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Saša Prelovšek
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Abstract. The simulations of the light scalar mesons on the lattice are presented at the in-
troductory level. The methods for determining the scalar meson masses are described. The
problems related to some of these methods are presented and their solutions discussed.

1 Introduction

The observed spectrum of the light scalar resonances below 2 GeV is shown in
Fig. 1. The existence of flavor singlet σ and strange iso-doublet κ are still very
controversial [1]. Irrespective of their existence, it is difficult to describe all the
observed resonances by one or two SU(3) flavor nontes of q̄q states:

• If σ and κ do not exist, than K0(1430) has to be strange partner of a0(980),
but the mass difference appears to big. Also there are to many states to be
described by one nonet.

• If σ and κ exist, then all these states could represent two q̄q nonets and one
glueball, where the largest glueball component is commonly attributed to
f0(1500). However, most of the models and lattice simulations have difficul-
ties in relating the observed properties of states below 1 GeV to the q̄q states.

This situation is in contrast to the spectrum of light pseudoscalar, vector and
axial-vector resonances, where q̄q assignment works well. It raises a question
whether the scalar resonances below 1 GeV are conventional q̄q states or perhaps
exotic states such as tetraquarks [2].

This issues could be settled if the mass of the lightest q̄q states could be
reliably determined on the lattice and identified with the observed resonances. In
lattice QCD, the hadron masses are conventionally extracted from the correlation
functions that are computed on the discretized space-time.

In the next section we present how the scalar correlator is calculated on the
lattice. The relation between the scalar correlator and the scalar meson mass is
derived in Section 3. A result for the mass of I = 1 scalar meson is presented in
Section 4. In Section 5 we point out the problems which arise due to the unphys-
ical approximations that are often used in the lattice simulations and we discuss
the proposed solutions. We close with Conclusions.

This article follows the introductory spirit of the talk given at the Workshop
Exciting hadrons and many technical details are omitted.
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Fig. 1. The spectrum of observed light scalar resonances below 2 GeV [1]. The existence of
σ and κ are still very controversial experimentally.

2 Calculation of the scalar correlator

Let us consider the correlation function for a flavor non-singlet scalar meson q̄1q2
first. In a lattice simulation it is calculated using the Feynman functional integral
on a discretized space-time of finite volume and finite lattice spacing. The corre-
lation function represents a creation of a pair q̄1q2 with JP = 0+ at time zero and
annihilation of the same pair at some later Euclidean time t

C(t) =
∑

x

〈0|q̄1(x, t)q2(x, t) q̄2(0, 0)q1(0, 0)|0〉 , (1)

where both quarks are created (annihilated) at the same spatial point for definite-
ness here1. Wick contraction relates this to the product of two quark propagators
shown by the connected diagram in Fig. 2b

C(t) =
〈
CG(t)

〉
G

(2)

CG(t) =
∑

x

Trs,c
[
Prop2

0,0→x,t
Prop1

x,t→0,0

]

=
∑

x

Trs,c
[
Prop2

0,0→x,t
γ5Prop1 †

0,0→x,tγ5
]
.

The quark propagator in the gluon field G and Euclidean space-time [3]

Propi
x,x0→y,y0

=

(
1

6DE +mi

)

x,x0→y,y0

(3)

is the inverse of the discretized Dirac operator 6DE + mi , which is a matrix in
coordinate space and depends on the gluon field G 2. The inversion of a large
Dirac matrix is numerically costly, but the calculation of correlator (2) is feasible

1 Different shapes of creation and annihilation operators in spatial direction can be used.
2 6D = γµ(∂µ + i

2
λaG

a
µ) in continuum Minkowski space-time.
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since it depends only on two propagators from a certain point (0, 0) to all points
(x, t). Both of these are obtained by solving the equation (6DE + mi)V

′ = V for
a single3 source vector V which is non-zero only at (0, 0). The expectation value
over the gluon fields in (2) is computed based on the Feynman functional integral

C(t) =

∫
DG CG(t)

∫
Dq

∫
Dq̄ e−SQCD

∫
DG

∫
Dq

∫
Dq̄ e−SQCD

=

∫
DG CG(t) Πidet[6DE +mi] e

−SG

∫
DG Πidet[6DE +mi] e−SG

.

(4)
A finite ensemble ofN gluon field configurations is generated in the lattice simu-
lations. Each configuration is generated with a probability Πidet[6DE +mi] e

−SG

for a given discretized gauge action SG and Dirac operator 6DE. The functional
integral (4) is calculated as a sum over the ensemble

C(t) =
1

N

N∑

j=1

CGj
(t) . (5)
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Fig. 2. The disconnected (a) and the connected (b) Feynman diagrams that need to be eval-
uated to compute the correlator. The disconnected diagram is present only for the flavor
singlet meson.

The correlator for the flavor singlet scalar meson q̄q

C(t) =
∑

x

〈0|q̄(x, t)q(x, t) q̄(0, 0)q(0, 0)|0〉 (6)

requires also the calculation of the disconnected diagram in Fig. 2a
〈

Trs,cProp
0,0→0,0

∑

x

Trs,cProp
x,t→x,t

〉

G

(7)

in addition to connected one. The propagator Prop
x,t→x,t

in principle requires
the solution of (6DE +mi)V

′ = V for source vector V at any point. Such a number
of inversions is normally prohibitively large and one is forced to use approximate
methods for evaluating the disconnected part (7) of the singlet correlator. A cal-
culation of the correlator for singlet meson in therefore much more demanding
than for non-singlet meson.

3 In fact (6DE +mi)V
′ = V has to be solved for every spin and color of the source vector

V .
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3 Relation between correlator and meson mass

In this Section we derive the relation between the scalar correlator and the scalar
meson mass. The state q̄(0)q(0)|0〉 that is created at time zero is not a scalar meson
|S〉, but it is a superposition of the scalar meson and all the other eigenstates of
Hamiltonian |n〉 with the same quantum numbers JP = 0+ and IG as |q̄q〉

|q̄q〉 =
∑

n

cn|n〉 = c1|S〉 + c2|S
∗〉 +

∑
ci

∣∣∣∣
multi

hadron st.

〉

i

+ ...

(
+c0|0〉

only for
singlet

)
.

(8)
Here |S〉 and |S∗〉 are ground and excited scalar mesons, while the third term rep-
resents the sum over multi-hadron states. The eigenstate |n〉 evolves as eipnx−Ent

in Euclidean space-time, so the scalar correlators (1) and (6) evolve as

C(t) =
∑

x

〈q̄(x, t)q(x, t) q̄(0, 0)q(0, 0)〉 (9)

=
∑

n

∑

x

〈q̄q|n〉eipnx−Ent〈n|q̄q〉 =
∑

n

|〈q̄q|n〉|2 e−Ent
∣∣
p=0

= |c1|
2e−mSt + |c2|

2e−mS∗t +
∑

|ci|
2e−E

multi
had.

i
t + ...

[
+|c0|

2 only for
singlet

]
(10)

If |S〉 is the lightest state among |n〉, than C(t) ∝ e−mSt at large t andmS and
can be extracted simply by fitting the lattice correlator to the exponential time
dependence.

In the case of the flavor singlet correlator, the lightest state in the sum (8) is the
vacuum state. Its corresponding coefficient c0 (8) is the scalar condensate 〈q̄q〉.
Another important light state that contributes at large t is ππ, so extraction ofmσ
requires the fit to

C(t)
t→∞
= |cσ|2e−mσt +

∑

pπ

∣∣cpπ

∣∣2e−Eππ
pπ
t + 〈q̄q〉2 . (11)

The extraction of mσ is very challenging since C(t) requires the calculation of
the disconnected diagram (see previous Section) and since RHS in (11) is largely
dominated by 〈q̄q〉2.

These two problems do not affect the study of the flavor non-singlet meson.
However, even in this case there are several multi-hadron states which are light
and need to be taken into account in the fit of the correlator (9) at large t in order to
extract mS. The lightest multi-hadrons states with JP = 0+ are two-pseudoscalar
states in S-wave. In case of I = 1 correlator, the contribution of scalar meson a0 is
accompanied by contributions of πη, K̄K and πη′ in three-flavor QCD. Let us note
that in nature these three states are lighter than observed resonance a0(1450); the
state πη is also lighter than observed resonance a0(980). In two-flavor QCD, the
only two-pseudoscalar state πη′ is relatively heavy and not so disturbing for the
extraction of ma0 from (9).

The above derivation of time-dependence for a correlator was based on QCD,
which is a proper unitary field theory. The resulting correlator (9) is positive def-
inite. Let us point out that certain approximations used in lattice simulations
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(quenching, partial quenching, staggered fermions, mixed-quark actions) break
unitarity and may render negative correlation function. These approximations
will be discussed in Section 5 together with the necessary modifications of the
fitting formula (9).

4 Mass of scalar meson with I=1

A lattice simulation of the scalar meson a0 with I = 1 [4] is presented in this
section, as an example. It employs two dynamical quarks4, lattice spacing 0.12
fm, lattice volume 163×32 and ensemble of about 100 gauge configurations [4,5].
The advantage of simulation [4] is that its discretized (Domain-Wall) fermion ac-
tion has good chiral properties: it is invariant under the chiral transformation
for mq = 0 even at finite lattice spacing5, which is not the case for some of the
commonly used discretized fermion actions. Another advantage of the simula-
tion with two dynamical quarks [4] is that the exponential fit of the correlator at
large t rendersma0. The conventional exponential fit is justified in this case since
the only two-pseudoscalar intermediate state in two-flavor QCD is πη′, which is
relatively heavy and does not affect the extraction of ma0 (see previous Section).

The resulting mass is presented in Fig. 3 for different input masses mu,d,
where isospin limit mu = md is employed. There are no simulations at physical
massesmu,d since the pion cloud around the scalar meson with λπ = hc/140MeV
' 9 fm would be too squeezed on the lattice with extent 16× 0.12 fm ' 2 fm. The
u/d quarks and pions are heavier in simulation than in the nature in order to
avoid large finite volume effects. The linear extrapolation of ma0 to the physical
quark mass mu,d ' 4 MeV in Fig. 3 gives

ma0 = 1.58 ± 0.34 GeV . (12)

Although our result for the mass of the lightest q̄q state with I = 1 has siz-
able error-bar, it appears to be closer to the observed resonance a0(1450) than to
a0(980). It gives preference to the interpretation that a0(980) is not conventional
q̄q state.

Results from other lattice simulations of the light scalar mesons can be found
in [6]-[11].

5 Problems due to unphysical approximations

The simulation presented in the previous section is a discretized version of two-
flavor QCD and does not employ any unphysical approximations except for the
discretization of space-time. It renders positive definite correlation function, as
expected in proper Quantum Field Theory (9).

4 Fermion determinant in (4) incorporates quarks i = u, d.
5 This is strictly true only when the 5th dimension in Domain-Wall fermion action is in-

finitely large.
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Fig. 3. The triangles present resultingma0 for three values of bare quark massesmu,d [4].
The dashed line is the linear extrapolation ofma0 to the value ofmu,d in nature.

However, lattice simulations often employ unphysical approximations which
facilitate numerical evaluation. One of the indications that the simulation does
not correspond to a proper QCD is the negative scalar correlator. Another sign
of unphysical simulation is when I = 1 correlator drops as e−2Mπt at large t
although the lightest two-pseudoscalar state with I = 1 is πη. Both of these un-
physical lattice results can occur if the theory that is being simulated is not uni-
tary, which is the case for all the commonly used approximations listed below:

• In quenched simulation the fermion determinant in (4) is replaced by a con-
stant. This corresponds to neglecting all the closed sea-quark loops. The I = 1

scalar correlator is negative in this case and its negativity was attributed to
the intermediate state πη′ in Ref. [6]. The prediction for πη′ intermediate state
in quenched version of Chiral Perturbation Theory (ChPT) describes the sign
and the magnitude of the lattice correlator at large twell [6,7]. The mass ma0
was extracted [6,7] by fitting the quenched I = 1 correlator to the sum of
e−ma0t term and the contribution of πη′ as predicted by Quenched ChPT.

• In partially quenched simulation the mass of the sea quark is different from
the mass of the valence quark, although they are the same in nature. The
mass of the valence quark is the mass that appears in the propagator of the
correlator CG (2), while the mass of the sea quark is the mass that appears
in the fermion determinant (4). The partially quenched scalar correlator with
I = 1 was found to be negative if mval < msea [4]. This was attributed to
intermediate states with two pseudoscalar mesons and was described well
using partially quenched version of ChPT [4]. The mass ma0 was extracted
by fitting the partially quenched correlator to the sum of e−ma0t term and the
contribution of two-pseudoscalar states as predicted by Partially Quenched
ChPT [4]. The resulting mass agrees with the mass (12).

• The simulations with mixed quark actions employ different discretizations of
the Dirac operator for valence and sea quarks. The method of extracting scalar
meson mass from a such simulations was proposed in [12,13].
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• The simulations with staggered quarks use an artificial taste degree of freedom
for quarks in order to solve fermion doubling problem [3]. The method of
extracting scalar meson mass from simulations with staggered quarks [11]
was proposed in [12].

All these approximations modify the contribution of two-pseudoscalar in-
termediate states with respect to QCD. The effects of these approximations can
be therefore determined by predicting the two-pseudoscalar contributions using
appropriate versions of ChPT. These analytic predictions [6,4,12,13] allow the ex-
traction of the scalar meson mass from the correlator as long as the contribution
of two-pseudoscalar intermediate states does not completely dominate over the
e−mSt term.

6 Conclusions

The nature of scalar resonances below 1 GeV is not established yet. A lattice de-
termination of the masses for ground q̄q scalar states would help to resolve the
problem.

In principle, the scalar mass can be extracted from the scalar correlator that is
computed on the lattice. However, the interesting term e−mSt in the correlator is
accompanied by the contribution of two-pseudoscalar states e−EPPt. The problem
is that the energy of two-pseudoscalar states is small, so they may dominate the
correlator and complicate the extraction of scalar meson mass. On top of that, the
contribution of two-pseudoscalar states is significantly affected by the unphysical
approximations that are often used in lattice simulations. Luckily, these effects
can be predicted using appropriate versions of Chiral Perturbation Theory and
they agree with the observed effects on the lattice correlators. We give the list of
references, which provide the expressions for extracting mS from the correlators
for various types of simulations.

A simulation, which does not suffer from the problems listed above, gives
1.58± 0.34 GeV for the mass of the lightest q̄q state with I = 1. This supports the
interpretation that observed a0(1450) is the lightest (q̄q)I=1 state, while a0(980)
might be something more exotic.
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