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0  INTRODUCTION

A gearbox with a composite gear train is generally 
composed of an ordinary gear train and a planetary 
gear train. It has been widely used in the transmission 
systems of mechanical equipment, such as coal 
mine shearer’s ranging arm gearboxes, wind 
turbine gearboxes, and automotive transmissions, 
etc. [1] to [3]. Compared with ordinary gear train 
[4] to [6], the complex structure of the composite 
gear train inevitably leads to its complex vibration 
characteristics. Its vibration signals contain vibration 
characteristics [7] and [8] of both ordinary gear train 
and planetary gear train as well as coupled vibration. 
Therefore, it is of significance to investigate effective 
fault diagnosis methods for gearboxes with composite 
gear trains. 

However, its fault features are apt to be disturbed 
by noises, because its vibration signals are weak 
and mainly in the low-frequency part. As a result, 
signal denoising is the chief issue that needs to be 
solved for fault diagnosis [9] and [10]. At present, the 
time-frequency and multiresolution characteristics 
of wavelet transform are mainly utilized for signal 

denoising. A denoising method based on wavelets 
has been widely applied in engineering, especially 
wavelet threshold denoising methods [11] to [13].

Given that the wavelet threshold denoising does 
not consider the relativity of neighbouring wavelet 
coefficients, Cai and Silverman [14] proposed a 
denoising method using neighbouring wavelet 
coefficients (neighbouring coefficients, NeighCoeff), 
which considers the relativity of neighbouring wavelet 
coefficients to improve the denoising effect. Through 
changing the shrinkage factor of neighbouring 
coefficients to better extract information of vibration 
characteristics from noises, Yang and Zhao [15] 
made some improvements to the NeighCoeff 
denoising method and successfully realized early 
weak fault diagnosis of bearings. Strela et al. [16] 
proposed a multiwavelet scalar denoising method 
by introducing wavelet soft and hard threshold 
denoising into multiwavelet transform. Downie 
and Silverman [17] proposed a multiwavelet vector 
threshold denoising method by taking account of the 
relativity of the multiwavelet vector coefficients. To 
eliminate the Gibbs phenomenon, which exists in the 
above-mentioned multiwavelet threshold denoising 
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method, Bui and Cheng [18] applied the translation-
invariant denoising method into multiwavelet 
denoising to demonstrate that a translation-invariant 
multiwavelet denoising method has excellent 
denoising characteristics. A denoising method using 
neighbouring coefficients into multiwavelet denoising, 
which has achieved good results in electric power 
systems has been introduced in the literature [19]. Hu et 
al. [20] applied the translation-invariant multiwavelets 
denoising method using neighbouring coefficients into 
fault diagnosis for satellite communication antenna, 
which has effectively extracted weak characteristics 
of early faults. Yuan et al. [21] proposed a denoising 
method based on translation-invariant multiwavelet 
neighbouring coefficients, which has successfully 
extracted the fault feature information of early gear 
cracks influenced by noise.

In addition to the above-mentioned study on 
the improvement of the denoising method, signal 
denoising can be combined with empirical mode 
decomposition (EMD) to further increase the 
effectiveness of fault feature extraction. Liu et al. [22] 
combined a threshold denoising method based on EMD 
with a probabilistic neural network (PNN) to denoise 
vibration signals of a rotor system and compared it 
with a wavelet threshold denoising method and a 
back propagation neural network (BPNN) denoising 
method. The comparative results showed that the 
former has better denoising characteristics. Aiming 
to solve the problem that the diagnosis signals of a 
planetary gearbox of a wind turbine generator system 
under variable working condition are obviously non-
linear and nonstationary, which leads to difficulty 
in fault feature extraction, Si et al. [23] proposed a 
new fault feature extraction method based on EMD 
and demodulated resonance techniques. According 
to experimental results, this method is feasible in 
the aspect of the vibration signal denoising and fault 
feature extraction of a planetary gearbox. Lee et al. 
[24] proposed a method for bearing test and fault 
diagnosis based on on ensemble empirical mode 
decomposition (EEMD), which integrated particle 
swarm optimization (PSO), Principal Component 
Analysis (PCA), etc. with EEMD to extract the 
fault features of bearings. Given the difficulty in 
extracting multi-fault features of bearings, Gong et 
al. [25] suggested a fault feature extraction method 
based on EEMD and spectrum kurtosis (SK), which 
is applicable to the fault feature extraction of rotor 
imbalance and multi-faults of bearings. Zhang et al. 
[26] presented a fault feature extraction method for 
gear based on EMD, sample entropy, and grey relation 
to extract the fault features of gears influenced by 

noise. Experimental results showed that this method 
could effectively extract the fault feature information 
of gears. For planetary gear fault diagnosis, Chen et 
al. [27] proposed a method based on the multi-scale 
fractal box dimension of complementary ensemble 
empirical mode decomposition (CEEMD) and 
extreme learning machine (ELM). 

By combining translation-invariant multiwavelet 
neighbouring coefficients and EEMD, this paper 
proposes a fault feature extraction method based 
on EEMD and translation-invariant multiwavelets 
neighbouring coefficients. The presented method 
is applied in fault diagnosis of a gearbox with a 
composite gear train so as to extract the fault features 
of such a gearbox train, which is disturbed by noise.

The first section of this paper introduces signal 
feature extraction method based on EEMD and 
translation-invariant multiwavelet neighbouring 
coefficients. The second section introduces a test 
rig for a gearbox with a composite gear train. The 
experiment and simulation results and discussions are 
given in sections 3 and 4. Finally, conclusions of the 
study are provided.

1  METHODS

1.1  EEMD

EEMD is an improved algorithm of EMD, which is 
a self-adaptive decomposition method used to process 
non-linear and non-stationary signals, can decompose 
the signal into a limited number of intrinsic mode 
functions (IMF) components ranging from high 
frequencies to low frequencies. To eliminate mode 
mixing of EMD, EEMD introduces white Gaussian 
noise into original signals. By taking advantage of the 
homogeneous distribution of white Gaussian noise, 
different scale components of original signals are 
automatically distributed to an appropriate reference 
scale. Steps of EEMD decomposition are as follows 
[28]:
1. Set the signal to be decomposed as x(t), white 

Gaussian noise with the same length of x(t) as 
ni(t) to obtain a new signal:

 xi(t) = x(t) + ni(t), i = 1, 2, ..., I. (1)

2.  Conduct EMD decomposition on noisy signal 
xi(t) to obtain a new intrinsic mode component
IMFk

i , in which k = 1, 2, ..., K.
3.  Repeat step (1) and (2) and add different white 

Gaussian noise sequence ni(t) each time.
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4. Conduct overall average calculation on each 
obtained group of IMFk

i  components.

 IMF IMFk k
i

i

I

I
=

=
∑1
1

.  (2)

1.2  Translation-Invariant Multiwavelets Neighbouring 
Coefficients

The principle of traditional multiwavelet threshold 
denoising is the same as that of single wavelet 
threshold denoising [29]. Both enable to achieve 
the goal of denoising by setting a threshold to 
eliminate partial wavelet coefficients. The former 
has the advantage of symmetry, compact support, 
orthogonality and high order vanish moments. 
Therefore, compared with a single wavelet, it has a 
better denoising effect. However, this method ignores 
the relativity of neighbouring wavelet coefficients, 
which has an impact on the effectiveness of feature 
information. As a result, the wavelet denoising using 
neighbouring coefficients proposed by Cai and 
Silverman [14] is introduced into translation-invariant 
multiwavelets, which has considered the relativity of 
multiwavelet coefficients, which can effectively retain 
the local feature information of signals.

Set d j k
h
,
( )  as the high-frequency coefficient of the j 

layer with translation amount h after translation-
invariant multiwavelet decomposition and define the 
variable θ j k

h
j k
h

j
h

j k
h

, , ,

( ) ( ) ( ) ( )= ( ) ( )( )d V d
T

  as a basic variable 
of multiwavelet denoising using neighbouring 
coefficients, in which Vj

h( )  is the covariance matrix of  
d j k
h
,
( )  and can be estimated using a robust coefficient. 

In view of the multiwavelet coefficient and 
relativity of adjacent points, define a  new variable:
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According to the shrinkage rule of neighbouring 
coefficients, the coefficient obtained after translation-
invariant multiwavelets denoising using neighbouring 
coefficients reads:
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where, λ j
h

j
hn( ) ( )= 2ln , referring to threshold nj

h( )  
refers to wavelet coefficient of the j layer after 
multiwavelet decomposition. Obtain signal xr k

h
0,

( )  after 
conducting translation-invariant multiwavelet anti-

transform reconstruction denoising on coefficient d j k
h


,
( )

, 
and then conduct cyclic anti-translation on xr k

h
0,

( )  as 
well as corresponding postprocessing to obtain a set of 
one-dimensional output signals y h( )  and finally 
conduct the average calculating operation on y h( )  to 
generate a signal after translation-invariant 
multiwavelets denoising using neighbouring 
coefficients.

1.3  Feature Extraction Method Based on EEMD and 
Translation-Invariant Multiwavelet Neighbouring 
Coefficients

Translation-invariant multiwavelet denoising using 
neighbouring coefficients acts on the entire length of 
the signal, while noises are generally distributed in 
the high-frequency part of the signal. To better retain 
the effective feature information while denoising, the 
high-frequency part of the signal needs to be denoised 
and reconstructed with the low-frequency part.

Fig. 1.  Procedure of the method

This paper combines the translation-invariant 
multiwavelet denoising method using neighbouring 
coefficients with EEMD to diagnose the faults 
of a gearbox with a composite gear train. The 
specific procedure of the method is shown in Fig. 1. 
Firstly, conduct EEMD on the signal to select IMF 
high-frequency components containing the main 
information from obtained IMF components according 
to the energy-correlation coefficient, denoise the 
IMF high-frequency components with translation-
invariant multiwavelet neighbouring coefficients, and 
then reconstruct them with low-frequency signals to 
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obtain the frequency spectrum and spectrum envelope 
of denoised signal and complete the fault feature 
extraction of a gearbox with a composite gear train.

2  EXPERIMENTAL

2.1  Test Rig and Fault Gear

A Drivetrain Diagnostics Simulator (DDS) of 
SpectraQuest from the US is adapted for the test, as 
seen in Fig. 2a. The gearbox with a composite gear 
train is composed of a primary planetary gear and a 
two-stage spur gear, in which the planetary gearbox 
has four planet gears with a fixed tooth ring. The 
schematic diagram of its transmission system is 
shown in Fig. 2b. The gear parameters are shown in 
Table. 1. The fault diagnosis test of the gearbox is 
conducted by pre-setting different gear faults. The test 
adopts unidirectional acceleration sensors with sample 
frequency set as 10 kHz and motor speed of 3,000  
r/min.

a) 

b) 
Fig. 2.  Test-bed; a) DDS, and  

b) transmission structure diagram of gearbox

Table 1.  Parameters of gearbox

Gear Teeth number Gear Teeth number

Sun gear Zs 28 Spur Gear Z1 29

Planet gear Zp 36 Spur Gear Z2 100

Tooth ring Zr 100 Spur Gear Z3 36

Spur Gear Z4 90

According to the distribution location of gear 
faults, they fall into two categories, i.e. the first 

category is a localized fault, typically such as 
snaggletooth, missing tooth, tooth root crack; the 
other is uniformly distributed faults, typically such as 
abrasion. The test uses the sun gear and spur gear Z3 
as fault gears, and the fault types include  snaggletooth 
and abrasion. For the photo of fault gear of gearbox, 
please refer to Fig. 3.

a)             b) 

c)             d) 
Fig. 3.  Fault gear; a) sun gear with snaggletooth, b) sun gear with 

abrasion, c) spur gear with snaggletooth, and d) spur gear with 
abrasion

Without loss of generality, the experiment is 
conducted under three circumstances, i.e. fault-free, 
single fault and mixed fault. The effect of the feature 
extraction method based on EEMD and translation-
invariant multiwavelet neighbouring coefficients is 
further verified through a uniformly distributed fault 
diagnosis test on different types of gearbox faults. 

2.2  Fault Feature Frequency

The snaggletooth fault frequency of a spur gear is 
consistent with rotating frequency fc, f

s2

r( )  and f
s3

r( )  of 
planet carrier c, shaft 2 and shaft 3. The abrasion fault 
frequency of the spur gear is consistent with mesh 
frequency fm2 and fm3 of Z1-Z2 and Z3-Z4. When a 
fault occurs, the amplitude and frequency 
multiplication of the rotating frequency or mesh 
frequency relating to such gear will change 
accordingly.

Given the revolution and rotation of the planetary 
gear, its fault frequency is different from that of the 
spur gear. Generally, the tooth ring is at rest while the 
sun gear, planetary gear and planet carrier rotate; in 
such circumstances, the mesh frequency is calculated 
as:
 f f Z f f Zm c r s

r
c s= = −( )( ) ,  (5)

https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
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where Zr refers to tooth number of tooth ring.
The snaggletooth fault frequency of sun gear of 

the planetary gear train:

 f Nf Zs m s=
1

.  (6)

Abrasion fault frequency of sun gear:

 f f Zs m s=
1

.  (7)

Snaggletooth fault frequency of planetary gear:

 f Nf Zp m p=
1

.  (8)

Abrasion fault frequency of planetary gear:

 f f Zp m p=
1

.  (9)

Snaggletooth fault frequency of tooth ring:

 f Nf Zr m r=
1

.  (10)

Abrasion fault frequency of tooth ring: 

 f f Zr m r=
1

.  (11)

3  EXPERIMENTAL RESULTS AND DISCUSSION

3.1  Single Fault

3.1.1  Snaggletooth of Spur Gear

Fig. 4a shows the spectrum envelope of the spur gear’s 
snaggletooth signal. Unlike a normal signal, in 
addition to the rotating frequency of the planet carrier 
fc , the absolute rotating frequency of the sun gear fs

r
1
( ), 

and sidebands between both, there also exists a 
relatively high-frequency peak value, which is the 
same as rotating frequency of the spur gear, and the 
snaggletooth of the spur gear can be preliminarily 
considered. According to the partially amplified low-
frequency part of the spectrum envelope, as shown in 
Fig. 4b, in addition to the fault frequency of spur gear 
fs, its frequency multiplication nfs also exists, which 
proves that the snaggletooth of spur gear occurs in the 
gearbox with a composite gear train.

3.1.2  Abrasion of Sun Gear

Fig. 5 shows the signal spectrum envelope of the sun 
gear’s abrasion fault. It can be seen that the spectrum 
of the signal is more complex than a normal signal. 
This is because the abrasion fault is distributed in each 
tooth of the sun gear; therefore, the former has more 
frequency components than a normal signal. The 
signal mainly concentrates around the sun gear’s fault 
frequency fs and the planet gear’s fault frequency fp. 

The main frequencies include the rotating frequency 
of the planet carrier fc , the sun gear’s fault frequency 
fs , the planet gear’s fault frequency fp and the absolute 
rotating frequency of the sun gear fs

r
1
( ) . Frequency 

multiplication mainly includes nfp , nfs and sideband 
components of each signal. Because each tooth of the 
sun gear is faulty in the sun gear’s abrasion fault, the 
assembly error of planet gear is bigger than that under 
normal circumstances, and the amplitude of planet 
gear’s fault frequency fp is higher than that under 
normal state. Furthermore, the sun gear’s fault 
frequency fs and frequency multiplication conform to 
the frequency feature of the sun gear’s abrasion fault, 
which proves that the sun gear’s abrasion occurs in 
gearboxes with composite gear trains.

a)             

b) 
Fig. 4.  Signals of spur gear’s snaggletooth; a) spectrum envelope, 

and b) partially amplified low-frequency part

Fig. 5.  Signal spectrum envelope of sun gear’s abrasion

https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
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3.2  Mixed Fault

In practice, the faults of gearboxes with composite 
gear trains during operation are not always in the form 
of a single fault. Instead, multiple faults are often 
coupled in actual operation. Therefore, multi-fault 
diagnosis on such gearboxes is also performed. Fig. 6a 
shows the spectrum envelope of a mixed fault test 
signal after denoising. The main frequency in the 
signal includes the rotating frequency of planet carrier 
fc , the absolute rotating frequency of sun gear fs

r
1
( ) , 

frequency fs which is the same as the sun gear’s 
localized fault frequency, the mesh frequency fm3 of 
spur gear Z3 and Z4. Because the sun gear’s 
snaggletooth fault frequency fs is related to the number 
of planet gears, and n/4 frequency multiplication such 
as 1/4  fs and 2/4  fs exists in the frequency spectrum, it 
can be diagnosed that the sun gear snaggletooth fault 
exists in gearboxes with composite gear trains. In 
addition, spur gear mesh frequency fm3 is higher than 
the peak value under the normal state. Therefore, it 
can be preliminarily ascertained that spur gear mesh 
frequency-related faults such as abrasion have 
occurred in gear. In view of this, we zoom in to the 
frequency range of the spectrum envelope. Fig. 6b 
shows that frequency multiplication such as 2  fs , 2  fm3 
and 3  fm3 also exists in the signal, which proves that 
mesh frequency fm3 is the fault frequency of spur gear 
abrasion. In consideration that fm3 is the mesh 
frequency of spur gear Z3 and Z4 and in order to 
further determine fault location, the low-frequency 
part of spectrum envelope is analysed. It is observed 
that the rotating frequency component of shaft 2 exists 
in the low-frequency part, which demonstrates that the 
abrasion fault occurs in spur gear Z3. In conclusion, 
both the sun gear’s snaggletooth fault and the spur 
gear Z3’s abrasion fault occur in gearboxes with 
composite gear trains, which is consistent with the test 
results.

According to the results obtained after denoising 
the vibration signal of gearboxes with composite gear 
trains under different fault states based on EEMD 
and translation-invariant multiwavelet neighbouring 
coefficients and conducting fault diagnosis on the 
spectrum envelop, this method can effectively 
improve the signal-to-noise ratio (SNR) of gearboxes 
with composite gear trains, extract signal feature 
information flooded in the noise, and help improve 
accuracy of fault diagnosis for gearboxes with 
composite gear trains.

a) 

b) 
Fig. 6.  Spectrum envelope of mixed fault;  

a) small-frequency range, and b) large-frequency range

4  SIMULATION

4.1  Simulation Test

To verify the denoising characteristics of the feature 
extraction method based on EEMD and the translation-
invariant multiwavelet neighbouring coefficients, 
select a set of modulated signals to simulate the 
vibration signals of gearboxes with composite gear 
trains. This model not only includes the modulation 
characteristics of the gearbox’s vibration signals 
but also simulates the local faults of a group of sun 
gears of planetary gear trains. The model of vibration 
signals is shown as follows:

 x t x t x t n t( ) ( ) [ ( )] ( ),= ⋅ + +
1 2

1  (12)

 
x t f t A f t

f t B
s
r

s

m

1 1

1

1 2 1 2

2 2

( ) [ cos ][ cos( )]

cos[ sin(

( )= − + +
× +

π π φ
π π ff ts + +ϕ θ) ],  (13)

 x t f t C f tm s
r

2 2 2
2( ) cos( sin ),

( )= +π π  (14)

where, x1(t) refers to the local fault signal of the 
sun gear, x2(t) refers to the modulated signals of the 
spur gear, n(t) refers to white Gaussian noise, A, B 
and C refer to the intensity of amplitude modulation 
or frequency modulation, respectively, and ϕ, φ and 
θ refer to the initial phases (all set as zero). Those 
parameters are summarized in Table 2. The sampling 
frequency is set as 10 kHz. 

https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
https://terrytroyjackson-my.sharepoint.com/personal/t_ttj_si/17250/AppData/Local/youdao/dict/Application/7.5.2.0/resultui/dict/
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Table 2.  Simulation signal parameters

Parameter Value

Intensity of amplitude modulation A 0.8

Intensity of frequency modulation B 0.8

Intensity of frequency modulation C 1.2

Fault frequency fs 40 Hz

Sun gear rotate frequency fs
r

1
( ) 15 Hz

Planet gear mesh frequency fm1 400 Hz

Spur gear rotate frequency f
s2

r( ) 5 Hz

Spur gear mesh frequency fm2 120 Hz

The length of the simulated signals is selected 
as 4096. The time-domain plot of original signals 
without noise is seen in Fig. 7a. There is obvious 
periodic impact in the vibration signals. Fig. 7b shows 
the time-domain plot of original signals added with 
-8 dB white Gaussian noise. Vibration signals of the 
gearbox are flooded in the noise. Therefore, periodic 
characteristics cannot be identified. 

a) 

b) 
Fig. 7.  Original signals; a) without noise, and b) with noise

This paper adopts the most common Geronimo, 
Hardin, and Massopust (GHM) multiwavelet in 
multiwavelet signal processing to denoise the noisy 
signal based on EEMD and translation-invariant 
multiwavelet neighbouring coefficients, in which the 
number of multiwavelet decomposition layer is 4 and 
the cyclic translation amount is 32.

4.2  Simulation Result and Analysis

To highlight the superiority of this method, we 
conduct denoising on the signal with the other two 
methods. The first one is EEMD, which achieves 
denoising by abandoning noisy components; the other 
one achieves signal denoising through translation-
invariant multiwavelets neighbouring coefficients.  

a) 

b) 

c) 
Fig. 8.  Time-domain plot of simulated signals denoising with 

three methods; a) EEMD and translation-invariant multiwavelets 
neighbouring coefficients, b) EEMD and, c) translation-invariant 

multiwavelets neighbouring coefficients

Fig. 8 gives the time-domain plot of simulated 
signals denoising with three methods, respectively. 
It shows that three methods have obvious denoising 
effect. For the denoising method based on EEMD 
and translation-invariant multiwavelets neighbouring 
coefficients, in Fig. 8a it can be seen that more fully 
retains shock feature of the signal while achieving 
denoising. For the time-domain plot of the signal 
after EEMD decomposition and denoising through 
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abandoning partial high-frequency IMF components 
containing noise, in Fig. 8b it is seen that the signal 
loses partial shock feature while being denoised, 
which has an impact on the effect of the gearbox’s 
fault diagnosis. Compared with Fig. 8b, for the 
translation-invariant multiwavelets neighbouring 
coefficients denoising, as seen in Fig. 8c the signal has 
less feature information loss, but noise elimination is 
inadequate and there still exists partial noise feature 
information in the signal. That could disturb gearbox’s 
fault diagnosis. Corresponding to Fig. 8, the SNR 
values are respectively 26.59, 19.99, and 16.94, 
respectively.

The Hilbert envelope analysis on the simulated 
signal before denoising and the denoised signal 
obtained through reconstruction with the denoising 
method based on EEMD and translation-invariant 
multiwavelets neighbouring coefficients is conducted. 
Spectrum envelopes of the signals are shown in Fig. 9. 
Except fault frequency fs and spur gear mesh frequency 
fm2, the other frequencies in Fig. 9a are disturbed 
by noise and thus not easily identifiable. After 
denoising, the signal in Fig. 9b has clear characteristic 
frequencies, including each main frequency, frequency 
multiplication and side frequency, which facilitates 
the fault diagnosis of the gearbox.

a) 

b) 
Fig. 9.  Envelope spectrum of simulation signal;  

a) before denoising, b) after denoising

By comparing the different denoising methods 
and fault feature extraction and identification, the 
simulation test proves that the fault diagnosis method 

of gearboxes with composite gear trains through 
denoising based on EEMD and translation-invariant 
multiwavelets neighbouring coefficients cannot only 
be more effective in improving the SNR of a signal, 
but also better retain the effective feature information 
of a signal while achieving denoising. That plays 
a significant role in improving the fault diagnosis 
accuracy of a gearbox with a composite gear train.

5  CONCLUSIONS

This paper combines EEMD with translation-invariant 
multiwavelet neighbouring coefficients to denoise 
the signals of a gearbox with a composite gear train 
and to extract its signal feature frequency so as to 
overcome the difficulty in signal feature extraction 
for such gearboxes. After conducting experimental 
tests on single fault and mixed faults of the gearboxes 
with composite gear trains, test results showed that 
the fault feature extraction method based on EEMD 
and translation-invariant multiwavelets neighbouring 
coefficients can effectively extract the fault feature 
information of such gearboxes, which facilitates the 
accurate identification of the faults. The simulation 
test simulates vibration signals containing noise and 
conducts denoising tests on signals containing noise 
with different methods. According to the simulation 
results, the denoising method based on EEMD and 
translation-invariant multiwavelets neighbouring 
coefficients cannot only effectively reduce signal 
noise but also fully retain the effective features of 
signals. 
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