IMPLEMENTING PASCAL-LIKE CONSTRUCTS:
AN EXERCISE IN PROLONG PROGRAMMING

UDK 681.3.06:519.682 PROLOG

INTRODUCTION

Due to the declarative

meaning of progdrams, Some Prologd implementations support
Prolog is powerful programming language tional by default. Remember,
{1,3]. It especially well suited for P - Q@ ;R from
solving non-numerical problems. From the C-Prolog (5] or Quintus Prolog [6].
programmer’s point of view, programming in Prolog (7] even supports
Prolog 1is very efficient. On the other hand, ifthenelse/3 predicates. Here

Prolog implementations suffer from the lack of

ABSTRACT. Due to the deolarative meaning . of prodrams,
Prolog is a powerful programming language. However, in
practice it turns out that numerous tasks within a certain

kind of prodgrams are quite procedural. The paper describes
a simple implementation of some Pascal-like construots in
Prolog as a practical solution to this problem.

IMPLEMENTACIJA PASCALSKIH KONSTRUKTOV KOT VAJA 1IZ PROGRA-
MIRANJA vV PROLOGU. Prolog je zaradi deklarativnega pomena
programov mocan programski jezik, vendar se v praksi izkaze,
da so mnoga opravila znotraj dolodenih programov povsem
proceduralnega znacaja. V &lanku je kot praktiéna resitev
tegda problema prikazana implementacijea nekaterih pascalskih
konstruktov v Prologu.

INFORMATICA 2/87

Bogdan Filipi¢

Department of Computer Science and Informatics
»JoZef Stefan« Institute, Ljubljana

i

IF~THEN AND IF-THEW-ELSE PROCEDURES

supporting the procedural programming
approach. In practice it namely turns out if_then(P,Q) :— callc(P),
that numerous tasks within a certain kind of if_then(P,qQ).

programs are quite procedural. One

may, for

definitions of these procedures:

condi-

for example,
DECsystem~-10 Prolog (2],

Arity

ifthen/2 and

are common

/, callcq).

if_then_else(P,Q,R) :—- call(P), 4/, call(Q).

example, to perform an action
conditionally, repeat a procedure until a if_then_else(P,Q,R) :— call(R).
certain condition 1is satisfied or execute a

sequence of actions a given number of times.
To do this in Prolod, we usually use cuts and
repeat-fail loops. Unfortunatelly, improving
efficiency through these mechanisms often

_weakens the clarity and the conciseness of a

Prolog program,

The problem can be solved neater by using
explicit definitions for the control of
execution. Including Pascal-like constructs
into Prolog may be seen as a practical
solution to this problem.

Using operators, we may simply define an
_appropriate predicate if/! that is determined
as a principal functor. Its definition
includes both above alternatives (see
implementation in the appendix). We may now

code conditionals of both forms:

if P ther Q.
if P then Q else R.

where £, @ and R denote sindle Prolog goals or
sequences (i.e. conjunctions or disjunctions)
of goals. .

CASE PROCEDURE

Once the if predicate has been implemented, we
may define case as a sequence of if procedures
trying to match a certain conditicn value and
to satisfy related goal{s). We introduce the
Prolog case construct

case X of [X1:Q1, X2:Q2, ..., Xn:Gn 7.

that is interpreted as

if X = X1 then Q1
else if X = X2 then Q2
else if - .

else if X = Xn then Gn.

and

case X of

£ X1:Ql, X2:Q2, Xn:Qn otherwise R 1.

cuey

that stands for

IT X = X1
else if X
else If .

then Q1
then Q2

else if X = Xn then Qn

else R.

Note that our implementation does not support
more than one value being assigned with each

alternative. This can be done by Joining
possible values into a list and substituting
condition X = Xi with testing the list

membership. The following is an example of

using the case construct:

menu_selection z-
write(‘Selection? °),
read_line(Answer),
case Answer of
£ a 2 optionlt ...),

b 1 option2¢ ...),
c ¢ option3(...),
h 2 ¢ help, menu_selection),
x : exit_menu
otherwise
(beep,
write(‘Illegal answer’' J), nl,
menu_selection
2
1.

bl

read_line(Answer) :—
get(ASCII),
name(Answer, L[ASCI111).

beep s~ put(7).

28

REPEAT-UNT1IL PROCEDURE

Here we introduce the repeat/1 predicate that

will have similar effect as the built-in

repeat/0, You must keep in mind that proposed
repeat Q until AF.

is Jjust a Pascal-like notation for the

procedure that will be executed in the Prolog

sense, i.e. failure of @ will result in

backtracking. The execution may be viewed as

Pascal-like when backtracking is not possible,
for example:
repeat (write('Filename?
until exists(F).

‘), read(fF))

Note that, when @ stands for a sequence of
goals, they must be put into brackets and the
left bracket must be separated from the

principal functor repeat by blank. Otherwise
the entire expression denotes a predicate of
an arity greater than 1 which will fail, of
course. Similarly, this syntax restriction
must be considered when using i7.

FOR PROCEDURE

In order to implement the for loop, let wus
first introduce a utility for managing global
counters {4]. Suppose we have certain values
in our program that can be passed to or
modified by any part of the program.
Modifying these values may be understood as
assigning values to dlobal variables in
procedural langueges. Such variables are
particularly suitable as counters. Eech
counter is specified by its name, a key, and
the related integer value. The counter
managing predicates below simply use retract
and assert to assure the current value of a
counter to be recorded in the database.

Based on previously defined repeat procedure
and the global counters, the for loop has the
following two forms:

for ?Count,l]
for (Count,l]

:= 11 to 12 do Q.

2= I1 domnto I2 do Q.
Count identifies
instantiated to a Prolog oconstant.

the procedure and should be
Further-~

more, the global counter with the key Count is
activated when executing the procedure. Its
current value is instantiated to I, The
following example illustrates how to use the

loop:

for (i, 1] = 1 to 10 do
(write(l), nl).

Again, the execution is Pascal-like only when
the goal{s) appearing in the loop can be
satisfied in no more than one way.

CORCLUSION

The paper presents the implementation of some
Pascal-like constructs in Prolog. We found
them useful for writing procedural segments of
programs, such as input and output procedures.
As already stated, our purpose is not to
reduce the importance of standard Prolog
concepts, but Jjust to add some convenient
procedural features. In our ‘opinion,
combination of both declarative ‘and procedural
approaches is the right solution *when
wondering about how to code a complex task
effectively.

And finally, the reader might have noticed

that we said nothing about the repeat
. procedure when discussing Pascal-like
features. The reader is invited to implement

" it himself as an exercise.

APPENDIX: THE PROGRAM

Z

% File PROCED :

Z Implementing Pascal-like constructs
Z

fx, if J.

:= opl{ 200,

:- op(850, xfx, then).

s— op(800, xfx, else).

s—- op(900, fx, case). '
¢~ op(850, xfx, of).

z— op(-800, xfx, otherwise).

:~- op(750, xfx, ‘'z’).

s— op(¢ 900, fx, repeat). i
- op(850, xfx, until 2.

2~ op(900, fx, for).

:— op(850, xfx; to J.

:— op(850, xfx, downto J.

:— op(800, xfx, do 2.

1— op(750, xfx, “z=°).

3— Lcountsl?. Z Counter management.

if P then Q@ :-
if_then_else(
Q@ = (R else S), 4 If "else’ found
if_then_else(P,R,S), L then if_then_else
if_then(P,qQ) Z else if_then.
) . .

29

REFERENCES

Bratko I.: Prolog Programming for Arti-
ficial' Intelligence, Addison-Wesley, 1988

{11

Byrd L., Pereira F., Warren D.: A Guide
to Version 3 of DEC-10 Prolog, Department
of Artificial Intelligence, University of
Edinburgh, 19883

(2]

Clocksin W.F.,
in Prolog, Springer-Verlag,

{31 Mellish C.S.: Programming

1984
{4} Filipie B., Mozetic I.: A Library Tof
Prolog Utilities, Report IJS DP-4468§,
Jozef Stefan Institute, Ljubljana, 1986

Pereira F.: C-Prolog User’s Manual,
University of Edinburgh, Department of
Computer Aided Architectural Desidgn, 1984

-

[5}

[6] Quintus Prolog User’s Guide and Reference
Manual, Quintus Computer Systems Inc.,
Palo Alto, 1985

[7] The Arity/Prolog Programming Language,
Arity Corporation, Concord, 1986

if_then(P,Q)
if_then(_.,_J.

:— call(p), 7, call(@.

if_then_else(P,Q,) =~ call(P), /, call(Q).
if_then_else(_,_,R) z— call(R).

case X of £ Xn:Q otherwise R 1 :-
if X=Xn then Q else R, 7.
case X of [Xn:@ 1 s~
¥f X=Xn then Q, /.
case X of [Xi:Q / Qthers 1 :-
if X=Xi then Q else case X of Others.

repeat Q@ until P :-
repeat, call((@, /)), call(P).

for [_,_1:=1I1 to 12 do _ :-
11512, /..

for [Count,17:=]1 to 12 do Q :~
ctr_set(Count,l1),
repeat (ctr_inc(Count,l), @)
until 1=12,
ctr_remove(Count), /.

for (_,_1:=11 domnto 12 do _ :—
ricrz2, /.

for [Count,IX;=11 downto I2 do @ :-
ctr_set(Count,I1),
repeat (ctr_dec(Count,l), @)
until I=12,
ctr_remove(Count), /.

4

Z File COUNTS =

2 Hanaging global counters

¥4

2 ctr_set/2 sets a counter to the

~N

desired nunber.

ctr_set(Key,N) -~
integor (N),
ctr_renove(Key), -
assert(counter(Key,N)), /.

Z ctr_inc/2 increaents a counter and
X returns its previous valuc.

ctr_sfnc(Kaey, N} 31—
retract(counter(Key,N)),
Kl is N + I,
assert(countar (Key,N1)), 7.

30

Z ctr_dec/2 decrements a counter and
Z rgturns its previous value.

cter_dec(Key,H) 1~
retract(counter(Key, %) J,
Kl is N - 1,
assert(counter (Key,N1)), /.

Z ctr_is/2 returns the current valug
Z of a counter.

cte_is(Key,N) 22—
counter (Key,H), /.

Z ctr_reaove/l removes a counter
Z frop the databdbase.

ctr_ropove(Key) z2-—

retract(counter(Key,)), fail.
ctr_reeove(_).

