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Abstract: This paper treats the control of nonstationary oscillations of acoustic pressure 

in the combustion instability process, which appears in the combustion chamber. Two models 

of nonstationary combustion process control are presented, where first of them is a classic 

model, which applies the Rayleigh criterium of phase matching between heat-release rate and 

acoustic pressure. The second model is an alternative van der Pol model exhibiting 

selfexciting oscillations due to the feedback with a negative damping. The paper outlines the 

model of fuel control, which is successfully applied for quenching of selfexcited oscillations. 

Efficiency of fuel control to quench selfexcited oscillations is shown in the phenomenon of 

competitive quenching, where the influence of various control parameters is explained. 

Key words: instability of combustion process, selfexcited pressure oscillations, multiplicative 

feedback control function, EL-P method.   

Povzetek: Članek obravnava upravljanje nestacionarnih nihanj zvočnega tlaka pr i 

nestabilnem procesu zgorevanja v zgorevalni komori. Predstavljena sta dva modela 

upravljanja nestacionarnega procesa zgorevanja, pri čemer je najprej predstavljen klasičen 

model, ki temelji na  uporabi Rayleighovega kriterija faznega ujemanja sproščene toplote z 

zvočnim tlakom. Kot alternativa je predstavljen van der Polov model, v katerem 

samovzbujena nihanja zvočnega tlaka povzroča povratna zveza z negativnim dušenjem. 

Članek prikazuje model upravljanja dotoka goriva, s katerim lahko samovzbujena nihanja 

popolnoma ali vsaj v dobršni meri uspešno zadušimo. Učinkovitost upravljanja dotoka goriva 

pri dušenju samovzbujenih nihanj je prikazana v  pojavu tekmovalnega dušenja, v katerih je 

pojasnjen vpliv posameznih parametrov upravljanja. 

Ključne besede: nestabilnost procesa zgorevanja, samovzbujena nihanja tlaka, 

multiplikativna funkcija povratnozančnega upravljanja, RL-P metoda.  
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1. Introduction 

The complete description of combustion process 

consists from the set of governing partial differential 

equations (PDE's), which describe the heat release 

dynamics and acoustic wave propagation in feedback, 

hydrodynamics, kinetics of chemical processes, the heat 

transfer and entropy in a large scale model. The novel 

research is focussed on elimination of the unstable 

combustion process with reduction of environmental 

pollution, in particular, with a reduction of nitrogen 

oxide emissions. Reduction of environmental pollution 

can be achieved by a reduction of fuel to air ratio inside 

the combustion chamber, however, the combustion 

process becomes unstable due to the selfexcited 

oscillations of acoustic pressure. The problem of 

instability can be eliminated by the control of the fuel 

influx, which is realized by introduction of the 

multiplicative control function to implement an 

appropriate modulation of the heat release rate.  An 

efficient control of unstable combustion process can be 

achieved by using a reduced model instead of a large 

scale model. By using a reduced model, the feedback 

effect of acoustic wave in the burning plane on the heat 

release dynamics is described in the paper. Interaction 

between acoustic wave propagation and heat release is 

usually modeled through mass, momentum and energy 

conservation laws respecting the Rayleigh criterion, 

which provides an increase of energy of the acoustic 

wave, when the heat is released in the phase with 

acoustic pressure and a decrease of the acoustic energy, 

when the heat is released in the antiphase with acoustic 

pressure.  An alternative reduced model of combustion 

process is presented in the paper by using two coupled 

van der Pol oscillators, where selfexcited oscillations of 

acoustic pressure are produced as a result of negative 

damping rather than as a result of Rayleigh criterion. 

The efficiency of the control to assure the quenching of 

selfexcited oscillations of acoustic pressure is analyzed 

in the van der Pol model by a study of adjustment of 

various control parameters. 

2. Nomenclature 

ρ   =   density of mass 

u            =   vector of velocity 

p =   acoustic pressure 

q  =   heat release rate 

γ        =    coefficient of the specific heat 

t         =   time 

θ       =  time delay 

ε     =   gain of the heat release process 

ωn , ωni, (i=1,2)  =  natural angular frequencies 

ωi0 , (i=1,2)        =  linear angular frequencies 

ωi , (i=1,2)          =  nonlinear angular frequencies 

τ1, τ2     =   fast time scales 

τ3         =   slow time scale 

Ai(τ3), (i=1,2)      =    amplitude of oscillations as 

                                 function of the slow time scale 

Фi (τ3), (i=1,2)    =    phase angle of oscillations as 

                                 function of the slow time scale 

3. Governing equations of the classic model of 

instabilities in a combustion process 

 Governing equations of the classic model of 

instabilities in a combustion process and derivation of 

Rayleigh criterion is attributed to Culick [1]. In this 

paper, the detailed derivation of governing equations is 

omitted, however, the frame in which this derivation is 

made, is presented for the sake of convenience. Under 

assumption, that selfexcited oscillations of the acoustic 

pressure arise mainly due to the nonlinear interaction 

between the heat source and acoustic wave, while body 

forces are neglected, the governing equations of mass, 

momentum and energy conservation for the inviscid and 

nonconductig fluid are written in the form 

 

 

where ρ is the mass density, p is the acoustic 

pressure, u stands for the velocity vector, q is heat 

release rate and γ denotes  the coefficient of the specific 

heat. Separating these quantities into two components, 

where the first component corresponds to the mean 

value, denoted by overbar and the second component, 

denoted by the prime means fluctuation about the mean 

value, the wave equation of fluctuating component of 

acoustic pressure p'  can be derived:  

together with the corresponding boundary conditions: 

where vector n denotes the normal on the boundary 

surface, directed in the outside of the combustion 

chamber. Solution of the wave equation is expressed in 

the form of series, which is composed by products of 

orthogonal acoustic mode shapes ψi(r) with time 

variable amplitudes ηi(t):                                          

where        denotes the mean value of the acoustic 

pressure. Mode shapes ψi(r) are solutions of the 

eigenvalue problem:  

,                                                            (1) 

,                                                       (2) 

,                                  (3) 

,                            (4) 

,                                                                     (5) 

,                                              (6) 
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where ki is the wavenumber of the standing wave, 

which corresponds to the natural angular frequency ωni 

of ith mode shape. To determine time variable 

amplitudes ηi(t), we proceed as follows. First, we insert 

ansatz (6) into Eq. (4) and multiply by ψi. From 

resulting equation then we subtract Eq. (7), multiplied 

by ansatz (6) and integrate the obtained difference over 

the volume V  of the combustion chamber. By 

considering orthogonality of acoustic mode shapes, by 

using Green theorem and by fulfilment of ideal 

boundary condition f = 0 we finally derive the system of 

ordinary differential equations for modal coefficients: 

The obtained system of ODE's (9) describes 

temporal variations od acoustic pressure inside the 

combustion chamber in the form of coupled oscillators, 

which are excited by temporal variations of heat release 

under integral operator on the right hand side of Eq. (9). 

When the nonlinear model of temporal variations of 

heat release is known, then system of ODE's (9) 

becomes autonomous. For solving autonomous system 

of oscillators, Culick [1] has proposed the method of 

Krilov-Bogoliubov (KB method). Instead of KB 

method, an alternative Linstedt-Poincare method with 

multiple time scales (EL-P method) is proposed in this 

paper, which has proven very efficient in solving 

problems of the control of unstable selfexcited 

oscillations of acoustic pressure in combustion chamber 

[3]. To demonstrate the usefullness of EL-P method 

with multiple time scales in classic model of 

instabilities in a combustion process, that is, to apply EL

-P method on Eqs. (9),(10), we first derive a simplified 

model of heat release. 

3.1. A simplified model of heat release 

The simplest model of heat release assumes that all 

heat is released in the fluid in a single point that 

corresponds to the flame front x f. For simplicity we 

assume also that only one mode shape dominates in 

propagation of the acoustic wave. This mode shape is 

either Helmholtz wave, which spreads uniformly in all 

directions or longitudinal wave. In both cases we can 

neglect the spatial variability of acoustic pressure in the 

area of the flame. Because of this, the volume integral 

on right hand side of Eq. (9) is simplified and results in 

expression:  

where q(t) represents the total heat release rate, that is 

the heat release rate, which is integrated over the total 

volume of the combustion chamber. This heat release 

rate can be expressed in the form: 

where         denotes the instantaneous mass flow rate of 

unburned mixture of fuel with air: 

Instantaneous mass flow rate of unburned mixture of 

fuel with air is determined by motion of the flame front, 

where ρm denotes the density of the mixture, Su is 

empirical turbulent flame speed and A f(t) is the flame 

area. The symbol ΔHm(xf,t) represents the heat release 

per unit of mass of the mixture, which reaches the flame 

front in the time t. Convection of the mixture from the 

nozzle to the flame front takes the time of θ seconds and 

results in delay ΔHm(xf,t)= ΔHm(xo,t-θ), where xo 

indicates the location of the exit of the fuel from the 

nozzle. Similarly as the total heat release rate q(t) in Eq. 

(12) is expressed by the sum of the mean value    and 

fluctuation  around of mean value, so is the 

instantaneous mass flow rate in Eq. (13) given by the 

sum of the mean value     and fluctuation     around the 

mean value. By introducing dimensionless 

quantities                 ,               ,                     , where R 

denotes the combustor radius and where           ,         

[2], the dimensionless acoustic velocity  

can be expressed by means of product of acoustic 

admittance Y  and time derivative     as: 

which is used to describe the fluctuating component of 

the flame area as [2]: 

  

In presented model of heat release, the heat release 

per unit of mass of the mixture ΔHm is usually expressed 

through dimensionless quantity                            , where   

                      and HHV is the higher heating value, 

while          denotes the fuel to air ratio at stoichiometric 

conditions. Using dimensionless quantities, Eq. (11) 

now can be rewritten in the form: 

 

 

 

 

 

Simplified case of Eq. (16) and thus the simplified 

model of heat release in a whole is obtained, when 

fluctuations of mas flow rate of mixture subtended by 

flame front are neglected,          and a linear relationship 

between the dimensionless heat release per unit of mass 

,                                     (7) 

,                                                                      (8) 

,                                    (9) 

,                                                                  (10) 

,                                  (11) 

,                                   (12) 

,                    (13) 

,                                                                               (14) 

,                                                               (15) 

,            (16) 
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of the mixture    and dimensionless acoustic velocity   is 

assumed:  

 

where     means the interception point and     the slope 

of the straight line. By introducing Eq. (17) into Eq. 

(16) and considering Eq. (14), one obtains: 

 

 

Equation (18) is a delayed ordinary differential 

equation (DODE), where a delay θ appears in the 

second derivative of pressure amplitude         . In Ref. 

[4] it was shown, that DODE's of Duffing type can be 

successfuly solved by applying EL-P method.  

4. Van der Pol model of instabilities in 

combustion process  

An alternate approach to the solving of instability 

problem in combustion process represents a van der Pol 

model that is not based on the Rayleigh criterion, in 

which the instability of the process occurs due to the 

increase of the energy of the acoustic wave, when the 

heat is released in phase with the pressure, but on the 

feedback with a negative damping. Van der Pol model 

is two-dimensional and is in comparison with  the 

classical model improved with modulation of the fuel 

influx. Modulation of the fuel influx represents a control 

action, which allows an efficient quenching of 

selfexcited pressure oscillations. Model contains two 

dominant natural frequencies, which may be 

incommensurate in general. These natural frequencies 

correspond to two mode shapes in accordance with the 

experimental findings. Governing equations of the 

model with control function               are generalized 

van der Pol equations of two modal amplitudes    

forming the amplitude of pressure oscillations             

[3]: 

 

 

where the control function           is chosen in a 

following polinomial form:  

 

 

 

 

 

 

 

  

 

In Eqs. (19) and (20), symbols ωn1, ωn2 mean 

incommensurate natural frequencies (in general) and 

function                                                  represents a 

nonlinear function of heat release. Parameter φ0  in this 

function denotes a drift and can be an arbitrary positive 

or negative constant. Parameter φ1 is the slope of 

function q about origin and can be an arbitrary positive 

constant. A very important term of heat release function  

is the term                       , which causes the saturation of 

heat release and where the parameter φ3 determines the 

level of saturation.  Parameter ε is a small positive 

number, which determines the gain of the heat release 

process. Values of parameters ε, φ0, φ1 and φ3 are 

determined by using identification methods to reach the 

best fit to real experimental data of combustion process 

in combustion chamber. Parameter K1 of control 

function                 is the amplifying factor, which must 

have the same sign as drift φ0, while the parameter K2 is 

a constant, which must be greater than unity, K2 >1. 
Block scheme of control of instabilities in combustion 

process is shown in Fig. 1. Inclusion of low pass filter in 

block scheme is optional, however, the use of low pass 

filter dramatically improves properties of the control 

[3]. 

5. Extended Lindstedt-Poincare method with 

multiple time scales for control of instabilities in 

combustion process with van der Pol model  

Extended Lindstedt-Poincare (EL-P) method with 

multiple time scales is a perturbation method that allows 

computation of an approximate analytical solution of 

the given problem of control of instabilities in 

combustion process for small values of gain of heat 

release process ε. In EL-P method of twodimensional 

problem we introduce two fast time scales τ1=ω1t, 

τ2=ω2t, which correspond to the nonlinear frequencies 

ω1 and ω2, respectively, which may be incommensurate 

in general and an additional slow time scale τ3=εt . By 

means of introduced time scales, we replace differential 

operators  d/dt and d2 /dt2  by operators:  

,                                                                      (17) 

,                    (18) 

,              (19) 

               (20) 

Figure 1.  Van der Pol model of control of instabilities in 
combustion process.  
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and convert Eq. (19) into system of nonlinear partial 

differential equations (PDE's): 

An approximate analytical solution od the system of 

PDE's (22) is sought in the form of power series: 

Nonlinear frequencies ω1 and ω2 are also expressed 

with power series around linear frequencies ω10 and 

ω20: 

By introduction of ansatz (23) and power series (24) 

into Eq. (22) and by equating coefficients of equal 

powers of parameter ε on both sides, one obtains a 

system of PDE's, which are all linear when are solved 

successively. For example, equation of zeroth order, 

which is obtained by assembling terms at power ε0 , is as 

follows: 

Solution of equation of zeroth order is sought by 

using ansatz for almost periodic solution: 

where A i(τ3) are slowly varying amplitudes, which are 

changed in dependence on the slow time scale and Φi

(τ3) are corresponding slowly varying phase angles.  

Introduction of the ansatz (26) into Eq. (25) gives an 

important relationship between linear and nonlinear 

frequencies: 

From the relation (27) it follows that linear frequencies 

are equal to the natural frequencies of coupled van der 

Pol oscillators. Continuation of the perturbation 

procedure to collect terms, which appear at power ε1, 

requires  the assertion of the solution (26) in the right 

hand side of PDE of the first order. In this procedure, 

secular terms appear, which must be eliminated. 

Elimination of secular terms is achieved by fulfilment 

of so called solvability conditions, which have in the 

case of PDE of the first order the following form: 

 

 

Solution of equations (28.a,b) reveals the basic 

properties, which occur in control of instabilities in 

combustion process. Equation (28.a) shows that trivial 

solutions A i(τ3)=0 always exist. In the case of nontrivial 

solutions A i(τ3)≠ 0, Eq. (28.a) reduces on equation    

Ref. [3] it is shown, that phase angles 

change very little and therefore nonlinear frequencies 

ωi1 are approximately zero,                   . It is also 

shown, that an analytical solution of Eq. (28.b) is 

obtainable in some special cases [3], when the 

combustion process is not controlled and thus the 

control parameters are both equal zero, K1=K2=0. 

However, to solve equation in a general case, a 

numerical integration must be applied. When the slow 

time scale τ3 increases towards infinity, τ3→∞, 

asymptotic solutions are obtained, which correspond to 

the limit cycles of selfexcited oscillations. Asymptotic 

solutions are solutions of Eq. (28.b), in which we 

request           , or equivalently, solutions  of  the      

algebraic equation 

where                 mean steady state solutions as τ3 tends 

to τ3→∞.  These solutions are: a) trivial 

solutions                       , b) nontrivial solutions   

                                                                  

and c) combinations of a nontrivial solution   

                                                with a trivial solution   

                             . 

In continuation of the perturbation procedure we 

seek an almost periodic solution of the first order: 

 

 

       (21.a,b) 

                (22) 

                (23) 

                (24) 

                (25) 

                (26) 

                (27) 

          (28.a,b) 

                 (29) 

.  In 

, 
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Coefficients                                           and   

respectively are determined as follows. The ansatz (29) 

is inserted into PDE of the first order (that is into PDE, 

which is obtained by assembling terms at ε1).  On the 

right hand side of obtained equation, the secular terms 

appear, which must also be eliminated. After 

elimination of secular terms, unknown coefficients are 

determined by equating like terms on both sides of 

equation. When all unknown coefficients are 

determined, the solution (29) is obtained. Both solutions 

(26) and (29) are then inserted into power series (23). 

Usually first two terms of the series are sufficient and 

thus close the procedure. Otherwise, the procedure must 

be continued with approximation of the second order, 

etc. 

6. Laplace transform solution of combustion 

process equation with simplified model of heat 

release 

Although the application of the EL-P method with 

multiple time scales to solve delayed ordinary 

differential equation (DODE) is quit possible, there is 

no need to do this. Instead of the EL-P method, we can 

use the Laplace transformation. By introducing the 

Laplace variable s=σ+iω, (i=√-1), we have the 

following Laplace transformation of Eq. (18) [5]: 

 

 

where     denotes the Laplace transform of η(t). By 

rearrangement we have: 

 

Solution η(t) in the time domain is obtained by using 

inverse Laplace transformation. Because Laplace 

transform (31) contains a transcendental function, 

computation of the inverse is not a simple task and this 

computation will not be presented here. Nevertheless, 

the inverse Laplace transform can be conveniently 

computed in a numerical way by using the inverse Fast 

Fourier Transformation (FFT). What is more important,  

the stability analysis can be performed by investigation 

of the denominator of the Laplace transform (31) or by 

performing the Bode analysis on the open loop transfer 

function [2]. 

7. Results 

A comprehensive analysis of the control of 

instabilities in combustion process using van der Pol 

model was presented in Ref. [3]. Because of this only 

the phenomenon of competitive quenching is treated in 

this paper. The phenomenon of the competitive 

quenching is important for two reasons. Firstly, the 

phenomenon of the competitive quenching is 

characterized by the excitation of one of the resonators, 

while oscillations of the other resonator are quenched in 

dependence on initial conditions. Secondly, the 

competitive quenching occurs in the presence of two 

incommensurate natural frequencies and thus the 

general theory of the Section 5 must be applied. The 

analysis is performed for values of parameters φ0 =1, 

φ1=178, φ3 =1.24×107 ,ε=1 and for natural  angular 

frequencies of selfexcited oscillations ωn1 =2π×210 s-1, 

ωn2 =2π×740 s-1. The choice of the value of the 

parameter ε=1 allows that the real time t corresponds to 

the time scale τ3, τ3=t. 

                (30) 

             (31) 

Figure 2.  The time response of selfexcited oscillations of the acoustic pressure. a) Without the control, b) with applied control 

 , 
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Oscillations of the acoustic pressure of both resonators 

wihout the applied control are depicted in Fig. 2,a, 

while the perfect asphyxiation of selfexcited oscillations 

due to the activation of the control in the switching time 

ton=0.105 s is shown in the Fig. 2.b. Slowly varying 

courses of amplitudes A i(τ3)=Ai(t), which corresponds to 

the solution (26)  are shown in Fig.2.a,b by red dashed 

line, while high-frequency oscillations according to the 

two-term solution (23), that is to the sum                                                                     

are   plotted   by  

continuous line. 

8. Conclusions 

Two models of instabilities in the combustion 

process are presented in the paper. The first model is a 

classical model of the reduced order, which is based on 

the mass, momentum and energy conservation laws and 

utilizes the Rayleigh criterion. Solving of the instability 

problem of the combustion process by applying the 

classic model is performed in the paper with using one 

acoustic oscillator and a simplified heat release 

function. A much more complex analysis of the 

combustion process, which includes the control of 

selfexcited oscillations of acoustic pressure is done in 

the second model, which utilizes two generalized 

coupled van der Pol oscillators. 

The EL-P method with multiple time scales is 

successfuly extended to the analysis of instability 

problem in the combustion process in the model of 

autonomous coupled van der Pol oscillators. In the 

simplified model of heat release, a straightforward 

Laplace transformation of the combustion process 

equation is applied instead. 

The first order approximation is performed in the EL

-P analysis in order to compute the self-excited 

oscillations in a phenomenon of the competitive 

quenching.   

The presented paper shows, that EL-P method can 

be advantageous extended to analyze the problems of 

the automatic control. 
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