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Abstract

Let G(V, E) be a directed graph with n vertices and m edges. The edges E of
G are divided into two types: Er and Ep. Each edge of Fr has a fixed price. The
edges of Ep are the priceable edges and their price is not fixed a priori. Let r be
a vertex of G. For an assignment of prices to the edges of Ep, the revenue is given
by the following procedure: select a shortest path tree T' from r with respect to the
prices (a tree of cheapest paths); the revenue is the sum, over all priceable edges e,
of the product of the price of e and the number of vertices below e in T'.

Assuming that k = |Ep| > 2 is a constant, we provide a data structure whose
construction takes O(m+n logk_1 n) time and with the property that, when we assign
prices to the edges of Ep, the revenue can be computed in (logk_1 n). Using our data
structure, we save almost a linear factor when computing the optimal strategy in the
Stackelberg shortest paths tree game of [D. Bilo and L. Guala and G. Proietti and
P. Widmayer. Computational aspects of a 2-Player Stackelberg shortest paths tree
game. Proc. WINE 2008].

1 Introduction

A Stackelberg game is an extensive game with two players and perfect information in which
the first player, the leader, chooses her action and then the second player, the follower,
informed of the leader’s choice, chooses her action; see [10, Section 6.2]. In a Stackelberg
pricing game in networks, the leader owns a subset of the edges in a network and has to
choose the price of those edges to maximize its revenue. The other edges of the network
have a price already fixed. The follower chooses a subnetwork of minimum price with a
prescribed property, like for example being a spanning tree or spanning two vertices. The
revenue of the leader is determined by the prices of the edges that the follower uses in its
chosen subnetwork, possibly combined with the amount of use of each edge.

Stackelberg network pricing games were first studied by Labbé et al [9] when the
follower is interested in a cheapest path connecting two given vertices. They showed
that even such “simple” problem is NP-hard when the number of priceable edges is not
bounded. There has been much follow up research; we refer the reader to the overview by
van Hoesel [13]. The case when the follower is interested in a cheapest spanning tree was
introduced by Cardinal et al. [7]. Bilo et al. [2] considered the case when the follower is
interested in a shortest path tree from a prespecified root r and the revenue of a priceable
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edge is the product of its price and the number of times such edge is used by paths from
r in the tree. This is the model we will consider. We next provide the formal model in
detail and explain our contribution.

The shortest path tree game. We next provide a description of the Stackelberg
shortest path tree game. In fact, we present it as an optimization problem, which we
denote by STACKSPT. The input consists of the following data:

e A directed graph G = (V, E) with n vertices and m edges.

e A partition of the edges F into Fr U Ep. The edges of Ep are the priceable edges
and the edges of Er are the fized-cost edges.

e A root r € V(G).
e A demand function ¢ : V(G) — R>¢, where ¢(v) tells the demand of vertex wv.
e A cost function ¢ : Ep — R+ fixing the price of the edges in Ep.

An example is given in Figure 1. A feasible solution is given by a price function
p: Ep — Ryg. The cost function ¢ and the price function p define a weight function
wy : B — R>g over all edges by setting wy(e) = p(e) if e € Ep and wy(e) = c(e) if e € Ep.
This weight function defines shortest paths in G. (In fact, they should be called cheapest
paths in this context.)

For a price function p and a path 7, the revenue per unit along 7 is

pu(ﬂ';p) = Z p(e)'

eEEpﬁE(Tr)

Note that only priceable edges contribute to the revenue. Let T be a subtree of G
containing paths from r to all vertices. For any vertex v € V(G), let T'[r,v] denote the
path in T from r to v. The revenue given by T is

p(Tvp) = Z (b(?./)',Ou(T[T,U],p).

veV(Q)

We would like to tell that the revenue given by the price function p is p(T, p), where T is
a shortest path tree from r with respect to w,. However, there may be different shortest
path trees T' with different revenues. In such case, T is taken as the shortest path tree
that maximizes the revenue. Although this assumption may seem counterintuitive at
first glance, it forces the existence of a maximum and avoids the technicality of attaining
revenues arbitrarily close to a value that is not attainable. Thus, the revenue of a price
function p is defined as

p(p) = max{p(T,p) | T a shortest path tree in G with respect to wy}. (1)

As an optimization problem, STACKSPT consists of finding a price function p such that
the revenue p(p) is maximized.

From the point of view of game theory, the leader chooses the price function p and the
follower chooses a tree T' containing paths from r to all vertices. The payoff of the leader
is p(T', p). The payoff of the follower is the sum, over all vertices v of G, of the distance in
T from r to v. Among trees T' with the same payoff for the follower, she maximizes the
revenue p(T,p). Thus, the follower uses a lexicographic order where, as primary criteria,
lengths are minimized, and, as secondary criteria, revenue is maximized.
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Figure 1: An example of a Stackelberg shortest path tree game. We assume that each
vertex has unit demand.

Our result and comparison. We assume henceforth that k := |Ep| > 2 is a constant.
For k =1, STACKSPT can be solved in O(m +nlogn) time as discussed by Bilo et al [2].

We describe a data structure that can be constructed in O(m + nlogt~!n) time and
with the property that, given a price function p, the revenue p(p) can be computed in
O(log"~! n) time. Bilo et al. [2] show how to find an optimal price function p by evaluating
the revenue of O(n*) price functions'. Combined with our data structure, we can then
find an optimal price function in O(m + n*log"~!n) time.

Our result matches the result of Bilo et al. [2] for the case k = 2. For k > 3, the
algorithm of Bilo et al. uses O(nf(m + nlogn)) time. A previous algorithm by van
Hoesel et al. [14] to compute the optimal solution in a more general Stackelberg pricing
problem, where paths from different sources have to be considered, reduces STACKSPT
to O(n4k) linear programs of constant size.

The large dependency on k is unavoidable because the problem is NP-hard for un-
bounded k. Inapproximability results were shown by Joret [8], and improved by Briest
et al. [4], for the shortest path between two points. This is a special case of our model
where the demand function ¢ is nonzero for a single vertex. Briest et al. [5] provide an
approximation algorithm for more general Stackelberg network pricing games. When it
is specialized to STACKSPT, it provides a O(logn)-approximation.

Our data structure is based on three main ideas:

e A careful rule to break ties when there are multiple shortest path trees. With this
rule, we can easily split the vertices into groups that use the same priceable edges.

e Using a smaller network, of size O(k?), such that, for a given price function, we can
find out the structure of the priceable edges in the shortest path tree of the network.
This idea is similar to the shortest paths graph model of Bouhtou et al. [3].

e Mapping each vertex of the network to a point in Euclidean k-dimensional space in
such a way that the vertices that use a certain subset of the priceable edges can be
identified as a subset of points in a certain octant. This allows us to use efficient
data structures for range searching. Similar ideas have been used for graphs of
bounded treewidth; see [1, 6, 11] and [12, Chapter 4].

!They only discuss the case when the demand function ¢ is identically 1. However, their discussion
can be easily adapted to more general demand functions.



Notation. We use ej, e, ..., e to denote the edges of Ep, where each edge e; = s;—1;.
The enumeration of the edges is fixed; in fact we will use it to break ties. Perhaps a bit
misleading but quite useful, we will use p(e) = 0 for each e € Er. For a subset of vertices
U C V(G) we use the notation ¢(U) := > -y ¢(u). For a subset of edges ' C E we use
the notation wy(F) := 3 cpwp(e) and p(F) := 3 cpple) = X cepnp, Ple)-

A path 7 will be treated sometimes as a sequence of vertices and sometimes as an edge
set. No confusion can arise from our use. We use Ep(w) for the set of priceable edges
along 7, that is, Ep(m) = 7 N Ep. Similarly, we use Ep(7) = 7 N Er for the fixed-cost
edges. Therefore w,(Ep(m)) = p(r N Ep) and wy(Ep(n)) = c¢(m N EF).

For any two vertices v and v of G we use m,(u,v) to denote a shortest path from u
to v with respect to the weights w, and dp(u,v) to denote its weight. We use dy as a
shorthand for d, when p = 0, that is, when the price function assigns price 0 to each
priceable edges. We use d, as a shorthand for d, when p = oo, that is, when the price
function assigns price co to each priceable edge.

For a path 7 and vertices u, v along 7, we use 7[u, v] for the subpath of 7 from u to v.
Similarly, as we have used above, for a tree T and vertices u, v, we use T'[u,v] to denote
the subpath of T from u to v.

2 Range Searching

Let X be a set of points in R¢. Assume we are given a function ¢ : X — R that assigns
a weight () to each point x € X. We extend the weight function to any subset Y of
points by (V) := Y .y ¢(z). A rectangle R in R? is the Cartesian product of d intervals,
R =11 x---x 14, where each interval I; can include both extremes, one of them, or none.

Orthogonal range searching deals with the problem of preprocessing X such that, for
a query rectangle R, certain properties of X N R can be efficiently reported. We will use
the following standard result.

Theorem 1 ([15]). Letd > 2 be a constant. Given a set of n points X C R? and a weight
function ¢ : X — R, there is a data structure that can be constructed in O(nlog? ! n) time
such that, for any query rectangle R, the weight (X N R) can be reported in O(log? 1 n)
time.

3 Breaking Ties

Evaluating the revenue of a price function is easier in a generic case, when there is a
unique shortest path from r to each vertex of V(G). In contrast, in the degenerate case,
there is at least one vertex v with two distinct shortest paths from r to v. Unfortunately,
the price functions defining the optimum are degenerate. This is easy to see because,
in a generic case, a slight increase in the price function leads to a slight increase in the
revenue.

In our approach, we will count how many vertices use a given sequence of priceable
edges. For this to work, we need a systematic way to break ties, that is, a rule to select,
among the shortest path trees that give the same revenue, one. We actually do not go
that far, and only care about the priceable edges on the paths of the tree.

We first discuss how to break ties among shortest paths, and then discuss how to
break ties among shortest path trees. Essentially, we compare paths lexicographically
according to the following: firstly, we compare paths by length; secondly, if they have
the same length, we compare them by revenue; finally, if they have the same length and



revenue, we compare the priceable edges on the path lexicographically, giving preference
to priceable edges of larger index. We next provide the details.

Define the function x : E — Rxq by x(e;) := 2%, when ¢; € Ep, and x(e) := 0 when
e € Er. We extend the function to subsets of edges by defining

VECE: x(F) ::ZX(e): ZZi.

ecF e, €F

Note that, for any two subsets F' and F’ of priceable edges, x(F) > x(F’) if and only
if the edge with largest index in the symmetric difference of F' and F’ comes from F.
Moreover

VE,F'CEp: x(F)=x(F')< F=F" (2)

Define the function

ﬁ%:E—)RN) XRgOXRZO
€ (wp(e)’ —p(@), _X(e))

Recall that we had set p(e) = 0 when e € Ep. We extend w, to subsets of edges by
setting
VECE: Gp(F) := > pe).
ecF
We treat w), as composite weights that are compared using the lexicographic order <. We
say that a path 7 is w,-shorter than a path 7’ if and only if w,(7) < w,(n’), where <
denotes the lexicographic order.

For any cycle «, the first component of w,(«) is wy (), which is positive. This implies
that we do not have “negative cycles” and we can use the weights @, to define w,-shortest
paths: a path 7 from u to v is w,-shortest if wy,(7) is minimal, among the paths from u
to v, with respect <. More compactly:

7 from w to v is Wy-shortest <= V paths 7’ from u to v : Wy(7) =< Wy(7').

A tree T is a w,-shortest path tree (from r) if it contains a w,-shortest path from
r to each vertex. Note that this is stronger than telling that w,(E(T")) is minimal with
respect to <. See Figure 2 for an example. A w,-shortest path tree can be computed
be computed in O(m + nlogn) time using Dijkstra’s algorithm with the weights w, and
lexicographic comparison?. (Here we need that k is a constant, which implies that x(F)
uses k = O(1) bits. For general k, the running time of Dijkstra’s algorithm may get an
additional dependence on k, depending on the model of computation.) Note that there
may be several w,-shortest path trees because of different shortest paths without priceable
edges.

Lemma 2. If T be a wy,-shortest path tree, then p(T,p) = p(p).

Proof. Since T is a wp-shortest path tree, it is also a shortest path tree for the weights
wp. By the definition of p(p) given in equation (1), we have p(T',p) < p(p). We next show
that p(T,p) > p(p), which implies that p(T,p) = p(p).

Consider a shortest path tree T that defines the value p(p). That is, p(T™*,p) = p(p).
Since T is a wy-shortest path tree, we have

Vo e V(G): wp(Tr,v]) 2 wy(T*[r,v]). (3)

2If one dislikes using lexicographic comparison, it is also possible to use weights w’(e) = w(e) —e1p(e) —
e2x(e), where &1 = max. w(e)/n® and e2 = e1/(2%n?).
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Figure 2: A w,-shortest path tree for the price function p(e1) = 3, p(e2) = p(es) = 4,
p(es) = 1 in the network of Figure 1. The values in the vertices are the distance from r.
Note that there are some vertices, like for example the two that are marked with squares,
for which there are different shortest paths using different priceable edges, so we have to
select shortest paths maximizing revenue. The revenue given by this tree, if each vertex
has unit demand, is p(e1) - 10 + (p(e1) + p(ez2)) - 2 + p(e3) - 2 = 46 units.

Since T and T™ are both shortest path trees, we have
Vo e V(G): wp(Tr,v]) = wy(T*[r,v]). (4)
Expanding the definition of @), from (3) and (4) we obtain
Vo e V(G): p(T[r,v]) = p(T"[r, v]).
This means that

p(p) = p(T*p) = > o) -p(T*[r0]) < > ¢)-p(Tlr,v]) = p(T,p).

VeV (G) VeV (G)

4 Reduced trees and sequences of priceable edges

Consider a price function p. Let T" be a w,-shortest path tree from r. The w,-reduced
tree RT is obtained from T by contracting all the fixed-cost edges Er N E(T). The
resulting graph is a tree with edge set Ep N E(T). When considering RT', we disregard
the prices p and the orientation of the edges, and consider it as a rooted, unweighted,
undirected graph with distinct labels eq, ..., e, on its edges. In general, we will use RH
to denote the reduced graph obtained from a graph H by contracting all non-priceable
edges. The w,-reduced tree for the example of Figure 2 contains the edges e; and e3
adjacent to r and the edge ey below e;.

We first show that the wy-reduced trees are independent of the w,-shortest path tree
that is used.

Lemma 3. If T and T are w,-shortest path trees, then RT = RT".
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Figure 3: Left: The model graph for the network of Figure 1. Edges with infinite weight,
like for example r—t4 or t;—tg, are not drawn. Right: the w,-shortest path tree in the
model for the price function of Figure 2: p(e;) = 3, p(e2) = p(es) =4, and p(e3) = 1.

Proof. Since both T' and T" are wy-shortest path trees we have
Vo e V(G): (Tl ) = (171, v]),
which means

Yo € V(G) i wy(T[r,v]) = wy(T"[r,v]),

From the last equality and the property (2) we have
Vo e V(G): Ep(T[r,v]) = Ep(T'[r,v]).

If e; = s;—t; is a descendant of e; in T, this means that e; € Ep(T[r,s;]) and e; €
Ep(T[r,t;]). But then for 7" we also have e; € Ep(T'[r,s;]) and e; € Ep(T'[r,t;]),
which implies that e; is a descendant of e; in 7”. By symmetry, we conclude that e; is a
descendant of e; in T if and only if e; is a descendant of e; in T”. This implies that the
wp-reduced trees RT and RT" are the same. O

A useful consequence of this is that any two w,-shortest path trees have the same
subset of priceable edges.

Lemma 4. In O(m + nlogn) time we can construct a data structure with the property
that, for any given price function p, we can compute in O(1) time the Wy-reduced tree

RT.

Proof. We construct the model graph G = G(G, Ep,c,r), as follows. The vertex set
of G consists of r and the endpoints of the priceable edges. Thus V(G) = {r} U
{s1,t1,..., Sk, tr}. In G, we have edges from r to any other vertex. Furthermore, for
each priceable edges e; and e;, ¢ # j, we have an edge from ¢; to s; and to t;. Finally, we
have the edges e, ..., e, themselves.

Each edge u—v in E(G) that is not a priceable edge gets weight du(u, v). That is, each
edge u—v gets weight equal to the distance between u and v in G — Ep. This finishes the
description of the model graph G. See Figure 3, left, for an example. This construction

is similar to and inspired by the shortest paths graph model of Bouhtou et al. [3].



The model graph G has the same priceable edges as . Consider any price function
p. We claim that the wy-reduced trees for G and G are the same. That is, if T denotes a
wp-shortest path tree in G and RT denotes the @ wp-reduced tree obtained after contracting
all non-priceable edges, then RT = RT. See Figure 3, right, for an example.

Consider the subgraph F of G obtained by “expanding” each shortest path of T: for
each priceable edge ¢; in T we put the same edge in F; for each non-priceable edge u—v
of T we put in F a shortest path of G — Ep that connects u to v. The graph F' is like a
wy-shortest path forest spanning the vertices of V(G) Any path in T corresponds to a
path in F with the same composite weight w,. The reduced tree RT is obtained from F
by contracting the fixed-cost edges E(F) N Ep. That is, RF = RT.

Consider any edge e; € Ep. Since T'[r,t;] is a wy-shortest path in G, we have

@p(Tlr,ti]) < Wy(Fr,ti]).
Since T'[r,t;] is a wp-shortest path in G, we have
Wp(Tlrti]) = @p(Flr,ti]) < @p(Tr,ti]).

We thus conclude that }
wp(T[r,ti]) = wWy(Fr,ti)).
This means that R
X(Tr,ti]) = x(F[r,t]),
and by (2) we get that

Ep(T[rti]) = Ep(Flr,ti]) = Ep(T[r,t)).
The same discussion for s; implies that
Ep(T[r,si]) = Ep(Flr,s:]) = Ep(T[r,si]).

Since the same holds for each priceable edge e;, it follows that RT and RT. Indeed, if
e; is a descendant of e;, then e; € Ep(T'[r,s;]) and e; € Ep(T[r,t;]), which means that
e; € Ep(T[r,si]) and e; € Ep(T[r,t;]), and we conclude that e; is a descendant of e; in
T. This finishes the proof of the claim.

Since RT = RT and RT can be computed in constant time because G has constant

size, the result follows. O

Let T be the family of all possible reduced trees, over all possible graphs G. Thus T
is the family of rooted trees with at most k edges where each edge has a distinct label
among e, ...,eg. It is clear that the number of such trees depends only on k, and thus
it is bounded by a constant in our case.

Consider any reduced tree R € T. Each edge e; that appears in R defines a sequence
of priceable edges, denoted by o(e;, R), which is the sequence of edges followed by the
path in R from the root to e;. The edge e; is the last edge of o(e;, R). When e; is not
in R we define o(e;, R) as the empty sequence. Since each edge of R defines a different
sequence of edges, the tree R € T defines |E(R)| nonempty sequences.

For any nonempty sequence o = (€z‘1, ..., €, ) of distinct priceable edges, we define
We(o) = (r, $i,) Z doo(tis Sijp1)s
1<j<a—1
p(o) =) wle) = > plei,)
eco 1<j<a
o) = Sxte) = 3 xlesy):
eco 1<5<a



We define an order <, among sequences of priceable edges in a reduced tree R € T. For
sequences 0,0’ in R, it holds ¢ <, ¢’ if and only if (p(c), x(¢)) > (p(c’), x(c¢”)), where >
denotes the lexicographic comparison. Therefore

/

o<p0 < p(o)>p(d)or (p(o)=p(c’) and x(o) > x(0"))

Because of property (2), <), is a linear order among the sequences of priceable edges in a
reduced tree. That is, for any two distinct sequences o and o’, either o <, ¢’ or 0/ <, 0.

Consider any two paths m and 7’ in G with sequences of priceable edges o and o/,
respectively. Because of the definition of w, and <, we have

Wy(m) < Wy(n') <= wp(m) < wp(n') or (wy(r) = wy(r’) and o <, o) (5)

Consider any shortest path 7 from r to t;. If the priceable edges that appear along 7
follow the sequence o = (e, ...,€;,), where e;, = e;, we can then decompose 7 into the
subpaths

7T[7“, 31'1], €iys 7T[ti1, 87;2], Cigy e 777[752}1,17 Sia]; €ig-

Since each of those subpaths is shortest, the length of 7 is

doo (7, 8iy) + pleiy) + doo(tiy, 8iy) + pleiy) + - + doo(tiy_y» 8ia) + Plei,),

and thus
wp(m) = We(o) +p(0). (6)

5 Data structure for computing the revenue

Consider a price function p and let T" be a @w,-shortest path tree. For each edge e; € Ep,
let Vi (e;, p) be the set of vertices with the property that e; is the last edge of Ep used by
T[r,v]. It may be that Vp(e;,p) = (). In particular this happens when e; does not appear
in the shortest path tree T. We first argue that Vp(e;, p) is independent of the choice of
T.

Lemma 5. If T and T" are wy-shortest path trees, then, for each e; € Ep, it holds that
VT(eivp) = VT’(ei7p)‘

Proof. Since both T' and T” are w,-shortest path trees, we have seen in the proof of
Lemma 3 that
Yo e V(G): Ep(T[r,v]) = Ep(T'[r,v]).

Consider any vertex v € Vp(e;, p). Since e; € Ep(T[r,v]) = Ep(T'[r,v]), there is some
edge e; such that v € Vy(ej,p). We want to show that e; = e;. This will imply that
Vr(ei,p) C Vi (e;,p), and by symmetry we have equality, as stated.

Since v € Vp(e;, p) we have Ep(T'[r,v]) = Ep(T|[r,t;]). Similarly, we have Ep(T"[r,v]) =
Ep(T'[r,t;]) because v € Vp(e;,p). Putting it together we have

Ep(Tlr,t;]) = Ep(T[r,v]) = Ep(T'[r,v]) = Ep(T'[r,t;]) = Ep(T[r,t;]).

By Lemma 3, E(T) N Ep = E(T') N Ep, which means that e; is also an edge of 7. The
equality Ep(T'[r,t;]) = Ep(T[r,t;]) then implies that e; = e;. O

Since Vr(e;, p) is independent of the wy-shortest path tree T' that is used, we will just
denote it by V' (e;, p).



Lemma 6. Let p be a price function and R its Wy-reduced tree. The revenue given by p
18
p() = Y. plolei, R) - 6(V(ei,p)).

€; EE(R)

Proof. Note that, if i # j, then V(e;,p) and V' (e;,p) are disjoint by definition. Let us set
Vo =V \ (Ue,er(r)V (€i,p)). The vertices of V5 do not contribute anything to the revenue
because the corresponding paths do not use any priceable edges.

Let T' be a w,-shortest path tree and let R be the wy-reduced tree. We then have
p(T[r,v]) = 0 for all v € Vj. Using the definition of p(T,v) and that Vo, V(e1,p), ..., V(ek,p)
is partition of V(G) we have

o(Tp) = 3 6(v) - p(Tlr,0))

veV(G)

— S 6(w) - p(TIr, )

veV(G)\Vo

— Y S () p(Tlr )

e, €E(R) veV(e;,p)

— Z Z ¢(v) - p(o(es, R))

e;€E(R) veV (e;,p)

= Z p(o(ei, R)) - p(V(ei,p)).

eiEE(R)

where in the fourth equality we have used that p(T'[r,v]) = p(o(e;, R)) for all vertices of
V(e;,p). Since p(p) = p(T,p) because of Lemma 2, we conclude that

pp) = D plole R))- ¢(V(ei,p)). (7)

61'EE(R)
U

Our objective is to compute ¢(V (e;,p)) efficiently using data structures. Since all
vertices in V' (e;, p) use the same priceable edges, this will lead to an efficient computation
of the revenue.

Lemma 7. Assume that k > 2 is a constant. Consider a reduced tree R € T and an
edge e; € E(R). In time O(m + nlog"~1n) we can construct a data structure with the
following property: given a price function p with the property that its wy-reduced tree is
R, we can obtain ¢(V (e;,p)) in O(logh~tn) time.

Proof. For each vertex v € V(G) we define a point p, € R¥ whose jth coordinate is

poj) = {WW(@%R)) + doo(tiy v) ~ Woo(0(ej, R)) — doo(tjv)  if j #
v Weo(o(ei, R)) + doo(ti, v) — doo(r, v) =i

Let P be the set of points {p, | v € V(G)}. To each point p, € P we assign the weight
©(py) := ¢(v). We then store the point set P using the data structure for range searching
of Theorem 1. This finishes the description of the data structure.

The construction of the data structure takes O(m + nlog®~1n) time. We first run a
shortest path tree algorithm in G — Ep from r and from each endpoint of the edges in Ep.
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This takes O(k(m+nlogn)) = O(m+mnlogn) time. With this information we can obtain
each coordinate of each point in constant time, and thus we construct P in O(n) time.
The construction of the data structure of Theorem 1 takes O(nlog®~! n) time because we
have k-dimensional points.

Consider a price function p and let T" be a w,-shortest path tree. By assumption,
RT = R. We next explain how to recover ¢(V (e;,p)). For every j = 1,...,k, define the
interval

ej, R)) —p(o(e;, R))] if i # j and o(e;, R) <, o(ej, R);
e R) — p(o(eis R))) it i £ and olei, R) Ap o(e;, R);
(o0, —p(o (e, R))] ifi=j.

Consider a vertex v € V(G). The path T[r,v] can be disjoint from Ep or follow one of
the sequences o(e1, R),...,0(ex, R). Using the relation in equation (5), we see that the
path T'[r,v] follows the sequence o(e;, R) if and only if the following conditions hold:

wp(T[r, ti]) + doo(ti,v) < doo(r,v),

Vj #i,0(ei, R) <p o(ej, R) :

wp(T[r, ti]) + doo(tisv) < wp(T[r,t;]) + doo(tj, v);

Vi #i,0(ei, R) Ap o(e;, R) :

wp(T[r,ti]) + doo(ti,v) < wp(Tlr, t5]) + doo(t;, v).

(=00, p(o

Because of equation (6), we have, for each j =1,...,k,
wp(T[r,t5]) = plolej, R)) + Weo(o(ej, R)).
and thus the conditions are equivalent to:
p(o(ei, R)) + Wos(o (€5, R)) + doo(tis v) < doo(r,v),

Vj #i,0(ei, R) <p o(ej, R) :

p(a(ez, )) + WOO( (e’ia R)) + dOO(tia U) é p(g(eja R)) + WOO(U(ejv R)) + dOO(tja U);
Vi #i,0(ei, R) Ap o(e;, R) :
plo(ei, )) + Weo(o(es, R)) + doo(ti,v) < plolej, R)) + Weo(o(ej, R)) + doo(tj, v).-
Reordering, we obtain that v € V(e;, p) if and only if
Woo(a(es; R)) + doo(ti, v) — doo(r,v) < —p(o(es; R)),
Vi #1, U(eu R) < (637 R):

(U(eu R)) + doo(ti; v) = Weo(0(e, R)) — doo(t,v) < plo(ej; R)) — plo(ei; R));
Vj #4, U(eu )%pa(ep R):
Weo(o(€i, R)) + doo(ti, v) = Weo(0 (€5, R)) — doo(tj, v) < p(o(ej, R)) — p(o(es, R)).

This condition is equivalent to
for j=1,...,k: py(y) € I(4).
We conclude that v € V(e;p) if and only if p, € [[;1(j). We can then recover
o(V(ei,p)) = ¢ (P NI, I(j)) by querying the data structure for ¢ (P NI, I(j)).
Given a price function p, we can compute the values p(o(e;, R)), for j =1,...,k, in

O(1) time. With this information we can compute the extremes of the intervals I(j) and
query the data structure for range searching in O(log"~!n) time. O
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Theorem 8. Assume that k > 2 is a constant. Consider an instance to StackSPT with
n vertices, m edges, and k priceable edges. In time O(m—i—nlogk*1 n) we can construct a
data structure with the following property: given a price function p, the revenue p(p) can
be obtained in O(log*~1n) time.

Proof. We start constructing the data structure of Lemma 4, so that we can quickly
compute the wy,-reduced tree for any given price function. For each reduced tree R € T
and each priceable edge e; € E(R) we construct the data structure from Lemma 7 and
denote it by DS(R,e;). This finishes the construction of the data structure. The time
bound follows from the time bounds of Lemmas 4 and 7.

Consider a price function p. Because of Lemma 6, we have

p(p) = D plo(ei R)) - d(V(eip)).

eiEE(R)

The data to apply this formula can be recovered from the data structures. Firstly, we
use the data structure of Lemma 4 to compute the wy-reduced tree R for p. For each
e; € E(R), we query DS(R, ¢;) to recover ¢(V (e;,p)). Finally, we compute p(o(e;, R)) for
each e; € E(R). Overall, we use O(1) queries to the data structures and each such query
takes O(log" ! n) time. The result follows. O

Corollary 9. Let k > 2 be a constant. The problem STACKSP'T with n vertices, m edges,
and k priceable edges can be solved in O(m + n* logh~1 n) time.

Proof. As discussed in the introduction, Bilo et al. [2] show how to solve STACKSPT by
finding the revenue of O(n*) price functions. Using the theorem we, can find the revenue
for all those price functions in O(n* log"~! n) time after O(m + nlog®~! n) preprocessing
time. O
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