
UDK621.3:(53+54+621 +66), ISSN0352-9045 Informacije MIDEM 34(2004)3, Ljubljana 

SEED AND POLYNOMIAL SELECTION ALGORITHM FOR LFSR 
TEST PATTERN GENERATOR IN BUILT-IN SELF-TEST 

ENVIRONMENT 

Bogdan Dugonik, Zmago Brezocnik 

Fakulteta za elektrotehniko, racunalnistvo in informatiko, 
Univerza v Mariboru, Siovenija 

Abstract: Testing integrated circuits is of crucial importance to ensure a high level of quality of product functionality. Testing a digital circuit involves 
applying an appropriate set of input patterns to the circuit and checking for the correct outputs. The conventional approach is to use an external tester 
(automatic test equipment - ATE) to perform the test. Built-in self test (BIST) techniques have been developed in which some or all test functions are 
incorporated on the chip. In today's integrated circuits, BIST is becoming increasingly important as designs become more complicated and the density 
of VLSI circuits increases. The BIST approach offers economic benefits, reuse of logic circuits as well as some significant opportunities in hierarchical 
testing. On the other hand, the classical testing approach and the use of automatic test equipment is becoming a less important part in the testing 
process In this paper, we give an overview of BIST methods and present some advanced new BIST solutions for testing combinational circuits. We 
propose an algorithm for seeding the LFSR-based test pattern generators. We achieved nearly 100% test fault coverage for a given test lengths. Our 
method can be used for both test-per-scan and test-per-clock BISTs. The goal of the proposed method is to minimize the test lengths through suitable 
selection of initial seeds, to minimize hardware overhead and achieve sufficiently high fault coverage. While semi-random generated test cubes are 
additionally completed by deterministically calculated test vectors, the achieved fault coverage is very high. The experiments were made on ISCAS85 
(lSCAS89) benchmark circuits /7 /. 

Algoritem za izbiro semena in polinoma generatorja testnih 
vzorcev LFSR za vgrajeno samotestiranje 

Izvlecek: Testiranje digitalnih vezij je bistvenega pomena, da bi zagotovili visoko stopnjo funkcijske zanesljivosti ter kakovosti proizvedenega vezja. Pri 
postopku testiranja na vhodne prikljucke vezja privedemo dolocen nabor testnih vektorjev in preverjamo pravilnost odzivov na izhodnih prikljuckih Pri 
klasicnem nacinu testiranja v ta namen uporabljamo testne naprave (ATE). Metode, pri katerih se del testiranja izvede znotraj sam ega vezja, se vedno bolj 
uporabljajo in prevzemajo pomembno vlogo pri testiranju sodobnih vezij. Danasnje tehnologije omogocajo visoko gostoto vezij in dostopnost do testnih 
prikljuckov je vedno bolj otezena. Problem dostopa in zmanjsanja odvisnosti od uporabe dragih naprav ATE je mogoce resiti z uporabo vgrajenih testnih 
metod BIST. Razen ekonomskih ima BIST se vrsto drugih prednosti, kot je pouporaba testnih modulov in moznost za izvedbo hierarhicnega testiranja. V 
clanku predstavimo osnove vgrajenega testa BIST in nov pristop k testiranju kombinacijskih logicnih vezij. Podan je algoritem za ugotavljanje najprimernejsega 
semena in polinoma iz dolocene koncne mnozice psevdonakljucnih generatorjev za generiranje nakljucnih testnih vektorjev. Z izbranim naborom testnih 
vektorjev zagotovimo visoko stopnjo pokritja napak z minimalno potrebno test no dolzino. Metodo lahko uporabimo za dva nacina izvedbe testa (TPC in 
TPS). Cilj predlagane metode je sistematicno dolocanje primerne zacetne vrednosti (semena), kot tudi vrste polinoma za psevdonakljucni generator. 
Nakljucne generatorje izberemo tako, da bi jih lahko realizirali z najmanj dodatnimi elementi. Skrajsati zelimo potrebni cas za samo izvedbo testa s 
predpostavko, da bi dosegli cim visje pokritje napak. Nakljucno dobljen nabor testnih vektorjev primerjamo z deterministicno izracunanimi testnimi vektorji. 
Eksperimenti so prikazani na standardnem naboru primerljivih vezjih iz druzine ISCAS85 (iSCAS89) /7 /. 

1. Introduction 

Testing of integrated circuits is of crucial importance in 
ensuring a high level of quality in product functionality. The 
increasing complexity of VLSI systems makes testing a 
challenging task. Considering that testing represents a key 
cost factor in the production process (a proportion of up to 
70% of total product cos!), an optimal test strategy can 
offer a substantial competitive advantage in the market of 
the semiconductor and electronics industry /27/. Testing 
effects areas of manufacturing as well as engineering and 
design. The time and cost are the two main considerations 
in IC design and production process /17/. 

As the density of VLSI circuits increased, it became attrac­
tive to integrate dedicated test logic on a chip /2/. Built-in 
self-test (BIST) techniques enable an integrated circuit 
(board, system) to test itself. BIST techniques offer a great 

economic benefit compared to the traditional testing. When 
testing is built into the hardware, it has ability of being not 
only fast and efficient but also reusable /18/. Furthermore, 
BIST offers the capability for hierarchical testing where BIST 
circuit perform test on chips, boards, and the entire sys­
tem without external, expensive automatic test equipment 
/20/. Another important consideration is that 81ST al­
lows an IC to be tested at its normal operating speed /2/. 
Figure 1 illustrates the testing process with classical and 
basic BIST approach. The basic BIST architecture requires 
the addition of three hardware blocks to the circuit under 
test (CUT): a pattern generator, a response analyzer, and a 
test controller /1 /. 

For simpler applications the deterministic test patterns are 
stored in an on-chip ROM instead of using a pattern gen­
erator. Since this method requires high storage overhead 
it leads into a non-practical solution /4/. Instead of pre-

141 



Informacije MIDEM 34(2004)3, str. 141-149 
B. Dugonik, Z. Brezocnik: Seed and Polynomial Selection Algorithm 

for Lfsr Test Pattern Generator in Built-in Self-test Environment 

Figure 1: Classical and BIST testing scheme. 

calculated test vectors a linear feedback shift registers 
(LFSR) is generally preferred for pattern generation /1/, 
/2/,/ 13/. It is able to generate a pseudo-random test pat­
terns with low hardware overhead (easy and cheap to gen­
erate). 

However, several circuits contain random pattern resistant 
(r.p.r.) faults which limit the performance of BIST /19/. For 
background, the r.p.r. faults are faults with low detectabili­
ty, and therefore require a very long testing time to achieve 
the appropriate test coverage. While r.p.r. faults are known 
to be implicated in insufficient fault coverage levels, the 
selection of the appropriate pseudo-random test pattern 
generator has been extensively investigated for enhancing 
fault coverage levels /31/,/22/. A pure pseudo-random 
test could be very long, hence too expensive in terms of 
time, to obtain the highest possible fault coverage. Moreo­
ver, it is not always guaranteed that the highest possible 
fault coverage will be achieved even with extremely long 
pseudo-random test pattern sequence. 

A variety of solutions have been suggested to solve this 
problem /2/. A common method is to modify the circuit by 
test point insertion (control, observation point), or to rede­
sign it to make it testable via random patterns /25/. Mod­
ifying the CUT is rarely a desirable option because of per­
formance degradation and for intellectual property reasons 
/18/. Another technique is to test with weighted pseudo­
random sequences, where the random patterns are biased 
using additional logic to increase the probability of detect­
ing the r.p.r. faults /13/. 

Another widely investigated approach in BIST is the so 
called mixed-mode testing method /11/. In this BIST tech­
nique the circuit is tested in two phases. In the first phase, 
pseudo-random patterns are applied to cover easy to de­
tect faults /11/. In the second phase, deterministic test 
patterns are applied to cover the remaining faults. The 
mixed-mode BIST can be performed in several variations. 
One is to apply the deterministic patterns from a tester while 
another way is to store the deterministic patterns in an on­
chip ROM. Storing, however, requires a large amount of 
hardware overhead. As an alternative with lower memory 
requirements seeds can be stored on the external tester. 

Next significant innovation in mixed-mode testing came with 
the introduction of mapping logic /22/. The idea is to iden-

142 

tify patterns in the original generated set that don't detect 
any new faults and map them by hardware into determinis­
tic patterns. 

The other mixed-mode approach is presented as "bit-fix­
ing" method /24/. The deterministic test cubes are em­
bedded in the pseudo-random sequence of bits /8/. Log­
ic is added at the serial output of the LFSR to alter the 
pseudo-random bit sequence, so that it contains deter­
ministic patterns that detect the r.p.r. faults. This is accom­
plished by "fixing" certain bits in the pseudo-random test 
sequence. The method provides 100% fault coverage, but 
with high hardware overhead. 

Wunderlich et.al proposed another mixed-mode technique 
called the" bit-flipping method" /29/. To avoid storing the 
deterministic patterns on the chip, the authors show that it 
is sufficient to alter just a few bits of the general pseudo­
random sequence. The efficiency of this scheme relies on 
the fact that relatively small amounts of the generated pseu­
do-random patterns are useful forfault detection while oth­
ers are candidates for altering. Moreover, as a determinis­
tic test pattern usually contains many unspecified bits, there 
is a very high possibility that one of the ineffective patterns 
can be modified at just a few bit positions so that it be­
comes compatible with a previously computed determinis­
tic pattern. Results are provided to show that this scheme 
represents the most area-efficient solution to-date /29/. 

Another possible way to enhance low detectability of the 
r. p. r. faults is to select the seed very carefully. Several pro­
cedures to select seeds have already been studied /5/,/ 
6/,/10/,/14/,/16/. Bayraktaroglu et al. examined the 
pseudo-random pattern generator structure and selection 
approaches /5/,/6/. Lempel et al. proposed an LFSR 
seed-selecting algorithm that used the theory of discrete 
logarithms /16/. In Fagot et al.'s study /10/, fault simula­
tion computes an efficient LFSR seed which outputs the 
test sequence including a test cube. To reduce test appli­
cation time, Ichino et al. used a reseeding method and 
reverse order simulation /16/. 

In this paper we propose a BIST technique that selects the 
type of LFSR test pattern generator (TPG) and appropriate 
seed (initial state) to improve random-pattern test quality. 
The idea is to find a minimal possible set(s) of pseudo­
random generated tests to achieve the highest possible 
test coverage within specified time constraints. An addi­
tional effort was invested to embed the test and keep the 
hardware overhead as low as possible. We consider that 
the size of the LFSR, its primitive feedback polynomial, 
and the length of generated test are a priori known. The 
proposed method is intended to produce a one-seed test 
sequence of a given length that achieves the highest pos­
sible stuck-at fault coverage. The main feature of this tech­
nique is a minimal requirement forthe additional hardware 
to cover as many r.p.r. faults as possible. The goal of the 
presented method is an efficient test pattern generator 
which guarantees nearly 100% test fault coverage. Fur­
thermore, the proposed technique minimizes the test ap-



B. Dugonik, Z. Brez06nik: Seed and Polynomial Selection Algorithm 
for Lfsr Test Pattern Generator in Built-in Self-test Environment Informacije MIDEM 34(2004)3, str. 141-149 

plication time, test generation time, and hardware require­
ments. For most tested circuits we reached a reasonable 
fault coverage. When these techniques are applied to a 
mixed-mode BIST such as reseeding, bit-flipping or bit-fix­
ing, the number of additional circuits is generally reduced. 
With a minor modification of the proposed software the 
seed-selection methods can be applied not only to typical 
LFSRs but also to other types of test pattern generators 
such as Cellular Automata. /29/. 

The paper is organized as follows. In next section, we de­
scribe the construction methods of LFSR test pattern gen­
erator. Two basic BIST techniques are then described. In 
section 3, we briefly present some necessary definitions. 
In section 4, we introduce the proposed method for gen­
erating an efficient one-seed LFSR test sequences. Ex­
periments performed on ISCAS 85 benchmark circuits are 
presented and discussed in section 5. Concluding remarks 
are given in section 6. 

2. Test pattern generator 
implementations 

The main disadvantage of the classical testing approach is 
that the purchase price of test equipment (ATE) is very high 
/31/. For built-in self testing one must be able to generate 
and apply test patterns internally. By applying BIST, we can 
eliminate the need for ATE /1/ ,/2/,/ 13/. Figure 2 illus­
trates a basic BIST implementation. The method relies on 
embedding some extra elements to the circuits like test 
pattern generator and test response analyzer. In this pa­
per we will primarily focus on the problem of built-in gener­
ation of test patterns. 

Figure 2: Basic BIST implementation to CUT. 

The test sets can be stored in chip ROM but in the case of 
larger circuits this is an impractical and costly solution. 
LFSRs are commonly used as test pattern generators that 
generate pseudo-random patterns. These circuits are au­
tonomous in the sense that they have no inputs except for 

clocks. Each cell is assumed to be a clocked 0 flip-flop. 
The LSFRs are cyclic as they go through a fixed sequence 
of states. The output sequences (patterns) generated by 
such circuits are also cyclic. The patterns could be also 
encoded into seeds by solving a linear system of equa­
tions, which is an algebraic representation of the linear 
expansion of the LFSR /15/. 

The behaviour of a linear feedback register is completely 
determined by the feedback coefficients go, g1, '" gm 
where gi is a binary constant, and gi = 1 implies that a 
connection exists, while gi = 0 implies that there is no con­
nection. A sequence of numbers go, g1, .. , gm can be as­
sociated with a polynomial called the generator function 
G(x), defined in equation (1). 

(1 ) 

Since the feedback coefficients determine the polynomial 
of this LFSR, they need to be set to certain combinations 
to realize a specific desired polynomial. The LFSR goes 
through a cyclic i.e. periodic sequence of states and the 
output sequence is also periodic. The maximum length of 
this period is 2m-1, where m is the number of stages. The 
characteristic polynomial associated with a maximum length 
sequence is called a primitive polynomial. If the feedback 
polynomial is primitive then the output sequence has the 
same random properties and is called pseudo-random. In 
many cases pseudo-random patterns perform well for test­
ing but may also lead to reduced fault coverage due to 
linear dependencies /1/. 

There are two established realizations of characteristic 
polynomials in Figure 3. The Fibonacci implementation 
consists of a simple shift register in which a binary-weight­
ed modul0-2 sum of the taps is fed back to the input. On 
the other hand, the Galois implementation consists of a 
shift register the contents of which are modified at every 
stage by a binary-weighted value of the output stage. The 
choice of LFSR generators, configuration of feedback taps 
and applied seeds (initial values) can make an enormous 
difference in the efficiency of testing and in achieving the 
required test coverage for a particular CUT. When imple­
mented in hardware, modul0-2 additions are performed 
with XOR gates. The Galois form is generally faster than 
the Fibonacci one due to the reduced number of gates in 
the feedback loop, thus making it the favoured form /13/. 

Figure 3: Fibonacci and Galois implementation of 
LSFR. 

143 



Informacije MIDEM 34(2004)3, str. 141-149 
B. Dugonik, Z. Brezocnik: Seed and Polynomial Selection Algorithm 

for Lfsr Test Pattern Generator in Built-in Self-test Environment 

Figure 4 illustrates pseudo-random patterns generated with 
Fibonacci and Galois type of polynomial. For experimental 
purposes we implemented both types of generators in the 
software. The example shows an LFSR of size m = 4 with 
feedback connections at g4 and g3. The feedback taps 
are specified as Ifsr "I 4,3/g" for the Galois form, and Ifsr 
"/4,3/f" for the Fibonacci form. The left side of Figure 4 
shows the output sequence behavior of the Fibonacci im­
plementation with a primitive Fibonacci field. The non prim­
itive cyclic form in our example are obtained when the 
feedback taps of the polynomial are specified as Ifsr 
"/4,2,1 If" for the Fibonacci or Ifsr "/4,2,1 I g" Galois form. 

Lsfr 1 

FibonaCCI LFSR 

LFSR SIZ8' 4 

o 11 1 

1 01 1 

0'1 01 

1 0 'I 0 

1 1 01 

01 1 0 

001 1 

1 001 

01 00 

001 0 

0001 

Looped after 15 

Figure 4: 

Lsfr 2 Usr 2 

FibonaCCI LFSR Galois LFSR 

LFSR size' 4 LFSR size: 4 

0001 0001 

1000 1 0 1 0 

0100 01 0 1 

1 01 0 1000 

01 01 01 00 

(10·1 0 0010 

0001 0001 

Looped after 6 Looped after 6 

Program GEI\J_TV EXE 

Ifsr "[4,2 ,'IJf" 000'1 Fibonacci 
Ifsr "[4.2.'IJg" 0001 Galois 

"[4.3Jf" 000'1 Fibonacci 

Examples of primitive and non primitive 

sequence generation. 

BIST techniques, as shown in Figure 5, are classified into 
two categories: test-per-clock and test-per-scan 121. In 
the test-per-clock BIST (Figure 5(a)), a test vector is ap­
plied and its response is captured every clock cycle. In 
the test-per-scan BIST (Figure 5(b)) a test vector is applied 
and its response is captured into the scan chains only af­
ter the test is scanned into the scan chains. A scan cycle 
is defined as the number of clock cycles required to shift 
the vector into a serial register of the serial scan paths 
(whichever is larger) plus one or more normal mode clocks. 
The test-per-scan approach is generally much slower than 
the test-per-clock approach. The two approaches involve 
distinct hardware structures and trade-offs. 

We propose an algorithm for selecting a seed that can 
achieve target fault coverage with minimum test length for 
a given set of polynomials. Additionally, we propose an al­
gorithm for seed selection that can achieve maximum fault 
coverage for a given test length and for a given set of pol­
ynomials. In other words, the number of undetected faults 
is reduced to a minimum. The proposed algorithm consid­
erably improves pseudo-random testing without the need 
to change circuits in the CUT. 

144 

(a) Test-per-clock 

Test Pattern Generator 

Response Analysis 

(b)Test-per-scan 

Figure 5: Basic BIST techniques 

3. Preliminary details and definitions 

We define the notation where F is the set of modeled faults 
in the CUT. In this paperwe consider single stuck-at faults. 
Let 1 F 1 represent the number of elements in a set. Then a 
fault coverage of C % by a test pattern sequence means 
that 1 Fix C 1100 faults are detected by this sequence. h 
denotes the set of faults that are detected by test pattern 
T. 

Let T be an input test pattern generated from an m-stage 
LFSR, where m is the number of primary inputs to the CUT. 
When the LFSR outputs To as the first test vector, then the 
sequence of outputs proceeds as follows: To, TI, h ... , 
Tm-I, To ... Similarly, for seed TI the LFSR output sequence 
is: T2, T3, ... , Tm-I, To, h h .. In general, when the seed is 
Ti, the j-th test pattern is Ti+j (mod m). 

To model the required test length we define a function 
L(Ti, Ng) where Ng is a total number of faults detected for a 
selected seed Tj. Ng denotes the target number of detect­
ed faults, and Ng<S; 1 F I. Function L(T;, Ng) can be estimated 
or computed by fault simulations. For a given CUT there is at 
least one seed that detects Ng faults with a minimum test 
length. We search for this as the minimum test length seed 
Tj min. It is always possible to find at least one such seed. 



B, Dugonik, Z, Brezocnik: Seed and Polynomial Selection Algorithm 
for Lfsr Test Pattern Generator in Built-in Self-test Environment Informacije MIDEM 34(2004)3, str, 141-149 

4. The proposed approach 

When performing pseudo-random testing using an LFSRs 
as test pattern generators, the fault coverage that can be 
obtained is limited by the presence of random resistant 
faults in the CUT. To evaluate the detection hardness of 
these faults, we need to use a measure that represents 
the difficulty level for a random pattern to detect a given 
fault. Computing the fault detection probability is a hard 
problem, Generally, the higher the number of patterns de­
tecting a given fault, the easier this fault is detected, In our 
method, we measure the quality of the generated test af­
ter each test vector is applied to the CUT. 

A pattern generator based on an LFSR generates a test 
pattern sequence after a seed has been set. We first ap­
plied the method to the test-per-clock BIST structure, where 
the CUT is a combinational circuit. Once an LFSR seed is 
selected, the succeeding output test sequence is unique­
ly determined, A binary vector from the m-stage LFSR is 
regarded as an element Tj (0<i<2m-1) from Galois Field 
(GF) (2m), where T is a primitive element from GF (2m) and 
i denotes the index, 

Figure 6 shows a three pillar example of the seed selec­
tion procedure, First we select one of LFSR generators 
with a starting seed Tj, We first consider that the length L 
of the generated test sequences is set. Then we start to 
generate a fixed number of pseudo-random test vectors, 
With a fault simulator /21/ we measure the success of 
generated test vectors after each new generated and ap­
plied test vector, The first pillar represents the result for 
test set with seed Ti, The bright frames in the pillar contain 
the useful test vectors, Those cover one or more faults in 
the CUT. The dark frames contain unuseful ones (no new 
faults were found by a specific test vector), By comparing 
those three pillars, we suppose a seed that generates a 
test cube that covers more faults then any other, Unfortu­
nately, it is not only the number of successful test vectors 

Name of the circuit 
r'~ u rn b e r of p ri mat::tit'IJl ut:3 
r···lumber ofpritYlary outputs 
r\lumber IAgates 
Level of the circuit 

F'olinomial 
[5,'11 
[5,1] 
[5,11 ' 
[5,1] 
[5,1] 
[5,1] 
[5,1] 
[:S,)] 

e17 

in a cube that is important, but also how many faults are 
covered by them, Figure 7 describes this situation, where 
the cubes were rearranged by a fault coverage C (%), The 
seed Ti+n is the most successful selection with the highest 
achieved fault coverage, However, the generated test vec­
tors for seed Ti+m contains more useful test vectors, but 
test vectors for seed Ti+n in a set are more effective, 

fixed number of 
pseud.::.-r andorn 
generated test 

vectors 

Figure 6: 

'\'0. 

useful to 
unuseful ratio of 
pse,ido-random 
generated test 

vectors 

Figure 7: 

Seed T, Seed T"" 

useful test vectors 

¥// 

unusdul t2St vectors 

// 

_mmm;jl" 

Seed T,.~\ 

Fixed generated number of test sets with 
different seeds, 

Ordered pillars by effectiveness. 

Next, we assume that the test-per-clock BIST has been 
used in the C17 circuit, which is one of the ICSAS' 85 
benchmark circuits, This circuit has five primary inputs and 
two outputs. An example of the best seed calculation pro­
cedure is given in figure 8, For a given polynomial 

o 
o 
o 

CPU 
1 f38112 0,000 
1681 '12 OOW 
168116 OOW 

1 6t:ll 6 ' 0,000 
168116 0,000 
168120 0,001 
1681200010 

Figure 8: The best seed calculation procedure for minimal required number of test patterns according to complete 
fault coverage of C 17 with polynomial /5, 1/. 

145 



Informacije MIDEM 34(2004)3, str. 141-149 
B. Dugonik, Z. Brezocnik: Seed and Polynomial Selection Algorithm 

for Lfsr Test Pattern Generator in Built-in Self-test Environment 

P(X)=x5+x+ 1 and the starting seed To (10000) the fault 
simulation returns 100% fault coverage of C 17 after 17 
generated test vectors. If we calculate the required test 
length to achieve the target coverage (in our case 100%), 
we next increment the starting seed by one and a function 
L(Ti, Ng) returns 16 test vectors for all 22 faults. Starting 
with a seed 00110, we achieve the same (100%) fault cov­
erage with shorter test length of only L = 1 0 pseudo-ran­
dom generated test vectors, which is the minimum func­
tion for the proposed polynomial and the seed Ti min is 
00100. 

Figure 9 shows the differences in fault coverage when we 
implement different polynomials. We found that the imple­
mentation of specific polynomial as pseudo-random pat­
tern generator can be very successful for some circuits 
while another type of polynomial returns weak results. 
Therefore, it is important to try more than one polynomial. 

For a large circuit a seed calculation through a complete 
space of all possible test vectors is an NP-hard problem, 
therefore we have to be satisfied with approximations. It is 
important for the first step to make a realistic estimation of 
realistic test length. In the second step we can then begin 
with the estimation of the shortest test length Lmin(Ti, Ng), 
Figure 10 shows an example where the fault coverage of 
L=100 pseudo-random generated tests were simulated. 
For a given seed Tj the possible fault coverage (FC) of 88% 
after applied 58 pseudo-random generated test vectors 
was achieved. The rest (number) of test vectors are only 
unusable ones in window of 100 pseudo-random test vec-

% 

ill 100,00 
0) 

>'0 95,00 ® 
6 90,00 -
U 
=: 85,00 ::J 
(I:J 

LL 80,00 .. ~. 

75,00 

70,00 

65,00 

60,00 

55,00 

50.00 

45,00 

40,00 

35,00 

30,00 

25,00 

20,00 

15,00 

10,00 

5,00 

" 0,00 

tors (PRTV), The great benefit of our technique is the pos­
sibility for exact calculation of the lower bound of those 
testing windows which are able to reach the target fault 
coverage for a specific circuit. 

I(C 

Ie 

caBO.bene circuit 

Figure 10: Coverage/number of generated test vector 
ratio for cBBO.bench 

5. Experimental results 

The method to reduce the pseudo-random test length de­
scribed in this paper was applied to ISCAS 85 benchmark 
circuits. We considered the test-per-clock 81ST structure. 
The size of each LFSR is equal to the number of primary 
inputs in each circuit. The characteristic polynomial of each 
LFSR is a primitive feedback polynomial. Fault simulation 
in each circuit was performed using FSIM simulation tool 

Polynornlal [5,2,'1] 
,~' ." 

0 2 3 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 Test vectors 

Figure 9: Polynomial discrepancy 

146 



B. Dugonik, Z. Brezocnik: Seed and Polynomial Selection Algorithm 
for Usr Test Pattern Generator in Built-in Self-test Environment Informacije MIDEM 34(2004)3, str. 141-149 

/21/. The computer we used is PC based platform with 1 
GHz Pentium Processor. 

First, we select a seed that could achieve the minimum 
test length to cover the highest possible number of detect­
able faults in a particular benchmark circuit. Next, we 
search for suitable polynomial for a circuit. First polynomi­
al in the database is a polynomial with the lowest possible 
number of feedbacks. Then we progressively increase the 
number of feedbacks for each additional polynomial in the 
base. The number of selected polynomials differs and de­
pends on the size and complexity of a circuit. For exam­
ple, we used 20 different polynomials for C880 circuit and 
only three polynomials for C7552 circuit. In the next step 
we randomly select the first seed and determine the fixed 
test length TSL for each test sequence. Further on, we 
determine the distance to the next seed and the total 
number of generated test sequences for each individual 
polynomial in database. The number of selected seeds, 
i.e. the number of test sequences, depends on the number 
of inputs in the tested circuit and ranges between a few 
hundred and few thousand for each polynomial. With the 
simulator, we calculate the achieved fault coverage for each 
generated test sequence, for each polynomial and seed. 
Next step is a determination of the average (AVR_FC %) 

and maximum fault coverage (M_FC %) for the specific test 
set. The results give us the information, which polynomial, 
seed and test length are the most suitable for a tested cir­
cuit. 

The results are given in Table 1. The first column indicates 
the circuit name. The second and the third column give 
the number of primary inputs (# PI) and primary outputs 
(# PO), respectively. The fourth column gives the number 
of detectable faults (# F) in a circuit. The fifth column re­
ports the chosen length of the generated test sequences 
(TSL). Columns six and seven give the average fault cover­
age (AVR_FC in %) and maximum achieved fault coverage 
(M_FC in %) according to the selected test length. The 
CPU time (in seconds) needed for the complete process 
of generating a one-seed LFSR test sequence is in the 
last column. For each circuit, an average of 15 different 
primitive feedback polynomials were evaluated. The results 
in table 1 show the performances obtained with the pro­
posed method to compute the most successful LFSR seed 
and the best polynomial. By comparing our results to pre­
viously published results /23/,/10/, we conclude that for 
most tested circuits our results were comparable or even 
better. Computational effort is much more difficult to com­
pare because of different equipment used in former re­
ports. 

In the second step of the algorithm, the goal was to find 
the shortest test sequence according to selected polyno­
mial and starting seed. We used the outcome of first step 
of the algorithm, i.e. the best suited polynomial and the 
best seed. The seed is then used as initial seed in the 
second step of procedure. For each new generated test 
vector a fault coverage is computed by the fault simulator. 

Table 1: Test results according to selected test lengths for ISCAS 85 circuits 

Circuit # PI #PO #F TSL (10 3
) AVR FC ('Yo) M FC (%) CPU (s) 

c432 36 7 524 5 98,696 99,237 322,69 
10 98,993 99,237 5398,50 
50 99,135 99,237 29073,51 

c499 41 32 758 1 98,697 98,945 519,56 
5 98,725 98,945 12702,11 
100 98,945 98,945 19800,47 

C880 60 26 942 1 94,286 99,894 529,02 
5 99,5 100 1022,55 
10 99,753 100 1495,23 

C1355 41 32 1574 1 96,215 99,238 1180,11 
5 97,343 99,942 3100,21 

C1908 33 25 1879 1 95,268 97,765 141624,00 
10 99,487 99,521 384374,12 
50 99,519 99,521 15500,98 

C2670 233 140 2747 5 84,526 88,278 191052,19 
10 84,748 90,462 358931,22 

C3540 50 22 3428 1 94,278 95,362 7906,16 
5 95,829 96,004 13000,01 

C5315 178 123 5350 5 69,907 98,897 6h 
10 98,897 98,897 4008 

C6288 32 32 7744 500 99,561 99,561 1008,09 
1 99,561 99,561 1579,15 

C7552 207 108 7550 10 94,188 96,768 7h 
50 96,467 96,927 13 h 

147 



Informacije MIDEM 34(2004)3, str. 141-149 
B. Dugonik, Z. Brezocnik: Seed and Polynomial Selection Algorithm 

for Lfsr Test Pattern Generator in Built-in Self-test Environment 

Table 2: Average test results according to selected test lengths for ISCAS 85 

Circuit #PI #PO #F #AVR TL 
C17 5 2 22 11 
C432 36 7 524 611 
C499 41 32 758 793 
C880 60 26 942 14353 
C1355 41 32 1574 2060 
C1908 33 25 1879 3502 
C2670 233 140 2747 > 100000 
C3540 50 22 3428 9949 
C5315 178 123 5350 512 
C6288 32 32 7744 62 
C7552 207 108 7550 > 100000 

When the desired fault coverage is achieved, the proce­
dure ends and the last generated test vector determines 
the intermediate achieved test length. For each polynomi­
ai, we randomly select 1. 000, 5. 000, 10. 000 and 100. 000 
test sets on average. Then, we calculate minimal test length 
(MIN_ TS) for the highest fault coverage (FC %), average 
test length (# AVR_ TL) and average fault coverage 
(AVRJC). We found out that the majority of tested circuits 
the average and minimal number of test vectors are very 
close. For some circuit, i.e. C880, we calculate the min­
imal test length of 1024 generated test vectors to achieve 
100% of fault coverage. To achieve the average of 98,272 
% fault coverage we need 14.353 test vectors in average. 

In Table 2, we compare the fault coverage provided by our 
method and the best fault coverage of random selected 
seed test sequence. The first column has the circuit name. 
The second and the third columns give the number of pri­
mary inputs (# PI) and the number of primary outputs 
(# PO). The fourth column gives the number of detectable 
faults (# F) in each circuit. Columns five and six give the 
average test length (# AVR_ TL) and the average achieved 
fault coverage (AVR_FC in %) according to the selected 
set of seeds. In column seven we report the shortest 
achieved test length. The highest possible fault coverage 
achieved according to minimal test length is in the last col­
umn. 

6. Conclusion 

In this paper, we proposed a technique for selecting the 
LFSR TPG seed in order to achieve the highest fault cov­
erage with a given set of characteristic polynomials. In our 
research we can conclude that different characteristic 
polynomials can return a different best possible seed to 
reach the expected fault coverage. The test length (total 
number of generated pseudo-random test patterns) differs 
more than 1 against 10 for some circuits being tested. To 
compute the best seed for the largest circuits in the test 
(C7552) we need 13 h of computational time. Note that 
for large circuits the applicability of the method depends 
on two user constraints. The first one is the computational 

148 

AVR FC (%) MIN TS M Fe (%) 
100,00 5 100 
98,413 353 99,24 
98,820 512 98,95 
98,272 1024 100,00 
97,059 1760 99,49 
99,071 3296 99,31 
92,111 99999 95,413 
95,920 4160 96,004 
98,061 483 98,897 
99,330 64 99,561 
96,026 14432 97,007 

effort one is willing to spend. The second one is the test 
length of the test sequence one is willing to allow. Com­
paring to the results of other authors we can conclude that 
our technique is fast enough to deal with combinational 
circuits of great size and with a large number of primary 
inputs. Furthermore, the proposed seed/polynomial se­
lection can be applied not only as conventional BIST but 
also in mixed mode BIST such as those with reseeding, 
mapping, and bit-fixing 

7. References 

/1/ M. Abramovici. M. A. Breuer, A. D. Friedman, "Digital Systems 
Testing and Testable Design", New York: Computer Science, 
1990. 

/2/ V. D. Agrawal, C. R. Kime, K. K. Saluja, "A Tutorial on Built-in 
Self-Test, Part 1: Principles ", IEEE Design&Test, pp. 69-77, 
1993. 

/3/ V. D. Agrawal, C. R. Kime, K. K. Saluja, "A Tutorial on Built-in 
Self-Test, Part 2: Applications", Design & Test of Computers, 
pp. 73-82, 1993. 

/4/ S. B. Akers, W. Jansz, "Test Set Embedding in Built-in Self-Test 
Environment", IEEE 1989 International Test Conference, pp. 
257-263, 1989. 

/5/ I. Bayraktaroglu, K. Udawatta, A. Orayloglu, "An Examination of 
PRPG Selection Approaches for Large, Industrial Design", Proc. 
AsiaTestSymp., pp. 440-444,1998. 

/6/ I. Bayraktaroglu, A. Orailoglu, "Selecting a PRPG: Randomness, 
Primitiveness, or Sheer Luck", 10th Asian Test Symposium 
(ATS'01),2001. 

/7/ F. Brglez, H. Fujiwara, "A neutral netlist of 10 combinational 
benchmark circuits and a target translator in FORTRAN", IEEE 
International Symposium on Circuits and Systems, 1985. 

/8/ K. Chakrabarty, S. R. Das, "Test-Set Embedding Based on Width 
Compression for Mixed Mode BIST", IEEE Transactions on In­
strumentation and Measurement, vol. 49, no. 3, pp. 671-678, 
2000. 

/9/ B. Dugonik, T. Kapus, Z. Brezocnik, "Design error diagnosis and 
test in logic circuits using error simulation models", V: HAMZA, 
M.H. (ur.). lASTED International conference Software Engineer­
ing, Anaheim; San Francisco, Calgary; Zurich: lASTED/Acta 
Press, Software engineering: proceedings of the lASTED Inter­
national conference, pp. 154-158, 1997. 

/10/ C. Fagot, O. Gascuel, P. Girard and C. Landrault, "On Calculat­
ing Efficient LFSR Seeds for Built-in Self Test", Proc. European 
Test ConI., pp. 4-14.1999. 



B. Dugonik, Z. Brezocnik: Seed and Polynomial Selection Algorithm 
for Lfsr Test Pattern Generator in Built-in Self-test Environment Informacije MIDEM 34(2004)3, str. 141-149 

/11/ S. Hellebrand, H. G. Liang, H. J. Wunderlich, "A mixed-mode 
BIST scheme based on reseeding of folding counters", Proc. 
Int. Test ConI., pp. 778-784, 2000. 

/12/ S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, "Genera­
tion of Vector Patterns Through Reseeding of Multiple-Polynomi­
al Linear Feedback Shift Registers," Proc. of IEEE Int'I Test ConI., 
pp.120-129,1992. 

/13/ N. K. Jha, S. Gupta, "Testing of Digital Systems", Cambridge 
University Press, 2003. 

/14/ K. Ichino, K. Watanabe, M. Arai, S. Fukumoto, K. Iwasaki, "A 
Seed Selection Procedure for LFSR-Based Random Pattern 
Generators", Proceedings of the ASP-DAC 2003. Asia and South 
Pacific Design Automation Conference 2003, pp. 869-74, 2003. 

/15/ B. Koenemann, "LFSR-Coded Test Patterns for Scan Designs," 
Proc. of European Test Conference, pp. 237-242, 1991. 

/16/ M. Lempel, S. K. Gupta, and M. A. Breuer, "Test Embedding 
with Discrete Logarithms," IEEE Transactions on Comput.-Aid­
ed Design, Vol. 14, pp. 554-566,1995. 

/17/ R. Meolic, T. Kapus, B. Dugonik, Z. Brezocnik, "Formal verifica­
tion of distributed mutual-exclusion circuits", Inl. MIDEM, nr. 
3(107), pp. 157-169, 2003. 

/18/ B. Murray, J. Hayes, "Testing ICs: Getting to the Core of the 
Problem", IEEE Computer, vol. 29, no. 11, pp. 32-38, 1996. 

/19/ J. Savir, W. McAnney, "A Multiple Seed Linear Feedback Shift 
Register", IEEE transactions on Computers, vol. 41, no. 2, pp. 
250-252,1992. 

/20/ A. Steininger, "Testing and Built-in SelfTest - A Survey", Journal 
of Systems Architecture, Elsevier Science Publishers B.V., North 
Holland,2003. 

/21/ H. K. Lee and D. S. Ha, "An Efficient Forward Fault Simulation 
Algorithm Based on the Parallel Pattern Single Fault Propaga­
tion", Proc. of the 1991 International Test Conference, pp. 946-
955,1991. 

/22/ N. A. Touba, E. J. McCluskey, "Synthesis of Mapping Logic for 
Generating Transformed Pseudo-Random Patterns for BIST," 
Proc. of International Test Conference, pp. 674-682, 1995. 

/23/ N. A. Touba, E. J. McCluskey, "Transformed Pseudo-Random 
Patterns for BIST," Proc. of International Test Conference, pp. 
674-682, 1994. 

/24/ N. A. Touba, E. J. McCluskey, "Bit-Fixing in Pseudo-random 
Sequences for Scan BIST", IEEE Transaction on Computer-Aid­
ed Design of Integrated Circuit and Systems, Vol 20, pp. 71-82, 
2001. 

/25/ N. A. Touba, , E. J. McCluskey, "Test Point Insertion Based on 
Path Tracing", Proc. of VLSI Test Symposium, pp. 2-8, 1996. 

/26/ S. Venkataraman, J. Rajski, S. Hellebrand, and S. Tarnick, "An 
Efficient BIST Scheme Based On Reseeding of Multiple Polyno­
mial Linear Feedback Shift Registers," Proc. of IEEE Int'! ConI. 
on Computer-Aided Design, pp. 572-577,1993. 

/27/ R. Williams, "IBM Perspectives on the Electrical Design Auto­
mation Industry", Keywords to IEEE Design Automation Confer­
ence, 1986. 

/28/ H. J. Wunderlich, "Multiple Distributions for Biased Random Test 
Patterns", IEEE Transactions on Computer-Aided Design, Vol. 
9, No.6, pp. 584-593, 1990. 

/29/ H. J. Wunderlich, G. Kiefer, "Bit-Flipping BIST" , ACM/IEEE In­
ternational Conference on CAD-96 (lCCAD96), San Jose, Cali­
fornia, pp. 337-343, 1996. 

/30/ H. J. Wunderlich,"BIST of Systems-on-a Chip", The VLSI jour­
nal, pp. 55-78, 1998. 

/31/ H. J. Wunderlich, "Test and Testable Design", Springer Verlag, 
pp. 141 - 190, 1998. 

Bogdan Dugonik, Zmago Brezo6nik 
Fakulteta za elektrotehniko, ra6unalnistvo in 

informatiko, Univerza v Mariboru, Siovenija 
Smetanova 17, 2000 Maribor 

Prispe/o (Arrived): 01.09.2004 Sprejeto (Accepted): 15.09.2004 

149 


