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The formation energy (Hy) is one of the important properties associated with the thermodynamic stability of ABO3-type
perovskite. In this work, two-stage machine learning based on hierarchical clustering and regression was designed for improving
the prediction values of the density-functional theory (DFT) H; of ABO3-tlype perovskites. A global dataset was clustered into
Cluster 1 and Cluster 2 using the CHI (the Calinski-Harabasz index). To compare the prediction performances of Hy, DTR (deci-
sion tree regression), GBRT (gradient boosted regression trees), RFR (random forest regression) and ETR (extra tree regression)
were apphcd to build models of Cluster 1, Clustcr 2 and the global datasel, respectively. The results showed that all four differ-
ent regression models of Cluster 1 had a hlghcr R?, and lower MSE and MAE than those of the global dataset, while the models
of Cluster 2 were poorer. Meanwhile, the GBRT model of Cluster 1 achieved a higher R* of 0.917, and lower MSE and MAE of
0.033 eV/atom and 0.125 eV/atom. We further validated and compared the generalization ability of the models by predicting the
H; of ABO3-type perovskite previously unseen in the training set. The two-stage machine-learning models proposed here can
provide useful guidance for accelerating the exploration of materials with desired properties.

Keywords: ABO3-type perovskites, formation energy, hierarchical clustering, regression model

Tvorbena energija (Hy) je ena od pomembnih lastnosti povezanih s termodinamsko stabilnostjo peroviskitov tipa ABO3
(CaTiOs). V Clanku avtorji opisujejo uporabo dvostopenjskega strojnega ufenja na hierarhi¢nem zdruZevanju in nato oblikovanje
regresijskih modelov za izboljSanje napovedi vrednosti funkcionalne teorije gostote (DFT) H; perovskitov tipa ABO3. Globalni
sel podatkov je avtor zdruZil v dva razreda (razred 1 in razred 2) s CHI (Calinski—Harabasz) indeksom. Za primerjavo vrednosti
napovedi H; je avtor uporabil regresijske metode: DTR, GBRT, RFR in ETR, za izdelavo modelov razreda 1, razreda 2 in
globalnem setu podatkov. Rezultati so pokazali, da imajo vsi §llrjc regresijski modeli zgrajeni na osnovi razreda 1 visok
koeficient determinacije R?, manjsi srednji kvadrat napake (MSE) in sredje absolutne napake (MAE) kot globalni set podatkov,
medtem ko so bili modeli izdelani na osnovi razreda 2 slab$i. GBRT model izdelan na osnovi razreda | je dosegel vigji R*
(0.917) ter manjsa MSE (0,033 eV/atom) in MAE (0.125 eV/atom). Nadalje je avtor ovrednotil in primerjal sposobnost drugih
modelov za napoved H; peroviskitov tipa ABO3, ki zaenkrat Se niso bili objavljeni. Predlagani modeli dvostopenjskega
strojnega ucenja zagotavljajo uporabno metodo za pospeSitev raziskav na podro¢ju materialov z Zelenimi lastnostmi.

Klju¢ne besede: ABO3-tip perovskitov, tvorbena energja, hierarhi¢no zdruZevanje, regresijski model

1 INTRODUCTION and voltages and determine many other properties of ma-
terials.*

Early measurements of Hy are based on density func-
tional theory (DFT) calculations,** however, a compara-
tively expensive cost limits the use of DFT-screening
large numbers of possible compounds. Recently, ma-
chine learning has been widely used in predicting the
quantitative structure-property relationship (QSPR) of
perovskite-type compounds,>*? including H;. F. Faber et
al.'” investigated kernel ridge regression with its different
feature vector representation as the input to predict Hy of
solids. W. K. Ye et al.? used deep neural networks to pre-
dict the Hy of a crystal. J. Im et al.’> utilized gradi-
ent-boosted regression trees to predict the Hy and band-
gaps for searching lead-free perovskites used in solar
cells.

The predictive accuracy of H is critical in a QSPR
model. Traditionally, a global QSPR model built on an

*Corresponding author’s e-mail: entire diverse dataset with a wide range is not always sat-
annpion@shu.edu.cn (Xingyue Fan)

Predicting the thermodynamic stability of perov-
skite-type oxides is critical in materials science.'* And
the thermodynamic phase stability is broadly assessed
using the convex-hull analysis, where the energy above
the convex hull (Enau) of a compound provides a direct
measure of its stability.'-2* However, E is a poor target
metric for a machine learning model.? The formation en-
ergy (Hp), the key metric of a crystal stability and
synthesizability, is typically defined with respect to the
stable line combination of the competing phases in
Epa.>* Once H; is predicted, Enu then can be extracted
by applying the OQMD database. Generally, a more neg-
ative value of H; indicates a more stable compound.*?
Besides, Hr is required to calculate reaction enthalpies
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isfactory for it is difficult to capture the detailed struc-
ture-property relationship of each group.''-'* H. Yuan et
al.'! indicated that the prediction performance of the
baseline toxicity of local models based on sub-clusters
was much superior to that of a global model based on a
global dataset. E. Stevens et al.'? found that linear rela-
tionships between treatment hours and mastery of learn-
ing objectives were strong within sub-groups. Y. Liu et
al."’ clustered a creep dataset into eight clusters after trial
and error to accelerate the prediction of the creep-rupture
life. Thus, it is reasonable to hypothesize that a model
built on sub-clusters can have a better prediction perfor-
mance of H; than a model built on a global dataset.

In this paper, we designed a two-stage machine-
learning strategy based on a hierarchical-clustering
method and then regression to better predict Hy. Firstly,
the clustering method was used for nature grouping, and
then different models of sub-clusters and the global
dataset were built, seeking the best model. As there was
little or no prior knowledge, the clustering method al-
lowed the optimal natural grouping of compounds based
on the similarity of structure descriptors evaluated by
cluster internal indicators. Then, the Hr of sub-clusters
and the global dataset were predicted by four commonly
used regression models: DTR, GBRT, RFR and ETR.
Finally, we validated the models on completely new test
samples.

2 MATERIALS AND METHODS
2.1 Dataset and pre-processing

The study started with perovskite-type oxides, and
the used dataset was from the work by P. Balachandran
et al."* Removing the compounds with missing values,
we got 386 ABO3 compounds and 9 corresponding
descriptors. These descriptors include r, (the Shannon
ionic radii for A), rg (the Shannon ionic radii for B), M,
(the Mendeleev numbers for A), My (the Mendeleev
numbers for B), dxo (the A-O bond length), dgg (the B-O
bond length), r\/rp (the radius ratio of A to O), rp/rg (the
radius ratio of B to O), 1 (the tolerance factor). Since ra
and ra/ro, rg and rp/ro are completely linearly related, we
only keep ra/ro and rp/ro. Thus, the retained dataset in-
cludes 386 ABO3 compounds and 7 corresponding
descriptors. Considering the model application on previ-
ously unseen samples, 15 samples were randomly re-
served for the validation of the performance of our
model, and the remaining 371 samples were used for
building the model.

The descriptors were pre-processed with normaliza-
tion and PCA before applying hierarchical clustering. In
this work, the Euclidean distance was used to measure
the distance or similarity between the objects. However,
for the Euclidean distance, if descriptors are measured
on different scales, descriptors with large values contrib-
ute more to the distance measure than variables with
small ones. To overcome this problem, min-max normal-
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ization is adopted so that all these input descriptors are
dimensionless and have the same range of (0-1)."” PCA
is used to transform a set of possible correlation vari-
ables into a set of linearly uncorrelated variables and to
extract the most variations of the dataset. The variables
from the transformed set are called the principal compo-
nents (PCs). The orthogonal transformation was written
as column vectors W = (w1, wa, ...wn) and the weights of
the PCs were defined as w, determined with an eigen-
problem.'®

X" Xo, =1, 0, (1

The eigenvalues are arranged in descending order,
thatis, A1 = A, = ... = Ax = 0. The variance contribution
rate of each eigenvalue is:

R &)
=1 ’T'l

It is termed as the explained variance ratio in PCA.

2.2 Hierarchical clustering

Hierarchical clustering attempts to divide the samples
in a dataset into several disjoint subsets. The divided
samples are called clusters. There are two methods of hi-
erarchical clustering — agglomerative and divisive. The
process of these two methods of hierarchical clustering
can be visualized through a dendrogram, which can dem-
onstrate the clustering results. In this work, the agglo-
merative method of hierarchical clustering was per-
formed. based on Ward’s method,'” to measure the
similarity between the clusters and the Euclidean dis-
tance to measure the distances between the samples.

Cluster-validation techniques were used to evaluate
the performance of the cluster results. In general, there
are three criteria for a cluster validation: external criteria,
internal criteria and relative criteria. To evaluate the re-
sults of a clustering method based on the inherent simi-
larity of the datasets, one of the most used internal crite-
ria, i.e., the Calinski-Harabasz index'® was chosen to
determine the optimal number of clusters.

2.3 Regression model

For the regression model, we tested four different
machine-learning models: DTR, GBRT, RFR and ETR.
They are the extensions of decision trees,'® gradient
boosted trees.”” random forest?! and extra trees?> models
of regression problems, respectively. DT is a diagram
used to determine the process of an action or result.
However, DT is prone to overfitting, while ensemble
methods such as boosting and bagging can help prevent
overfitting and improve accuracy. GBT adopts a boosting
strategy; for regression, it uses the gradient descent algo-
rithm to optimize the loss function iteratively so that the
loss function of a sample is as small as possible; for clas-
sification, a log-likelihood loss needs to be introduced to
help optimize the loss function. RF uses the bagging
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strategy on the base learners of decision trees and further
introduces the random-attribute selection in the training
process. The ET algorithm is a more randomized version
of the RF algorithm and it learns much faster.

The coefficient of determination (R?), mean squared
error (MSE) and mean absolute error (MAE) were chosen
as the regression-model evaluation indicators. The R?
represents the goodness of fit of a regression algorithm,
the value of 1.0 indicates a perfect fit. MSE is the mean
squared error between the predicted and actual values.
MAE is the average of the absolute difference between
the predicted and actual values, n represents the size of
the data set, ¥, is the predicted value of the i-th sample
and y; is the corresponding true value of the dataset.
Mathematical expressions of the evaluation indicators
are given in Table 1.

Table 1: Statistical-error measures applied for a method comparison

Measure Expression
Z(}’f - )
Rz R2 _ =l
Sy
i=1
MSE MSE =13 (y, V)
i=1
MAE MAE =3[y, )
i=1

3 RESULTS AND DISCUSSION

3.1 Implementation of hierarchical clustering

For data pre-processing, the original dataset was nor-
malized firstly. Then, PCA was applied to the normalized
dataset. PCA not only reduces redundancy and noise, but
also retains the most essential characteristics of the
global dataset. As depicted in Figure 1, the bar chart
shows the corresponding explained variance ratio of PC,
which decreases monotonically. Notably, the contribu-
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Figure 1: Bar chart of the explained variance ratio

Materiali in tehnologije / Materials and technology 55 (2021) 2, 263-268

m -
w 4
8
2
=
0
o -T!rﬁ r!'-—,,'.-".'w.-'r. ‘T!rl | l’. al L

compounds
Figure 2: Dendrogram for the ABO3 dataset

tions of the last two PCs are so small that we only retain
the top five PCs used for hierarchical clustering.

Hierarchical clustering based on Ward’s method and
Euclidean distance was performed, generating a
dendrogram to visualize the clustering results for 371
ABO3 compounds as shown in Figure 2. In the
dendrogram, all the leaf nodes are compounds and the
heights are the distances between two clusters, measur-
ing the similarity. In general, a dendrogram is beneficial
as it indicates the cluster and sub-cluster relationship,
helping us evaluate the similarity of two materials and
assess the clustering process,'” especially when the
dataset is small.?

The Calinski-Harabasz index (CH)'® was applied to
determine the optimal number of clusters. The larger the
CH, the closer are the clusters, and the more dispersed
are the clusters, the better is the clustering result. In Fig-
ure 3, the optimal number of clusters determined by CH
is 2, and the suboptimal number is 6. Thus, in this work,
the global dataset is divided into Cluster 1 and Cluster 2
based on the similarity between their structure descrip-
tors.

H

2

calinski harabaz score
g

the num of clusters

Figure 3: Bar chart of CH evaluation indicators
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Figure 4: Comparison of the prediction performances of Hy by four regression models and three different datasets: a) R2, b) MSE, ¢) MAE,
d) PCA projection for 371 compounds — red for Cluster 1 and blue for Cluster 2

3.2 Model selection

To better predict Hy, the prediction performance of
four candidate regression models and three different
datasets were compared. The four regression models in-
cluded DTR, GBRT, RFR and ETR. And the three
datasets were the global dataset, Cluster 1 and Cluster 2.

For each regression model, 80 % of the samples of
the dataset were chosen for random training and the re-
maining 20 % of the samples were used as the test set.
For each dataset, we built the above four regression mod-
els for comparison. Evaluation indicators were R?, MSE
and MAE obtained by calculating the average value of
100 runs on different test sets. The evaluation indicators
of the test sets based on four regression models and three
datasets are depicted in Figures 4a to 4c. With respect to
the models, the GBRT model of Cluster 1 has the highest
R?, and the lowest MSE and MAE, indicating the optimal
prediction performance of Hy. For Cluster 1, R? is slightly
improved compared to the global dataset, while both
MSE and MAE are significantly reduced. For Cluster 2,
R? is reduced greatly, while MSE and MAE become
larger.

On the whole, we achieved a natural group by clus-
tering structure descriptors of 371 perovskite-type ox-
ides. All the models of Cluster 1 were better than those
of the global dataset, while the models of Cluster 2 were
poorer. The two reasons for this may be as follows:
firstly, as shown in Table 2, for each structure descriptor,
the standard deviation of Cluster 2 is the largest one and
the standard deviation of Cluster I is the smallest one.
Secondly, as shown in Figure 4d, the sample points in
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Cluster 2 are smaller than in Cluster 1, but they are more
widely scattered. It is known to all that machine learning
relies heavily on a proper dataset and proper regression
model. The poor prediction result for Cluster 2 may be
due to its large standard deviation, small training sam-
ples and a poor training model of Cluster 2. Structure-
property relationships indicate that compounds with sim-
ilar structure descriptors are more likely to exhibit simi-
lar properties. Clustering based on structural descriptors
is thus likely to group compounds with similar proper-
ties.?* However, there are several factors that affect the
clustering results, such as the selected feature set, the
heterogeneity of the dataset and the size of the dataset.
Local models built of sub-clusters can outperform global
models build of the global dataset, but there are excep-
tions when the local models can be equal to, or even
poorer than, the global models,» such as Cluster 2 in our
experiment. Therefore, it is important to select a proper
dataset and proper regression model to improve the tar-

get property.

Table 2: Standard deviations of 7 descriptors of the global dataset,
Cluster 1 and Cluster 2, respectively

Dataset | My | Mg | dao

Global |24.691/20.882| 0.211
Cluster1|11.004/19.678| 0.135

Cluster2|25.933/22.661| 0.239

re/ro ]
0.130 | 0.112
0.093 | 0.083

0.150 | 0.154

-"'A/-"(}
0.142
0.128

0.153

dpo
0.165
0.130

0.207

3.3 Model application: new compounds

It is hypothesized that when a new sample was in-
cluded into Cluster 1, we could build a GBRT model of
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Figure 5: Comparison of DFT values, values predicted by Cluster 1
and values predicted by the global dataset for Hy of 11 previously un-
seen samples

Cluster 1 rather than of the global dataset to predict H;.
As a further test of the hypothesis, we utilized 15 ran-
domly reserved ABO3 samples that were previously un-
seen by the model. We computed the Euclidean distance
between 15 new samples and the centers of sub-clusters,
and then found the sub-cluster to which the new sample
belonged. Taking a random trial as an example, 11 sam-
ples were clustered into Cluster 1, then GBRT models
were built of Cluster 1 and of the global dataset to com-
pare the prediction performances of those 11 samples.
Figure 5 shows the comparison of the DFT values, val-
ues predicted by Cluster 1 and values predicted by the
global dataset for H;. We can see that the errors between
the values predicted by Cluster 1 and DFT values are
more acceptable than the errors between the values pre-
dicted by the global dataset and DFT values. We imple-
mented many random trials and also found that when a
new sample is included into Cluster 1, it is proposed to
build a GBRT model of Cluster 1 rather than of the
global dataset to better predict its Hr.

5 CONCLUSIONS

In this work, we designed a two-stage machine-learn-
ing strategy based on a hierarchical clustering method
and regression to predict H;. A total of 371 compounds
were clustered into Cluster 1 and Cluster 2 using cluster
internal indicators based on structure descriptors. Then
we built four different regression models of Cluster 1,
Cluster 2 and the global dataset to compare the predic-
tion performances for Hy. The values of R?, MSE and
MAE for the test sets showed that all the models of Clus-
ter 1 were better than those of the global dataset, while
all the models of Cluster 2 were poorer. Meanwhile, the
GBRT model had a better prediction performance than
the DT, RFR and ERT models. Finally, we utilized 11
previously unseen compounds to confirm that the GBRT
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model of Cluster 1 had a better prediction performance
than that of the global dataset. The result suggested that
if new compounds were clustered into Cluster 1, it was
reasonable to build a GBRT model of Cluster 1 rather
than of the global dataset to predict their Hr values. The
QSPR model of Cluster 1 could capture the struc-
ture-property relationship more accurately than the
global model, indicating a better prediction performance.
However, larger standard deviations and fewer samples
might have led to the poor training model of Cluster 2,
so if compounds were clustered into Cluster 2, we could
choose to build a GBRT model of the global dataset
rather than Cluster 2 to predict H;. Furthermore, it was of
great significance for the acceleration of material discov-
ery when all the models of sub-clusters had a better pre-
diction performance than those of the global dataset. In
fact, the clustering method can be used for data pre-pro-
cessing required for predicting a target property, which is
significant for predicting the QSPR in many cases, espe-
cially when the global dataset is heterogeneous or di-
verse.
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