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Abstract

Adaptive identification consists in asking the questions one after the other, al-
lowing one to choose the next question according to the answers received so far, and
its goal is to identify a (posible) faulty vertex in a graph. One can view adaptive
identification also as a game, with the first player secretly choosing a vertex to be
faulty, or no vertex at all, and the second player trying to locate the faulty vertex
by asking questions of the type “is there a faulty vertex in the ball B(v) center at
some vertex v?” for vertices in graph G. The goal of the first player is to maximize
the number of needed queries and the goal of the second player is to minimize this
number. In this paper we study adaptive identification in torii in the triangular
lattice.

1 Introduction

Adaptive identification was introduced by Julien Moncel in his PhD thesis [10] and studied
generally in [1], where in particular it has also been studied in torii in the square lattice.
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In [2] it has been studied in torii in the king lattice. Adaptive identification presents a
dynamic variation of the classical static variant called identifying codes, which have been
introduced in [9] with a purpose of fault diagnosis in multiprocessor systems.

Identifying code of a graph G is a subset of vertices C' such that each vertex of G
belongs to a ball centered at some member of C', and for each pair u, v of vertices, there
is a ball centered at some member of C, which includes exactly one of u,v. Suppose we
have a faulty vertex in a graph G, a graph with identifying code C'. Then we can ask
simultaneously all members of C' if there is a faulty vertex in the balls center at them.
From these questions the existence of identifying code C' allows us to uniquely determine
a faulty vertex, if it exist. After the introduction of identifying codes they have been
widely studied, see [14] for a dynamic up-to-date online bibliography on identifying codes
and related problems, edited by Antoine Lobstein.

If for a graph G with n vertices there exist an identifying code, then the minimum size
of identifying code can be bounded below by [logy(n + 1)], see [11] for graphs attaining
this bound and it can be bounded above by n — 1, see [3] for graphs attaining this bound.
Hence in the worst case we need at most n — 1 questions to identify a faulty vertex
using an identifying code in a graph in which an identifying code exist. The idea of
adaptive identification is in asking the questions one after the other, instead of posing
them simultaneously as in the case of identifying codes, and allowing one to choose the
next question according to the answers received so far. One of the main features, as shown
in [1] of adaptive indetification is that is can significantly reduce the number of questions.

Adaptive identification can be also interpreted as a two players game, where one player
choose a faulty vertex or no vertex at all, and the other player tries to identify a possible
faulty vertex by asking questions as described above. In this sense adaptive identification
is closely related to a Rényi-type search problem studied by Ruszinké in [13] and by
Ben-Haim and coauthors in [1, 2].

Next we define an infinite graph called triangular grid. The vertex set of the triangular

grid T' consist of the set V' = {i(l, 0)+j <%, ‘/7§> 11,] € Z} and there is an edge between
any two vertices at distance one. Static identifying codes and some related invariants
were already studied in this lattice, see [4, 5, 6, 7, §].

The paper is structured as follows: the next section presents all necessary definitions
and introduces notations needed in what follows. Section 3 brings main results about
adaptive identification in torii in the triangular lattice, namely it presents bounds and
exact values for adaptive identification in torii in the triangular lattice, as well as an

illustrative example.

2 Basic definitions and notations

For a connected graph G = (V, E), an integer r > 1, we denote by B,(v) the r-ball
centered at v € V, where B, (v) = {z € V | d(x,v) <r} and d(x,v) denotes the geodetic
distance between vertex z and vertex v. Two vertices z and y are called r-twins in G if
B,(x) = B,(y). A graph is called r-twin-free if it has no pair of twin vertices.



A code C'is a nonempty subset of vertices of V', and its elements are called codewords.
If € B,(v), we say that z and v r-cover each other. If every vertex in some subset
X C V is r-covered by at least some vertex from Y, we say that a set X is r-covered by
aset Y. A code D is called an r-dominating set if B,(z) N D # () for every x € V. A
code S r-separates two vertices x and y of V', if B.(x) NS # B,.(y) NS. A code S is an
r-separating set if it r-separates all pairs of distinct vertices of V. A code which is both
r-dominating and r-separating, is called an r-identifying code. If all r-balls centered at
vertices of a code C are pairwise disjoint, C' is called an r-packing. A code which is both
an r-covering code and an r-packing is called an r-perfect code.

Fundamental observation about r-identifying codes is that, for a given graph G and
an integer r > 1, there exists an r-identifying code if and only if G is r-twin-free. Then
we also say that G is r-identifiable graph.

For an r-identifiable graph G let i,.(G) denote the minimum cardinality of an 7-
identifying code of G. Let ¢.(G) (resp. ,(G)) denote the maximum cardinality (resp. the
minimum cardinality) of an r-packing of graph G (resp. of an r-covering code in graph G).
Denote by a(r,<;y(G) maximum number of questions needed to identify at most [ faulty
vertices in 7-identifiable graph G. When [ = 1 we simplify the notation a(.<1)(G), and
just write instead a,(G). For an r-regular graph G such that all r-balls of G are of the
same cardinality, we denote the cardinality of its r-ball by v,.(G). By d,(G) we denote the
minimum number of questions needed to identify an r-ball in G. In other words by d,.(G)
we denote the minimum number of questions needed for identifying any given r-ball B in
G, where we assume that there is no faulty vertex outside B.

We recall Theorem 1 from [1] which we need in the sequel.

Theorem 1. Let r > 1 and let G be an r-reqular r-identifiable graph. Then we have

cr(G) = 1+ [loga (v (G) +1)] < a,(G) < 7% (G) =1 +d,(G).

3 Bounds and exact values for adaptive identification
in torii in triangular grid

Given two integers p and ¢, the p X ¢ torus in the triangular lattice, denoted by T, 4, is
the graph having vertex set

V={(,j);0<i<p-10<j<q-1}

and edge set £ = {{(4,7),(i,5 + 1)}, {(%,4), ¢+ 1,9} {0, 7)., + 1,7 +1)}0 < i <
p—1,0 < j <q—1}}, with sums on the first coordinate carried modulo p, and sums on
the second coordinate carried modulo q.

In triangular grid 1-ball has cardinality 7, see Fig. 1. While r-ball in triangular grid
has a shape of hexagon. In this hexagon we have 2r 4+ 1 rows. The cardinality of the
middle row is 2r + 1, continuing above and below, every next row has cardinality which is
one less then the cardinality of the preceding row, see Fig. 2 for r = 3. The last row has



cardinality r + 1. Hence we get the following calculation for the cardinality of an r-ball
in a triangular grid:

2r
27 (2 1 1
() =2 i+(2r+1):2'( A 2* )—T(T; )>+2r+1:3r2+3r+1.
i=r+1
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Figure 1: 1-ball in 7}, ,.
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Figure 2: 3-ball in 7T}, , consists of 7 rows.

If p and ¢ are both divisible by 372+ 3r + 1, then there exist a perfect code in a graph
T, 4 Graph T, , has p x g vertices. If p and ¢ are both divisible by 3r% 4+ 3r + 1, then also
the number p X ¢ is divisible by 3r? + 3r + 1. It follows that T, , contains vj;pqq) pairwise
disjoint r-balls. In this case we have ¢, (7}, ,) = 7 (Lpq)- Y

Theorem 2. Let p,q > 7 an let both p and q be divisible by 7, and let T, , be a p X q
torus in the triangular lattice. Then

ar(T,,) = pq

— 42
p.q 7
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Figure 3: 1-perfect code in 77 7

Proof. Since p and ¢ are both divisible by 7, there exist a 1-perfect code in 7}, ,. There
are altogether B pairwise disjoint r-balls. To identify an r-ball with the faulty vertex,
if the faulty vertex exist, we need at most & — 1 queries. Because if for the first &I —1
queries about whether there is a faulty vertex in a particular r-ball we receive answer NO,
we continue with queries in the last ball. Suppose the faulty vertex, if it exists, is in the
ball Bi(x,y). We can always identify it with 3 queries as follows:
Question 1: Is there a faulty vertex in By(z — 1,y — 1)7
YES, question 2: Is there a faulty vertex in By(z — 1,y — 2)7
YES, question 3: Is there a faulty vertex in By(x — 2,y — 1)7
YES, the faulty vertex is (r — 1,y — 1).
NO, the faulty vertex is (z,y — 1).
NO, question 3: Is there a faulty vertex in By(x — 2,y)?
YES, the faulty vertex is (z — 1,y).
NO, the faulty vertex is (z,y).
NO, question 2: Is there a faulty vertex in By(z + 1,y + 2)?
YES, question 3: Is there a faulty vertex in By(z,y + 2)7
YES, the faulty vertex is (x,y + 1).
NO, the faulty vertex is (x + 1,y + 1).
NO, question 3: Is there a faulty vertex in By(x + 2,y)?
YES, the faulty vertex is (x + 1,y).

NO, there is no faulty vertex in the graph.
O

For a T,,, a p x ¢ torus in the triangular lattice, let us denote by Q.(z,y) question,
whether rball B,.(z,y) (the r-ball centered in the vertex with coordinates (z,y)) contains
a faulty vertex, and with AQ,(z) the answer to this question.

Lemma 3. Letr > 1, p,q > 3 and let T}, ; be a p X q torus in the triangular lattice. Then



we have
[1092(37“2 +3r+2)] <d.(1T,,) <2[loga(r +1)] + 3.

Proof. For the lower bound we have 3r? + 3r + 1 different choices for a faulty vertex if
there exists one, hence the bound follows from the general lower bound for a dichotomic
search in a set of cardinality 372 + 3r + 1.

Suppose the faulty vertex belongs to the ball B,(z,y). Let us start with a question
Q-(x—r,y—r). If AQ,(x—7r,y—7) = YES, then we have to consider vertices that belong
to a subgraph, which is of a rhombic shape and consists of (r + 1) x (r + 1) vertices.
To identify a faulty vertex in this rhomb we need at most 2[logs(r + 1)] questions. If
AQ,(x—r,y—r) = NO, then as a second question we choose Q,(z+r,y+7). If the answer
to the second question is YES, then again we have to consider vertices that belong to a
subgraph, which is of a rhombic shape and consists of (r+1) x (r+1) vertices, and we need
at most 2[logs(r + 1)] questions. We have already used two additional questions, which
altogether brings 2[logs(r + 1)] 4+ 2 questions. If AQ,(z+r,y+r) = NO, two subgraphs
of a shape of an equilateral triangle remain, where sides in both triangles consist of r — 1
vertices. With the third question we decide which of both triangles contains a faulty
vertex. We can consider the triangle then as a rhomb with side r — 1, for which we
need at most 2[logy(r — 1)] questions to identify a faulty vertex. If the answer to the
third question is NO, we cannot know whether the exist a faulty vertex in the remaining
triangle, but this makes us no problem. In the last row we have only one vertex and we
can check with one question whether it is faulty. Altogether we need 2[logz(r — 1)] + 3
questions, which is less then the claimed upper bound from the theorem. O

The next two lemmata will be useful to determine how much the lower and the upper
bound from Lemma 3 can differ. Both of them can be easily proved by induction and the
proofs are left to the reader.

Lemma 4. Forr =1 and forr = 2™ — s, where 1 < s < 2™°2 gnd m > 2, we have
[loga(2r* + 2r 4 2)] = 2[loga(r +1)] + 1.
Lemma 5. Forr = 2™ + s, where 0 < s < 2™ ! and m > 2, we have
(2[loga(r 4+ 1)] + 1) — [loga(2r* + 2r +2)] € {0, 1}.

From Lemma 4 and Lemma 5 and since [logy(2r? + 27 +2)] < [logs(3r* +3r+2)] and
(2[loga(r +1)] +3) — (2[loga(r+1)] + 1) = 2, it follows (2[loga(r + 1) +3) — [loga(3r* +
3r+2)] € {0,1,2,3}.

Example 6. For r = 2 the lower bound equals [l0og,20] = 5, and the upper bound equals
2[loga3] + 3 = 7. Suppose the faulty vertex, if it exists, belong to Bs(x,y). Suppose
AQ2(x — 2,y — 2)=NO and AQs(z + 2,y + 2)=YES. From this it follows that a faulty
vertex belongs to 3 x 3 rhombus, which consist of nine vertices. Since [log,9] = 4, we
need at most 4 queries to identify a faulty vertex in the rhombus. Altogether this means 6
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Figure 4: 5-ball in T}, , consist of two 6 x 6 rhombi and two equilateral triangles with sides
of length 4.

queries, which means that the lower bound cannot be reached. But, from Qo(x—2,y—2) =
NO, we can deduce that a vertex (z,y) is not faulty. Vertex (x,y) is contained in the
3 x 3 rhombus, which is determined by the second question and we need to inquire only
8 vertices, which can be done with at most three questions, since log,8 = 3. Let us now
consider inquiry of Bs(z,y) with five questions, which is the lower bound for r = 2.
Question 1: Is there a faulty vertex in By(x — 2,y — 2)7
YES, question 2: Is there a faulty vertex in By(z — 3,y — 3)7
YES, question 3: Is there a faulty vertex in By(z — 1,y + 1)7
YES, question 4: Is there a faulty vertex in By(x + 1,y — 1)?
YES, the faulty vertex is (r — 1,y — 1).
NO, the faulty vertex is (x — 2,y — 1).
YES, question 4: Is there a faulty vertex in By(z + 1,y — 2)7
YES, the faulty vertex is (x — 1,y — 2).
NO, the faulty vertex is (z — 2,y — 2).
NO, question 3: Is there a faulty vertex in By(x,y + 2)?
YES, question 4: Is there a faulty vertex in By(z — 1,y + 2)?
YES, question 5: Is there a faulty vertex in By(z + 1,y)7
YES, the faulty vertex is (x — 1,y).



NO, the faulty vertex is (x — 2,y).
NO, the faulty vertex is (x,y).
NO, question 4: Is there a faulty vertex in By(z,y + 1)7
YES, the faulty vertex is (z,y — 1).
NO, the faulty vertex is (z,y — 2).
NO, question 2: Is there a faulty vertex in By(z + 2,y + 2)7?
YES, question 3: Is there a faulty vertex in By(z + 3,y + 3)?
YES, question 4: Is there a faulty vertex in By(z + 1,y — 1)7
YES, question 5: Is there a faulty vertex in By(z — 1,y + 1)7
YES, the faulty vertex is (x + 1,y + 1).
NO, the faulty vertex is (x 4+ 2,y + 1).
NO, question 5: Is there a faulty vertex in By(z — 1,y + 2)?
YES, the faulty vertex is (x + 1,y + 2).
NO, the faulty vertex is (z + 2,y + 2).
NO, question 4: Is there a faulty vertex in By(z + 1,y — 2)7
YES, question 5: Is there a faulty vertex in By(z — 1,y)7
YES, the faulty vertex is (x + 1, ).
NO, the faulty vertex is (x + 2,v).
NO, question 5: Is there a faulty vertex in By(z,y —1)?
YES, the faulty vertex is (x,y + 1).
NO, the faulty vertex is (x,y + 2).
NO, question 3: Is there a faulty vertex in By(z + 1,y — 1)?
YES, the faulty vertex is (x + 1,y — 1).
NO, question 4: Is there a faulty vertex in By(z — 1,y + 1)7
YES, the faulty vertex is (x — 1,y + 1).
NO, there is no faulty vertex in the graph.
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Figure 5: 2-ball in T}, ,, which contains two rhombi of size 3 x 3. The central vertex (x,y)
is contained in both rhombi.

Theorem 7. Le p and q be divisible by 3r* + 3r + 1 and let T,, be a p x q torus in the
triangular lattice. Then we have

P — 1+ [loga(3r® + 31 +2)] < a,(Tpy

) bq
3r2+3r+1

< ———+ 2]l 1 2.
< gy T 2Mlonlr + 1)1+



Proof. Since both p and ¢ are divisible by 3r% + 3r + 1, there exist a r-perfect code in

Tp,q» which means ¢, (T)4) = 7-(Tp). Thus there are 55FL— pairwise disjoint r-balls in
T, 4, which cover all the vertices. Hence to identify r-ball with the faulty vertex, if such

a vertex exists, we need at most 5>P1— — 1 questions. Since if the first ;5P— —1
questions receive a NO answer, then we continue with queries in the remaining r-ball.
The proof follows from Lemma 3 and Theorem 1. O

So far we have considered only cases where there might be at most one faulty vertex.
In what follows we take a look at cases where there might be at most two faulty vertices.

Theorem 8. Let p,q > 14 and let p and q be both divisible by 7. Then we have

a,<2)(Tpq) < % +7.
Proof. Since p and ¢ are divisible by 7, there exist a 1-perfect code in T, ;, where we have
Bl pairwise disjoint 1-balls covering al the vertices in a graph. Hence we need at most &
queries to identify the ball with faulty vertices.The following situations might occur:

(1) Answers to all questions are NO. Then we know that in 7}, ;there is no faulty vertex.
(2) One of the questions receives a YES answer. A 1-ball in 7}, , consist of seven vertices,
hence we can check for each of them if there is faulty vertex or not, no matter if there
is only one or there are two faulty vertices, bringing all together at most 7 additional
questions.

(3) Two questions receive a YES answer. Then we know that both of this 1-balls contain
exactly one faulty vertex. To determine a faulty vertex in any of those 1-balls we then
need at most 3 questions, which brings altogether 6 questions. Also when these 1-balls
are adjacent, there is no problem, since we can identify a faulty vertex in one ball without
a question which covers some vertex from the other ball. O

Returning to (2) from the previous proof. Suppose we have have one or two faulty
vertices in the 1-ball By (z,y) and let us start with Q1(x—1,y—1). If AQ1(z—1,y—1) =
NO, then we need at most three additional questions. If AQ;(x — 1,y — 1) = YES, we
continue with Q(z+ 1,y +2). If AQy(x +1,y+2) = YES, we need one more additional
question to determine whether a faulty vertex is (z,y + 1) or (z + 1,y + 1). And we
need two additional questions to determine which of the vertices (x — 1,y — 1), (z — 1,y),
(x,y —1) and (z,y) are faulty. Altogether this means 5 questions. If AQy(x+1,y+2) =
NO, we continue with Qq(z + 2,y). If AQ;(z + 2,y) = YES, then one of the two faulty
vertices is identified. The second faulty vertex can then be determined as in the first
example. Altogether this means 5 questions. If AQ;(x + 2,y) = NO, we have to check
the following vertices (x — 1,y — 1), (z — 1,y), (x,y — 1) and (z,y). In this case we don’t
know whether we have one or two faulty vertices. Hence we need 3 additional questions.
Altogether this means 7 questions. This is the only case where we achieve the upper
bound & +7.

Remark 9. For | > 3 a graph T}, is not (r, < [)-identifiable graph, see Fig. 6.
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Figure 6: Suppose that in T}, , there are at most 3 faulty vertices and suppose that vertices
with coordinates (z,y — 1) and (x,y + 1) are already known to be faulty. In this case
there is no question which would determine whether a vertex (z,y) is a faulty vertex or

not.
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