
IMPLEMENTING PASCAL-LIKE CONSTRUCTS:
AN EXERCISE IN PROLONG PROGRAMMING

INFORMATICA 2/87

UDK 681.3.06:519.682 PROLOG

Bogdan Filipič
Department of Computer Science and Informatics

»Jožef Štefan« Institute, Ljubljana

ABSTRACT. Due to tho declarativo meaning ,of programa.
Prolog is a poworful programming language. Howevor, in
practice it turna out that numerous tasks within a oertain
kind of programs aro quite prooedural. The paper describes
a simple implementation of some Pascal-like construots in
Prolog as a practical solution to this problem.

IMPLEMENTACIJA PASCALSKIH KONSTBUKTOV KOT VAJA IZ PBOGBA-
HIKAMJA V PKOL060. Prolog je zaradi deklarativnega pomena
programov močan programski jezik, vendar se v praksi izkaSe,
da so mnoga opravila znotraj določenih programov povsem
proceduralnega znaOaja. V članku je kot praktična reSitev
tega problema prikazana implementacija nekaterih pasoalskih
konstruktov v Prologu,

INTRODUCTION IF-THEH AND IF-THEH-ELSE PROCEDURES

Due to the declarative meaning of programs,
Prolog is a poverful programming language
[1,3]. It is especially well suited for
solving non-numerical problems. From the
programmer's point of view, programming in
Prolog is very effiolont. On the other hand.
Prolog implementations suffer from the lack of
supporting the prooedural programming
approach. In practice it namely turns out
that numerous tasks within a certain kind of
programs are quite prooedural. One may, for
example, wish to perform an aotion
conditionally, repeat a procedure until a
certain oondition is satisfied or execute a
seguence of actions a given number of times.
To do this in Prolog, we usually use outs and
repeat-fail loops. Unfortunatelly, improving
efficienoy through these inechanisms often
weakens the clarity and the conciseness of a
Prolog program.

Some Prolog implementations support condi-
tional by default. Remember, for example,
P -> Q t R from 0ECsystem-lO Prolog [2],
C-Prolog [5] or Suintus Prolog [6]. Arity
Prolog [7] even supports ifthen/2 and
iftheneIse/3 predicates. Here are common
definitions of these procedures:

i-f_then(P,Q)
if_then(P,Q).

calKP), .', calKO).

if_then_else(P,Q,R) t- calI(P>,
if_then_else(P,Q,R) s-calKR).

calKO).

Using operators, we may simply define an
appropriate predicate if/1 that is determined
as a Principal funotor. Its definition
includes both above alternativos (see
implementation in the appendix). We may now
code conditionals of both forms;

The problem can be solved neater by using
explicit definitions for the oontrol of
execution. Including Pascal-like construots
into Prolog may be seen as a practical
solution to this problem.

2f P then Q.
if P then O eise R.

where P, Q and R denote single Prolog goals or
sequences (i.e. conjunctions or disjunctions)
of goals.

V=.

28

CAS£ PROCEDURE REPEAT-umiL PROCEDURE

Onoe the if predicate has been implemented, we
may define čase as a seguenoe of if procedures
trying to matoh a certain condition value and
to sati8fy related goal(s), We introduce the
Prolog čase construct

čase X o-f C XlsQl, X7sQ2, . . . , XnsQn J.

that is interpreted as

if X = XI then Ql
else if X = X2 then Q2
else if

Here we introduce the repeat/l predicate that
will have similar effect as the built-in
repeat/0. You must keep in mind that proposed

repeat O until P.

is just a Pascal-like notation for the
procedure that will be executed in the Prolog
sense, i.e. failure of O will result in
backtracking. The execution may be viewed as
Pascal-liko when backtracking is not possible,
for exainple:

repeat (urite< 'Filename? '), read(F))
until exists<FJ.

else if X " Xn then On.

and

čase X of
C XJsQl, X2:Q2, , Xnj<3n otheruise R J.

that stands for

Note that, when O stands for a sequence of
goals, they must be put into brackets and the
left braoket must be separatod from the
Principal functor repeat by blank. Otherwise
the entire expression denotes a predicate of
an arity greater than 1 whioh will fail, of
course. Similarly, this syntax restriction
must be considered when using if.

if X = XI then Ql
else if X = X2 then 02
else if

FOK PROCEDURE

e7$e if X
else R.

Xn then Qn

Note that our implementation does not support
more than one value being assigned vrith each
alternative. This can be done by Joining
possible values into a list and substltuting
condition X = Xi with testing the list
membership. The following is an example of
using the čase construct:

aanu_seIection s-
nrite('Selection? ' } ,
read_line(Ansuer) ,
čase Ansuer of

C a s opt ioni (... } ,
b I option2{ ... } ,
C s option3(,-, } ,
h s (help, aenu_selection),
X s exit_menu
otheruise

(teepf
Nritef 'Illegal ansuer') , nI,
mBnu_selection

)
J.

J

read^line(AnsNer) ;—
get< ASCII >,
name(Ansuer, CASCIIJ) .

In order to implement the far loop, let us
first introduce a utility for managing global
counters [4]. Suppose we have certain valuee
in our program that can be passed to or
modified by any part of the program.
Modifying these values may be understood as
assigning values to global variables in
procedural languages. Suoh variables are
particularly suitable as counters. Each
counter Is spooified by its name, a key, and
the related integer value. The counter
managing predicates below siiBply use retract
and assert to assure the current value of a
counter to be recorded in the database.

Based on previously defined repeat procedure
and the global counters, the for loop has the
following two forms:

for CCount,IJ
for CCoant,11

II to 12 do a.
II donnto 12 do Q.

beep s- put<7>.

Count identifies the procedure and should be
instantiated to a Prolog constant. Further-
more, the global counter with the key Count Is
activated when executing the procedure. Its
current value is instantiated to I. The
following example illustrates hov to use the
loop:

for Ci,l3 f i to 10 do
(nrite(l), nI) .

29

figain, the exeoution is Pascal-like only when
the goal(s) appearinfl in tho loop can be
satisfied in no more than ono way.

REFERENCES

[1] Bratko I.: Prolog Programming for Arti-
fioial'Intelligence, Addison-Wesley, 1986

CONCLUSION

The papar presentB the implementation of some
Pascal-like constructs in Prolog. We found
them useful for vriting procedural segments of
programs, such as input and output procedures.
As already stated, our purpose is not to
reduoe the Importanoo of standard Prolog
concepts, but just to add some convenient
procedural foaturos. In our opinion,
combination of both declarative and procedural
approaches is the right solution • when
vondering about hov to code a oomplex task
offeotively.

And finally, the, reador might have noticod
that we said nothing about the repeat
procedure when discussing Pascal-like
featuros. The reader is invited to imploment
it himself as an exercise.

[2] Byrd L., Pereira F., Harren D.: A Guide
to Version 3 of DEC-10 Prolog, Department
of Artificial Intelligence, University of
Edinburgh, 1883

[3] Clocksin H.F., Mellish C.S.: Programming
in Prolog, Springer-Verlag, 1984

[4] Filipie B., Mozetie I.: A Library of
Prolog Utilities, Keport IJS DP-4466,
JoZef Štefan Institute, Ljubljana, 1986

[5] Pereira F.: C-Prolog Oser's Manual,
Univorsity of Edinburgh, Department of
Computer Aided Architectural Design, 1984

[6] Quintus Prolog User's Guide and Reference
Manual, Quintus Computer Systems Inc.,
Palo Alto, 1986

[7] The Arity/Prclog Programming Languago,
Arity Corporation, Conoord, 1986

APPENDIX: THE PROGRAM

% file PROCED s
% Implementing Pascal-like constructs
X ,

.-- op(900, fx, if) .
}- op(850,. xfx, then) .
s- op< 800, xfx, else) .

t- op(900, fx, čase >.
t- op(850, xfx, of J.
r- op<'800, xfx, otherMJse) ,
s- op(750, xfx, 's' >.

s- op(900, fx, repeat) . ;
»- op(850, xix, until) .

s- op(900, fx, -for) .
z- op(850, xfx', to) .
i— op(850, x-fx, donnto) .
s- op(800, xfx, i3o } .
s— op(750, x1x, 'f' } .

CcountsJ, X Counter managemertt.

i1 P then Q :~
if_then_else(

Q - (R else S),
if_ttien_else(P,R,S) ,
if_then(P,Q)

) .

% 11 'else' found
Z then if_then_else
Z else if then.

if_then<P,Q) s- calKP), .', calKO).
if_then(^,_>.

if_then_else(P,Q,_> s- calKP), .', calKO).
if_then_else(_,_,R) s- calKR).

čase X of C XntO othertiise R J s-
if X=Xn then Q else R, .'.

čase X of C XniQ] s-
<if X=Xn then O, /.

čase X of C XisQ ! Others J i-
if X=Xi then Q else čase X of Others.

repeat Q until P s-
repeat, calK <Q, .')) , call(P).

for C_,_Js'Il to 12 do _ :-
ll>12, .'.

for CCount,I]s=Il to 12 do Q :-
ctr _set(Count,11),
repeat C ctr_inc<Count,1), Q >
until 1=12,
ctr_remove(Count), /.

for C_,_Jt=ll doNnto 12 do _ s~
IK12, /.

for CCount,IJs = Il donnto 12 do Q i-
ctr_set(Count,Il>,
repeat (ctr_dec(Count,1}, Q)
until 1=12,
ctr_reaove(Count>, /.

O

30

2 File COUHTS i
Z Hanaging global countsrs
%

Z ctr_set/2 sets a counter to the
X desired nuaber.

Z ctr_dec/2 decrements a counter ond
Z roturns its pravious value.

ctr_dec(KeY,a} i-
retract(countor(KBy,H}) ,
m is H - 1,
assertC counter(Koy,HI J) , /.

ctr_set(Hey,h> s-
integar (M) ,
ctr_raoovo(Key)p
assort(counter (Koy,H)) , .'.

Z ctr_inc/2 increaents a counter and
Z returns its pravious valuo.

ctr_inc(KBy,N) M-
ratractf countor(Koy,M}) ,
Ml is » * 1,
assartf countor(KaY^MI>)f f>

% ctr_is/2 returns the current vaiua
Z of a counter.

ctr_is(Key,H) t-
counter (Key,ti) , /.

Z ctr_remova/t resovoa a counter
Z froE^ tho databaso,

ctr _rBaove(Key) t —
retract(counter(Key,_)) , fail.

ctr reBove(> .

