
A SURVEV OF MOST IMPORTANT AND OUTSTANDING METHODS
FOR SOFTVVARE ENGINEERING

INFORMATICA 2/88

UDK 681.3.006

Jdzsef Gyorkos
Ivan Rozman

Tatjana VVelzer
University of Maribor

With the presentation of most important method3 of software-
engineering we want to contribute to the better knowledge,
application and development tools that demand a systematic
procedure for the software design. We have tnentioned basic
methods of requirements engineering and structured design which
were already developed in the seventies. It was not earlier
than in the eighties when complex tools for computer aided
design of software were formed from these methods. In their
easence, these methods may be devided into those which solve
the problems by analysing the data flow and those which solve
the problem by decomposing the data structure. The most
important factor to estimate the suitability of application of
a method is the level of covering the phases in the software
life-cycle. The behavlour in real-time environment and the
possibility to create consistent entiti-relationship models for
more complex information systems are iraportant in dependence
upon the system.

Z objavo pregleda pomembnejših metod programskega inženirstva
želimo prispevati k boljšemu poznavanju, uporabi in razvoju
orodij, ki narekujejo sistematičen priatop k snovanju
programske oprerae. Nanizali smo temeljne metode inženirstva
zahtev in strukturnega snovanja, ki so nastale že v
sedemdesetih letih. Sele v osemdesetih letih so se iz
njih izoblikovala kompleksna orodja za računalniško podprto
snovanje programske opreme. V osnovi se metode delijo na
tiste, ki k reševanju sistema pristopajo z analizo toka
podatkov in tiste, ki to izvajajo z razgrajevanjem strukture
podatkov. Najpomembnejša postavka pri ocenjevanju
primernosti uporabe neke metode je stopnja pokrltosti faz
življenjskega cikla programske opreme. V odvisnosti od
sistema pa je pomembno tudi obnašanje v 'real-time' okolju i.n
možnost kreiranja čvrstih entitetno-relacijskih modelov za
kompleksnejše informacljske slsteme.

0. Introduction

A multitude of actions leading to a oonsistent,
realiable and well documented software is
called Software engineering. In the attempt to
normalize the "multitude of actions", several
methods have been developed from the sixties
onwards. Regarding their applicability and
above all their "usabloness", certain methods
did not reach their climax earlter than in the
eighties"and most often as a base for automatic
tools for sqftware design. Lefs see a brief
survey of methods of software engineering
/Kell87/
i) the sixties may be called also the period of
crisis in the softvare development because it
was recognized that it is Impossible to create
effectivo programs without a sistematic
procedure. In this period the philosophy of
Structured programminfi was formed (important
author? : Bohm, Jacopini, Dijkstra).
ii) iiti the seventies the previoualy mentioned
reoognition caused that various technologies
were developed (structured anallsys, design)

and term software life-cycle was introduced. In
this period, new methods lived only in
scientific circles, therefore this period is
called "the period of searching for panacea" (
important authors : Constantine, Myers,
Yourdon, Ross, DeMarco, Sarson).
iii) in the eighties, the methods of the
seventles experionce a revival. With the
integration of some methods a series of
effective and commercially successfull
automatic tools for softvare development
appeared.
In the introduction let us consider the term "
software life-cycle". The software life-cycle
covers six basic stepa /Porc83/:
- Requirements Analisys
- Functional Specification
- Design
- Implementation
- Validation
- Maintenance

25

1. Eequirements Engineering as a Part of
Software Engineering

When we are solving problems by means of
software we make a photo-copy of the real world
in a logically clipped form. This form must
substitute the reality in certain
characteristics that are required. Therefore in
the complex process of software engineering the
requirements specification is of essential
importance. As a rule, in thls process are
envolved the developer of the project and the
customer. The process of requirements
engineering, that is the cooperation mentioned,
can be gathered into four principal points
/Press87/ :
i) recognition of the problem
ii} davelopment and synthasis
iii) specifications
iv) survey evaluation
The coordination between the developer of the
project and the customer is made by the analyst
(who is often called the system analyst), the
system engineer, the programmer/analyst and the
like. He must distinguish himself by his
adaptability, ability to abstraction,
communication,• knowledge ot the environment (
hardware, software) in which the project will
be realized.
Picture la shows the process to accord and
define the requirements, (see /Ross65/). This
prbcess, called the reader/author cycle, is a
part of the method which will be considered in
detail later (SADT - Structured Analysis and
Design Technique).

DIAGRAMS

A REASEK :
- clarifies terminology
- checks completeness
- checks consistency
- assures accurancy

- corrects syntax

CONNECTIONS,
COMMENTS

EEADERS,
USERS,
MANAGE

REACTIONS

Picture la "Reader/author" cycle of SADT Method

Besides SADT method several other methods for
softnare analysis and implementation of
specifications are developed. This is the
requirement engineering. Each method posesses a
specific procedure and ' therefore also a
different notation. The methods pass the above
mentioned four points and must meet the
followlng three demands:

a) Understable preeentation of ' informational
and functional domain in order to analyse the
requirements of the problem.
Information flow shows the way of data
transformation when the data pass through the
system. As the result of studying the
informatlon flow the data structure for the
processed system is obtained.
The funcbional requirements /Roma85/ describe
the dependence of the components upon each
other and upon their envlronment. The whole
system, the program or the element of hardware
can appear as a component. A conceptional model
is the result of fulfilment of functional
requirements. Its level of understability
should be adapted to the environment for which
is determined. Nori—functional. requirements
cause a problem because they can exert an
essential influence on the complexity of

design. Many difficulties cannot be known in
the early phases o£ design (it is difficult to
determine e.g. the influence of the required
level of software reliability). The software
reliabllity Is closely connected with the
powerful testing tool. It is difficult to
foresee the influence of the "human factor" and
the respondence of the finished product to the
errors. It is impossible to formalize the
process of maintenence completely.

b) Division of the problem into understandable
and surveyable partdtions.
The division of the problem into easier and
more understand.able parts is carried out by a
vertycal hierarchical decomposition or with a
functional decomposition in the horizontal
hierarchy.

c) Logical and physical presentation of the
system.
The task of the requirements engineering is to
clarify what should be realized and not how it
should be done. Logical presentation of the
problem forms the base for software system
design. The analyst will not include the
phisycal presentation until the logical
presentation is faultless. It is necessary to
define e.g. exceptions in the hardware
configuration, system for database management
or specificity of the applied operating system.

In the process of analysing the user's
requirements a documerrt is formed which is
often called specificatans . A standard is
exlsting for this kind of document (The
Hational Bureau of Standards,, IF.EE Standard No.
830-19 84), but the automated methods of
software engineering do not follow it
entirelly.
It can be concluded that the task of the
requirements engineering is to introduce a
ayatemat.ic and inform notation of the
information and functional analysis to solve a
software system. According to the software
life-cycle, mentioned in tha introduction the
first two points are met by the requirements
engineering. The development trends in the
eighties support the development and
applicatton of computer aided integrated tools
for software engineering : CASE Computer Aided
Software Engineering. They are overbuilt aind
the most effective among them meet the
development all phases of the software life-
cycle. In the following chapters, some tools
vrill be treated In detail.

2. Methods of Software Engineering
2.1. Basic Division of Methods

The basic division is taken from /Press87/. The
selected division implies to the phase of
system analysis, thus it is undependent from
the design method. The latter is chosen
according to the obtained functional
decomposition :

i)
ii)

data flon oriented methods
data structure oriented methods

In literature the third group is called
iiutomated methods . It is true that in this
group the methods were made as automated ones
and the philosophy of SADT method (author D.T.
Ross) served as the starting-point to design
methods from the first two points. Nowadays
many methods from the first two mentioned
groups are automated in the form of CASE tools.
SADT method will be described in detail in a
separate, third chapter.
Our description of raethods is limited (
following our opinion) to most effective and

26

most popular ones. The criterton of
effectiveness ia how many phases of a software
life-cycle are covered by the raethod.

2.2. Data Flow Oriented Methods

All methods of this class have in common that
they perfonn tho structural analysis by means
of data fl<>N charts. So they give preference to
the data transfer through the systero over the
information structure on which the systera is
based. The syntax of data flow charts is taken
froro /Gane79/ bubble chart and mainly from
/DeMa79/.
Tom DeMarco deacribes very accurately . the
processing of analysed system untll the
functional decomposition is reached. The
continuation of processing by means of
otruatural dasign is taken from /Your79/. On
the base of llterature cited automated tools
from "the field of software engineering are
conatructed. The stress is laid on the system
analysis by means of data flow charts. Nowadays
the following products are awallabile on the
market :

- ANALYST/DESIGNER TOOLKIT; produot of the firm
Yourdon Press, New York
- HP Teamwork SA/SD/RT; product of the firra
Hewlett Packard
- TEK CASE; product of the firm Tektronix
- CASE; product of the firm Mlcrotool, Berlin

SASD (Structured Analysls Structured Design)
is the common name for the methods described.
It is typical for SASD that it covers all
phases of life cycle in the software
development ("life-cycle modell" /Kell87/).
SASD offers a good survey over the project and
enables a team vrork. An effective functional
decomposition from the top-down is the reason
for it. Aa in the of this method a series of
understandable tools and those being near to
the man is used (a detailed description is
given in the foliowing chapters) the method
permits immediate correction of the existing
faults.
Automated tools always offer an up—to-date
version to all members working on the project
what is of special importance when individual
members of groups do not work in the same
place.

2.2.1.
2.2.1.1.

System Analysls of SASD
Data Flow Charts

The data flow charts can be used on overy level
of system abstraction. They consist of four
basic building blocks (see Picture 2.2.1.1.a)
from vrhich the fundamental system model ls
constructed first. Then it is decomposed into
several more detailed and understandable
charta. The basic model is called level 01 of
the data flow charts (further called DFC).

External entity repreaents the
source or destinatton of system
data. The aystem data can be the
elements of hardware, interactlve
intervention of the usere or
connectoin with other 3oftware
systems.

Process -. this sign is used when
data are transformed in such a
way that new data are obtained or
the existing ones are converted.

Data -floi* : serves to oonnect
other basic elementa of DFC. The
arrow shows the direction of the
flow. Each flow should posaess
its ovn uniform name.

Data storage ; the symbol means a
file or an interface where the
data are stored or from where the
data are obtained.

Picture 2.2.1.1.a Basic elements of DFC

In order to follow the information flow beat
when analysis is carried out it ia advisable to
name the processes at the end. Data flows (
information flows) that condition the
necessary process form the base and not vice
versa. Unfortunately, automated tools require
to name tho processes immediately. Tho picture
2.2.1.1.b shows the decomposition Into the
depth of an lmaginary problem by maans of DFC.

DFD3

>

Picture 2.2.1.1.b Decomposition into the depth
by means of DFC

2.2.1.2. Data Dictionary

Each arrow in the data flow chart means
one or more data elements of a piece of
information. The data element /DEMA79/ cannot
be decomposed into its components. Therefore it
forms a basic element of the data flow.
In the data dictionaryevery data flow should
be decomposed into elements. To do this a
special notation is needed:

symbol meaning

* *

equals
logical and
logical or
n iterations of
bracket contens
optional data
comments

In the deslgn of information aystems that are
aided by poverful data bases the data
dictionary and data store /Gane79/ are needed
to model the relational shema tn a normal form
(Codd's normal forms) /Show87/. The fact that
the relation shema of the data base of the
system designed can be formed by the atructured
analysis / Gane79/ e3sentially contributes that
this method can be used. Here we find a linking
point with methods that are concentrated on the
data structure.
E.g. the automated tool TEK CASE alone forms
the data dictionary to such an extent that the
necessity to describe the undefined data flows
is shown. In the data dictionary the syntax of
the record is controlled automatically.

27

2.2.1.3. Functional Decomposition

With the data flow chart and the data
dictionary it is satisfied to the information
domain of the problem analysis. The
transformations (processes) in the product
are described as a functional domain. For this
purpose structured natural language, most often
" Structured English ", is used. Such clipped
language is called Program Design Language
PDL. s
Let's show the fonnulation of the functional
decomposition by means the data flow chart
/Press87/ - Picture 2.2.1.3.a.

Selected DFD
bubble

Apply
structured
English Functional

_ description
Information

about
processing

Picture 2.2.1.3.a. The Process of Functional
Decomposition

The dictionary of the language uaed for the
descriptlon of processes should contain english
words in the imperative form, expressions from
the data diotionary and reserved words for the
description of hidden logic (for this purpose
the usage of decision tables Is recommended).
The sintax of the language used for the
description of the processes permits simple
sentences such as : PUT, GET, REQUEST, etc. and
obligatory includes activity based
constructions for the description of sequence,
choice and repetitions (IF, CASE,\ REPEAT,
WHILE, etc.).

2.2.2. System Deslgn SASD

System design of the SASD method is taken frotn
tha source /Your79/. The transition from the
data flow to the first phase of structured
design, which is called structured charts, can
be made in two ways. The first and most often
used way is the transform analysis The second
way, called the transaction analysisis because
of its exaggerated formalization less often
used.
The nucleous of Transform analysisis that the
data flow charts are devided into the afferente
part, central or transformation part and
efferent part. The baslc three components of
the structured design are described. In the
chapter 2.2.2.4. the example of the transition
from the data flow charts into the structured
chart is described by means of transform
analysis.
The design by means of operation analysis is
more effective from the transform analysis only
in those cases. when the centre of the
transformation cannot be uniformly identified.
This is the case in split data flow charts
(e.g. several output flows). The process that
splits the input flow is ; 'called transaction
centre. Around this centre a / suitable
structured chart is organized. Lefs see the
basic tree phases of s^ructured design :

a) Structured Charts
The data flow chart shows a network of
processes that needn't be connected in the
final program in the same w;ay. The model ot the
system in the form of software modules is
ensured by structured charts. The term 'module'
dendes procedures or functions in the target
prograraming language., Thus, the structured
chart directly shows the hierarchical structure

of software.
More about the syntax of structured charts can
be found in the literature mentioned /Your79/.
The most important characteristics are
described by the words :

rectangles are used to denote modules.
External modules, e.g. libraries are denoted by
double vertical lines.

arrotis connect modules into various
hierarchical leves.
- arrows tiith cirdets denote communication
interfaces betvreen modules; the direction of
the arrows shows the direction of the control
paths and data items.

special symbols give information on the
procedurality of the system; these are
iterations, conditional choices between
modules, common blocks.

b) Data Dictionary
The data dictionary used in. the structured
design is the same than that used in the
structured analysis. Here it is completed with
new data obtained from the structured chart.

c) Description of Modules
The task of the description of modules is to
explain the activity based characteristics of
the modules. A pseudocode is obtained which is
the direct input into the program implemented
in the selected program language.

A simple example to create and follow the
knowledge base is given. The picture 2.2.2.a
shows the data flow chart of the problem that
was devided into three basic parts, according
to the trarisformatioft analy3is.

central.
part

e-f-ferent.
part

error.
report

Picture 2.2.2.a Division of the data flow chart
into three parts

Each part in the data flow chart has a
corresponding functional part in the tree of
structured chart. The root of the tree is a new
functional component which connects parts (
picture 2.2.2.b'). The central part of the
division of data flow chart can also play this
role. The starting hierarchical structure of
the problem is obtained. As the processes are
not described acurately by the individual
functional components a further f actoriz'ing
within individual divisions in the data flow
charts is needed. This is done by top-down
design.

28

tabulation
of knowledge

e^amined^^r^^e^amined^ T
string ^^"^ strtng 1

read and verify
string

f know_^<;
table

tabulation
of knowledge

s^ know_
"^V.table

reports

Picture 2.2.2.b Structured Chart

2.2.3. Implemeirtation and Testing in SASD

Implementation of the system is based on the
top-down procedure and adding (incrementation
) of new modules. Incremental procedure demands
that each module should be developed and tested
separately and then in combination with other
modules. In such procedure the member of
possible faults is decreased and the testing
costs of the system are lowered.
The optimization of the implemented system
should be done as late as possible and only in
cases when performance tests not, uncet the
requirements. In this case the optimization
should be concentrated on selected modules
because it exerts a bad influence on important
characteristics such as performance,
applicability, reliability and slmple
maintenance of a well designed system.
In the field of testing and evaluation of
software reliability the tendency is to
automate the tools with uniform criteria.
Additional information on practical access to
this problem is found in literature /Rozm87/.

2.2.4. Application Maintenance and Owerbuilding
in SASD

If SASD is formed through all phases iivto a
conoluded form, an exhaustive reference-book is
given. The documentation on original design is
given by data flow charts and structured
charts, the definition and organization of data
is given by data dictionary; an accurate
description of processes and module structure
is given, too.
Eventual corrections in testing modules should
be stored as a certificate on sultability of
the system and as an aid to overbuilding.
The maintenance of the system is slmple. The
influence of hardware changes or the modified
requirements of the user can be thorougly
studied in the documentation through all
development phases of the system.

2.3. Data Structure Oriented Methods

As we learn frotn the title of this chapter
these methods lay a greater stress on the
construction of regular data structure than to
the course of data structure. Two methods are
mentioned that specifically solve the problem..
They have four common points:
i) each method demands that the key information
object, that is the entity
or the process should be
beginning;
ii) the second common point of these methods is
that their starting-point is a hierarchical
structure of information;
iii) the data structure should be described by
basic procedural constructs - these are the
sequence, decision and repetitton;

and the operators
determined at the

iv) these methods contain effective tools to
convert the problem from the hierarohical data
structure into the suitable softvare structure.

2.3.1. Warnier - Orr Method

From the theory of Warnier-Orr charts the DSSD
method (Data Structured System Development)
was developed. Warnier - Orr charts implement a
hierarchical analysis of information domain.
The global picture presented as multitude is
decomposed. It is further decomposed into a
series of submultitudes. Everithing is
interconnected by basic procedual constructs.
Braces are used to devide hierarchical levels.
A quick and effective explanation of the
raeaning of the actions which are possible by
Warnier-Orr notation is shovrn in picture
2.3.l.a /Higg79/.

WHY ?

implementation
of the task

WHAT ?

beginning of
the task

end of
the task

WHEN ?

Picture 2.3.1.a

HOW ?

Directions
charts

in Warnier-Orr

We can see that the reading of "the events from
top of the chart complex downwards gives a
sequence of temporal course of events. In the
left direction the explanation of events is
'globalized'. To the right, there is a micro-
level of described system.
The first step in the system analysis is to
ae-firtG the e.xit of the process . Then the
logical data structure and later the
corresponding physical structure are defined.
In thls phase the enttty-relationship model can
be formulated. The design of physical model
follows from bottom-up but we should not think
that Warnier-Orr method is based on botton-up
design because the whole logical composition
was performed from top down. Practical
experiences of design with this method are
described in literature /Gyor86/ and /Rese86/.

2.3.2. The Jackson System Development Method

The JSD (Jackson System Development) method
/Jack83/ ensures a methodical way to design
complex problems. The expected design reault is
an objective and repeatable system which is
independent from the oreativity of the

designer. The designing process can be adjusted
and is heavily influenced by the user.
The bssic idea of this method is that it is
possible to deslgn for the user an interesting
part of the real world by means entities and
actions. The entities are baslc elements that
can be recognized by the user. Actions are
implemented over the entities described and can
be changed from one state to the other (the
term 'states' means various phases tn the life
cycle of entities).
With the definition of entities and action3 and
with the formulation of structural shema the
design phase of a model is concluded.
In the following phase a suitable distribution
and definition of individual functions is made.
The functions are included into the existing
model at a definite moment and under definite
circumstances which ensure a correct operation
of the functional model.

29

JSD has a very rigid delimination between
design and implementation. The application of
the existing hardware and progratn languages by
means of which the designed system will be
realized in a classical way or by JSP (Jackson
System Programming) will be not included
earlier that in the last phase, that is in the
phase of implementation.
JSP is also a data-oriented method. It Is meant
for program design and it is based on the
structure of input and output data. The basic
ideas of program design by means of JSP are
transfered into the design of greater problems
and systems. This means that JSD forms an
extension of JSP. Everithing what is used in
program design according to JSP can be used in
system design according to JSD. The common
points and differences between t.he two methods
are shovm in the following table (Picture
2.3.2.a).

action JSP JSD

description of
the problem

terms of sequ- terms of sequ-
ence processes ence processes

the raodel structured a multitude of
consists of charts unlinked proces-

ses for the desc-
ription of temporal

behaviour of entities

description of
the problem is
concluded by

implement.of adding and impl.
uniform proc. ot processes
structure which fortn the

problem described

implementation problem can
be described
immediatelly

description of
the problera is
converted into
suitable form

Picture 2.3.2.a Comparision between
JSD and JSP

The JSD method is meant to design system in
which special attention should be paid to
temporal condition. JSD is used to design a
wide spectrum of applications based on 'on-
line' or 'batch' manner. These applications are
taken from the real world and temporal
extension ia of supreme importance.
From the literature /Came86/ it is seen that
this method is most often used in Great Britain
vhere many sy3tems realised by means of JSD are
in operation. The method is widely used in
Western Europe and less often in North America.

3. Structured Analysls and Design Technique
,(SADT)

This method was developed in the seventies, in
the ftrm SofTech, Inc. when they searched for
an effective tool to describe the software
architecture of large systems. Douglas T. Ross
/Ross77a/ and /Ross77b/ was the first who wrote
on SADT. The latter source deals with the
applicability of this method for extremely
activity based and data-strong systeras. SADT is
cited as a reference for methods such as
Yourdon, Jackson, Warnier-Orr, Petri nets, The
multitude of PDL-s (Program Definition Language
), pseudo languages and for typical data-
oriented tools Codasyl, Entity Relation
Attribute and otliera.
SADT is very effective in the early and late
phases of software life-cycle. The detailed
design mekes a bottle neck. SADT can overcome
it with the inclusion of poverful languages for
the definition of process (PDL). The most
effective tool of the SADT method is treated in
detail. These are 'box-and-arrow' charts
which describe activity based and data aspect

of the analiaed system. These charts are
called graphic language of the structured
analisys (in SADT, of course).

3.1. Graphic Language of Structured Analysis
SADT

The basic guideline in the structured analysis
is underst.3bi.lity and simplicitv. Therefore
this method uses the decomposition from top
down to the raost simple basic elements. The
graphic - language is based on the structured
analysis boxes (further called SAB). In the
picture 3.1.a the extensiveness of such basic
element is shown. The features of individual
SAB are described with ICOM (input, control,
output, mechanism) codes. Each SAB has its own
number. On every level SAB can be decomposed
into hierarchical lower components (the
relationship parent - child; like in data flow
charts). The decomposition cannot be done on
the lowest level (atomic level) because shown
system must be entirely understandable.

WHAT '

INPUT

WHY

CONTROL

' INTERFACES

t

BOX IS
FORM
OR

OUTPUT

CHANNEL FOR
SHARING

MECHANISM

HOW

= DATA
{ D{ DUAL OPPOSITES }

TRANSFORM = ACTIVITY

Picture 3.1.a The extensiveness of SAB

The model is called a collection of
interconnected charts. the model /Ross85/
defines: M is the model of A if M can be used
to answer the questions that are put about A.
The quality of the model is determined by the
extent of questions and suitability of
answers".
Models consist of a raultitude of SAB by which
the decomposition of system is made. Two kinds
of konnections, shovrn in the picture 3.1.b are
known : support connections (support arrow)
which are actually global nests in both models
and call connections (call arrow) which can
be imagined as a call ot subprograms, in the
terminology of program languages. The model
syntax permits also that the recursion is
shown.

The graphic form of requirements definition can
be formaliaed by RML (requirements modelling
language).

3.2. Applicability of SADT

Besides having influenced the development of
very effective methods the SADT idea is
sucoe3sfully used in the development of
projects dealing with various fields (
formulation of requirements in various fields
of multinational societies, design of complex
business systems, development of
telecomunication systems and unfortunately many
complex military prograras). It cannot be said
on which field is SADT most successful. With

30

MORE GENERAL
DIASRAM - WHOLE
BOX » PART
ARROU = INTERFACE

ICOM CODES

OETAIL OF BOTH
V/A32 ANO X/A33

Picture 3.1.b Decomposition and multiple model

combined activity/data models and thorough
hierarchical decomposition the method covers a
yide sphere of requirements. The author of the
method, D.T. Ross, aknowledges that the design
and automation of design of detailed .analysed
system present is bottle-neck. A very accurate
requirements definition and excellent
documentation made the method popular to design
large systems.

4. Conclusion

In this paper an informative presentation of
some methods that proved themselves in the
development of software systems is given. In
spite of the fact that the methods like PSL/PSA
(Problem Statement Language/ Problem Statement
Analyser), TAGS (Technology for the Automated
Generation of Systems), IORL language (
Input/Output Requirements Language) and SREM (
Software Requirements Engineering Methodology)
are not treated we should be avrare that these
automated methods are widely used in the USA.

Autoaated methods - each automated method is
based on certain formallsra. The requirements
for automated methods miist be very strict
because possible errors in early development
phases are in exponential increase in the
folloning phases. It is said that those
methods are good that with incorrectly
presented requirements gtve no final results
and the designer can not be mislead. In such
cases the procedures withln method should glve
results and this effect should be increased by
automation. The creativity of the deslgner and
his ideas still represent the dominant tool.
The method should only orient him correctly,
warn against the faults and formulate his
ideas.

Trends t>f CASE tools development
Besides the fact that the tool should be based
on a proved formal design method which,
supports the development of a program in all
its phases, other requirement.s should be taken
into account as well. These are dependent on
the environment in which tool will be used.

In general, we can speak about three imortant
trends in the development of CASE tools.
First we speak about the suitability of tools
for the real-time 3ystem development. Methods
deriven from data flow charts often include the
real tlme extension. For the present state of

the development of CASE tools it Is tipical
that too little attention is paid to the
requirements of mathemeatical modelling and
simulation. The necessity for immediate and
detailed knowledge of hardware makes trouble
the real-time systems are interrupt or event
drlven.
The second trend is to develop such tools that
can model the data base by means of which the
system is aided symultaneously with the
development of the system.
The development trend of CASE tools aided by
the art if icial intel1igence is gaining in
importance. Expert systems can be used to
control syirtactical and mainly semantical
errors of automated tools. In order to fulfill
the communication betueen the designer and the
tool as much as possible object - oriented
methods are developed. They enable a natural
connection between the designed model and the
reality described by the model /Borg85/.
An interesting problem arises when we try to
design unstructured AI software systems by
conventional methods of software engineering.
Ideas to solve this problem are found in
literature /Part86/. The author narns us that
for the present it is imposaible to offer an
accurate and formalized method to design AI
software systems.
LITERATDRE :
/Borg85/ A.Borgida.S.J.Greenspan, J.Mylopoulos,

"Knowledge Representation as the Basts
for Requirements Specification", IEEE
Computer, aprll 1985

/Came86/ J.R. Cameron, "An Overview of JSD",
IEEE Software Engineering, 1986/2

/DeMa79/ T. DeMarco, "Structured Analysis and
System Spectfication", Prentice Hall,
N.J., 1978

/Gane79/ C.Gane, T.Sarson, " Structured System
Analisys ", Prentice-Hall, Inc,
Englewood Cliffs, New Jersey, 1979

/Gyor86/ J.Gyorkos,T.Dogsa,I.Rozman," VJarnier-
Orr Diagram Application Experiences",
8th International Symposium Computer
At The University, Cavtat, 1986

/Higg79/ D. A. Higgins, " Program De3ign and
Construction",Prentice-Hall,Inc., New
Jersey, 1979

/Jack83/ M.A. Jackson, "System Developraent",
Prentice Hall International, 1983

/Kell87/ G.Kellner (CERN Geneva), Papers
from " CASE Seminar Tektronix", Wien,
1987

/Part86/ D.Partridge, " Arifical Intelligence
Applications in the future of software
engineering", Patridge/Ellis Horvood
Ltd., Chichester, 1986

/Porc83/ M.Porcella, P.Freeman,"Ada Methodology
Questionnaire Summary", ACM Software
Engineering Notes Vol 8 No 1 Jan 1983

/Pres87/ Roger S.Pressman,"Software Engineerlng
", McGraw-Hill Book Company, New York,
1987

/Rese85/ I.Rozman and others: Research report
on Informatyon systems and Artificial
Intelligence, C2-052*2/796-85, Faculty
of Technical Sciences Maribor, 1986

/Roma85/ G.C. Roman, " A Taxonomy of Current
Issues in Requirements Engineering " ,
IEEE Computer, April 1985

/Ross77a/D.T. Ross, "Structured Analysis: A
Language for Communicating Ideas",IEEE
Trans.Software Eng.,Vol SE-3, Jan 1977

/Ross85/ D.T.Ross,"Applications and Extensions
of SADT ", IEEE Computer, Aprll 1985

/Rozm87/ I.Rozman, T.Dogsa,"Empirical software
Reliability Models", The 2nd Beijing
International Symposium On
Computerized Information Retrieval,
Beijing China, 12/1987

/Shov87/ P. Shoval, M.Even-Chaime, "Data base
shema design: An experimental compa-
rision between normalization and
information Analisys", DATA BASE, vol.
18, 1987

