A SURVEY OF MOST IMPORTANT AND OUTSTANDING METHODS

FOR SOFTWARE ENGINEERING

UDK 681.3.006

INFORMATICA 2/88

Jozsef Gyorkds

Ivan Rozman
Tatjana Welzer
University of Maribor

With +the presentation of mest important methods of software
engineering we want to contribute to tha better knowledge,
application and development tools that demand a systematic
procedure for +the software design. We have mentioned basic
methods of requirements engineering and structured design which
were already developed in the seventies. It was not earlier
than in the eighties when complex tools for computer aided
design of software were formed from these methods. In their
essence, these methods may be devided inte those which solve
the problems by analysing the data flow and thoss which sclve

the problem by decomposing the

data structure. The most

important factor to estimate the suitability of application of
a method is the level of covering the phases in the software
life-cycle. The behaviour in real-time environment and the
possibility to create consistent entiti-relationship models for
more complex informatlion systems are important in dependence

upon the system.

Z objave pregleda pomembnejsih metod programskegsa inZenirstva
Zelimo prispevati k boljsemu poznavanju, uporabl 1Iin razveju

orodij, ki
programske opreme, Nanizali

zahtevy in strukturnega snovanja,

narekujejo silstematiden pristop k
smo temeljine metode inZenirstva

snovanju

ki so nastale :Ze v

sademdesetih letih. #8ele v osemdesetih letih S0 se iz

njih izoblikovals
snovanje programske opreme.

tiste, ki k

podatkov

podatkov, Najpomembne j&a
primernosti uporabe neke

Zivljenjskega cikla programske

kompleksna orodja za radunalnistko podprte
osnovi se metode
refevanju sistema pristopajo 2z analizo toka
in tiste, ki to izvajajo z razgrajevanjem strukture
postavka pri
metode je stopnja pokritosti faz
opreme.

delijo na

ocenjevanju

v odvisnosti od

sistema pa je pomembno tudi obnasanje v 'real-time' okolju in

moénost kreliranja é&évestih entitetno-relacijskih

modelov za

kompleksne j&e informacijske sisteme.

@. Introduction

A multitude of actions leading to a consistent,
realiable and well documented software is
called Software engineering. In the attempt to
normalize the "multitude of actions", several
methoeds have been developed from the sixties
onwards. Regarding their applicability and
above all their "usableness”, certain methods
did not reach their climax earlier than in the
eighties and most often as a base for automatic
tools for software design. Let’'s see a brief
survey of methods of software engineering
/¥ell87/

1)} the sixties may be called also the pericd of
crisis in the software development because. it
was recognized that i1t is impossible to create
effective programs without a sistematic
procedure. In this period the philosophy of
Structured programming was formed (important
authors : Bohm, Jacopini, Dijkstra).

1i) jin the seventies the previously mentioned
recognition caused that wvarious technologies
were developed (structured analisys, design)

and term software life-cycle was introduced. In
this perliod, new methods lived only in
scientific circles, therefore this period is
called "the period of searching for panacea” (
important authors Constantine, Myers,
Yourdon, Ross, DeMarco, Sarson).

1ii) in the eilghties, the methods of the
saventies experience a revival. With the
integration of some metheds a series of
effactive and commerclally successfull
automatic tools for software development
appeared.

In the introduction let us consider the term "
software life-oycle". The software life-cycle
covers six basic steps /Porc83i/:

- Requirements Analisys

- Functional Specification

- Deslgn

- Implementation

- Validation

- Maintenance

1. Regquirements Engineerlng as a Part of
Software Engineering :

When we are solving problems by means of
software we make a photo-copy of the real world
in a logically clipped form. This form must
substitute the raeality in. certalin
characteristics that are required., Therefore in
the complex process of software engineering the
requirements speciflcation is of essential
importance. As a rule, in +this process are
envolved the developer of the project and the
customer. The process of reguirements
engineering, that is the cooperation mentioned,
can be gathered into four oprincipal points
/Pressb?/ :

i) recognition of the problem

i1} development and synthesis

1ii) specificaticns

iv) survey evaluation

The c¢oordination between the developer of the
project and the customer is made by the analyst
{ who is often called the system analyst), the
system engineer, the programmer/analyst and the
like. He must distinguish himself by his
adaptability, ability to abstraction,
communication, - knowledge of the environment (
hardware, software) in which the project will
be realized.

Picture 1la shows the process to accord and
deflne the reguirements, (see /RoszB85/). This
process, called the reader/author cycle, is a
part of the method which will be considered in
detail later (SADT - Structured Analysis and
Design Technique).

A READER :
- ¢larifies terminology
~ checks completeness
DIAGRAMS -~ checks consistency
-~ assures accurancy
- corrects syntax

CONNECTIONS,
COMMENTS

REACTIONS

Picture la "Reader/author” cycle of SADT Method

Besides SADT method several other methods for
software analysis and implementation of
specifications are developed. This ig the
requirement engineering. Each method posesses a
specific procedure and' therefore also a
different notation. The methods pass the above
mentioned four pointz and must meet the
following three demands:

a) Understable presentation of ' informational
and functional domain in order to analyse the
requirements of the problem.

Information flow shows the way of data
transformation when the data pass through the
system. As the result of studying the
information flow the data structure for the
processed system is obtained.

The functional requirements /Roma86/ describe
the dependence of the components upon each
other and upon their environment. The whole
system, the program or the element of hardware
can appear as a component. A conceptional model
is the result of fulfilment of functional

requirements. Its level of understability
should be adapted to the environment for which
is determined, Naon—-functional. reguirements

cause a problem because they can exert an
esgsential influence on the complexity of

design. Many difficulties cannot be known in
the early phases of design (it is difficult to
determine e.g. the influence of the required
level of software reliablility). The software
reliability is closely connected with the
powarful testing tool. It is difficult to
foresee the influence of the "human factor" and
the respondence of the finished product to the
errors. It is5 impossible to formalize +the
process of maintenence completely.

b) Division of the problem intce understandable
and surveyable partitions. .)

The division of the problem into easier and
more understandable parts is carried cut by a
vertycal hierarchical decomposition or with a
functional decomposition 1in the horizontal
hierarchy. :

¢) Logical and physical presentation of the
system,

The task of the requirements engineering is +to
clarify what should be realized and not how it
should be done. Logical presentation of the
problem forms the base for software system
design. The analyst will neot include the
phisycal presentation until the logical
presentation is faultless. It is necessary +to
define e.g. exceptions in the hardware
configuration, system for database management
or specificity of the applied operating system.

In the process of analysing the user's
requirements a document is formed which is
often called specificataonz. A standard - is
existing for +this kind of document (The
Hational Bureau of Standards, IEEE Standard No.
a3a-1?%4¢), but the automated methods of
software engineering do not follow it
entirelly.

It can be concluded that the task of the
requirgments engineering is to introduce a
systematic and inform notation of the
information and functional analysis to solve a
software system. According to the software
life-cycle, mentioned in the introduction the
first +two points are met by the raguirements
engineering. The development +trends in the
sighties support the development and
application of computer aided integrated tools
for software engineering : CASE Computer Aided
Software Engineering. They are overbullt and
the most effective among thenm meet the
development all phases of the software life-
cycle. In the following chapters, some tools
will be treated in detail.

2. Methods of Software Engineering
2.1. Basic Division of Methods

The basic division is taken from /Press87/. The
selected division implies to the phase of
system analysis, thus it is undependent from
the design method. The latter |is chosen
accerding to the - obtained functional
degomposition

1} data flow oriented methods
1i) data slructure oriented methods

In literature the third group is called
auwdomated methods It is true +that in this
group the methods were made as automated ones
and the philosophy of SADT method (author D.T.
Ross) served as the starting-point to design
methods from the first twe peoints. HNowadays
many methods from +the first two mentioned
groups are automated in the form of CASE tools.
SADT method will be described in detail in a
separate, third chapter.

Cur description of methods is 1limited (
following our opinion) to most effective and

most popular ones. The crlterion of
effectiveness is how many phases of & softwarse
life-cycle are covered by the method.

2.2. Data Flow Oriented Methods

All methods of this class have in common that
they perform the structural analysis by means
of Jata floew charts. Bo they give preference to
the dats transfer through the system over the
information structure on which the system |is
based, The syntax of data flow charts i= taken
from /GaneT79/ bubble chart and mainly from
/DeMa’78/.

Tom DeMarcoe describes very accurately the
processing of a&analysed system until the
functional decomposition is reached. The

continuation of processing by means of
ntruotural design ix taken from Your79/. On
the base of literature cited automated tools
from the field of software engineering are
congtructed, The stress 13 lald on the system
analysis by means of data flow charts. Nowadays
the following products are awailabile on the
market :

- ANALYST/DESIGNER TOOLKIT;
Yourdon Press, New York

- HP Teamwork SA/SD/RT; product of the
Hewlett Packard

- TEK CASE; product of the firm Tektronix
- CASE; product of the firm Microtool, Berlin

product of the firm

firm

SASD (Structured Analysis Structured Design)

is +the common name for the methods described.
It is +typical for SASD that it covers all.
phasas of life cycle in the software
development ("life-cycle mcdell” /KellB7/}.

SASD offers a good survey over the project and
enables a team work. An effective functional
decomposition from the top-down is the reason

for it. As in the of this method a serles of
understandable tocls and those being near to
the man is used (a detailed description 1is
given in +the following chapters) the method

permits
faults.
Automated +tools always offer an up-to-date
version to all members working on the project
what is of speclal importance when Iindividual

immediate correction of +the existing

menbers of groups do not work in the same
place.

2.2.1. System Analysis of SASD

2.2.1.1. Data Flow Charts

The data flow charts can be used on every level
of system abstraction. They consist of four
basic bullding blocks (see Picture 2.2.1.1.a)
from which the fundamental aystem model is
constructed first. Then 1t is decomposed into
several more detailed and understandable
charts. The basic model is called level #1 of
the data flow charts { further called DFC).
External entity represents the
source or destlination of systenm
data. The system data can be the
elements of hardware, interactive
intervention of the nusere or
connecteoin with other software
systems,

Process this sign is used when
data are transformed in such a
way that new data are obtained or
the existing ones are converted.

Data flow serves to connect

other basic elements of DFC. The

arrow shows the direction of +the e
flow. Each flow should possess

its own uniform name.

Data storage ; the symbol means a
fila or an interface where the :
data are stored or from where the
data are obtained.
Picture 2.2.1.1.a Basic elements of DFC

In order to follow the information flow best
when analysis is carried out it is advisable to
name the processes at the end. Data flows {
information flows .) that condition the
necessary process form the basea and not vice
varsa, Unfortunately, automated tools require
to name the processes ilmmediately. The picture
2.2.1.1.b shows the decomposition into the
depth of an imaginary problem by means of DFC.

4
1
o

Picture 2.2.1.1.b Decomposition intc the depth
by means of DFC

2.2.1.2. Data Dictionary

Each arrow in the data flow chart means
one or more data elements of a piece of
information. The data element /DEMA79/ cannot

be decomposed into its components. Therefore it
forms a basic element of the data flow.
In the data dictionaryevery data flow
be decomposed intc elements. To
special notation is needed:

should
do this a

symbel meaning
= equals
+ logical and
[l logical or
'k n iterations of
bracket contens
(3} optional data
* Ok comments
In the design of information systems that are
aided by powerful data bases the data
dictionary and data store /Gane78/ are needed

to model the relational shema in a normal form
(Codd’s normal forms) /Show87/. The fact that
the relation shema of the data base of the
system designed can be formed by the structured
analysis / GaneT79/ essentially contributes that
this method can be used. Here we find a linking
point with methods that are concentrated on the
data structure.

E.g. the automated tool TEK CASE alcne forms
the data dictionary to such an extent that the
necessity to describe the undefined data flows
15 shown. In the data dicticnary the syntax -of
the recoerd is contreolled auvtematically.

2.2.1.3. Functional Decomposition

With the data flow chart and the data
dictionary it is satisefied to the information
domain of the problem analysis. The
transformations ({ processes) in the product
are described as a functional domain. For +this

purpose structured natural language, most oftgn
Structured English ", is used. Such clippréd

language is called Program Design Language -
PDL. .
Let’s show the formulation of ~ the functiodﬁi
decomposition by means the data flow chart
/Press87/ - Picture 2.2.1.3.a. -
Selected DFD
bubble \/‘“
/
Apply
structured o
English Functional
description
Information
about:

processing

Picture 2.2.1.3.a. The Process of Functicnal
’ Decomposition

The dictionary "of the language used for the
description of processes should contaln english
words in the imperative form, expressions from
the data dictionary and reserved words for the
description of hidden logic { for this purpose
the usage of decision tables is recommended).

The sintax of the language used for the
description of the processes permita simple
sentences such as PUT, GET, REQUEST, etc. and
obligatory includes activity . based
constructions for the description of sequence,
choice and repetitions (IF, CASE,™\ REPEAT,
WHILE, etec. }.

2.2.2. System Dosign SASD

System design of the SASD method is taken
the source /YourT8/. The transition from the
data flow +to the first phase of structured
design, which is called structured charts, can
te made in two ways. The first and most often
used way is the tranaform analysis The second
way, called the transaction amalysisis because
of dits exaggerated formallzation less often
used.

The nuclecus of Tranaform analysisis that the
data flow charts are devided into the afferente

from

part, central or +transformation part and
efferent part. The basic three components of
the structured de=ign are described. In the

chapter 2.2.2.4. the example of the +transition
from the data flow charts into the structured

chart is described by means of transform
analysis. '
The design by means of operation analysis |is

more effective from the transform analysis only

in those cases. when the centre of the
transformation cannot be uniformly identified.
This is the case in split data flow charts

sevaral output flows). The process that
splits the input flow is . 'called tramsaction
centre. Around this centre a , suitable
atructured chart is organized. Let’s see the
basic tree phases of structured design :

(e.g.

a) Btructured Charts

The data flow chart shows a network of
processes that needn’t be connected in +the
final program in the same way. The model of the
system in the form of software modules 1is
ensured by structured charts. The term ’‘moduls’
dendes procedures or functions in the target
programming language.. Thus, the structured
chart directly shows the hlerarchical structure

27

of software.
More about the syntax of structured charts can
be found in the literature mentioned /Your79/.

The most important characteristics are
described by the words
- rectangles are used to denote modules,

External modules, e.g. libraries are denoted by
double vertical lines.

- arrons connect modules into variocus
hierarchical leves.

- arrowms with circlets denote communication
interfaces between modulaes; the direction of
the arrows shows the direction of the control
paths and data items.

- szpecial symbolsz give information on the
procedurality of the systen; these are
iterations, conditional cholices between
modules, common blocks.

b) Data Dictlonary

The data dictionary used in. the structured
design 1is the same than that used in the

structured analysis. Here it is completed with
new data cobtained from the structured chart.

¢) Description of Modules

The task of the description of modules is to
explain the activity based characteristics of
the modules. A pseudocode is obtained which is
the direct input into the program = implemented
in the selected program language. :
A simple example to create and follow the
knowledge base is given. The picture 2.2.2.a -
shows the data flow chart of the problem that
was devided into three basic parts, according
to the transformation analysis.
—_— afferent
file of_ - .
knowledge part \pranined cegml_
/red, — e
| string efferent
part
% report_
— m-.
errar_ pad kmledge
report R

Picture 2.2.2.a Division of the data flow chart
into three parts

Each wpart in the data flow chart has a
corresponding functional part in the tree of
structured chart. The root of the tree is a new
functional component which connects parts |
picture 2.2.2.b). The central part of the
division of data f£low chart can also play this

role. The starting hierarchical structure of
the problem is obtained. As the processes are
not described acurately by the individual
functional components a further factorizing
within individual divisions.in the data flow
charts is needed. This is done by top-down
design. :

tabulation
of Enowledge

examined_
string

examined_gf"r

string

know_
table

tabulation
of knowledge

read and verify
string

Picture 2.2.2.b Structured Chart

2.2.3. Implementation and Testing in SASD

Implementation of the system is based on the
top-down procedure and adding (incrementation
)} of new modules. Incremental procedure demands
that each module should be developed and tested
separately and then in combination with other
modules. In such procedure the member of
peossible faults 1s decreased and the testing
costs of the system are lowered.

The optimization of +the implemented system
should be done as late as possible and only in
cases when performance tests not uncet the
requirements. In this case the optimization
should be concentrated on selected modules
because it exerts a bad influence on important
characterlistics such as rerformance,
applicability, reliability and simple
maintenance of a well designed system.

In the field of testing and evaluation of
software reliability the tendency is to
automate +the +tocls with uniform criteria.
Additional information on practical zmccess +to
this problem is found in literature /Rozm87/.

2.2.4. Application Maintenance and Owerbuilding
in SASD

If SASD 1is formed through all phases into a
concluded form, an exhaustive reference-bock is
given. The documentation on original design is
given by data flow c¢harts and structured
charts, the definition and organization of data
is given by data dictionary; an accurate
description of processes and module structure
is given, too.

Eventual corrections in testing modules should
be stored as a certificate on sultability of
the system and as an aid to overbuilding.

The malntenance of the system is simple. The
influence of hardware changes or the modified
requirements of the user can be thorougly
studied in the documentation through all
development phases of the system.

2.3, Data Structure Oriented Methods

As we learn from the title of this chapter
these methods lay a greater stress on the
construction of regular data structure than to
the course of data structure. Two methods are
mentioned that specifically solve the problenm.
They have four common points:

i} each method demands that the key information

cbject, +that is the entity, and the operators
or the process should be determined at the
beginning;

ii) the second common point of these methods is
that their starting-point is a hierarchical
structure of information;

1ii) the data structure should be described by
basic procedural constructs - these are the
sequence, declsion and repetition;

28

iv) these methods contain effective tools to
convert the problem from the hierarchical data
structure into the suitable software structure.

2.3.1. Warnier - Orr Method

From the theory of Warnier-Orr charts the DSSD
method (Data Structured System Development)
was developed. Warnier ~ Orr charts implement a
hierarchical analysis of information domain,
The global picture presented as multitude is
dacomposed. It is further decomposed 1into a
series of submultitudes. Everithing is
interconnected by basic procedual constructs.
Braces are used to devide hierarchical levels.
A gqulck and effective explanation of the
meaning of the actions which are possible by
Warnier-Orr notation is shown in picture
2.3.1.a /Higg79/.

WHY 7
e

beginning of
the task
implementation
of the task

I

WHAT 7

WHEN ?
end of
the task

HOW 7

2.3.1.a Directions in Warnier-Orr

charts

Picture

We can see that the reading of the events from
top of the chart complex downwards gives a
sequence of temporal course of events. In the
left direction the explanation of events is
'globalized’. To the right, there is a micro-
level of described system.

The first step in the system analysis is
Jefire the exit of the process, Then the
logical data structure and later the
corresponding physical structure are defined.
In this phase the entity-relationship model can
be formulated. The design of physical meodel
follows from bottom~up but we should not think
that Warnier-Orr method is based on botton-up
design because the whola logical composition
was rerformed from top down. Practical
experiences of design with this method are
described in literature /Gyor86/ and /ReseB6/.

to

2.3.2. The Jackson System Development Method

The JSD (Jackson System Development) method
/Jack83/ ensures a methodical way +to design
complex problems. The expected design result is
an objective and repeatable system which is
independent from the creativity of the

designer. The designing process can he adjusted
and is heavily influenced by the user.

The basic idea of this method is that it is
possible to design for the user an interesting
part of the real world by means entities and
actions. The entities are basic elements that
can be recognized by the wuser. Actions are
implemented over the entities described and can
be changed from one state to the other (the
term ’'states’' means various phases in the 1life
cyele of entities).

With the definition of entities and actions and

with the formulation of structural shema the
design phase of a model is concluded.
In the following phase a suitable distribution

and definition of individual functions is made.
The functions are included into the existing
model at a definite moment and under definite
circumstances which ensure a correct operation
of the functional model.

JSD has a very rigid delimination between
design and implementation. The aprlication cof
the existing hardware and program languages by

means of which the designed system will be
realized in a classical way or by JSP (Jackson
System Programming) will be not included
esarlier that in the last phase, that 1s in the
rhase of implementation. :
JSP is alsc a data-oriented method. It is meant
for program design and it is based on the
structure of input and output data. The basic
ideas of program design by means of JSP are
transfered into the design of greater problems
and systems. This means that JSDP forms an
extenstion of JSP. Everithing what is used in
program design according to JSP can be used in
system design accoérding to JSD. The common
points and differences between the Lwo methods

are shown in the following table (Picture
2.3.2.a}.
action JSP JED

R A L A e A A A A e e

description of terms of sequ- terms of sequ-
the problem ence processes ence processes
structured a multitude of
charts unlinked proces-
ses for the desc-
ription of temporal
behaviour of entities
description of implement.of adding and impl.
the problem is uniform proc. of processes
concluded by structure which form the
problem described
problem can description of
be described tha problem is
immediatelly converted into
suitable form

the model
consists of

implementation

Picture 2.3.2.a'Comparision between

J8D and JSP
The JSD method is meant to design system in
which apecial attention should be paid to
temporal condition. JSD is used to design a
wide spectrum of applications based on ‘on-
line' or ’batch’ manner. These applications are
taken from the real world and temporal

extension 1s of supreme importance.

From +the literature /Camse86/ it is seen that
this method is most often used in Great Britain
where many systems realised by means of JSD are
in operation. The method is widely used in
-Western Europe and less often in North America.

3. Structured Analysis and Design Technigue
{ SADT)

This method was developed in the seventies, in
the firm SofTach, Inc. when they searched for
an effective +tool to describe +the software
architecture of large systems. Douglas T. Ross
/RessT7a/ and /Ross77b/ was the first whe wrote
on SADT. The latter source deals with the
applicability of +this method for extremely
activity based and data-strong systems. SADT is
cited as a reference for methods such as
Yourdon, Jackson, Warnier-Orr, Petrl nets, The
multitude of FDL-s (Program Definition Language
), Ppseudo languages and for typical data-
oriented tools Codasyl, Entity Relation
Attribute and others.

S8ADT 1is very effective in the early and late
phases of software life-cycle. The detalled
design mekes a bottle neck. SADT can overcome
it with the inclusion of poverful languages for
the definition of process (PDL). The most
effective tool of the SADT method is treated in
detail. These are 'box-and-arrow’ charts
which describe activity based and data aspect

29

charts are
structured

of the analized system. These
called graphic language of the
analisys { in SADT, of course).

3.1. Graphic Language of GStructured Analysls
SADT

The basic guldelirie in the structured analysis

is wunderstakililty and simnplicity, Therefore

this method uses the decomposition from top

down to the most simple bazic elements. Tha

.. graphic - language 1s based on the structured

the

aralysis boexes (further called SAB). In

picture 3.l1.a the extensiveness of such basic
element 1is shown. The features of individual
SAB are described with ICOM (input, control,
cutput, mechanism } codes. Each SAB has its own
number. ©On every level SAB can be decomposed
into hierarchical lower components { the
ralationship parent - child; like in data flow
charts). The decomposition cannot be done on

the lowest level ({ atomic level) because shown
system must be entirely understandable.

WHY
CONTROL
™~
WHAT INTERFACES
INPUT QUTPUT
———
CHANNEL 'FOR
SHARING
7
MECHANISHM
HOW
BOX IS
FORM = DATA
OR { DUAL OPPOSITES }
TRANSFORM = ACTIVITY

Picture 3.1.s The extensiveness of SAB

The

nodel is called a collection of
interconnected chartz. the model /Ross85/
defines: M is the model of A if M can be used
to answar the questions that are put about A.
The quality of the model is determined by the
extent) of questions and suitability of
answers"” .

Models consist of a multitude of SAB by which
the decomposition of system is made. Two kinds
of konnections, shown in the picture 3.1.b are
known support connections (support arrow)
which are actually global nests in both models
and call connections ([call arrow) which can
be imagined as a call of subprograms, in the
terminology of program languages. The model
sgntax permits also that the recursion is
SNOoWTL.

The graphic form of regquirements definition can

be formalized by RML (requirements modelling
language).

3.2. Applicability of SADT

Besides having influenced the development of
very effactive methods the SADT 1idea is
successfully used in the development of
projects dealing with wvarious fields {
formulation of reguirements in various fields
of multinational sccleties, design of complex
business systems, development of

telecomunication systems and unfortunately many
complex military programs). It cannot be said
on which field is SADT most successful. With

MORE GEMERAL
DIAGRAM = WHOLE
BOX = PART
ARROW = TNTERFACE

VIEW
X o

MORE DETALILED

SHARED DETAIL

—
INTERLUCKS MODELS DEYAIL OF BOTH

¥/A32 AND X/A33

Picture 3.1.b Decomposition and multiple model

combined activity/data models and thorough
hierarchical decomposition the methed covers a
vide sphere of requirements. The author of the
method, D.T. Ross, aknowledges that the design
and automation of design of detailed analysed
system present ls bottle-neck. A very accurate
requirements definition and excellent
documentation made the method popular to design
large systems.

4. Conclusion

In +this paper an informative presentatidn of
some methods that proved themselves in the
development of software systems is glven. In

spite of the fact that the methods like PSL/PSa
(Problem Statement Language/ Problem Statement
Analyser), TAGS (Technology for the Automated
Generation of OSystems), IORL language (
Input/Output Requirements Language) and SREM {
Software Requirements Engineering Methedology)
are not treated we should be aware that these
automated methods are widely used in the USA.

Autamated methods - sach automated method
based on certain formalism. The
for &automated methods must be
because possible errors in
phases are in exponential
following rhases. It 1is
methods are good that

rresented requirements give no final results
and the designer can not be mislead. Ian such
cases the procedures within method should give
results and this effect should be increased by
automation. The creativity of the designer and
his ideas still repressnt the dominant tool.
The method should only orient him correctly,

warn against the faults and formulate his
ideas.

is
requirements
very strict
early development

increase in the
sald that those
with incorrectly

Trends of CASE tools developmnent

Besides the fact that the tocol should be basaed
on a proved formal design method which,
supports the development of a program in all
}ts rhases, other requirements should be taken
into account as well. These are dependent on
the environment in which tool will be used.

In general, we can speak about three imortant
trends in the development of CASE tools.

First we speak about the suitability of tools
for the real-time system development. Methods
deriven from data flow charts often include the
real time extension. For the present state of

30

- /Part88/

the development of CASE tools it is tipical
that too 1little attention is paid to the
reguirements of mathemeatical modelling and
simulation. The necessity for immediate and
detailed knowledge of hardware makes trouble
the real-time systems are interrupt or event
driven.)

The second trend is to develop such toels that
can model the dJata base by means of which the
system is aided symultaneously with the

development of the system.

The development trend of CASE tools aided by
the artificial intelligerce 1is galning in
importance. Expert systems can be used to
control syntactical and mainly semantical
errors of automated tools. In order to fulfill
the communication between the designer and the

toel as much as possible object - oriented
methods are developed. They enable a natural
connecticon between the designed model and the

reality described by the model /BorgB85/.

An interesting problem arises when we try to
design unstructured Al software systems by
conventional methods of software engineering.
Ideas to solve this problem are found in
literature /PartB6/. The author warns us that
for +the present it is impossible to offer an
accurate and formalized method to design Al

software systems.
LITERATURE :

/Borg85/ A.Borgida,8.J.Greenspan, J.Mylopoulos,
“Knowledge Representation as the Basis
for Requirements Specification”, IEEE
Computer, april 18985

J.R. Cameron, "An Overview of J8D",
1EEE Software Engineering, 18986/2

T. DeMarco, "Structured Analysis and
System Speclfication”, Praentice Hall,
N.J., 1978

C.Gane, T.Sarson, " Structured System
Analisys ", Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1879
J.Gyorkos,T.Dogsa,l.Rozman,” Warnier-
Orr Diagram Application Experiences”,
8th International Symposium Computer
At The University, Cavtat, 1986
D. A. Higgins, " Program Design
Construction”,Prentice-Hall,Inc.,
Jersey, 1979
M.A. Jackson,
Prentice Hall Internaticnal,
G.Kellner (CERN Geneva),
from " CASE Seminar Tektronix”,
1987

D.Partridge, Arifical Intelligence
Applications in the future of software
engineering”, Patridge/Ellis Horwood
Ltd., Chichester, 1988

M.Pcorcella, P.Freeman, "Ada Methcdology
Questionnaire Summary”, ACH Software
Engineering Notes Vol B8 No 1 Jan 1983
Roger S.Pressman, "Software Engineering
", McGraw-Hill Book Company, New York,
1987

I.Rozman and others: Research report
on Informatyon systems and Artificial
Intelligence, C2-@522/796-85, Faculty
of Technical Bciencas Maribor, 1988
G.C. Roman, " A Taxonomy of Current
Issues in Regquirements Engineering ",
IEEE Computer, April 1985
/RossTTa/D.T. Ross, "Structured Analysis: A
Language for Communicating Ideas”,lEEE
Trans.Softwara Eng.,Vol SE-3, Jan 1977
D.T.Ross, "Applications and Extensions
of SADT ", lEEE Computer, April 1885
I.Rozman, T.Dogsa, "Empirical software
Reliability Models”, The 2nd Beiding
International Symposium On
Computerized Information Retrieval,
Beijing China, 12,1987

/Came88/

/Deta?9/

/Gane79/

/Gyor86/

and
New

/Higg?9/

/Jack83/ “System Development”,
1983
Papers

Wien,

/Kell87/

/Pore83/
/Pres87/

/ReseBb/

/Roma85/

/Ross85/
/RozmBT/

/Shov87/ P. Shoval, M.Even-Chaime, "Data base
shema design: An experimental compa-
rizsion between normalization and

information Analisys™, DATA BASE, vol.
18, 1987 '

