UDK621.3:(53+54+621+66) ISSN0352-9045 Informacije MIDEM 30(2000)3, Ljubljana

FORMAL VERIFICATION OF DIGITAL CIRCUITS USING
SYMBOLIC MODEL CHECKING

Ales Casar, Zmago Brezoénik, Tatjana Kapus
University of Maribor, Faculty of Electrical Engineering and Computer
Science, Slovenia

Keywords: electrotechnics, computer science, digital circuits, BDD, Binary Decision Diagrams, FSM, Final State Machines, transition relations,
characteristic functions, reachable states, CTL, Computation Tree Logic, fairness constraints, formal verification, symbolic model checking,
computer software, software packages, experimental results

Abstract: This paper presents efficient algorithms for digital circuit verification. The algorithms are based on symbotic CTL (Computation Tree
Logic) model checking. We also present an extension of ordinary CTL with fairness constraints. They enable verification of circuits with symbolic
model checking regarding only fair paths in the computation tree. The model checking algorithms were implemented as part of a fully home-made
program package for manipulating finite state machine descriptions of digital circuits, represented with Boolean functions. The package is also
based on a fully home-made program package for manipulating Boolean functions, represented with binary decision diagrams.

Formalna verifikacija digitalnih vezij s simboli€nim
preverjanjem modelov

Kljuéne besede: elektrotehnika, ratunalnistvo, vezja digitalna, BDD grafi odlogitveni binarni, FSM stroji stanj konénih, relacije prehajalne, funkcije
karakteristicne, stanja dosegljiva, CTL logika drevesa izratunavanj, omejitve podtenostne, verifikacija formalna, preverjanje modelov simboli¢no,
oprema programska racunalnidka, paketi opreme programske, rezuitati eksperimentalni

Povzetek: V Slanku predstavljamo uéinkovite algoritme za verifikacijo digitainih vezij. Algoritmi temeljijo na simboli¢nem preverjanju modelov z
logiko drevesa izvajan (“Computation Tree Logic” - CTL). Prav tako predstavijamo razsiritev navadnega CTL s postenostnimi omejitvami, ki
omogodajo verifikacijo vezij samo vzdolz postenih poti v drevesu izvajanj. Algoritmi za preverjanje modelov so implementirani kot del povsemn
domacega programskega paketa za obdelavo opisov digitalnih vezij s konénimi avtomati, predstavljenih z logi¢nimi funkcijami, ki temelji na prav

tako povsem domadem paketu za obdelavo logicnih funkcij, predstavijenih z binarnimi odloCitvenimi grafi.

1 Introduction

The manipulation of finite state machines (FSMs}is very
common nowadays in the areas of digital circuit design
like formal verification, automatic synthesis, and testing
[12]. One of the main problems that must be solved is
the verification of properties of FSMs representing digi-
tal circuits.

The properties are often specified by computation tree
logic (CTL) because with a properly written CTL formula
it can automatically be verified if certain property is valid
in a FSM or not. Everything, CTL formulas, the set of
states of the FSM, and its transition relation can be
uniquely represented as Boolean functions, which can
be very efficiently represented with binary decision dia-
grams (BDDs). Using symbolic state space traversal
and model checking, we can avoid combinatorial explo-
sion, which is one of the main problems with enumera-
tion-based methods.

Unfortunately, it is impossible to specify all properties in
CTL. A significant part of such properties are those that
could be specified in CTL, but we want them to be
verified only in a FSM constrained to normal (fair) paths
in order to avoid singularities and similar things. The
problem is solved by the introduction of fairness con-
straints, which constrain the FSM to fair paths, so that
the properties can be verified in the usual way.

The purpose of this paper is to present the model
checking algorithms which we implemented within fully
home-made program package for manipulating finite
state machine descriptions of digital circuits, repre-
sented with Boolean functions. The algorithms have
performed very well.

In Section 2 we briefly review BDDs and show how to
represent FSMs with them. Section 3 describes the
methods of searching reachable states. The main part
of the paper is Section 4 where we present algorithms
for symbolic model checking in CTL. Algorithms for
symbolic model checking using fairness constraints are
described in Section 5. Experimental results for bench-
mark circuits are given in Section 6. We conclude with
some discussion and plans for future work.

2 Preliminaries

Binary decision diagrams (BDDs) are compact canoni-
cal representations of Boolean functions [2]. Their size
is closely related to the variable ordering. The manipu-
lation of Boolean functions represented with BDDs is
very efficient. Hence, BDDs have become widely used
in various CAD applications, including state space tra-
versal and model checking.

163

Informacije MIDEM 30(2000)3, str. 1563-160

A. Casar, Z. Brezotnik, T. Kapus:
Formal verification of digital circuits using symbolic ...

BDDs can also be used for representing and ma-
nipulating sets if we represent sets by means of their

characteristic functions. If _4 is a subset of {O,l}”,
its characteristic function y ,:{0,1} — {0,1} is de-

fined by
O, ye A
- o

Thus, set operations can be performed by Boo-
lean operations over the corresponding characteris-
tic functions (e.9.. ¥ «c =X4 X a6 =Xu4tXs:

X s~ = X4 Xg) Forthe sake of shorter notation

we will denote ¥ , by A in the rest of the paper.
Since the characteristic functions are Boolean, we
can efficiently manipulate them with BDDs.

A deterministic finite state machine (FSM) M is
a sixtuple M =(Z,.5,0,8,1,s,), where T is a
finite set of input symbols, S a finite set of states,
() a finite set of output symbols, §: SxX—> S a
state transition function, 1: SxX — O an output
function, and s, € .S an initial state.

If we want to realize a FSM by a digital circuit, we
will have to encode the sets .S, £, and O by bi-
nary symbols (e.g.,, 0 and 1). States are encoded

by state variables. At least 1 = ﬁogz|5ﬂ state vari-

ables, m:ﬁog2[2” input variables, and

l:"logQIO” output variables of the circuit are

needed. Let I/, X, and Z represent the set of
state variables, the set of input variables, and the set
of output variables, respectively.

Once the states and the input symbols of the cir-
cuit are encoded, we denote a state transition func-

tionas 8 : {0,1} x{0,1}" — {0,1". Then, next state
variables are functions of present state variables and

input variables. We denote next state variables by
an added prime (‘) and write a transition function of a

state variable y, as

Vi :51()’0>y1>"‘>yn—1>x0>xla--':xm—l) @)
for 1 =0,1,...,n—1. We rather introduce transition
relations

T, =5 6,V Yiseens Yots Xos B Xt))

Namely, relations have much greater expressive
power than functions [3]. With relations it is very
easy to handle nondeterminism and to perform

154

backward reachability search that is relatively diffi-
cult with functions. Transition relations 7, can be
combined by taking their conjunction to form the
monolithic transition relation T =7,-7,-...-T, .

n

3 Searching Reachable States of
FSM
First, let us show how we search reachable
states of a FSM. Let .S, denote a set of states

reachable in at most i steps. .S, represents a set of

initial states. In our case we have S = {SO} A set
of states reachable in at most one step is given by

S =S uls'|adslact rse S, Ad(s,a)=s]}
(4)

After finding states reachable in at most one step
we search for those reachable in at most two steps.

In general, a set of states reachable in at most |
steps is represented by

S =S uls'|Ba3slacTase S Ad(s,a)=
®)

We continue with this procedure until in a step &
no new state is reached. In any case, this happens
sooner or later, because we deal with FSMs, where

the set of states S is finite. Then, S, =S, is a
set of all reachable states.

Introducing the characteristic functions for the
sets (e.g., the S’] is represented by its characteristic
function S, :;{5})' we can rewrite (5) into the fol-

lowing logical expression:

! !
S =84+ 4 (SH 'T) ®)
yelf X
The function .S, depends on next state variables
! t

¥; - To obtain §; we have to replace each y, with

the corresponding y;. Therewith, next states are
considered to be new present states for the next
step. The procedure terminates in a step k£, when

S, =8,

The most time and space consuming operation in
(6) is the computation of E]},Gy,v,)((S,_1 -T). The
source of problems is usually very large monolithic

transition relation 7" . In order to avoid this problem,
we do not build a single BDD for the whole transition

[

A. Casar, Z. Brezoc¢nik, T. Kapus:
Formal verification of digital circuits using symbolic ...

Informacije MIDEM 30(2000)3, str. 153-160

relation 7 , but rather partition 7 in some groups of
transition relations of individual state variables and
represent each group by a smaller BDD. 7' is then
called a partitioned transition relation [3}[9][5].

Formula (6) can be written in an extended form
as

! ’

So= S, +3xdx, . Ix, Iy,

H

...Byn_,l(S,_l Yz)Tl '---'Tn~1)

Although existential quantification does not dis-
tribute over conjunction, conjuncts can be moved out
of the scope of an existential quantification if they do
not depend on any of the variables being quantified.
FSMs that represent circuit behaviour exhibit locality,

so it is very common that many of the T] depend on
only small number of the input and state variables.

()

We developed a heuristic algorithm for the parti-
tioning and reordering of functions and variables for
existential quantification in (7) that allows us to apply
some existential quantifiers before the BDD for the
whole transition relation has been built. The function

S,., in (7) represents a set of present states in step
i — 1. Therefore, it may depend on ali state variables
y,. So we leave it within the scope of all existential
quantifiers of state variables y;. In contrast to the

function .S, |, functions TJ. are constant throughout

the computation and at the beginning we can deter-
mine their place with respect to the existential quan-
tifiers in (7) once and for all.

The dependencies of functions TJ on individual

input and state variables are represented by matrix

I o0 e aO,.n~l) <“)fo
A= dy1o R “— V.
07,0 an,.n—l <“ x.o
Gpomro o Dopmrn | € X
T .7
... 1.,

which is of size (m +n)><n and a,, has value

1 if and only if the function TJ. depends on the vari-

able that points to row / from the right side, and
value O otherwise. First, we fill the matrix with Os
and ls. Then we choose one of the rows (there

might be several) with minimal number of 1s and
thus one of the variables that the least number of the

functions depend on. We put into the scope of its
existential quantifier all the functions that depend on
this variable. We will be no more concerned with
these functions during the partitioning procedure.
Therefore, the selected row and all the columns
whose functions were taken are no more needed
and we delete them. The whole procedure is then
repeated over the reduced matrix as long as we do
not run out of functions and variables.

A group of functions which find themselves to-
gether in one step of this procedure is called a block.
We denote it Tp,- if we got itin the /-th step and p,

represents the 7 -th block of partition p over the set
{O,l,...,n—l}. Accordingly, the block 7, can be
written as 7 = Ajen T;. Let us denote a set of

variables whose existential quantifiers are immedi-
ately in front of block 7', by I/, , where

%7,- :{vt velf uX A
Vjep, :T;dependsonva (8)
Vj & p, 1, doesnotdepend on v}

Thus, using partitioned transition relation we got
the following formuila for a general step in computing
reachable states:

!

S = 8.+ 3 (Tp“- 3

el

©)
360

Vel

b/

The algorithm based on (9) has proved itself very
well. Just in few cases it was considerably worse
(see the example of an up/down counter in Section
86) than the method with monaolithic transition relation.
However, in many cases it has been shown to be
better for many orders of magnitude.

4 Symbolic Model Checking

The logic that we use to specify properties of
FSMs is a propositional termporal logic of branching
time, called Computation Tree Logic — CTL [4]. In
this logic each of the usual future time operators of
linear temporal logic (G — globally or invariantly, F
— sometimes in the future, X — next time, U —
until) must be immediately preceded by path quanti-

fier A (for all computation paths) or E (for some
computational path). We thus obtain eight different

CTL operators: AG, EG, AF, EF, AX, EX,
AU, EU.

CTL formulas are constructed from atomic propo-
sitions using Boolean connectives and CTL opera-

155

Informacije MIDEM 30(2000)3, str. 153-160

A. Casar, Z. Brezoénik, T. Kapus:
Formal verification of digital circuits using symbolic ...

tors. In our case of verifying FSMs, the set of atomic
propositions is equal to the set [of state variables

of the circuit. If y, is an atomic proposition in Y.
the formula y, is true in a state s (we say that s
satisfies y, and write s Fy, if and only if the state

variable y is true in this state.

The formula AG f, for example, will hold in a
state provided that f holds in all states along all
possible computation paths starting from that state,
and EF f will hold in a state provided that there is
a computation path from that state to the future state
where f holds [1][9][5]. The meaning of all CTL

operators is shown in Figure 1 in the form of com-
putation trees. In the figure, full circle represents a

state where formula f is true. In states that are rep-
resented by full square, formula g is true. We know

nothing about the truthfulness of formulas in all other
states (empty circles).

%f%%&\.

AR
AR

fy AG f E[fUyg] hy A[fU g

Figure 1: Meaning of CTL operators

Model checking is the problem of determining
whether a given CTL formula f is true in a given
FSM M . The formula f is true in the FSM M if
and only if 7 is true in all initial states of M . We

can say that FSM M is a model of f (M kf).

In this section, we present an efficient symbolic
model checking algorithm for CTL that recurses over

the structure of a given CTL formula f and deter-
mines in a bottom up fashion in which states of the
model the subformulas of f are true. Finally, it re-

156

turns the BDD (the function) .S that represents ex-
actly the set of states .S’ of the FSM in which [is

true and checks whether S, < .S

The CTL formulas constructed only from the
atomic propositions (state variables) and ordinary
Boolean connectives are handled using standard
algorithms for computing Boolean connectives with
BDDs. The temporal formulas are treated otherwise.
Although there are eight different CTL operators, it is
sufficient to realize only three of them, since the re-
maining five can be easily expressed with the three
realized. We decided to realize the operators EX |

EU, and EG [7][1].

First, let us have a look at the formula EX [,
where f represents a characteristic function

§, = f of the set of states .S, where it is true.
Formula EX f is true in all predecessors of states
in S’f. The characteristic function of these states is
computed by

EXf= 3 (f7) (10)

yeluX

where f' represents the function f with each state
variable y, substituted by the corresponding next

state variable y, and 7' is a transition relation of a

given FSM. The relational product (10) is quite simi-
lar to the relational product (6) defined in Section 3
except that in (10) we compute one step in a back-
ward reachability search instead of a forward reach-
ability search.

Formula E [/ U g] means that either g is true
in the current state, or f is true in the current state
and there exists a successor state where E U U g]
is true. Consequently, the BDD that represents the

states where E [f U g] is true can be computed by

finding the least fixed pcint of the predicate trans-
former F defined by

F(S)=g+f-EXS (11)

Formula EG f means that f is true in the cur-
rent state and there exists a successor state where
EG f is true. The BDD that represents the states
where EG f is true is computed as the greatest
fixed point of the predicate transformer

F(S)=f-EXS (12)

After determining the set S of states that satisfy
a given CTL formula f, the algorithm checks

A. Casar, Z. Brezoénik, T. Kapus:
Formal verification of digital circuits using symbolic ...

Informacije MIDEM 30(2000)3, str. 153-160

whether this set includes all initial states S

(S, < S). Checking the condition. S, < .S is
easy in our BDD-based algorithm. It has to be
checked whether the Boolean expression

3; + S8 <1 is a tautology.

5 Fairness Constraints

Many times we want to check if a given property
is true in a given FSM only along the fair paths in a
computation tree. For example, at checking of a bus
arbiter we might be interested only in those paths
where none of the devices which the bus was
granted to holds the bus to the e'[ernity.1

Such properties can not be expressed directly by
CTL. To solve the problem, the meaning of CTL
should be changed. Therefore, we introduce fairness
constraints, which are ordinary CTL formulas. A path
in the computation tree is fair regarding to a set of
fairness constraints if every constraint is true infi-
nitely often along the path. Path quantifiers in CTL
formulas are then constrained to these fair paths [8].

Let the set of CTL formulas A = {4, h,,..., 7, }
be fairness constraints. Let us have a look at solving
formula EG f with fairness constraints A (we
write EG,
function of set of states where formula f is true,
just like with ordinary CTL formulas. Formula
EG,, f says that there exists a path in the com-
putation tree, where f is invariantly true and every

formula in _4 is true infinitely often. The set of such
states .S is the largest of the sets for which the fol-
fowing two properties are true:

/). Formula f is again characteristic

« £ istrue in every state from S’ and

o for every fairness constraint s, € 4 and
every state se .S, there exists a path of
fength one or more from state § to some
state in S, where constraint £, is true and

f istrue in every state along that path.

It could be proved that every state in the set .S
is the beginning of an infinite path in the computation
tree, where formula f is always true and every
constraint in _4 is true infinitely often. By searching

for the greatest fixed point of the predicate trans-
former

! This example shows us, where the name of fair paths comes
from. It would be unfair from a device if it held the bus to the eter-
nity and had never released the bus and left it to other devices,
By excluding such paths in some way we stay only at fair paths.

F(S):f-ﬁEXE[fUS-hk] (13)

where CTL operators EX and EU are resolved as
ordinary CTL operators without considering the fair-
ness constraints, we get a characteristic function of
the set of states where formula EG, [is true

considering the fairness constraints. The fixed point
is evaluated in the same manner as without fairness
constraints, but note that each computation of the
above expression leads to several nested fixed point
computations (resolving of operators EU).

Resolving of operators EX and EU with fair-
ness constraints is simpler. Characteristic function of
the set of states that can be starting states of fair
paths in the computation tree is defined as

S.. =EG,, 1 (14)

fair fair

There exists a path from every state in this set along
which every fairness constraint in _4 is true infi-
nitely often. Formula EX . f is true in state s if
and only if there exists a successor state s’ of §
such that f istruein s’ and s’ is the beginning of

a fair path. Therefore, the formula EX,, f con-

sidering only fair paths is equal to the formuia
EX (f~S) over all paths. Thus, let us define

fair

EXfair f =EX (f.Sfmr) <1 5)

This way we transform the problem from dealing with
fair paths to considering all paths in the computation
tree, and that is something what we already know
how to handle with.

Following analogy the formula E[ng] is

fair
equal to the formula E[f U g - S,] considering all
computation paths. Therefore, we define

EUUg]fair:E[ng'Sfair] (16)

and once again the problem is transformed into
something we already know how to sclve.

5.1 Example

To illustrate symbolic CTL model checking using
fairness constraints we took a parametric bus arbiter
with n devices (n is parameter) which grants a bus
to the device with the highest priority [11]. An in-
stance of such an arbiter for n = 3 is shown in Fig-
ure 2. All others are constructed in a similar way.
Devices with lower number have higher priority.

We want to know if formulas

EF EG (I, 51777) A7)

157

Informacije MIDEM 30(2000)3, str. 1563-160

A. Casar, Z. Brezodnik, T. Kapus:
Formal verification of digital circuits using symbolic ...

REQq REQ REQq
INO 1N1 INZ
I I
1 [— 1
OUTy oUun OUTy
1 r y
G Ry GR, G Ry

Figure 2: A 3-request bus arbiter

are true, in other words, if there exists a path from
the initial state, where at some point device 7
(i=0,1...,n-1) would request a bus and bus
would never be granted to it. In general case without
any fairness constraints the formulas are true, be-
cause every other device could hold the bus for itseif
and never release it again.

Because such behaviour could be described as
unfair, we will try to constrain all possible paths to
those where the bus is free infinitely often along the
path. This is written by fairness constraint

ouUT, +0UT, +...+0UT, | (18)

in the formal language. It could be shown that for-
mula EF EG (]NO -()U]Z)) is not true any more. If

the device O requests a bus and it insists on that
request, the bus will be eventually granted to it. All
other formulas are still true, because every other
device might request the bus, but the bus would
never be granted to it. Actually, this is the expected
behaviour, since fairness constraint (18) has elimi-
nated only those paths where some device would
hold the bus to the eternity. Because nothing stops a
device to request a bus again immediately after de-
vice has released it, there is a possibility that the bus
is always granted to device 0 as device with the
highest priority. In that case the bus will never be
granted to any other device.

The next level of fairness is achieved by pre-
venting the device O such aggressive behaviour in
spite of its highest priority. It should be required that
infinitely often, after the bus is released, it is not
granted to device 0. That is, infinitely often along
the path we must reach a state where the bus is re-
leased (fairness constraint (18) is true) and in all
possible successor states the bus is not granted to

158

device 0. Therefore, formula AX OUT, will be true

in that state, too. This leads us to new fairness con-
straint

ouUT, +OUT +...+OUT,_, - AXOUT, (19)

Beside the formula for device 0, now also formula

EFEG(]N1 -OUTJ for device 1 is false. Since

devices 0 and 1 can interchange in possessing the
bus, all other devices can stay without the bus for-
ever. So, other formulas are still true.

To prevent interchanging of the bus holding be-
tween two most prioritised devices, the fairness con-
straint should be extended. Infinitely many times it
should happen that after the bus was released it is
neither granted to the device O nor to the device 1.
S0, we get fairness constraint

OUT, +OUT, +...+OUT, - AX OUT, + OUT,
(20)

Now device 2 also gets its time slots where the bus
is granted to it, Its CTL formula is now also false, but

all others for j > 2 are still true.

In the same manner we could proceed, what
leads us to fairness constraint

oUT, +QUT, +...+0QUT,_, -
AX OUT, +OUT, +...+0UT, 1)
forO<k <n

where all CTL formulas from (17) with index 7 <k
are false, while all others are true.”

ifadevice i, i =0]1,..., &k, requests the bus and
it insists on that request, the bus will eventually be
granted to it. All other devices could stay without the
bus to the eternity.

Well, if n—1 is chosen for k, we get as fair
system as a priority system could be. Not only that
none of the devices may hold the bus forever, but
also the bus will be granted to each and every de-
vice from time to time.

6 Experimental results

Experiments were done on a Sun Ultra 30 creator
workstation with 300 MHz UitraSPARC Il processaor,
256 MB of physical memory and 793 MB of virtual
memory under Solaris 2.5.1 operating system. We
have used our own BDD package ([6]) that is an effi-
cient jte-based implementation of reduced ordered
binary decision diagrams with complemented edges.

21t k=0, formula (21) becomes formula (18).

A. Casar, Z. Brezoénik, T. Kapus:
Formal verification of digital circuits using symbolic ...

Informacije MIDEM 30(2000)3, str. 153-160

Table 1: Computing reachable states for IS-
CAS'89 circuits and a parametric up/down coun-
ter

monolithic TR __partitioned TR

circuit # states # steps # nodes time # nodes time

s344 2625 7 11966 0.13 19462 0.19
5349 2625 7 11966 0.14 18462 0.20
s382 8865 151 48580 1.98 46411 0.86
s420.1 65536 65535 | 278572 7.67 1 282476 35.86
s444 8865 151 13660 0.14 20863 0.22
5526 8868 151 19610 0.18 36560 0.36
s526n 8368 151 18608 0.18 36558 0.36
5641 1544 7 || 1299567 | 170.27 23649 0.36
s713 1544 7 1299622 | 173.08 23673 0.37
s953 504 11 37187 0.32 11887 0.16
s1196 2616 34 236087 29.87 28788 0.42
51238 2616 3§ 236086 29.86 28810 0.40
count3 8 4 66 0.00 56 0.00
countd 64 32 598 0.00 1005 0.00
countd 512 256 3922 0.04 11111 0.11
count12 4096 2048 28558 0.42 44905 1.31
countis 32768 16384 85708 4.32 88920 13.91
count18 262144 | 131072 427938 3678 | 433475 141.48
count2i §i 2087152 | 1048576 || 3180807 | 414.54 | 3185888 | 1773.71

Table 1 shows the results obtained by symbolic
searching of reachable states on some ISCAS'89
circuits and on the parametric up/down counters.
From left to right the columns in Table 1 refer to the
circuit name, the number of reachable states, the
number of steps needed to compute all reachable
states, and the maximal number of BDD nodes
whenever generated during the symbolic state space
traversal of a given circuit together with the CPU
time in seconds both for the search using monolithic
transition relation and partitioned transition relation.

Great power of the symbolic state space traversal
is demonstrated in the next example. Table 2 shows
results on computing reachable states for the previ-
ously described parametric arbiter using partitioned
transition relation. Although the number of reachable
states grows with 7 extremely fast, the number of
B8DD nodes and CPU time grow much stower.

Table 2: Computing reachable states for a para-
metric arbiter

dev. | # state # reachable # # BDD time
n variab, states steps nodes [s]
100 200 | 1.28032710 -10>* 3 66443 2.39

203180 13.52
464743 37.60
806368 80.66
1257932 148.41
1809558 | 246.24
2461121 386.41
32127471 57030
4064373 | 809.61
5015936 | 1100.22

200 400 | 3.22994546 -10%
300 600 | 6.13147828 107
400 800 | 1.03548220 10'®
500 1000 | 1.63996869 10
600| 1200 | 2.49385885 -10'%
700 1400 | 3.68735526 -10°*°
800 1600 | 5.34107956 -10°*°
800 1800 | 7.61589396 10°7°
1000| 2000 1.07258011 -10°*

WWwWwwwwww

We verified the behavior of the parametric arbiter
with symbolic model checking in CTL. The properties
being verified together with the corresponding CTL
formuias are as follows:

o Exclusivity. At most one output is set to "1". In
order to decrease the complexity of the CTL
formula we weaken the exclusivity and rather
write (as in [11]) that either odd number of
outputs is set to "1’ or all outputs are set to '0".

AG(OUT,®0UT, ®...® OUT,)+
out, -OUT, -..- OUT,)

2

e Causality. If device 7 (i=0,1,...,n-1) re-
quests the bus, the access will eventually be
granted to device 7.

AG (IN, = EFOUT))

s Starvation. There is a possibility that a re-
quest from device i is never serviced. This
behavior will happen if another device being
granted the bus never releases its request.

EG (v, = EGOUT,)

o Allocation. If a request from device |
(i=0]1,...,n—1) is loaded and no higher
priority device requests the bus, then the bus
is granted to device / atthe next state.

AG(OUT, ... OUT, ;- IN, = AX OUT,)

n-1

AG(OUT, ... OUT, . - TN, - IN, = AX OUT,)

AG\OUT, -...-OUT,
= AX OUT, ,

in Table 3 we collected the results obtained from
the verification of the parametric bus arbiter.® The
columns from left to right represent the number of
devices (»), the number of state variables (latches)
of the circuit (), the number of CTL formulas being

verified for each n (3n + 1), and the maximal num-
ber of BDD nodes whenever generated during sym-
bolic model checking of a given circuit together with
the CPU time in seconds both for the model check-
ing using monolithic transition relation and parti-
tioned transition relation. An overflow on BDD nodes
is denoted by a dash "—.

IN, ... IN_-IN,,

n n-i

We did not perform a lot of experiments with fair-
ness constraints. Well, checking of CTL formulas

(17) for n = 4 with fairmess constraint (21) for k£ =3

took less than -k of a second.

7 Conclusions

We reviewed two different algorithms for search-
ing of reachable states in FSMs, using either mono-
lithic transition reiation or partitioned transition rela-
tion. The introduction of partitioned transition relation
may decrease the CPU times for large circuits dra-

3 Although an arbiter with 72 = 1 is atotally senseless circuit, it is

included in Table 3 for the sake of completeness. Anyway, a
model checking algorithm does not care whether it handles useful
or senseless circuits.

159

Informacije MIDEM 30(2000)3, str. 153-160

A. Casar, Z. Brezoénik, T. Kapus:
Formal verification of digital circuits using symbolic ...

Table 3: Checking of parametric arbiterin CTL

monolithic TR patitioned TR
dev. | state [CTL | #BDD time # B8DD time
n var, | form. { nodes [s] nodes [s]
1 2 4 18 0.00 11 0.00
2 4 7 174 0.00 76 0.00
3 6 10 947 0.01 298 0.01
4 8 13 4403 0.10 929 0.01
5 10 16 19171 0.64 2298 0.01
6 12 18 78044 4.63 7540 0.1
7 14 22 297614 38.37 15085 0.23
8 16 25§ 1214392 291.79 40247 0.98
] 18 28 4912359 | 2019.25 40301 1.77
10 20 31 —_ —_— 100861 9.09
11 22 34 - — 136629 15.55
12 24 37 — — 616346 | 100.33
13 26 40 — — 745319 184.85
14 28 43 — — I 3827900 1534.16
15 30 46 — — i 4303558 | 3603.01

matically. Then, we showed methods for verifying
synchronous sequential circuits by symbolic model
checking [7][8]. Properties to be verified were ex-
pressed in CTL.

We illustrated the usage of fairness constraints
by verifying a parametric bus arbiter which selects
the highest priority device from n devices. We
checked if it is possible that some device requests a
bus and the bus is never granted to it regarding dif-
ferent fairness constraints.

All algorithms are realized as part of a home-
made package for manipulating FSMs which is also
based on a fully home-made very efficient package
for manipulating Boolean functions represented by
BDDs [10].

Our future work will consist in the implementation
of searching for counterexamples for false properties
and then of automatic generation of testing se-
quences for digital circuits based on found counter-
examples.

8 References

/1/ Zmago Brezoénik, Ale§ Casar, and Tatjana Kapus. Efficient
Symbolic Traversal Algorithms using Partitioned Transition
Relations. In Zmago Brezo¢nik and Tatjana Kapus, editors,
Proceedings of the COST 247 International Workshop on
Applied Formal Methods in System Design, pages 146-155,
Maribor, Slovenia, June 1996.

/2/ Randal E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
C-35(8):677-691, August 1986.

/3/ Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth
L. McMillan, and David L. Dill. Symbolic Model Checking for
Sequential Circuit Verification. |EEE Transactions on
Computer-aided Design of Integrated Circuits and Systems,
13(4):401-424, April 1994.

/4/ E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
Verification of Finite-State Concurrent Systems using
Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-263, April
1986.

160

/5/ Ale$ Casar. Verification of Finite State Machines with Symbolic
Model Checking. Master's thesis. University of Maribor,
Facuity of Electrical Engineering and Computer Science,
Maribor, Slovenia, June 1998. In Slovene.

/6/ Ale§ Casar and Zmago Brezo¢nik. Symbolic State Space
Traversal of Finite State Automata. In Franc Solina and
Baldomir Zajc, editors, Proceedings of the Fourth
Electrotechnical and Computer Science Conference ERK'95,
volume A, pages 85-88, Portoroz, Slovenia, September 1995.
In Slovene.

17/ Ale$ Casar, Zmago Brezoénik, and Tatjana Kapus. Exploiting
Partitioned Transition Relations for Efficient Symboiic Model
Checking in CTL. In Penny Storms, editor, Proceedings of the
European Design & Test Conference ED&TC'96, pages
606-606, Paris, France, March 1996. IEEE Computer Society
Press.

18/ Ale$ Casar, Zmago Brezoénik, and Tatjana Kapus. Fairness
Constraints in Symbolic CTL Model Checking. In Baldomir
Zajc and Franc Solina, editors, Proceedings of the seventh
Electrotechnical and Computer Science Conference ERK'98,
volume B, pages 39-42, Portoroz, Slovenia, September 1998.
In Slovene.

/9/ Ale§ Casar, Zmago Brezoénik, and Tatjana Kapus. Symbolic
Model Checking of Finite State Machines with CTL. In
Baldomir Zajc and Franc Solina, editors, Proceedings of the
fifth Electrotechnical and Computer Science Conference
ERK'96, volume A, pages 51-54, Portoroz, Slovenia.
September 1996. In Slovene.

110/ Ales Casar, Robert Meolic, Zmago Brezoénik, and Bogomir
Horvat. Representation of Boolean Functions with ROBDDs.
Electrotechnical Review, 59(5):299-307, December 1992. In
Slovene.

11/ David Déharbe and Dominique Borrione. Symbolic Model
Checking of VHDL Design Entities. Technical report, Atelier
de Recherche sur les Techniques Mathematiques et
Informatiques des Systemes, Grenoble, France, November
1993.

/12/ Aarti Gupta. Formal Hardware Verification Methods: A survey.
Formal Methods in System Design, 1(2/3):151-238, October
1992.

mag. Ale§ Casar, univ. dipl. inZ. rac.

izr. prof. dr. Zmago Brezocénik, univ. dipl. inz. el.
izr. prof. dr. Tatjana Kapus, univ. dipl. inZ. el.
Univerza v Mariboru

Fakulteta za elektrotehniko, racunalnistvo

in informatiko

Smetanova 17

2000 Maribor

tel.; +386-2-22-07-211

fax: +386-2-25-11-178

email: {casar,brezocnik,kapus}@uni-mb.sf

Prispelo (Arrived): 10.5.00 Sprejeto (Accepted): 30.8.00

