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0  INTRODUCTION

In the laser system for inertial confinement fusion 
(ICF) [1] and [2], optical devices are essential parts 
of the power amplifier and the final optics assembly. 
Defects, such as point defects and line defects on 
the surface of optical devices, seriously affect the 
performance of the laser system for ICF. Image 
processing and pattern recognition technology is 
widely used for the detection of defects. In [3], laser 
profilometry is used to detect defects on the surface 
of power transmission belts. In [4], a defect detection 
system based on dark-field optical scattering images is 
designed and assembled for locating and determining 
the sizes of crystal-originated “particles” (COPs) 
on the polished surface of silicon wafers. In [5], a 
pulsed eddy current (PEC) thermography system 
is implemented for notch detection in carbon-fibre 
reinforced plastic (CFRP) samples and the proposed 
methods allow the user to observe the eddy current 
distribution in a structure using infrared imaging and 
to detect defects over a relatively wide area. In [6], 
a pit-count method based on computer-aided image 
processing is used for direct measurements of the 

cavitation erosion by evaluating the damage on the 
surface of the hydrofoil. In [7], methods based on 
image processing technology are proposed to detect 
the defects on the surface of ceramic tiles. In [8], a 
novel visual system is built to recognize erythema 
migrans. In the visual system, the GrowCut method 
improved with the new finger draw marker is used to 
detect potential erythema migrans skin lesion edge, 
and several methods are used for the classification 
of skin lesions into ellipses. In [9], several neural 
networks are used for the roughness prediction model 
of the steel surface machined by face milling. In [10], 
the regression model and the model based on the 
application of neural networks are used to predict the 
machined surface roughness in the face milling of 
aluminium alloy on a low-power cutting machine.

An apparatus for detecting defects on the surface 
of optical devices was designed and constructed in 
the lab of the authors. A high-precision motorized 
linear stage and a high-precision motorized vertical 
stage are used to control the line-scan camera moving 
along the planned path. A series of microscopic 
dark-field scattering images are collected with the 
line-scan camera. There is translation transformation 

Surface Defect Detection on Optical Devices  
Based on Microscopic Dark-Field Scattering Imaging

Yin, Y. – Xu, D. – Zhang, Z. – Bai, M. – Zhang, F. – Tao, X. – Wang, X.
Yingjie Yin – De Xu – Zhengtao Zhang* – Mingran Bai – Feng Zhang – Xian Tao – Xingang Wang

Chinese Academy of Sciences, Institute of Automation, Research Center of Precision Sensing and Control, China

Methods of surface defect detection on optical devices are proposed in this paper. First, a series of microscopic dark-field scattering images 
were collected with a line-scan camera. Translation transformation between overlaps of adjacent microscopic dark-field scattering images 
resulted from the line-scan camera’s imaging feature. An image mosaic algorithm based on scale invariance feature transform (SIFT) is 
proposed to stitch dark-field images collected by the line-scan camera. SIFT feature matching point-pairs were extracted from regions of 
interest in the adjacent microscopic dark-field scattering images. The best set of SIFT feature matching point-pairs was obtained via a parallel 
clustering algorithm. The transformation matrix of the two images was calculated by the best matching point-pair set, and then image stitching 
was completed through transformation matrix. Secondly, a sample threshold segmentation method was used to segment dark-field images 
that were previously stitched together because the image background was very dark. Finally, four different supervised learning classifiers are 
used to classify the defect represented by a six-dimensional feature vector by shape (point or line), and the performance of linear discriminant 
function (LDF) classifier is demonstrated to be the best. The experimental results showed that defects on optical devices could be detected 
efficiently by the proposed methods.
Keywords: scale invariance feature transform, linear discriminant function, cluster algorithm, image segmentation, image mosaic, dark-
field imaging, optical devices

Highlights
•	 Collected microscopic dark-field scattering images with the line-scan camera.
•	 Proposed an new image mosaic algorithm based on scale invariance feature transform (SIFT) to stitch dark-field images.
•	 Proposed a parallel clustering algorithm to obtain the best set of SIFT feature matching point-pairs.
•	 Used a six-dimensional feature vector to describe the defect.
•	 Classified the defect by shape (point or line) using four different supervised learning classifiers.
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relationship between the overlaps of adjacent 
microscopic dark-field scattering images because 
of the line-scan camera’s imaging feature. In order 
to obtain the transformation matrix of the overlaps 
of two adjacent dark-field images, an image mosaic 
algorithm based on SIFT [11] is proposed. In [12], the 
simple template matching is used to complete image 
mosaic. However, the template matching method 
is not stable and is affected easily by noise. SIFT 
features are local image features, have higher stability, 
and are widely used in image registration algorithms 
[13] to [15]. Pixel values of defects are much brighter 
than pixel values of the background in dark-field 
images, so a sample threshold segmentation method 
is used to segment images that have been stitched 
together by the image mosaic algorithm. Defects on 
the surface of optical devices can be divided into 
point defects and line defects. In order to effectively 
identity the types of defects, the performances of 
four different classifiers (linear discriminant function 
(LDF) [16], support vector machine (SVM) [17] to 
[19], k-nearest neighbour (KNN) [20] and radial basis 
function (RBF) network [21] and [22]) are compared 
to select a suitable classifier.

The organization of this paper is as follows. In 
Section 1, the imaging principle of microscopic dark-
field scattering imaging is introduced. The motion path 
of line-scan camera is also introduced, and the reason 
for translation transformation relationship between 
the overlaps of adjacent microscopic dark-field 
scattering images is explored. In Section 2, the SIFT 
features is reviewed, and an image mosaic algorithm 
based on SIFT features is proposed. In Section 3, a 
sample threshold segmentation method is used to 
segment images. In Section 4, different classifiers are 
trained to recognize the types of defects. In Section 5, 
image stitching experiments and defect classification 
experiments are carried out, and in Section 6, the ideas 
discussed throughout the paper are summarized.

1  IMAGING FOR OPTICAL DEVICES’ SURFACE

1.1  Microscopic Dark-Field Scattering Imaging

Microscopic dark-field scattering imaging is an ideal 
means of detecting defects on the surfaces of optical 
devices. Such surfaces are illuminated by visible light, 
and some light is scattered by defects on the surface of 
the optical device. The line-scan camera will receive 
the scattered light when it collects the images of the 
surfaces of optical devices, so the defects’ pixel values 
in the images will be much brighter than the pixel 

values of the background (other parts of the optical 
devices). 

Fig. 1.  The principle of dark-field scattering imaging

The principle of dark-field scattering imaging is 
shown in Fig. 1. The geometric-optics model of the 
dark-field scattering imaging is analysed in [12], and 
a conclusion that the distribution of the light source 
need to be circular is given.

1.2  Imaging of the Line-Scan Camera

There are two important reasons for using a line-scan 
camera rather than a plane array camera. First, only 
one degree of freedom is adjusted to ensure that the 
line array CCD is parallel to the surface of the optical 
device when the line-scan camera is used; however, 
two degrees of freedom need to be adjusted to ensure 
that the plane array CCD is parallel to the surface 
of the optical device when the plane array camera 
is used. Secondly, a high-resolution image (such as 
Image I1 in Fig. 3) containing all parts of the optical 
device in the Z axis direction can be obtained by the 
line scan camera; however, if the plane array camera 
is used, more images need to be taken to contain all 
parts of the optical device in the Z axis direction, 
and these images need to be stitched to obtain Image 
I1. Therefore, the number of images needing to be 
stitched is decreased and the running time of the 
image mosaic is reduced when the line-scan camera is 
used to acquire the images of the optical devices.

The imaging principle of line-scan camera is 
shown in Fig. 2. The optical axis of the camera 
is perpendicular to the surface of optical devices, 
and AB is the camera’s field of view, in Fig. 2. The 
moving speed of the line-scan camera and the image 
acquisition speed are synchronized to ensure that the 
images collected by line-scan camera do not become 
distorted. The moving speed of the line-scan camera 
can be calculated by Eq. (1).
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 v Dl
f
vm a= ,  (1)

where vm is the moving speed of the line-scan camera, 
D is distance between the camera’s lens and the 
surface of optical devices, f is the focal length, l is the 
pixel size of line-scan camera and va is the line-scan 
speed of the line-scan camera.

Fig. 2.  The imaging principle of line-scan camera

A high-precision motorized linear stage and a 
high-precision motorized vertical stage are used to 
control the line-scan camera moving along the X 
axis and Z axis, shown in Fig. 3, and the surface of 
optical devices is parallel to the XZ plane. The line-
scan camera is controlled to move from Point 1 to 
Point 2 along the opposite direction of the Z axis by 
the high-precision motorized vertical stage and dark-
field images are collected by the line-scan camera at 
the same time. Following that, the line-scan camera 
is controlled to move from Point 2 to Point 3 along 
the direction of the X axis by the high-precision 
motorized linear stage and the line-scan camera does 
not collect images in this process. Next, the line-scan 
camera is controlled to move from Point 3 to Point 4 
along the direction of the Z axis by the high-precision 
motorized vertical stage, and dark-field images are 
simultaneously collected by the line-scan camera. 
Next, the line-scan camera is controlled to move 
from Point 4 to Point 5 along the direction of the X 
axis by the high-precision motorized linear stage, and 
the line-scan camera does not collect images in this 
process. The line-scan camera moves according to the 
above movement rule until the images collected by the 
camera include the entire surface of the optical device. 
Finally, dark-field image set I shown in Fig. 3 and Eq. 
(2) is obtained.

 I I I In={ }1 2, , , .  (2)

The conclusion that the relationship between 
the overlaps of adjacent dark-field images such as 
image I1 and image I2 is the translation transformation 
T, shown in Eq. (3), can be easily drawn from the 
imaging principle shown in Fig. 2 and the moving 
path (shown in Fig. 3) of the line-scan camera. 
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Fig. 3.  The motion path of the line-scan camera

Δx is the horizontal offset of adjacent dark-
field images’ overlaps and Δy is the vertical offset 
of adjacent dark-field images’ overlaps. Usually, the 
vertical offset Δy is caused by kinematic errors of 
the high-precision motorized vertical stage, and the 
horizontal offset Δx is mainly caused by the setting 
value. The horizontal offset Δx usually is set at 300 to 
400 pixels in order to balance the number of feature 
points and the speed of the image mosaic algorithm. 
Therefore, the value of Δx is much larger than the 
value of Δy (usually the value of Δy is less than 10 
pixels).

2  IMAGE MOSAIC BASED ON SIFT

Feature point matching is widely used to stitch 
images. SIFT features are invariant to image scale and 
rotation, and are shown to provide robust matching 
across a substantial range of affine distortion, change 
in 3D viewpoint, addition of noise, and change in 
illumination [11]. An image mosaic algorithm based 
on SIFT features is proposed in order to solve the 
problem stemming from the fact that a translation 
transformation relationship exists in the adjacent dark-
field images in Section 1.2.
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The image mosaic principle is shown in Fig. 4. 
SIFT feature matching point-pairs were extracted 
from regions of interest in the adjacent dark-field 
images. The best set of SIFT feature matching point-
pairs were obtained by parallel clustering algorithms. 
The transformation matrix of the two images was 
calculated by the best matching point-pair set and 
the adjacent dark-field images were stitched by the 
transformation matrix.

Fig. 4.  The image mosaic principle

2.1  SIFT Feature

SIFT features proposed by D.G. Lowe are widely used 
in image mosaic, object recognition, robotic mapping 
and navigation, gesture recognition and video 
tracking. The following steps are taken to generate 
SIFT features [11]:

Step 1: Scale-space extrema detection. The scale 
space of an image is produced from the convolution 
of a variable-scale Gaussian with an input image. 
The difference of Gaussian scale-space is computed 
from the difference of two nearby scales. Maxima 
and minima of the difference-of-Gaussian images are 
detected by comparing a pixel to its 26 neighbours in 
3×3 regions at current and adjacent scales.

Step 2: Accurate keypoint localization. A 3D 
quadratic function to the local sample is fitted to 
determine the interpolated location of the extremum 
and unstable extrema with low contrast and a low 
response along edges are simultaneously rejected. 

Step 3: Orientation assignment for keypoints. 
Local image gradient directions are used to assign one 

or more directions to each keypoint and the image data 
is transformed relative to the assigned orientation.

Step 4: Generating SIFT feature vector. At the 
selected scale in the region around each keypoint, 
the local image gradients are measured to generate a 
128-dimensional vector (SIFT feature vector) for each 
keypoint.

2.2  Clustering and Screening of Matching Point-Pairs

The Best-Bin-First (BBF) algorithm [23] is used 
to find the matching point-pairs set S between the 
adjacent dark-field images.

 S s s s sk n={ }1 2, , , , , ,   (4)

and

 k k k k k
x
k

ys p p L L={ }1 2, , , , .θ  (5)

where ks is a feature representation of the kth matching 
point-pair, kp1 is the position of the matching point in 
dark-field image 1, kp2 is the position of the matching 
point in dark-field image 2, kθ is the angle between 
the vector k kp p1 2

� �������
 and the X axis, kLx is length of the 

vector k kp p1 2

� �������
’s component along the X axis, kLy is 

length of the vector k kp p1 2

� �������
’s component along the 

Y axis.

Fig. 5.  The features of matching point-pairs

There are bad matching point-pairs in the 
matching point-pairs set S. In order to improve the 
accuracy of image mosaic, the best matching point-
pair set Sbest must be selected from the set S. In 
Section 1.2, a conclusion that the horizontal offset Δx 
is much larger than the value of Δy is drawn, so kLx 
is much larger than kLy. Bad matching point-pairs are 
removed from the set S to obtain the set S′ according 
to the inequality constraint Eq. (6).
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 k
Tθ θ> .  (6)

where θT is an angle threshold. A parallel clustering 
algorithm, shown in Fig. 6, is designed to obtain 
the best matching point-pair set Sbest. In the parallel 
clustering algorithm, the features kLx and kLy of 
the matching point-pair are used for clustering of 
matching point-pairs. The class owning the most 
matching point-pairs is reserved for generating the set 
Sx in the process of kLx clustering and the class owning 
the most matching point-pairs is reserved to generate 
the set Sy in the process of kLy clustering. The best 
matching point-pair set Sbest is the intersection of Sx 
and Sy.

Fig. 6.  The clustering and screening of matching point-pairs

2.2.1  Lx Clustering Algorithm

One matching point-pair ms′ (1≤m≤n′) is selected 
randomly from the set S′.

 ′ = ′ ′ ′{ }′S s s sn1 2, , , .  (7)

Matching point-pairs satisfying the inequality 
constraint (Eq. (8)) in the set S′ are to generate the set 
S′1 as a cluster.

 L s L s rx
k

x
m

x′( ) − ′( ) ≤ ,  (8)

where k ranges from 1 to n′, Lx(ms′) is the Lx feature of 
the matching point-pair ms′, Lx(ks′) is the Lx feature of 
the matching point-pair ks′ and rx is a threshold. Next, 
another matching point-pair is selected randomly from 
the remaining matching point-pairs of the set S′, and 

the set S′2 is generated in the same way. The iterative 
process above is not stopped until all the matching 
point-pairs are clustered. The pseudo-code of Lx 
clustering algorithm is shown in Fig. 7.

Fig. 7.  Lx clustering algorithm

The Ly clustering algorithm is generated 
analogous to the Lx clustering algorithm.

2.2.2  The Best Matching Point-Pair Set

The best matching point-pair set Sbest shown in Fig. 8 
is the intersection of Sx obtained with the Lx clustering 
algorithm and Sy obtained with the Ly clustering 
algorithm.

Fig. 8.  The algorithm of obtaining Sbest

2.3 Translation Transformation Matrix

The offsets (Δx, Δy) in Section 1.2 can be calculated 
by Eq. (9).
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where W1 is the width of the dark-field Image 1 shown 
in Fig. 5, q is the number of elements in Sbest, ip1(x) 
is the X coordinate of the matching point in image 
1, ip2(x) is the X coordinate of the matching point in 
Image 2, ip1(y) is the Y coordinate of the matching 
point in Image 1 and ip2(y) is the Y coordinate of the 
matching point in Image 2.

The coordinates of the pixels in Image 2 are 
translated by the matrix T to finish the image mosaic.
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where (u, v) is the pixel coordinate in Image 2 and  
(uT, vT) is the new pixel coordinate in Image 2.

3  IMAGE SEGMENTATION AND CONTOUR EXTRACTION

A sample threshold segmentation method in Eq. (11) 
is used to segment images because the pixel values 
of defects are much brighter than pixel values of the 
background in dark-field images.

 f x y
f x y T
f x y Ts ,

,
,

,( ) = ( ) >
( ) ≤







255
0

 (11)

where f(x,y) is the pixel value in the position (x, y), 
fs(x,y) is the new pixel value in position (x, y) after 
segmentation and T is the threshold.

The contours of the defects are extracted from the 
segmented image by the function cvFindContours() in 
Opencv [24].

4  DEFECT CLASSIFICATION

4.1  Feature Vectors of Defects

Supervised learning methods are widely used to infer 
a prediction function from labelled training data. 
Given a set of N training examples T={(x1, y1), (x2, 
y2), …, (xN, yN)} such that xi is the feature vector of 
the ith example and yi is its label, a prediction function 
f : X→Y (X is the input space and Y is the output space) 
is obtained by supervised learning algorithms. 

 f x F x y
y Y

( ) argmax , ,= ( )
∈

 (12)

where F: X×Y→R is a scoring function.
Defects on the surface of optical devices can 

be divided into line defects (labelled as +1) and 
point defects (labelled as –1), so supervised learning 
methods can be used to classify the defects. The six 
main features of defects shown in Eq. (13) are used to 
train classifiers.

 x x x x x x xi i i i i i i= ( )1 2 3 4 5 6, , , , , ,  (13)

where xi1 is the area of the defect, xi2 is the area of 
the defect’s envelope rectangle, xi3 is the length of the 
defect’s contour, xi4 is the ratio of the length of the 
defect’s contour and the area of the defect, xi5 is the 
ratio of the defect’s area and the area of the defect’s 
envelop rectangle and xi6 is the aspect ratio of the 
defect’s envelop rectangle. 

By using the proposed six-dimensional feature 
vector, four different supervised learning classifiers 
(LDF, SVM, KNN and RBF network) are used. The 
experimental results in Section 5.3 show that the 
performance of LDF classifier is better than that of the 
other classifiers.

4.2  LDF Classifier for Two Classes

The LDF classifier approaches the binary classification 
problems by assuming that the conditional probability 
density functions p(x|y=+1) and p(x|y=–1) are both 
normally distributed with mean and covariance 
parameters (u+1, M+1) and (u–1, M–1) and the class co-
variances (M+1 and M–1) are identical.

Based on Bayes decision-making theory, the 
discriminant rule is: assign xi to +1 if g(xi,+1) ≥ g(xi,-
1) and assign xi to –1 if g(xi,-1) > g(xi,+1), where 
g(xi,y) shown in Eq. (14) is the linear discriminant 
function.
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where P(y) is the prior probability, ˆ yµ  is the within-
class sample mean, and the co-variance M  is the 
weighted average of the co-variances M +1  and M −1 .
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1

1
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1,  (15)

where N is the number of training examples. M +1  and  
M −1  are the within-class sample covariance matrix. 
n+1 is the number of training samples labelled as +1, 
n–1 is the number of training samples labelled as –1.

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Covariance


Strojniški vestnik - Journal of Mechanical Engineering 61(2015)1, 24-32

30 Yin, Y. – Xu, D. – Zhang, Z. – Bai, M. – Zhang, F. – Tao, X. – Wang, X.

5  EXPERIMENTS

5.1  Experimental Equipment

As shown in Fig. 9, the experimental equipment 
principally consists of the motion module, the vision 
module and the PC control module. The motion 
module consists of the motorized vertical stage, 
the motorized linear stage and the focus movement 
axis. The resolution of the motorized vertical stage 
and the motorized linear stage is 1 μm. The vision 
module consists of the line-scan camera and the light 
source. The resolution of the line-scan camera is 
8192 pixels, the pixel size is 7×7 μm. The line-scan 
camera is controlled by the motorized vertical stage 
and motorized linear stage to move along the path 
shown in Fig. 3. Via camera calibration, the parameter  
D/f = 1.357 is obtained in Eq. (1). The speed of the 
line-scan camera along the Z axis is 30 mm/s. The line-
scan speed is 3158 frames per second. The distance of 
the two adjacent images is between (8192–400) pixels 
and (8192–300) pixels, and we can ensure that the 
distance is in the above range by setting the moving 
distance of the line-scan camera along the direction of 
the X axis.

Fig. 9.  Experimental equipment

5.2  Image Mosaic Experiment

The two adjacent dark-field images (each image is 
2048×2048 pixels) collected by the line-scan camera 
are shown in Fig. 10, and the red line in Fig. 10 is the 
boundary between the two images. 

Fig. 10.  Two adjacent dark-field images collected by line-scan 
camera

Fig. 11.  Matching point-pairs of two adjacent dark-field images

Fig. 12.  The stitching result for the two adjacent dark-field images

Fig. 13.  The classification results of Fig. 12

The region R1 (1648, 0, 2048, 2048) is the region 
of interest (ROI) in Image 1 (as shown in Fig. 5); 
(1648, 0) is the coordinate of the ROI’s top left corner 
in Image 1 and (2048, 2048) is the coordinate of the 
ROI’s bottom right corner in Image 1. R2 (0, 0, 400, 
2048) is the ROI in Image 2. SIFT feature points are 
extracted from the region R1 and R2, and the matching 
point-pair set S shown in Fig. 11a is generated by the 
BBF algorithm. The best matching point-pair set Sbest 
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(shown in Fig. 11b) is generated by the clustering and 
screening algorithm introduced in Section 2.2.

In the experiment, θT is set to 10°, rx is set to 20 
pixels and ry is set to 20 pixels. The offsets (Δx, Δy) 
calculated by Eq. (3) and the set Sbest is (-367, 0), so 
the matrix T is:

 T =
−















1 0 367
0 1 0
0 0 1

.  (16)

The stitching result for the two adjacent dark-
field images shown in Fig. 10 is shown in Fig. 12 and 
the red line in Fig. 12 is the boundary between the 
two images. The results of 15 experiments of image 
mosaic are shown in Table 1, and the ground truth is 
obtained by the manual annotation. The maximum 
absolute error of Δx is 3 pixels and the maximum 
absolute error of Δy is 2 pixels in Table 1. 

5.3  Defects Detection and Classification Experiment

A set of 269 training samples including 75 line 
samples labelled as +1 and 194 point samples labelled 
as –1 are used to train the four classifiers (LDF, SVM, 
KNN and RBF network), and a set of 300 testing 
samples including 86 line samples labelled as +1 and 
214 point samples labelled as –1 are used to test the 
performance of the four classifiers. The parameter K 
of the KNN classifier is set to 1 (a KNN classifier with 
the parameter K = 1 also called the nearest neighbour 
classifier). The SVM classifier is a Gaussian kernel 
SVM classifier with penalty parameter C = 32. The 
number of the hidden layers is 50 in the RBF network, 
and the LDF classifier is trained by Eqs. (14) and (15).

The experimental results of different classifiers 
are shown in Table 2. The precision of the LDF 
classifier is higher than the other classifier, so the LDF 
classifier is more suitable for classifying the defect 

represented by a six-dimensional feature vector, 
shown in Eq. (13).

The classification results of Fig. 12 are shown in 
Fig. 13. The defects enveloped by red rectangles are 
labelled as line defects by the LDF classifier and the 
defects enveloped by blue rectangles are labelled as 
point defects in Fig. 13.

Table 2.  Test Results of different classifiers; test results of the  
a) LDF classifier, b) SVM classifier, c) KNN classifier, and d) RBF 
network

Line 
defects

Point 
defects

Precision

a) LDF
Real quantity 86 214

92.7%The number of true positives 65 213
The number of false positives 21 1
b) SVM
Real quantity 86 214

86.7%The number of true positives 63 197
The number of false positives 23 17
c) KNN
Real quantity 86 214

 86%The number of true positives 68  190
The number of false positives 18  24
d) RBF network
Real quantity 86 214

81%The number of true positives 40 203
The number of false positives 46 11

6  CONCLUSIONS

Methods of defecting defects on the surface of 
optical devices are proposed in this paper. Translation 
transformation between the overlaps of adjacent 
microscopic dark-field scattering images resulted from 
the imaging feature and the moving path of the line-
scan camera. An image mosaic algorithm-based SIFT 
feature is proposed to stitch the adjacent dark-field 
images collected by the line-scan camera. A sample 

Table 1.  Results of 15 experiments of image mosaic

Number 1 2 3 4 5 6 7 8

Ground truth (Δx, Δy) (366, 0) (378, 3) (376, 0) (372, 0) (360, 0) (366, 3) (369, 0) (375, 0)

Measured value (Δx, Δy) (367, 0) (377, 4) (375, 0) (372, 0) (360, 0) (366, 2) (369, 1) (373, 0)

Measurement error of Δx 1 –1 –1 0 0 0 0 –2

Measurement error of Δy 0 1 0 0 0 –1 1 0

Number 9 10 11 12 13 14 15

Ground truth (Δx, Δy) (375, 0) (373, 4) (371, 0) (367, 2) (366, 4) (370, 2) (365, 4)

Measured value (Δx, Δy) (372, 0) (371, 3) (370, 0) (367, 1) (364, 2) (368, 0) (363, 2)

Measurement error of Δx –3 –2 –1 0 –2 –2 –2

Measurement error of Δy 0 –1 0 –1 –2 –2 –2
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threshold segmentation method was used to segment 
dark-field images according to the characteristic of 
the stitched dark-field images. The LDF classifier is 
more suitable for classifying the defect represented 
by the proposed six-dimensional feature vector. The 
experimental results showed that defects on optical 
devices could be efficiently detected by the proposed 
methods.
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