
476 Zdrav Vestn | junij 2011 | Letnik 80

IZVIrnI čLanek/OrIgInaL artIcLe

Spatial signatures in 
brain segmentation Use of signatures to create probability maps 

of brain tissues in health and disease  
– a new diagnostic tool?
Uporaba statističnih podpisov za izdelavo verjetnostnih map 
zdravih in obolelih možganov - nov diagnostični pripomoček?

andrej Vovk,1 robert W. cox,2 Dušan Šuput,1 Janez Stare,3 Ziad. S. Saad2

Abstract
Segmentation of brain MRI into white matter, 
gray matter, cerebrospinal fluid, skull, and other 
categories is an integral part of MRI analysis. To 
date, most widely used segmentation approaches 
require the use of population-based spatial seg-
mentation priors, mostly to improve robustness 
to shading artifacts and noise. Prior generation 
requires a set of segmented volumes from a 
population similar to the one to be studied, and 
an alignment approach for aligning brains from 
multiple subjects. 

Aim: In this paper we present a method for gen-
erating segmentation priors that is insensitive to 
noise and field bias and does not require registra-
tion to a template space. 

Methods: Our approach relies on using signa-
tures, a set of local descriptive statistics, com-
puted over multiple spatial scales. In the training 
process, signatures of each tissue are clustered 
into representative sub-classes. Representative 
signatures are the median of signatures in each 
subclass. In a new dataset, voxel signatures are 
compared to the set of representative signatures 
and tissue classification priors are generated us-
ing Bayes’ rule and total probability. 

Results: These signature-based probability maps 
can replace spatially-based population priors in 
segmentation. We also show that signature simi-
larity can be used interactively to delineate brain 
lesions, such as tumours, thereby facilitating di-
agnostic procedures. 

Conclusions: Voxel signatures consisting of spa-
tial texture information across multiple scales, 
can be used either as simple similarity measure 
to select tissue of the same type or to create tissue 
prior probability maps that can be used in brain 
segmentation and in other clinically relevant 
procedures.

Izvleček
Analiza magnetnoresonančnih (MR) slik mož-
ganov temelji na prepoznavanju možganske sivi-
ne, beline, likvorja in lobanje. Številne anomalije 
lahko izkušen diagnostik hitro in dobro prepo-
zna, mnogo težje pa je oceniti obseg anomalije 
in spremljati njene spremembe po zdravljenju. 
Avtomatska segmentacija možganov z uporabo 
programske opreme je zato izrednega pomena za 
objektivno analizo MR slik. Preprosto povedano 
so dosedanje metode segmentacije temeljile na 
«normaliziranih« oz. »standardnih« možganih, 
ki se uporabljajo kot model za proces »učenja« 
računalniških programov za segementacijo. Av-
tomatska analiza slike torej temelji na »priorjih«, 
to je izhodiščih, iz katerih se program »uči« pre-
poznavati posamezne strukture v možganih. To 
je še zlasti pomembno zato, ker razni artefakti 
senčenja in šum v MR sliki povzroče, da intenzi-
teta signala po celotni rezini in celotni pregledani 
prostornini možganov ni homogena. V praksi to 
pomeni, da sta si lahko npr. intenziteti signalov 
beline in sivine na posameznih vokslih, to je pri-
kazanih prostorninskih delčkih tkiva, v raznih 
predelih MR slike enaki in jih ni možno prepo-
znati samo po tem merilu. Priorji omogočijo, da 
se standardni možgani »preslikajo« na možgane 
preiskovanca, kar izboljša avtomatsko analizo sli-
ke. Na MR slikah možganov normalnih prosto-
voljcev je tak postopek natančen in hiter, odpove 
pa lahko pri večjih anomalijah v možganih. Naš 
pristop k analizi slike, ki ga opisujemo v tem pri-
spevku, pa je bil drugačen. Želeli smo se izogniti 
omejitvam, ki jih prinašajo priorji, ki temelje na 
standardnih možganih. Izdelali smo izvirno me-
todo analize slike z razvojem programa, ki pre-
pozna značilne podpise posameznih vokslov v 
MR sliki na osnovi intenzitete signala in njegove 
soseščine. Priorje na osnovi »standardnih možga-
nov« torej nadomestimo s priorji, ki so v bistvu 
značilni podpisi preiskovančevih možganov. Te 
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tudi ob prisotnosti večjih anomalij. Izkazalo se je, 
da z analizo značilnih podpisov preiskovančevih 
možganov lahko tudi prepoznamo posamezne 
patološke spremembe in celo njene posamezne 
dele, kar lahko bistveno prispeva k hitrosti, objek-
tivnosti in natančnosti diagnostike.

značilne podpise nato uporabimo v nadaljnjih 
postopkih obdelave slike. Naša metoda omogoča 
popolnoma nove pristope k segmentiranju mo-
žganov. Program torej izdela verjetnostne mape 
sestavin možganov vsakega posameznega prei-
skovanca in s tem omogoča analizo možganov 

Introduction
Diagnostic imaging is one of the most 

important approaches in the assessment of a 
patient’s disease, and also in the follow up of 
treatment effects. Magnetic Resonance Im-
aging (MRI), compared to other diagnostic 
imaging methods, offers high spatial resolu-
tion and good discrimination of soft tissues 
while being non-invasive. The rich anatomy 
information provided by MRI is very useful 
in many imaging applications such as the 
quantitative clinical studies of pathology,1,2 
diagnosis,3-6 localization of pathology,7 
study of anatomical structures and the deri-
vation of anatomical atlases8 and priors.9 In 
addition, treatment planning10-12 and com-
puter integrated surgery13 increasingly rely 
on MR imaging methods.

Although visual inspection of MR im-
ages can often yield an accurate diagnosis, 
there are several conditions where a more 
objective method for the assessment of pa-
thology is needed. Even the evaluation of 
an easily recognizable pathology, such as 
brain tumours, becomes more complicated 
when a quantitative measurement is needed. 
Manual segmentation followed by volum-
etry is the usual choice, but it is a tedious 

and time-consuming approach. Measure-
ment of the extent of brain tissue atrophy or 
quantisation of a diffusely spread pathology 
is even more complicated and therefore te-
dious manual procedures are unsuitable for 
the clinical practice where more rapid and 
accurate measurements are needed.

Most common delineation of normal 
brain is into 3 classes: cerebrospinal fluid 
(CSF), gray matter (GM) and white mater 
(WM). This seems easy at first look, but 
in practice, noise and field inhomogene-
ity cause the same tissue type to have non-
uniform intensity over the whole volume. 
Those shading artifacts might not affect vi-
sual recognition of tissue borders, but they 
cause significant problems to automatic seg-
mentations that are based on voxel intensity 
distributions.14

To make the segmentation robust to 
such artifacts, most if not all current brain 
segmentation approaches (SPM,15 FSL,16,17 
FreeSurfer18,19) rely on a pre-computed ana-
tomical atlas providing a priori information 
about the spatial distribution of tissue types. 
These priors are generated by combining 
segmentations of a large number of MRI 
volumes aligned to a common space. To 
make use of these spatial priors, one needs 

Figure 1: Highlight 
of skull tissue using 
voxel signature 
similarity.  colored 
overlay represent voxels 
whose signature had a 
Spearman correlation 
with that of the voxel at 
the cross hair (top left 
graph) at 0.6 or higher. 
red arrows point to 
sample tissue locations 
with different signatures.



478 Zdrav Vestn | junij 2011 | Letnik 80

IZVIrnI čLanek/OrIgInaL artIcLe

Figure 2: Sample 
clustering of gray 
and white matter 
into 3 subclusters in 
the learning process. 
clustering of signatures 
into three different types 
of gray/white matter 
was consistent across 
all volumes used in 
the learning process. 
note striking similarity 
in panel a between 
the basal ganglia and 
cerebellar cortex (red 
cluster). characteristic 
clusters are also 
found in the temporal 
lobe and partly in the 
frontal cortex (green 
cluster). White matter 
on panel B also shows 
different signatures in 
the cortico-cortical “U” 
connections, pyramidal 
and extrapiramidal tract, 
and in the temporal 
lobe. graphs show 
representative signatures 
from each tissue type.

also showing that this information can be 
used to categorize different tissues, includ-
ing brain lesions.

Methods
Patients, volunteers, and standards.

The analysis of images was performed 
on data obtained from previous studies on 
patients and volunteers on tomographs GE 
Signa 1,5 T and Siemens Magnetom Trio A 
Tim Systems 3 T at the Faculty of Medicine, 
Ljubljana. Informed consent and permis-
sion to use the data obtained by MR imag-
ing has been obtained in accordance with a 
protocol approved by the Ethical Commit-
tee of the Republic of Slovenia (Republiška 
komisija za zdravniško etiko). In addition, a 
set of manually segmented T1 volumes was 
obtained from the Internet Brain Segmenta-
tion Repository (IBSR) Center for Morpho-
metric Analysis at Massachusetts General 
Hospital, which makes the data available 
for the assessment of different segmentation 
method (http://www.cma.mgh.harvard.
edu/ibsr/).

We hypothesize that voxels of similar tis-
sue types and local texture will exhibit simi-
lar signatures and that signature similarity 
can be used to generate classification priors. 
Figure 1 illustrates signatures and signature 
similarity. Each graph shows the signature 
from a different location in the brain. The 
colored portions show brain voxels whose 
signatures were correlated at 0.6 or higher 
with the signature at the crosshair voxel 
on the top left. This highlighting of tissue 

to align the volume to be segmented to the 
common space, a process which is itself sen-
sitive to noise, and to shading artifacts as re-
cently detailed by Ashburner et al.15

Brain abnormality seen on MRI can re-
sult from various diseases, and segmenting 
of pathologically altered brain images needs 
to be done carefully. Generally, as reflected 
in imaging, one could group brain anomalies 
into three groups. The first group comprises 
gross anatomical changes that can be caused 
by neoplastic diseases, cysts, abscesses, and 
other anomalies that change the anatomy 
of the brain. The second group of anoma-
lies is characterized by “normal” anatomy, 
but changes in signal intensity on MR im-
ages (typical for multiple sclerosis–MS). 
The third group of changes is represented 
by “normal” anatomy, but different propor-
tions of CSF, GM and WM (degeneration 
in disease, thickening of GM under some 
physiological conditions etc.). Segmentation 
procedures that rely on priors from normal 
brain atlases are most suited for the third 
group of brain image changes. Registration 
of an “average” brain to an observed normal 
brain is relatively easy, but problems arises 
when anomalies are present.

Here we propose a new method for gen-
erating segmentation priors. The proposed 
method is insensitive to shading artifacts 
because of its reliance on local measures, 
and does not require registration to a tem-
plate. This greatly reduces the number of pa-
rameters to optimize during segmentation. 
Our approach relies on using local texture 
information computed over multiple spatial 
scales, rather than spatial location. We are 
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Figure 3: Probability 
maps of cSF, gM, WM, 
and class of maximum 
probability (Max. Prob.) 
of the sample brain 
shown on the left.  the 
maps were produced 
with different methods 
(Linear registration of 
average probability map 
- first row, non-linear 
registration – second 
row and probability 
maps computed with 
our approach – third 
row). the last column 
shows maps of the tissue 
type with the maximum 
probability.

Figure 4: Segmentation 
of brain using various 
priors with segmentation 
tool FaSt. (a)
Segmentation without 
using probability maps, 
(B) with  spatial priors  
only for initializing the 
segmentation procedure, 
(c) using spatial priors 
for final segmentation, 
(D) manually segmented 
from IBSr, (e) using 
signature-based 
priors for initializing 
segmentation, and 
(F) with signature-
based priors for final 
segmentation. WM (red) 
is well represented in all 
cases but gM (orange) 
is often misclassified 
as cSF (green) in a, 
B and e where priors  
were not used for final 
segmentation.

hibit similar signatures. For example, gray 
matter tissue will have different signatures 
on the surface of the brain (cortex) versus 
the basal ganglia or the brain stem. Thus, 
each tissue class can have multiple represen-
tative signatures, which can be identified by 
a clustering approach. We cluster signatures 
of each tissue class using k-means into 3 or 4 
clusters [adaptation of Cluster 3.0 by Mich-
iel de Hoon from Human Genome Center, 
University of Tokyo]. The centroid of each 
cluster forms one of the representative sig-
natures →si of the parent class.

around the skull is not based on individual 
voxel intensity, but rather on the distribu-
tion of voxel intensities over multiple spatial 
scales. In the remainder of this work, we fo-
cus on brain tissue only. However, the meth-
od can readily be extended to non-brain tis-
sue as well.

Training Process

To determine which signatures best rep-
resent a tissue type, we use the manually 
segmented volumes to separate computed 
signatures by GM, WM and CSF. However, 
not all voxels of the same tissue type will ex-
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Figure 5: accuracy 
of generation and 
registration of probability 
maps in brain with two 
large metastases.  First 
row is showing (from 
left to right) three WM 
partial probability maps 
and final probability map 
produced by maximum 
of the weighted first 
three probability maps. 
In the second row panel 
a shows t1 coronal 
slice of brain with 2 
lesions; Panel B shows 
overlaid average WM 
probability map based 
on linear registration of 
average brain template 
– the lesion was not 
“recognized”; panel 
c shows nonlinear 
registration of average 
probability map that 
gives a bit better 
results than linear 
registration; panel D 
shows our probability 
map generated from 
signatures. Our method 
recognizes both lesions 
as not belonging to WM, 
which would normally be 
present on this position 
in healthy brain.

ed the likelihood of CSF (especially frontal-
ly) and underestimated that of WM. Non-
linear registration yielded improved results, 
but population based likelihood map cannot 
reflect the higher level of detail found in 
an individual brain. In contrast, signature-
based likelihood maps better reflect indi-
vidual anatomy. To test whether they can 
replace population-based spatial priors, we 
used them as priors in FSL’s FAST17 seg-
mentation tool (FMRIB Centre, University 
of Oxford, UK). Figure 4 shows a sample 
segmentation result with population-based 
spatial priors, and with signature-based 
ones. Dice metrics for both CSF and GM 
classification were improved with signature-
derived priors from 0.23 to 0.56, and 0.87 to 
0.9, respectively. Across all 18 IBSR volumes, 
classification of CSF, and GM improved by 
an average of 96 % and 1 %, however classi-
fication of WM decreased by 4 % suggesting 
that the procedure requires further optimi-
zation.

We also wanted to test the usefulness of 
our probability maps on pathologically al-
tered brain as first results showed great de-
tailed structures that average maps could not 
(see Figure 3, last column). Here we show 
that partial probability maps can give bet-
ter results than using registration of average 
probability map. We used three representa-
tive signatures for computing similarities 
and later probabilities (first row in Figure 5). 
Compilation of these three probability maps 
gives reliable representation of all WM in 
the brain of a patient with two metastatic 

Figure 2 shows in panel A the clustering 
results of gray matter tissue, and in panel B 
those of white matter tissue.

The similarity between signatures is in-
versely proportional to the distance between 
them. Using the training dataset, we model 
the distribution of distances in each subclass 
to each of the representative signatures us-
ing the Gamma function. These distance 
distributions are used to estimate p(δi,r|ci=k), 
the probability of observing a distance from 
a voxel’s signature from representative sig-
nature r, given that voxel’s membership in 
class k.

Processing steps described above were 
implemented with AFNI 20 software pack-
age and its R21 library extension http://afni.
nimh.nih.gov.

To compare tissue probability maps ob-
tained from voxel signatures to those ob-
tained on spatial registration, we register 
T1 volumes to the space of the probability 
templates distributed with FSL 17 using both 
linear (FLIRT 22) and non linear registration 
(FNIRT).

Results and discussion
Figure 3 shows tissue probability maps 

obtained by linear registration and non-
linear registration to the spatial priors tem-
plate, and those computed from signatures 
of IBSR volume 7 using training results de-
rived from IBSR volume 9.

In this case, average probability maps 
aligned by linear registration22 overestimat-
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Figure 6: recognition 
of tumor tissue by use 
of signature similarity. 
a reference voxel is 
selected at the cross 
hair, and colored overlay 
highlights voxels with 
similar signatures. note 
how the vast majority 
of similar signatures 
belong in the cyst (first 
panel). the solid tumor 
tissue, which has similar 
signal intensity as the 
white matter, can also 
be delineated (second 
panel).

with necrotic region surrounded by viable 
tumor tissue. The selection of a reference 
voxel can trigger a computation of similarity 
between its signature and that of each other 
voxel in the brain.

Note how selecting a voxel in the cystic 
region (Fig. 6 top) reveals that voxels with 
most similar signatures lie within the cyst it-
self. If the similarity was based on signal in-
tensity alone, then much of the gray matter 
would be considered similar to the voxel in 
the cyst. This interactive similarity detection 
approach can simplify the manual process 
of cyst delineation and volume estimation, 
which is especially important for monitor-
ing the effects of therapeutic procedures 
such as radiotherapy and/or chemotherapy. 
Similarly, the viable tumor tissue is also well 
recognized by our signature similarity tech-
nique (Fig. 6 bottom), and it is well distin-
guished from white matter and gray matter, 
although the signal intensity of WM and tu-
mor tissue is similar over the entire volume 
of slices.

Conclusions
By using voxel signatures consisting of 

spatial texture information across multiple 
scales, we can create tissue prior probability 
maps that can be used in brain segmenta-
tion. The approach does not require the use 
prior maps based on segmented brain data 
from a known population, nor registration 
to a template space. Furthermore, signatures 
can be used for interactive delineation of 
structures where the use of voxel intensity 

lesions (Fig. 5 D), avoiding the metastases 
that are not “recognized” by methods using 
linear and non-linear registration of average 
probability maps–priors.

Another use of the signatures is to com-
pute similarity maps based on interactive 
selection of a reference voxel’s signature. For 
example, Fig. 6 shows a metastatic lesion 

Appendix
The essential part of our approach relies on what we term a voxel’s signature. This is a 

collection of descriptive statistics computed over multiple spatial scales and arrayed into 
a vector →si as shown in (Eq.1).

Eq1: 

i – voxel index
→si – signature = a vector of m descriptive statistics over n multiple spatial scales
yi – voxel intensity
Yij – Set of voxel intensities inside a sphere of j mm and centered around voxel i;
statk(Y) –a statistic computed over set Y. In this work, we used the three statistics of 

median, median absolute deviation, and skew.
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IEEE Trans Med Imaging 2007; 26: 405–21.
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Neuroimage 2005; 26:  839–51.
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analysis and implementation as FSL. Neuroimage 
2004; 23 Suppl 1:S208–19.

17. Zhang Y, Brady M, Smith S. Segmentation of brain 
MR images through a hidden Markov random fie-
ld model and the expectation-maximization algo-
rithm. IEEE Trans Med Imaging 2001; 20: 45–57.

18. Fischl B, Salat DH, Busa E, Albert M, Dieterich 
M, Haselgrove C, et al. Whole brain segmentation: 
automated labeling of neuroanatomical structures 
in the human brain. Neuron 2002; 33: 341–55.

19. Fischl B, Salat DH, van der Kouwe AJ, Makris N, 
Segonne F, Quinn BT, et al. Sequence-indepen-
dent segmentation of magnetic resonance images. 
Neuroimage 2004; 23 Suppl 1:S69–84.
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mages. Comput Biomed Res 1996; 29: 162–73.
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alone would fail. The results presented here 
constitute a proof of concept for the use of 
voxel signatures in generating template-in-
dependent priors for MRI segmentation, al-
though further improvements are possible. 
The results also allow the conclusion, that 
our approach can be used for the delineation 
of brain pathology, as well as for other stud-
ies of brain morphology.
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