aτ̃ , and by Lemma 2.3, [σ̃, τ̃ ] is a
(2n+ 1)-cycle and supp σ̃ = supp τ̃ = supp[σ̃, τ̃ ].

Lemma 2.6. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ , bσ 6∈
supp τ , and c 6∈ suppσ ∪ supp τ . Then

[σ, ϕ(τ ; b, c)] = ε([σ, τ ]; bσ)(c, bσ).

Proof. Let τ̃ = ϕ(τ ; b, c). By Corollary 2.2, we get t[σ,τ̃ ] = t[σ,τ ] for t 6∈ {bσ, bτσ, c}.
From

(bσ)[σ,τ̃ ] = bτ̃
−1στ̃ = aστ̃ = bτ̃ = c,

c[σ,τ̃ ] = cτ̃
−1στ̃ = bστ̃ = bσ,

(bτσ)[σ,τ̃ ] = (bτ )τ̃
−1στ̃ = cστ̃ = cτ̃ = bτ ,
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and

(bτσ)[σ,τ ] = bστ = bσ,

(bσ)[σ,τ ] = bτ
−1στ = aστ = bτ ,

it follows [σ, ϕ(τ ; b, c)] = ε([σ, τ ]; bσ)(c, bσ).

Corollary 2.7. Let n1, n2 ∈ N and let ρ be a product of two disjoint cycles of lengths 2n1
and 2n2, respectively. If p, q ≤ 2(n1 + n2) − 1 and p + q ≥ 3(n1 + n2) then there exist
a p-cycle σ, a q-cycle τ , and a ∈ suppσ such that ρ = [σ, τ ], supp ρ = suppσ ∪ supp τ ,
and aσ = aτ .

If n1 = n2 = 1 then there exist no cycles σ and τ such that the length of one of them is
strictly greater than 2(n1 + n2) − 1 = 3, [σ, τ ] is a product of two disjoint transpositions,
supp[σ, τ ] = suppσ ∪ supp τ , where aσ = aτ for some a ∈ suppσ. That means that
in the Corollary in this case the upper bound requirement on the length of the cycles is
sharp. If n1 + n2 ≥ 3 the upper bound requirement is not sharp (it can be increased to
2(n1+n2)) but the bound in the Corollary is in almost all cases sufficient for our purposes.
Namely, in the case n1+n2 ≥ 4, we get 2(2(n1+n2)−2) ≥ 3(n1+n2) and therefore the
Corollary provides two cycles whose lengths can be required to be (independently) either
odd or even: both odd (p = q = 2(n1 +n2)− 1), both even (p = q = 2(n1 +n2)− 2), the
first even and the second odd (p = 2(n1 + n2)− 2, q = 2(n1 + n2)− 1), the first odd and
the second even.

Proof. One may assume that n1 ≥ n2. The proof is by induction on n2.
Let n2 = 1. If n1 = 1 then the only possibility for p and q is p = q = 3. In this

case [(a1, a2, a3), (a1, a2, a4)] = (a1, a2), (a3, a4). Let n1 ≥ 2. Because p + (q − 1) ≥
3(n1 + 1) − 1 = 3n1 + 2 and p, q ≤ 2(n1 + 1) − 1 = 2n1 + 1, Corollary 2.5 provides
a p-cycle σ, a (q − 1)-cycle τ , and a ∈ suppσ such that [σ, τ ] is a (2n1 + 1)-cycle,
suppσ ∪ supp τ = supp[σ, τ ], aσ = aτ , and aσσ 6∈ supp τ . Let c 6∈ suppσ ∪ supp τ
and τ̃ = ϕ(τ ; aτ , c). Then τ̃ is a q-cycle, aσ = aτ = aτ̃ , and by Lemma 2.6, [σ, τ̃ ] =
ε([σ, τ ]; aσσ)(aσσ, c) and suppσ ∪ supp τ̃ = supp[σ, τ̃ ]. Note that aστ̃σ = c is in the
support of the 2-cycle.

For the proof by induction, suppose that for all n < n2 the assumptions p, q ≤ 2(n1 +
n) − 1 and p + q ≥ 3(n1 + n) guarantee the existence of a p-cycle σ, a q-cycle τ , and
a ∈ suppσ such that the following hold: [σ, τ ] is a product of two disjoint cycles of lengths
2n1 and 2n, supp[σ, τ ] = suppσ ∪ supp τ , aσ = aτ , and aστσ is in the support of the
2m-cycle in the cycle decomposition of [σ, τ ].

We prove that the same holds for n = n2. The proof is divided into 3 cases.
Case 1: Let q < 2(n1+n2)−1. Define p̃ = p−2, q̃ = q−1, andm = n2−1. Because

p̃+ q̃ ≥ 3(n1 +m) and p̃, q̃ ≤ 2(n1 +m)− 1, the inductive hypothesis yields a p̃-cycle σ,
a q̃-cycle τ , and a ∈ suppσ such that [σ, τ ] = ρ1ρ2, where supp ρ1 ∩ supp ρ2 = ∅, ρ1 is a
2n1-cycle, ρ2 is a 2m-cycle, aσ = aτ , and aστσ ∈ supp ρ2. Let x, y 6∈ suppσ ∪ supp τ ,
σ̃ = ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y). Then σ̃ is a p-cycle, τ̃ is a q-cycle, aσ̃ =
aσ = aτ = aτ̃ , and by Lemma 2.4, [σ̃, τ̃ ] = ϕ(ρ1ρ2; a

σσ, x, y) = ρ1ϕ(ρ2; a
σσ, x, y) and

aσ̃τ̃ σ̃ = aσσ ∈ suppϕ(ρ2; a
σσ, x, y).

Case 2: Let p 6= 2(n1 + n2)− 1 and q = 2(n1 + n2)− 1. This case follows from the
previous case and the equality [σ, τ ]−1 = [τ, σ].
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Case 3: Let p = q = 2(n1+n2)− 1. Define p̃ = q̃ = 2(n1+n2)− 3 and m = n2− 1.
From p̃, q̃ ≤ 2(n1 + m) − 1 and n1 > 1 we get p̃ + q̃ ≥ 3(n1 + m). By the inductive
hypothesis there exist p̃-cycles σ, τ , and a ∈ suppσ such that [σ, τ ] = ρ1ρ2, where
supp ρ1∩ supp ρ2 = ∅, ρ1 is a 2n1-cycle, ρ2 is a 2m-cycle, aσ = aτ , and aστσ ∈ supp ρ2.
Let x, y 6∈ suppσ ∪ supp τ , σ̃ = ϕ(σ; aσ, x, y), and τ̃ = ϕ(τ ; aτ , y, x). Then σ̃ and τ̃
are p-cycles, aσ̃ = aσ = aτ = aτ̃ , and by Lemma 2.3, [σ̃, τ̃ ] = ϕ(ρ1ρ2; a

στσ, x, y) =
ρ1ϕ(ρ2; a

στσ, x, y) and aσ̃τ̃ σ̃ = aσσ ∈ suppϕ(ρ2; a
στσ, x, y).

Lemma 2.8. Let σ, τ be permutations and a, b ∈ suppσ such that b = aσ = aτ , and
x, y, z 6∈ suppσ ∪ supp τ . Then

[ϕ(σ; b, x, y, z), ϕ(τ ; b, y, z)] = [σ, τ ](x, y, z).

Proof. Let σ̃ = ϕ(σ; b, x, y, z) and τ̃ = ϕ(τ ; b, y, z). By Corollary 2.2, we have t[σ̃,τ̃ ] =
t[σ,τ ] for t 6∈ {bσ, bτσ, x, y, z}. As

(bσ)[σ̃,τ̃ ] = zτ̃
−1σ̃τ̃ = yσ̃τ̃ = zτ̃ = bτ = (aσ)τ = (bτ

−1

)στ = (bσ)[σ,τ ],

(bτσ)[σ̃,τ̃ ] = (bτ )τ̃
−1σ̃τ̃ = zσ̃τ̃ = bστ̃ = bστ = (bτσ)[σ,τ ],

x[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = aσ̃τ̃ = bτ̃ = y,

y[σ̃,τ̃ ] = xτ̃
−1σ̃τ̃ = xσ̃τ̃ = yτ̃ = z,

z[σ̃,τ̃ ] = yτ̃
−1σ̃τ̃ = bσ̃τ̃ = xτ̃ = x,

we have [σ̃, τ̃ ] = [σ, τ ](x, y, z).

Lemma 2.9. Let σ1, σ2, τ1, τ2 be cycles such that (suppσ1 ∪ supp τ1) ∩ (suppσ2 ∪
supp τ2) = ∅. Suppose there exist a ∈ suppσ1 and b ∈ suppσ2 such that aσ1 = aτ1

and bσ2 = bτ2 . Then [ψ(σ1, σ2; a
σ1 , bσ2), ψ(τ1, τ2; a

τ1 , bτ2)] = [σ1, τ1][σ2, τ2].

Proof. Let σ = ψ(σ1, σ2; a
σ1 , bσ2) and τ = ψ(τ1, τ2; a

τ1 , bτ2). Set c = aσ1 = aτ1

and d = bσ2 = bτ2 . From Corollary 2.2 and equalities σ = ϕ(σ1; c, b
σ2
2 , . . . , b, bσ2) and

τ = ϕ(τ1; c, b
τ2
2 , . . . , b, bτ2), we get t[σ,τ ] = t[σ1,τ1] = t[σ1,τ1][σ2,τ2] for t 6∈ {cσ1 , cτ1σ1} ∪

suppσ2 ∪ supp τ2. From Corollary 2.2 and equalities σ = ϕ(σ2; d, a
σ2
1 , . . . , a, aσ1) and

τ = ϕ(τ2; d, a
τ2
1 , . . . , a, aτ1), we get t[σ,τ ] = t[σ2,τ2] = t[σ1,τ1][σ2,τ2] for t 6∈ {dσ2 , dτ2σ1}∪

suppσ2 ∪ supp τ2. Therefore t[σ,τ ] = t[σ1,τ1][σ2,τ2] for t 6∈ {cσ1 , cτ1σ1 , dσ2 , dτ2σ1}. From

(cσ1)[σ,τ ] = dτ
−1στ = bστ = dτ = cτ1 = aσ1τ1 = cτ1

−1σ1τ1 = (cσ1)[σ1,τ1],

(cτ1σ1)[σ,τ ] = (cτ1)τ
−1στ = dστ = (cσ1)τ = cσ1τ1 = (cτ1σ1)[σ1,τ1],

(dσ2)[σ,τ ] = cτ
−1στ = aστ = cτ = dτ2 = bσ2τ2 = dτ2

−1σ2τ2 = (dσ2)[σ2,τ2],

(dτ2σ2)[σ,τ ] = (dτ2)τ
−2στ = cστ = (dσ2)τ = dσ2τ2 = (dτ2σ2)[σ2,τ2],

we get [σ, τ ] = [σ1, τ1][σ2, τ2].

Theorem 2.10. Let ρ ∈ An. If n ≥ 5 or ρ is not a 3-cycle then ρ is a commutator of two
cycles of An.
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Proof. If ρ = (a1, a2, a3) is a 3-cycle then n ≥ 5 and ρ = [(a1, a3, x), (a1, a2, y)] for
some x, y 6∈ supp ρ.

Suppose that ρ is not a 3-cycle. We show that there exist cycles σ and τ of odd lengths
and a ∈ suppσ such that ρ = [σ, τ ], supp ρ = suppσ ∪ supp τ , and aσ = aτ . The proof
is by induction on the number of cycles in the cycle decomposition of ρ, which we denote
by c(ρ).

If c(ρ) = 1, ρ is a cycle of odd length l ≥ 5. The statement follows from Corollary 2.5.
If c(ρ) = 2, then let ρ = ρ1ρ2, where ρ1 and ρ2 are disjoint cycles. The lengths of

these cycles are of the same parity. If the lengths are even, the statement follows from
Corollary 2.7. In the case of odd lengths, 3 cases are considered.

Case 1: Suppose both lengths are 3. Then [(a1, a2, a6, a5, a3), (a1, a2, a4, a6, a5)] =
(a1, a2, a3)(a4, a5, a6).

Case 2: Suppose exactly one of the lengths is 3. One may assume ρ2 = (x, y, z) is the
3-cycle. Let ρ1 be a cycle of length 2l + 1, where l ≥ 2. By Corollary 2.5, there exist a
2l-cycle σ, a (2l + 1)-cycle τ , and a ∈ suppσ such that ρ1 = [σ, τ ], supp ρ1 = suppσ ∪
supp τ , and aσ = aτ . By Lemma 2.8, we have ρ = [ϕ(σ; aσ, x, y, z), ϕ(τ ; aτ , y, z)],
where ϕ(σ; aσ, x, y, z) and ϕ(τ ; aτ , y, z) are (2l + 3)-cycles.

Case 3: Suppose both lengths are greater than 3. Let ρi be a cycle of length 2li + 1,
li ≥ 2. By Corollary 2.5, there exist (2l1 + 1)-cycles σ1, τ1, (2l2)-cycles σ2, τ2, a1 ∈
suppσ1, and a2 ∈ suppσ2 such that ρi = [σi, τi], supp ρi = suppσi ∪ supp τi, and
aσi
i = aτii . Then ψ(σ1, σ2; aσ1

1 , aσ2
2 ) and ψ(τ1, τ2; aτ11 , a

τ2
2 ) are (2(l1 + l2)+ 1)-cycles and

by Lemma 2.9, ρ = [ψ(σ1, σ2; a
σ1
1 , aσ2

2 ), ψ(τ1, τ2; a
τ1
1 , a

τ2
2 )].

If c(ρ) ≥ 3, the following 4 cases are considered.
Case 1: Suppose ρ = ρ1ρ2, where ρ2 is a (2l+1)-cycle, l ≥ 2, and supp ρ1∩supp ρ2 =

∅. By Corollary 2.5, there exist (2l)-cycles σ2, τ2 and b ∈ suppσ2, such that ρ2 = [σ2, τ2],
supp ρ2 = suppσ2 ∪ supp τ2, and bσ2 = bτ2 . Because 2 ≤ c(ρ1) ≤ c(ρ) − 1, the
inductive hypothesis yields cycles σ1, τ1 of odd lengths, as well as a ∈ suppσ1, such that
ρ1 = [σ1, τ1], supp ρ1 = suppσ1 ∪ supp τ1, and aσ1 = aτ1 . By Lemma 2.9, we have ρ =
[ψ(σ1, σ2; a

σ1 , bσ2), ψ(τ1, τ2; a
τ1 , bτ2)], where ψ(σ1, σ2; aσ1 , bσ2) and ψ(τ1, τ2; aτ1 , bτ2)

are cycles of odd lengths.
Case 2: Suppose ρ = ρ1ρ2, where ρ2 = (a1, a2, a3)(a4, a5, a6) and supp ρ1 ∩ supp ρ2

= ∅. If ρ1 = (a7, a8, a9) then ρ = [(a1, a2, a7, a8, a9, a4, a5, a3, a6), (a1, a2, a8, a9, a5,
a3, a4)]. If ρ1 is not a 3-cycle, the inductive hypothesis yields cycles σ1, τ1 of odd lengths,
as well as a ∈ suppσ1, such that ρ1 = [σ1, τ1], supp ρ1 = suppσ1 ∪ supp τ1, and
aσ1 = aτ1 = b. Then σ = ϕ(ϕ(σ1; b, a1, a2, a3); b, a4, a5, a6) and τ = ϕ(ϕ(τ1; b, a2, a3);
b, a5, a6) are cycles of odd lengths and, using Lemma 2.8 twice, we get ρ = [σ, τ ].

Case 3: Suppose ρ = ρ1ρ2, where ρ2 is a disjoint product of cycles of lengths 2l1 and
2l2, such that l1 + l2 ≥ 3, and supp ρ1 ∩ supp ρ2 = ∅.

If ρ1 = (a1, a2, a3) then by Corollary 2.7, there exist a (2(l1 + l2) − 2)-cycle σ2, a
(2(l1 + l2)− 1)-cycle τ2, and a ∈ suppσ2, such that ρ2 = [σ2, τ2], supp ρ2 = suppσ2 ∪
supp τ2, and aσ2 = aτ2 = b. Then σ = ϕ(σ2; b, a1, a2, a3) and τ = ϕ(τ2; b, a2, a3) are
(2(l1 + l2) + 1)-cycles and by Lemma 2.8, we get ρ = [σ, τ ].

If ρ1 is not a 3-cycle then by the inductive hypothesis there exist cycles σ1, τ1 of odd
lengths and a ∈ suppσ1, such that ρ1 = [σ1, τ1], supp ρ1 = suppσ1∪ supp τ1, and aσ1 =
aτ1 . If l1 + l2 = 3 then ρ2 = (a1, a2, a3, a4)(a5, a6) and for σ2 = (a1, a5, a2, a4, a6, a3)
and τ2 = (a1, a5, a3, a4) we get ρ2 = [σ2, τ2] and for b = a1 we get bσ1 = bτ1 . If l1+ l2 >
3 Corollary 2.7 provides (2(l1+ l2)−2)-cycles σ2 and τ2, as well as b ∈ suppσ2, such that
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ρ2 = [σ2, τ2], supp ρ2 = suppσ2 ∪ supp τ2, and bσ2 = bτ2 . Then σ = ψ(σ1, σ2; a
σ1 , bσ2)

and τ = ψ(τ1, τ2; a
τ1 , bτ2) are cycles of odd length and by Lemma 2.9, we get ρ = [σ, τ ].

Case 4: Suppose ρ is a disjoint product of transpositions and at most one 3-cycle. If
there are at most four transpositions in the cycle decomposition of ρwe have 3 possibilities:

[(a1,a3, a5, a6, a2, a4, a7), (a1, a3, a6, a4, a7, a2, a5)] = (a1, a2)(a3, a4)(a5, a6, a7),

[(a1,a2, a4, a8, a6, a3, a5), (a1, a2, a3, a8, a4, a6, a7)] = (a1, a2)(a3, a4)(a5, a6)(a7, a8),

[(a1,a2, a5, a3, a4, a9, a10, a7, a11), (a1, a2, a6, a3, a4, a10, a7, a9, a8)] =

=(a1, a2)(a3, a4)(a5, a6)(a7, a8)(a9, a10, a11).

Otherwise ρ = ρ1ρ2, where ρ2 = (a1, a2)(a3, a4)(a5, a6)(a7, a8), 2 ≤ c(ρ1) < c(ρ),
and supp ρ1 ∩ supp ρ2 = ∅. By the inductive hypothesis there exist cycles σ1, τ1 of odd
lengths and a ∈ suppσ1, such that ρ1 = [σ1, τ1], supp ρ1 = suppσ1 ∪ supp τ1, and
aσ1 = aτ1 . For σ2 = (a1, a8, a3, a2, a4, a6, a7, a5) and τ2 = (a1, a8, a4, a3, a5, a6) we
have ρ2 = [σ2, τ2]. Then σ = ψ(σ1, σ2; a

σ1 , aσ2
1 ) and τ = ψ(τ1, τ2; a

τ1 , aτ21 ) are cycles of
odd lengths and by Lemma 2.9, we get ρ = [σ, τ ].

3 Cycles as commutators of cycles
From the previous section we know that a (2n + 1)-cycle is a commutator of a p-cycle
and a q-cycle if p + q ≥ 3n + 2 (and p, q ≤ 2n + 1). But this sufficient condition is not
necessary. Note that in the previous section we were interested in pairs of cycles σ and τ ,
for which there exists a ∈ suppσ such that aσ = aτ . We needed that for “concatenation”
of cycles in Lemma 2.9. With that assumption withdrawn, the result is obtained by using a
more stringent hypothesis as shown in the next corollary.

Lemma 3.1. Let σ, τ be permutations, x, y 6∈ suppσ ∪ supp τ , a1, a2 ∈ suppσ ∩ supp τ ,
b ∈ suppσ − supp τ , and c ∈ supp τ − suppσ, such that aσ1 = b, bσ = a2, aτ1 = c, and
cτ = a2. Then

[ϕ(σ; b, c, x), ϕ(τ ; c, y)] = ϕ([σ, τ ]; c, y, x).

Proof. Let σ̃ = ϕ(σ; b, c, x) and τ̃ = ϕ(τ ; c, y). If t 6∈ {x, a2, c} then tσ
−1

= tσ̃
−1

.
If t 6∈ {y, aσ2} then tσ

−1 6∈ {y, a2} and tσ
−1τ−1

= tσ
−1τ̃−1

. If t 6∈ {x, aσ2 , a2} then
tσ

−1τ−1 6∈ {x, c, b} and tσ
−1τ−1σ = tσ

−1τ−1σ̃ . If t 6∈ {y, aσ2} then tσ
−1τ−1σ 6∈ {y, c} and

tσ
−1τ−1στ = tσ

−1τ−1σ̃τ̃ . Hence for t 6∈ {x, y, c, a2, aσ2} we get t[σ,τ ] = t[σ̃,τ̃ ]. Because

c[σ,τ ] = cτ
−1στ = aστ1 = bτ = b,

c[σ̃,τ̃ ] = bτ̃
−1σ̃τ̃ = bσ̃τ̃ = cτ̃ = y,

y[σ̃,τ̃ ] = yτ̃
−1σ̃τ̃ = cσ̃τ̃ = xτ̃ = x,

x[σ̃,τ̃ ] = cτ̃
−1σ̃τ̃ = aσ̃τ̃1 = bτ̃ = b,

a
[σ̃,τ̃ ]
2 = xτ̃

−1σ̃τ̃ = xσ̃τ̃ = aτ̃2 = aτ2 = bστ = bτ
−1στ = a

[σ,τ ]
2 ,

(aσ2 )
[σ̃,τ̃ ] = aτ̃

−1σ̃τ̃
2 = yσ̃τ̃ = yτ̃ = a2 = cτ = cστ = aτ

−1στ
2 = (aσ2 )

[σ,τ ],

we get [σ̃, τ̃ ] = ϕ([σ, τ ]; c, y, x).
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Corollary 3.2. Let ρ be a (2n + 1)-cycle and n ≥ 2. For p, q ∈ N such that p, q ≤ 2n
and p + q = 3n + 1, there exist a p-cycle σ and a q-cycle τ , such that [σ, τ ] = ρ and
supp ρ = suppσ ∪ supp τ .

Proof. By induction on n we prove that whenever p, q ≤ 2n and p + q = 3n + 1, there
exist a p-cycle σ, a q-cycle τ , a1, a2 ∈ suppσ ∩ supp τ , b ∈ suppσ − supp τ , and
c ∈ supp τ − suppσ, such that aσ1 = b, bσ = a2, aτ1 = c, cτ = a2, [σ, τ ] is a (2n + 1)-
cycle, and supp[σ, τ ] = suppσ ∪ supp τ .

Because [τ, σ] = [σ, τ ]−1 we may assume p ≥ q.
If n = 2 then p = 4, q = 3 and we have [(a1, b, a2, d), (a1, c, a2)] = (a1, c, b, d, a2).
Let n > 2. For p, q ≤ 2n and p + q = 3n + 1 we define p̃ = p − 2 and q̃ = q − 1.

Then p̃ + q̃ = 3(n − 1) + 1 and p̃ ≤ 2(n − 1). From q ≤ p we get q 6= 2n and
therefore q̃ ≤ 2(n − 1). By the inductive hypothesis there exist a p̃-cycle σ̃, a q̃-cycle τ̃ ,
a1, a2 ∈ supp σ̃∩supp τ̃ , b ∈ supp σ̃−supp τ̃ , and c ∈ supp τ̃−supp σ̃, such that aσ̃1 = b,
bσ̃ = a2, aτ̃1 = c, cτ̃ = a2, [σ̃, τ̃ ] is a (2n − 1)-cycle, and supp[σ̃, τ̃ ] = supp σ̃ ∪ supp τ̃ .
Let x, y 6∈ supp σ̃∪supp τ̃ . Then σ = ϕ(σ̃; b, c, x) is a p-cycle, τ = ϕ(τ̃ ; c, y) is a q-cycle,
c, a2 ∈ suppσ ∩ supp τ , x ∈ suppσ − supp τ , y ∈ supp τ − suppσ, cσ = x, xσ = a2,
cτ = y, yτ = a2, and by Lemma 3.1, [σ, τ ] is a (2n+ 1)-cycle.

Let σ and τ be permutations. An equivalence relation on the set suppσ ∩ supp τ is
defined in the following way. Elements a, b ∈ suppσ ∩ supp τ are equivalent if and only
if there exist a0, . . . , an ∈ suppσ ∩ supp τ and ρ1, . . . , ρn ∈ {σ, σ−1, τ, τ−1}, such that
a = a0, b = an, and ai = aρii−1 for i = 1, . . . , n. This is obviously an equivalence relation.

Definition 3.3. Permutations σ and τ are braided if all elements of suppσ ∩ supp τ are
equivalent to each other.

Lemma 3.4. Let σ and τ be cycles such that the commutator [σ, τ ] is a cycle and supp[σ, τ ]
= suppσ ∪ supp τ . Then σ and τ are braided.

Proof. Let ρ = [σ, τ ] and a0 ∈ suppσ ∩ supp τ . For n ≥ 0 we inductively define
a4n+1 = aσ

−1

4n , a4n+2 = aτ
−1

4n+1, a4n+3 = aσ4n+2, and a4n+4 = aτ4n+3. Let us show
that if a4m = aρ

m

0 ∈ suppσ ∩ supp τ , then a4m is equivalent to a0. Let b1 = a0 and
i1 = max{i | i ≤ 4m, ai = a0}. For k ≥ 1 and ik < 4m we let ik+1 = max{i | ik <
i ≤ 4m, ai = aik+1}, bk+1 = aik+1

, and ρk ∈ {σ, σ−1, τ, τ−1}, where ρk is uniquely
defined by bρkk = bk+1. If we show that bk ∈ suppσ ∩ supp τ for all k, then by definition,
a0 = b1 is equivalent to a4m = bl. For 1 ≤ k < l we have bk+1 ∈ supp ρk. Suppose
bk+1 6∈ supp ρ̃, where ρ̃ is the cycle in {σ, τ} − {ρk, ρ−1

k }. Because aρkik = aik+1 and

ρk 6= ρ̃±1, necessarily also aσ̃ik+1 = aik+2 or aσ̃
−1

ik+1 = aik+2. Because aρ
−1
k
ik+2 = aik+3

and aik+1 6∈ supp σ̃, we get aik = aik+3. This contradicts the definition of ik. Hence
bk ∈ suppσ ∩ supp τ .

Let b ∈ suppσ ∩ supp τ . Because ρ is a cycle and b ∈ supp ρ, there exists m such that
b = aρ

m

0 . Thus b is equivalent to a0, and hence σ and τ are braided.

Lemma 3.5. Let σ and τ be permutations such that supp[σ, τ ] = suppσ ∪ supp τ . Then
| suppσ − supp τ |, | supp τ − suppσ| ≤ | suppσ ∩ supp τ |.

Proof. Suppose there exist x, y ∈ suppσ − supp τ , such that x = yσ . Then x[σ,τ ] = x,
and consequently x 6∈ supp[σ, τ ], which is a contradiction. Hence the map (suppσ −
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supp τ) → (suppσ ∩ supp τ), defined by x 7→ xσ , is an injection. Therefore | suppσ −
supp τ | ≤ | suppσ ∩ supp τ |.

Because supp[τ, σ] = supp[σ, τ ], the other inequality follows from the above para-
graph.

Lemma 3.6. Let σ and τ be cycles such that [σ, τ ] is a cycle and supp[σ, τ ] = suppσ ∪
supp τ . Then | suppσ − supp τ |+ | supp τ − suppσ| ≤ | suppσ ∩ supp τ |+ 1.

Proof. Let k = | suppσ ∩ supp τ |, | suppσ| = k + p, and | supp τ | = k + q. If p = 0,
then by Lemma 3.5 we have

| suppσ − supp τ |+ | supp τ − suppσ| = | supp τ − suppσ| < | suppσ ∩ supp τ |+ 1.

Analogously for q = 0. Let p, q > 0. Let suppσ − supp τ = {a1, . . . , ap}. Let mi ∈
N ∪ {0} be the largest number such that aσ

j

i ∈ suppσ ∩ supp τ for all j ∈ {1, . . . ,mi}.
We claim that all mi are positive. Indeed, suppose that there exist x, y ∈ suppσ− supp τ ,
such that xσ = y. Then y[σ,τ ] = y which is a contradiction since suppσ ⊂ supp[σ, τ ].
Hence the set Mi = {aσi , . . . , aσ

mi

i } is nonempty for all i. Because σ is a cycle and p > 0,
for every x ∈ suppσ ∩ supp τ there exists the smallest i ∈ N such that xσ

−i

= ak for
some k, which means that x ∈ Mk. Therefore, (suppσ ∩ supp τ) = M1

∐
. . .

∐
Mp.

Similarly, (suppσ ∩ supp τ) = N1

∐
. . .

∐
Nq , where supp τ − suppσ = {b1, . . . , bq},

Ni = {bτi , . . . , bτ
ni

i } ⊂ supp τ ∩ suppσ, and bτ
ni+1

i 6∈ suppσ.
By Lemma 3.4, the cycles σ and τ are braided. Hence there exist i2 ∈ {2, . . . , p},

d2 ∈ M1, c2 ∈ Mi2 , and τ2 ∈ {τ, τ−1} such that d2 = cτ22 . For j > 2 there exist
ij ∈ {2, . . . , p} − {i2, . . . , ij−1}, dj ∈ M1 ∪ (∪j−1

l=2Mil), cj ∈ Mij , and τj ∈ {τ, τ−1}
such that dj = c

τj
j . Let us show that for each i, the set Ñi = Ni−{c2, . . . , cp} is nonempty.

By construction, the elements c2, . . . , cp are different, dj 6= ck for j ≤ k, and every pair
{cj , dj} is a subset of Nl for some l. Suppose Ni ∩ {c2, . . . , cp} = {ck1 , . . . , ckr}, where
k1 < . . . < kr. Then dk1 ∈ Ni and dk1 6∈ {ck1 , . . . , ckr}, so dk1 ∈ Ñi 6= ∅. Hence in the
union of the q nonempty sets Ñ1, . . . , Ñq there are exactly k−(p−1) elements. This means
that | supp τ−suppσ| = q ≤ k−(p−1) = | suppσ∩supp τ |−| suppσ−supp τ |+1.

Theorem 3.7. Let n ≥ 2 and let ρ be a (2n + 1)-cycle. There exist a p-cycle σ and a
q-cycle τ such that ρ = [σ, τ ] and supp ρ = suppσ ∪ supp τ if and only if the following
three conditions are satisfied (i) n+ 1 ≤ p, q, (ii) 2n+ 1 ≥ p, q, (iii) p+ q ≥ 3n+ 1.

Proof. Suppose there exist a p-cycle σ and a q-cycle τ such that ρ = [σ, τ ] and supp ρ =
suppσ ∪ supp τ . Let k = | suppσ ∩ supp τ |, p = k + p̃, and q = k + q̃. By Lemma 3.5,
we have q̃ ≤ k, therefore 2q̃ ≤ k + q̃ = q ≤ 2n + 1 which implies q̃ ≤ n. Then
2n + 1 = | supp ρ| = | suppσ ∪ supp τ | = p + q̃ ≤ p + n, hence n + 1 ≤ p. By
Lemma 3.6, we have p̃ + q̃ ≤ k + 1. Therefore 2n + 1 = k + p̃ + q̃ ≤ 2k + 1 and
p+ q = 2n+ 1 + k ≥ 3n+ 1.

If p + q ≥ 3n + 2 the theorem follows from Corollary 2.5. If p + q = 3n + 1, the
theorem follows from Corollary 3.2.

References
[1] E. Bertram, Even permutations as a product of two conjugate cycles, J. Combin. Theory 12

(1972), 368–380.
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7, Verlag der Augustinus-Buchhandlung, Aachen, 1993.

[3] E. W. Ellers, N. Gordeev, On the conjectures of J. Thompson and O. Ore, Trans. Amer. Math.
Soc. 350 (1998), no. 9, 3657–3671.

[4] R. Gow, Commutators in the symplectic group, Arch. Math. (Basel) 50 (1988), no. 3, 204–209.

[5] L. C. Kappe, R. S. Morse, On commutators in groups, Groups St. Andrews 2005. Vol. 2, 531–
558, London Math. Soc. Lecture Note Ser., 340, Cambridge Univ. Press, Cambridge, 2007.

[6] M. W. Liebeck, E. A. O’Brien, A. Shalev, P. H. Tiep, The Ore conjecture, J. Eur. Math. Soc.
(JEMS) 12 (2010), no. 4, 939–1008.

[7] G. A. Miller, On the commutators of a given group, Bull. Amer. Math. Soc. 6 (1899) 105–109.
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