67 Key words: brambles, pollen aperture, exine ornamentation, light microscopy, scanning electron microscopy. Ključne besede: robide, pelodna odprtina, ornamentacija eksine, svetlobna mikroskopija, vrstična elektronska mikroskopija. Corresponding author: Alla Hayrapetyan E-mail: alla.hayrapetyan.63@gmail.com Received: 26. 4. 2024 Accepted: 18. 11. 2024 Pollen morphological study of some species of the genus Rubus L. (Rosaceae) of the flora of Armenia Abstract Pollen morphology of 10 Armenian species of the genus Rubus L. was studied using both light microscopy (LM) and scanning electron microscopy (SEM), including the species R. candicans, R. cartalinicus and R. takhtadjanii investigated for the first time. The data received revealed the significant palynomorphological uniformity in the aperture type: mainly 3-zonocolporate, geniculate, occasionally 4-zonocolp- orate one. In some 4-zonocolporate pollen grains of the species R. armeniacus, additional slit-like or colpus-like areas were also noted at one or both poles. Exine ornamentation was predominantly finely striate-perforate (SEM), sometimes in combination with finely striate-microreticulate one (R. armeniacus and R. caesius). Pollen grains were small, sometimes of medium size also. The smallest pollen grains (according to polar axis length) were observed in the species R. takhtadjanii (on average 14.2 μm), and the largest ones in R. caucasicus (on average 26.3 μm). Our data support the previously held view that pollen grain morphology within the genus Rubus can only be used as an auxiliary feature for the diagnosis of individual species. Izvleček S pomočjo svetlobne (LM) in vrstične elektronske mikroskopije (SEM) smo preučili morfologijo pelodnih zrn desetih vrst rodu Rubus iz Armenije. Pelod vrst R. candicans, R. cartalinicus in R. takhtadjanii smo preučili prvič. Dobljeni rezultati kažejo značilno palinomorfološko uniformnost tipa odprtine, večinoma 3-zonokolporatne, genikulatne, občasno 4-zonokolporatne. Pri nekaterih 4-kolporatnih pelodnih zrnih vrste R. armeniacus se pojavljajo še dodatne strukture, podobne brazdam na obeh polih. Ornamentacija eksine je bila večinoma striatno-perforatna (SEM), včasih v kombinaciji s fino striatno-mikroretikulatno (R. armeniacus in R. caesius). Pelodna zrna so bila majhna, včasih tudi srednje velika. Najmanjša pelodna zrna (glede na dolžino polarne osi) ima vrsta R. takhtadjanii (v povprečju 14,2 μm), vrsta R. caucasicus pa največja (v povprečju 26,3 μm). Ugotovitve prejšnjih raziskav, da lahko morfologijo pelodnih zrn pri vrstah rodu Rubus uporabljamo samo kot pomožne znake za opis posameznih vrst, je potrdila tudi naša raziskava. Alla Hayrapetyan1, Marieta Asatryan1, Hasmik Sonyan1, Karine Balayan1 & Dmitri Beketovski2 DOI: 10.3986/hacq-2025-000624/1 • 2025, 67–81 1 Institute of Botany after A. Takhtajyan, National Academy of Sciences of the Republic of Armenia, Yerevan, Republic of Armenia 2 Voskehat Educational and Research Center of Enology, Scientific branch of the Armenian National Agrarian University, Merdzavan, Republic of Armenia 24/1 • 2025, 67–81 68 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Introduction Rubus L. is one of the rather large and widespread genera of the Rosaceae family and is represented predominantly by erect to trailing shrubs or scramblers, rarely by herbs (Takhtajan, 2009). The genus is economically and eco- logically important as fruit crops, ornamental plants, and as pioneers in early forest succession (Alice & Campbell, 1999). It has also been revealed that Rubus readily invades natural areas (Daehler, 1998; Alice & Campbell, 1999). At the same time when exploring the pollen characteristics of the invasive in Poland anthropophyte species R. lacinia- tus, Lechowicz et al. (2021) noted that pollen morphology probably does not affect the invasive traits of this species. Rubus species were a food source and medicinal plants for native peoples soon after the Ice Age (Connolly, 1999), and the medicinal use of brambles was documented in the writings of Aeschylus and Hippocrates, between 500 to 370 BCE (Hendrickson, 1981; Hummer, 2010). It has been suggested that within subfamily Rosoideae Martinov the crown ages of its six tribes (including tribe Rubeae Du- mort.) range from 45.02 to 10.42 Ma (the middle Eocene to the late Miocene) (Chen et al., 2020). According to Lu (1983, p. 25): “It is clearly shown that center of distribu- tion lies in North America at present time”, from where the last common ancestor migrated to Central and South America, and Europe and Asia (Carter et al., 2019). According to various sources, the genus includes 250 to 900 + species, with around 750 species that are document- ed in Europe (Kurtto et al., 2011; Mabberley, 2017; Huang et al., 2023). Brambles exhibit a high level of morphologi- cal diversity and are often characterized by hybridization, frequently associated with polyploidy and apomixis (Alice, 2002; Sochor et al., 2015). The basic chromosome num- ber is x = 7, and the genus has been reported to have dif- ferent levels of ploidy in nature including 2x–18x as well as aneuploid genomes. Both natural and human-made hybrids are prevalent (Nybom, 1986; Foster et al., 2019; Gao et al., 2023). Specifically, “… except for a few sexual species occurring in Europe and its nearest vicinity… the subgenus Rubus is exclusively represented on the continent by polyploids of hybrid origin (2n = 21, 28, 35, and 42), where sexual reproduction has been almost entirely sup- planted by apomixis” (Zieliński, 2004, p. 1). In some classification systems, Rubus is categorized un- der the subfamily Ruboideae Thomé (Takhtajan, 1997, 2009) and the tribe Rubeae (Angiosperm Phylogeny Website, https://www.mobot.org/mobot/research/ap- web/), among others. The global taxonomic classification of the genus was established early in the 20th century, leading to the definition of 12 subgenera (Focke, 1910, 1911, 1914). However, a recent phylogenetic study of 145 Rubus species, including cultivars and hybrids, iden- tified 10 subgenera (Huang et al., 2023). This study found that the genus is not monophyletic; only R. subgenus An- oplobatus Focke forms a monophyletic group, while the remaining nine subgenera are either para- or polyphyletic (Chen et al., 2016; Huang et al., 2023). At the same time, according to Carter et al. (2019) R. subgenus Orobatus (Focke) Focke is also monophyletic. In Armenia, the total number of Rubus species is 13-14, the vast majority of which belong to the subgenus Ru- bus (= Eubatus Focke) (Mulkijanyan, 1958), while spe- cies R. idaeus L. belongs to the subgenus Idaeobatus Fo- cke. Two rare endemic species, R. takhtadjanii Mulk. and R. zan gezurus Mulk., are listed in the Red Book of Plants of Armenia under the EN (endangered) category (Taman- yan et al., 2010). For the species R. takhtadjanii, only one population is known in the Zangezur floristic region (in the vicinity of the villages Tsav and Srashen) on the terri- tory of the Shikakhokh State Reserve and the Plane Grove Nature Reserve. The range of R. zangezurus is fragment- ed, as the species grows both in the Ijevan floristic region (Berd) and in the Zangezur floristic region (Goris, Tsav) (Hayrapetyan et al., 2017). In the “Habitats of Armenia” (Fayvush & Aleksanyan, 2016) the genus is categorized under F2.33 (Subalpine mixed brushes), F2.338–AM (Subalpine crook stem forest), F3.2477–AM (Dewberry dense scrub), FB.3 (Shrub plantations for ornamental purposes or for fruit, other than vineyards), G1.371–AM (Plane grove in Tsav river valley), G1.927–AM (Aspen groves of North Armenia), G3.4E (Ponto–Caucasian Scots pine forests) and G5.85 (Shrubby clearings). Pollen morphological features are often used to address complex taxonomical problems regarding interrelation- ships between various taxa, particularly with reference to the families, subfamilies, tribes, genera, and species. The most distinctive characters include aperture type, ex- ine ornamentation and the size of mature pollen grains. The earliest mention of the peculiarities of Rubus pollen morphology (using LM) can be found in the mid-20th century (Erdtman, 1952). Subsequently, numerous stud- ies using a LM (e.g., Ikuse, 1955; Reitsma, 1966; Ku- prianova, 1978) and a SEM (e.g., Hebda & Chinnappa, 1990, 1994; Li et al. 2001; Wronska-Pilarek et al., 2012; Hanchana et al., 2023) have been conducted. In most cases, the authors highlight the size and shape of pollen grains as well as the exine ornamentation as the main di- agnostic features. A large-scale study of pollen morphol- ogy involving 155 species and 13 variations representing all 12 subgenera of Rubus was carried out by Xiong et al. (2019). The authors noted that pollen cluster analysis tree does not align well with the traditional macromor- phological classification and molecular phylogenetic trees 24/1 • 2025, 67–81 69 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia based on DNA fragments. Other studies have similarly shown that, in general, pollen characters did not support the currently accepted taxonomic division of the genus Rubus into subgenera, sections and series (Lechowicz et al., 2022), as well as that “… pollen morphology alone is not sufficient to elucidate or reconstruct the taxonomic relationships within Rubus…” (Xiong et al., 2019, p. 705). For that reason, pollen features in Rubus should be treated as auxiliary in taxonomy (Lechowicz et al., 2020). In Armenia, Avetisyan & Manukyan (1958) studied the pollen morphology of representatives of the genus Rubus using LM. The authors generally characterized the pollen of all investigated species as 3-zonocolporate with large pores and granulate exine ornamentation. The main purpose of this study was to conduct a com- parative palynomorphological analysis of 10 species of the genus Rubus in Armenia using LM and SEM to identify the main diagnostic characters that allow for the differen- tiation of individual taxa. Material and methods Pollen morphological characteristics of 18 samples from 10 species of the genus Rubus in Armenia were analyzed. Unopened mature flower buds were obtained from the herbarium of Institute of Botany after A. Takhtajyan, National Academy of Sciences of Republic of Armenia (ERE). The descriptions of pollen grains by light microscopy (LM) for each investigated species are based on acetolyzed material (Avetisyan, 1950) and also on grains stained with basic fuchsine (Smolyaninova & Golubkova, 1950) with obligatory fixation of pollen in glycerin jelly. Six morphological characters, namely length of polar axis (P), length of equatorial diameter (E), length of col- pi, apocolpium diameter, mesocolpium width and exine thickness, were measured. Measurements under LM (AmScope 2000X LED, China, 2015) were taken on 20 pollen grains for each specimen. The studies were carried out at ×200, ×400 and ×1000 magnifications. For descriptions of pollen shape, size, and aperture stained pollen grains were used; the details of exine structure and ornamentation were stud- ied on acetolyzed pollen grains. For scanning electron microscopy (SEM), non-acetolyzed pollen grains were washed with alcohol, placed on a metal stub, and sputter coated with gold (10 nm). Samples were imaged under SEM (JEOL JSM-6390), with a 15 kV electron beam. Statistical analysis of all studied species was performed using Microsoft Excel with two indicators: ± SD – stan- dard deviation and CV% – coefficient of variation. The sample is weakly variable in case of CV≤10%, with CV from 10% to 20% it is moderately variable, in case of CV≥20% it is being considered as highly variable and with CV≥30%, the highest degree of variability is noted. For each of the species presented below, depending on the amount of available pollen material, one to four speci- mens were studied. The list of investigated species and specimens is presented in Table 1; their names fully cor- responding  to those presented in The Plant List (http:// www.theplantlist.org/). Data on some palynological fea- tures of the genus Rubus in Armenia are presented in Ta- ble 2; the average sizes of pollen grains (μm) of the stud- ied species (P × E) using both our data and information from the literature are shown in Figure 1. The compari- son of the average values for some pollen characteristics R. a rm en ia cu s R. a rm en ia cu s ( 3) R. c ae siu s R. c ae siu s ( 1) R. c ae siu s ( 2) R. c ae siu s ( 4) R. c an di ca ns R. c an es ce ns R. c an es ce ns (4 ) R. c ar ta lin ic us R. c au ca sic us R. ib er ic us R. ib er ic us (4 ) R. id ae us R. id ae us (1 ) R. id ae us (2 ) R. sa nc tu s R. ta kh ta dj an ii 40 30 20 10 0 Figure 1: Average sizes of pollen grains (P × E) in some species of the genus Rubus L. Our data: blue – polar axis (P), green – equatorial diameter (E). Data from literature: orange – polar axis (P), yellow – equatorial diameter (E). (1) – Li et al. (2001), (2) – Lechnovich et al. (2020), (3) – Tomlik-Wyremblewska (1995), (4) – Monasterio-Huelin & Pardo (1995). Slika 1: Povprečna velikost pelodnih zrn (P × E) nekaterih vrst rodu Rubus L. Naši podatki: modra – polarna (vertikalna) os (P), zelena – ekvatorialna (horizontalna) os (E). Podatki iz literature: oranžna – polarna (vertikalna) os (P), rumena – ekvatorialna (horizontalna) os (E). (1) – Li et al. (2001), (2) – Lechnovich et al. (2020), (3) – Tomlik-Wyremblewska (1995), (4) – Monasterio-Huelin & Pardo (1995). 24/1 • 2025, 67–81 70 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia of the species studied, namely, polar axis (P), equatorial diameter (E), apocolpium diameter and mesocolpium width, was carried out using Simpson and Roe test (Van der Pluym & Hideux, 1997) (Figures 2–5). The classification of the shape and size of pollen grains was given according to Erdtman (1952). The morphologi- cal terminology used in our study mainly follows Erdtman (1952), Kuprianova & Alyoshina (1967), Punt et al. (2007), Halbritter et al. (2018), and Hayrapetyan & Bruch (2020). Karyological studies the genus Rubus in Armenia have not been conducted, and the chromosome numbers for some species, as shown in Table 2, have been obtained from literature sources. R. a rm en ia cu s R. c ae siu s R. c an di ca ns R. c an es ce ns R. c ar ta lin ic us R. c au ca sic us R. ib er ic us R. id ae us R. sa nc tu s R. ta kh ta dj an ii 20 15 10 5 Figure 2: Comparison of the average values of pollen polar axis (P) of investigated Rubus species using Simpson and Roe test. Slika 2: Primerjava povprečnih vrednosti polarne (vertikalne) osi (P) preučevanih vrst rodu Rubus s Simpsonovim in Roevim testom. R. a rm en ia cu s R. c ae siu s R. c an di ca ns R. c an es ce ns R. c ar ta lin ic us R. c au ca sic us R. ib er ic us R. id ae us R. sa nc tu s R. ta kh ta dj an ii 35 30 25 20 15 10 R. a rm en ia cu s R. c ae siu s R. c an di ca ns R. c an es ce ns R. c ar ta lin ic us R. c au ca sic us R. ib er ic us R. id ae us R. sa nc tu s R. ta kh ta dj an ii 25 20 15 10 R. a rm en ia cu s R. c ae siu s R. c an di ca ns R. c an es ce ns R. c ar ta lin ic us R. c au ca sic us R. ib er ic us R. id ae us R. sa nc tu s R. ta kh ta dj an ii 7 6 5 4 3 2 Species Herbarium sheet information R. armeniacus Focke ERE, 80977; ERE, 93906 R. caesius L. ERE, 56383; ERE, 63234; ERE, 63238 R. candicans Weihe ex Rchb. ERE, 58307; ERE, 63240 R. canescens DC. ERE, 58846; ERE, 98402 R. cartalinicus Juz. ERE, 63221 R. caucasicus Focke ERE, 58313 R. ibericus Juz. ERE, 135970 R. idaeus L. ERE, 98394 R. sanctus Schreb. ERE, 56378; ERE, 56381; ERE, 63978; ERE, 98366 R. takhtadjanii Mulk. ERE, 64509 Table 1: List of investigated species and specimens of the genus Rubus (ERE – Herbarium of the Institute of Botany after A. Takhtajyan, National Academy of Sciences, Yerevan, Armenia). Tabela 1: Seznam preučevanih vrst in primerkov rodu Rubus (ERE – Herbarij Botaničnega inštituta A. Takhtajyan, Nacion- alna akademija znanosti, Erevan, Armenija). Results Pollen grains are 3-zonocolp-orate, sometimes 4-zono- colp-orate (Figure 6b), often prolate or subprolate (the shape of pollen grains can vary even within the same sample), sometimes prolate spheroidal in R. cartalinicus and subspheroidal in R. takhtadjanii (Figure 1, Table 2); outline in polar view is rounded-3(4)-angular or round- ed-3(4)-lobed; polar axis (P) varies from 12.9 μm (in R. takhtadjanii) to 33.5 μm (in R. sanctus) (Table 2, Figu- re 2), equatorial diameter (E) from 12.1 μm (in R. san- ctus) to 24.1 μm (in R. caesius) (Table 2, Figure 3). Colpi Figure 3: Comparison of the average values of pollen equatorial diameter (E) of investigated Rubus species using Simpson and Roe test. Slika 3: Primerjava povprečnih vrednosti premera ekvatorialnega premera pelodnega zrna (E) preučevanih vrst rodu Rubus s Simpso- novim in Roevim testom. Figure 4: Comparison of the average values of pollen apocolpium diameter of investigated Rubus species using Simpson and Roe test. Slika 4: Primerjava povprečnih vrednosti premera apokolpija (brazde) preučevanih vrst rodu Rubus s Simpsonovim in Roevim testom. Figure 5: Comparison of the average values of pollen mesocolpium width of investigated Rubus species using Simpson and Roe test. Slika 5: Primerjava povprečnih vrednosti premera mezokolpija (brazde) preučevanih vrst rodu Rubus s Simpsonovim in Roevim testom. 24/1 • 2025, 67–81 71 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Sp ec ie s Po la r a xi s ( P) (μ m ) ± SD (C V % ) Eq ua to ria l di am et er (E ) (μ m ) ± SD (C V % ) P/ E C o l p u s E x i n e o r n a m e n t a t i o n C hr om os om e nu m be r ( 2n ) ap oc ol pi um di am et er (μ m ) ± SD (C V % ) m es oc ol pi um w id th (μ m ) ± SD (C V % ) LM SE M R. a rm en ia cu s Fo ck e 23 .5 –2 5. 8 / 2 4. 5 ± 0. 7 (2 .7 % ) 16 .9 –2 2. 8 / 1 9. 4 ±1 .8 (9 .2 % ) 8/ 7– 8/ 6 (s ub pr ol at e) 4. 8– 5. 9 / 5 .3 ± 0. 4 (7 .1 % ) 8. 4– 12 .5 / 10 .4 ± 1. 0 (9 .8 % ) fin el y re tic ul at e fin el y str ia te -p er fo ra te o r fin el y str ia te -m ic ro re tic ul at e 28 (K ra hu lc ov á & H ol ub , 1 99 7) R. ca esi us L . 22 .2 –2 8. 9 / 2 5. 1 ± 1. 8 (7 .2 % ) 19 .7 –2 4. 1 / 2 0. 9 ± 1. 6 (7 .4 % ) 8/ 7– 8/ 6 (s ub pr ol at e) 4. 5– 5. 3 / 4 .9 ± 0. 3 (5 .3 % ) 14 .1 –1 5. 8 / 1 4. 9 ± 0. 4 (2 .8 % ) fin el y re tic ul at e fin el y str ia te -p er fo ra te o r fin el y str ia te -m ic ro re tic ul at e 28 (K ra hu lc ov á & H ol ub , 1 99 7) R. ca nd ica ns W ei he e x R ch b. 20 .3 –2 5. 4 / 2 2. 9 ± 1. 9 (8 .4 % ) 17 .5 –2 2. 1 / 1 9. 0 ± 1. 6 (8 .7 % ) 8/ 7– 8/ 6 (s ub pr ol at e) 5. 0– 5. 6 / 5 .3 ± 0. 1 (2 .8 % ) 14 .2 –1 5. 4 / 1 4. 8 ± 0. 3 (2 .0 % ) gr an ul at e fin el y str ia te -p er fo ra te 21 (G us ta fss on ,1 94 3) R. ca ne sce ns D C . 23 .3 –2 5. 8 / 2 4. 5 ± 0. 7 (3 .0 % ) 17 .7 –2 0. 5 / 1 9 ± 0. 9 (4 .9 % ) 8/ 7– 8/ 6 (s ub pr ol at e) 4. 2– 5. 1 / 4 .7 ± 0. 2 (4 .8 % ) (s om et im es sy na pe rt ur at e) 10 .5 –1 4. 3 / 1 2. 4 ± 1. 0 (7 .7 % ) fin el y str ia te - re tic ul at e fin el y str ia te -p er fo ra te , s tr ia e lin ke d to ge th er b y br id ge s 14 (K ra hu lc ov á & H ol ub , 1 99 7) R. ca rt al in icu s Ju z. 21 .8 –3 0. 1 / 2 5. 8 ± 3. 1 (1 1. 8% ) 22 .1 –2 3. 5 / 2 2. 9 ± 0. 5 (2 .0 % ) 8/ 8– 8/ 7 (p ro la te sp he ro id al ) 2. 8– 4. 5 / 3 .6 ± 0. 4 (1 1. 6% ) (s om et im es sy na pe rt ur at e) 14 .4 –1 6. 8 / 1 5. 6 ± 0. 6 (3 .8 % ) fin el y str ia te - re tic ul at e fin el y str ia te -p er fo ra te – R. ca uc as icu s Fo ck e 21 .7 –3 3. 2 / 2 6. 3 ± 4. 1 (1 5. 7% ) 16 .8 –2 2. 5 / 1 8. 0 ± 3. 6 (1 9. 8% ) 8/ 6– 8/ 4 (p ro la te ) 4. 7– 5. 9 / 5 .2 4 ± 0. 4 (7 .5 % ) 18 .5 –1 9. 5 / 1 9. 0 ± 0. 3 (1 .7 % ) gr an ul at e fin el y str ia te -p er fo ra te – R. ib er icu s J uz . 20 .5 –2 2. 5 / 2 1. 4 ± 0. 7 (3 .1 % ) 14 .6 –1 8. 1 / 1 6. 2 ± 1. 2 (7 .6 % ) 8/ 6– 8/ 4 (p ro la te ) 3. 5– 4. 8 / 4 .2 ± 0. 3 (7 .8 % ) 11 .8 –1 4. 6 / 1 3. 2 ± 0. 7 (5 .3 % ) fin el y re tic ul at e – – R. id ae us L . 18 .5 –2 5. 3 / 2 1. 8 ± 2. 5 (1 1. 6% ) 14 .1 –1 8. 9 / 1 6. 5 ± 1. 6 (9 .6 % ) 8/ 6– 8/ 4 (p ro la te ) 3. 8– 5. 7 / 4 .8 ± 0. 5 (1 0. 0% ) 10 .5 –1 4. 9 / 1 2. 7 ± 1. 1 (8 .7 % ) fin el y re tic ul at e – 14 , 2 1 (C he n et a l., 1 99 3; Iv an ov a, 2 00 5) R. sa nc tu s Sc hr eb . 15 .5 –3 3. 5 / 1 9. 2 ± 5. 3 (2 7. 7% ) 12 .1 –1 7. 5 / 1 4. 4 ± 1. 6 (1 1. 3% ) 8/ 6– 8/ 4 (p ro la te ) 4. 8– 6. 1 / 5 .4 ± 0. 3 (6 .0 % ) 10 .9 –1 2. 5 / 1 1. 7 ± 0. 4 (3 .4 % ) gr an ul at e fin el y str ia te -p er fo ra te , di am et er o f p er fo ra tio n va rie s 14 (R un em ar k, 2 00 6) R. ta kh ta dj an ii M ul k. 12 .9 –1 5. 6 / 1 4. 2 ± 0. 8 (5 .6 % ) 14 .1 –1 6. 8 / 1 5. 4 ± 0. 9 (6 .1 % ) 6/ 8– 8/ 6 (s ub sp he ro id al ) 5. 3– 6. 9 / 6 .1 ± 0. 4 (6 .6 % ) 9. 8– 11 .5 / 10 .7 ± 0. 4 (4 .0 % ) fin el y re tic ul at e – – Ta bl e 2: S om e pa ly no lo gi ca l a nd k ar yo lo gi ca l f ea tu re s o f t he re pr es en ta tiv es o f t he g en us R ub us L . o f t he fl or a of A rm en ia (± S D – st an da rd d ev ia tio n, C V % – c oe ffi ci en t o f va ria tio n, L M – li gh t m ic ro sc op y, SE M – sc an ni ng e le ct ro n m ic ro sc op y) . Ta be la 2 : N ek at er e pa lin ol oš ke in k ar io lo šk e zn ač iln os ti pr ed sta vn ik ov ro du R ub us L . v fl or i A rm en ije (± S D – st an da rd ni o dk lo n, C V % – k oe fic ie nt v ar ia ci je , L M – sv et lo bn i m ik ro sk op , S EM – v rs tič ni e le kt ro ns ki m ik ro sk op ). 24/1 • 2025, 67–81 72 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Figure 6: Pollen grains of Rubus armeniacus Focke. a–h – LM micrographs: a – 3-zonocolp-orate pollen grain, b – 4-zonocolp-orate pollen grain with additional small slit-like apertures at the pole (marked with arrows), c – spheroidal os (marked with arrow), d, e – thickened edges of colpi (marked with arrows), f – geniculum (marked with arrow), g – exine, columellae layer (marked with arrow), h – finely reticulate exine ornamen- tation; i, j – SEM micrographs: i – pollen grain in equatorial view, colpus, j – striate-perforate exine ornamentation in combination with finely striate-microreticulate one; scale bars: a–i – 10 μm, j – 1 μm. Slika 6: Pelodna zrna vrste Rubus armeniacus Focke. a–h – LM mikrografi: a – 3-zonokolporatna pelodna zrna, b – 4 zonokolporatna pelodna zrna z dodatno odprtino na polih (označeno s puščico), c – sferoidna os (označeno s puščico), d, e – odebeljen del brazde (označeno s puščico), f – genikulum (označeno s puščico), g – eksina, kolumelna plast (označeno s puščico), h – fino mrežasta ornamentacija eksine, i, j – SEM mikrograf: i – pelodno zrno v ekvatorialnem pogledu, brazda, j – črtasto-luknjičasta ornamentacija eksine v kombinaciji s fino črtasto- mikroretikuliranim okrasjem; merilce: a–i – 10 μm, j – 1 μm. are long or very long (colpus length 4/5–1 of polar axis), occasionally anastomose towards the poles (i.e., synaper- turate) (Figure 9b; Figure 10b, c), often geniculate (i.e., with bulge in the equatorial exine of the colpus) (Fig- ure 6f; Figure 8e, g; Figure 9d), from rather narrow to narrow, sometimes almost slit-like (rarely wide), usually with evenly thickened edges (Figure 6d, e; Figure 9e; Figure 10e) and with rounded or pointed ends; colpus membrane ornamentation from psilate to irregularly ver- rucate (Figure 10a); apocolpium diameter from 2.8 μm (in R. cartalinicus) to 6.9 μm (in R. takhtadjanii) (Ta- ble 2, Figure 4), mesocolpium width from 8.4 μm (in R. armeniacus) to 19.5 μm (in R. caucasicus) (Table 2, Figure 5). Ora are spheroidal or oblate spheroidal (Fig- ure 7c; Figure 9c), due to the presence of the geniculum or the convergence of the colpi at the equator, sometimes weakly expressed, rarely with uneven edges and indis- tinct ends. Exine thickness is 1.2–1.3 μm, columellae separate, with spherical or claviform heads (Figure 6g; Figure 8c). Exine ornamentation is granulate (Figure 7f), reticulate (Figure 6h) or striate-reticulate (Figure 9f) (LM); in the vast majority of the species ornamentation is finely striate-perforate (Figure 8h; Figure 9h; Figure 10g; Figure 11e), sometimes (R. armeniacus and R. caesius) in combination with finely striate-microreticulate one (Fig- ure 6j; Figure 7h) (SEM). The striae are long, often dichotomously branched; in the species R. canescens, the individual striae are connect- ed by thin transverse bridges (Figure 9h). The diameter of the perforations is 0.1–0.7 μm; the strongest variabil- ity of this character was found in the species R. sanctus (Figure 11e). 24/1 • 2025, 67–81 73 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Figure 7: Pollen grains of Rubus caesius L. a–f – LM micrographs: a–b – pollen grains in polar view (a – colpi, b – exine, columellae layer), c – spheroidal os (marked with arrow), d–f – pollen grains in equatorial view (e – os area, marked with arrows), f – granulate exine ornamenta- tion; g–h – SEM micrographs: g – pollen grains in polar and equatorial view, h – striate-perforate exine ornamentation in combination with finely striate-microreticulate one; scale bars: a–g – 10 μm, h – 1 μm. Slika 7: Pelodna zrna vrste Rubus caesius L. a–f – LM mikrografi: a–b – pelodno zrno v polarnem pogledu (a – brazda, b – eksina, kolumelna plast), c – sferoidna os (označena s puščico), d–f – pelodno zrno v ekvatorijalnem pogledu (e – osno območje, označeno s puščico), f – zrnata ornamentaci- ja eksine, g–h – SEM mikrograf: g – pelodno zrno v polarnem in ekvatorialnem pogledu, h – črtasto-luknjičasta ornamentacija eksine v kombinaciji s fino črtasto-mikroretikulirano ornamentacijo; merilce: a–g – 10 μm, h – 1 μm. 24/1 • 2025, 67–81 74 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Figure 8: Pollen grains of Rubus candicans Weihe ex Rchb. a–f – LM micrographs: a–c – pollen grains in polar view (a – colpus membrane ornamentation, b – os area, c – exine, columellae layer, marked with arrows), d–f – pollen grains in equatorial view (d – colpus without genuculum, e – colpus with genuculum, marked with arrows, f – thickened edges of colpi); g–h – SEM micrographs: g – pollen grains in polar and equatorial view (colpus with genuculum, marked with arrow), h – finely striate-perforate exine ornamentation (SEM); scale bars: a–g – 10 μm, h – 1 μm. Slika 8: Pelodna zrna vrste Rubus candicans Weihe ex Rchb. a–f – LM mikrografi: a–c – pelodna zrna v polarnem pogledu (a – ornamentacija membrane brazde, b – območje osi, c – eksina, kolumelna plast, označeno s puščico), d–f – pelodno zrno v ekvatorialnem pogledu (d – brazda brez genikuluma, e – brazda z genikulumom, označeno s puščico, f – odebeljen del brazde); g–h – SEM mikrograf: g – pelodna zrna v polarnem in ekvatorialnem pogledu (brazda z genikulumom, označeno s puščico), h – fino črtasto-luknjasta ornamentacija eksine (SEM); merilce: a–g – 10μm, h – 1 μm. 24/1 • 2025, 67–81 75 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Figure 9: Pollen grains of Rubus canescens DC. a–f – LM micrographs: a – pollen grains in semipolar view, b – synaperturate pollen grain in polar view (synaperture marked with arrow), c–f – pollen grains in equatorial view (c – os, d – genuculum, e – thickened edges of colpi, marked with arrows, f – striate-reticulate exine ornamentation); g–h – SEM micrographs: g – pollen grains in semipolar and equatorial view, h – finely striate- perforate exine ornamentation (SEM); scale bars: a–g – 10 μm, h – 1 μm. Slika 9: Pelodna zrna vrste Rubus canescens DC. a–f – LM mikrografi: a – pelodno zrno v semipolarnem pogledu, b – po daljšnici anastamozna odprtina (označeno s puščico), c–f – pelodno zrno v ekvatorialnem pogledu (c – os, d – genikulum, e – odebeljeni rob brazde, označen s puščico, f – črtasto-mrežasta ornamentacija eksine; g–h SEM mikrograf: g – pelodno zrno v semipolarnem in ekvatorialnem pogledu, h – fino črtasto-luknjasta ornamentacija eksine (SEM); scale bars: a–g – 10 μm, h – 1 μm. 24/1 • 2025, 67–81 76 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Figure 10: Pollen grains of Rubus cartalinicus Juz. a–e – LM micrographs: a–c – pollen grains in polar view (a – pollen and colpus membrane ornamentation, b–c – synaperturate pollen grains and os area, marked with arrows), d–e – pollen grains in equatorial view (d – os, e – thickened edges of colpi); f–g – SEM micrographs: f – pollen grains in equatorial and semipolar view, g – finely striate-perforate exine ornamentation; scale bars: a–f – 10 μm, g – 1 μm. Slika 10: Pelodna zrna vrste Rubus cartalinicus Juz. a–e – LM mikrografi: a–c – pelodno zrno v polarnem pogledu (a – pelod in ornamentacija membrane brazde, b–c pelodno zrno z anastamozno odprtino, označeno s puščico), d–e – pelodno zrno v ekvatorialnem pogledu (d – os, e – odebeljen del brazde); f–g – SEM mikrograf: f – pelodno zrno v ekvatorialnem in semipolarnem pogledu, g – fino črtasto-luknjasta ornamentacija eksine; merilce: a–f – 10 μm, g – 1 μm. 24/1 • 2025, 67–81 77 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Discussion Apertures. Our studies revealed the presence of predomi- nantly 3(4)-zonocolporate pollen apertures in representa- tives of the genus Rubus from the Armenian flora, where endoapertures are formed due to thinning or complete absence of the internal layers of the exine. Addition- ally, in some 4-zonocolporate pollen grains of the spe- cies R. armeniacus, additional slit-like or colpus-like areas were observed at one or both poles (Figure 6b), indicating a possible hybridogenic nature of this species. It should also be noted that such spheroidal or oblate spheroidal endoapertures, often invisible beyond the colpi, have been considered by several authors as pores (e.g., Avetisyan & Manukyan, 1958; Kuprianova, 1978; Kosenko et al., 1984; Tomlik-Wyremblewska, 1995). On the other hand, pollen studies of five West-European Rubus species (Reits- ma, 1966), as well 18 species from the Iberian Peninsula (Monasterio-Huelin & Pardo, 1995) revealed lalongate endoapertures formed due to the disappearance or thin- ning of the nexine, thereby confirming our standpoint. Some authors characterized these areas as endopores with irregular margins and a fastigium (Wronska-Pilarek et al., 2006; Wronska-Pilarek et al., 2012). A characteristic feature of pollen grains of the genus Rubus is the presence of a geniculum, i.e., a bulge in the equatorial exine of the colpus, usually formed due to the separation of the sexine from the nexine and the ruptu- re of the latter (Potonié, 1934; Punt et al., 2007). The presence of a similar bulge in some species of the genus Rubus, referred to as “fastigium”, was noted by Reitsma for the first time (1966). It is possible that the presence of the geniculum covering the ora led several authors to characterize Rubus pollen as tricolpate (e.g., Demchenko, 1967; Eide, 1981b). Some authors noted the presence of an equatorial bridge, with margins constricted at the equator (Tomlik-Wyremblewska, 1995). Shape and size. The general outline of pollen grains in the investigated species was mainly prolate (P/E = 8/6– 8/4) or subprolate (P/E = 8/7–8/6), prolate spheroidal Figure 11: Pollen grains of Rubus sanctus Schreb. a–c – LM micrographs: a – pollen grain in polar view, b–c – pollen grains in equatorial view (c– colpus with genuculum, marked with arrow); d–e – SEM micrographs: d – pollen grain in equatorial view, e – finely striate-perforate exine ornamentation; scale bars: a–d – 10 μm, e – 1 μm. Slika 11: Pelodna zrna vrste Rubus sanctus Schreb. a–c – LM mikrografi: a – pelodno zrno v polarnem pogledu, b–c – pelodno zrno v ekvatorial- nem pogledu (c– brazda z genikulumom, označeno s puščico); d–e – SEM mikrograf: d – pelodno zrno v ekvatorialnem pogledu, e – fino črtasto- luknjasta ornamentacija eksine; merilce: a–d – 10 μm, e – 1 μm. 24/1 • 2025, 67–81 78 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia (P/E = 8/8–8/7) in R. cartalinicus, and subspheroidal (6/8–8/6) in R. takhtadjanii (Table 2, Figure 1). In most cases, pollen grains were small. However, for R. caesius, R. cartalinicus Juz., R. caucasicus Focke, R. sanctus both small and medium-sized pollen were noted, with Pmax= 33.5 μm observed in R. sanctus (Table 2). The smallest pollen grains (according to polar axis length) were noted in the rare endemic species R. takhtadjanii (on average 14.2 μm), and the largest ones in R. cauca- sicus (on average 26.3 μm). According to available liter- ature data, the largest pollen grains in the genus Rubus (P × E = 42.5 × 35.8 μm) were found in the species R. alceifolius Poir. (Kosenko et al., 1984). In general, according to Monasterio-Huelin & Pardo (1995, p. 231), “the comparative analysis of the mean val- ues of P and E is not significant in distinguishing pollen types”. Exine. The thickness of the exine layer in the species studied ranged from 1.2 to 1.3 μm, resulting in a certain percentage of destroyed pollen grains during acetolysis treatment According to literary sources, the maximum exine thickness was noted in the species R. nutkanus Moc. (2.5 μm) (Demchenko, 1967). Exine ornamentation. Examination of the surface of pollen grains using SEM revealed finely striate-perforate exine ornamentation, sometimes (in R. armeniacus, R. caesius) combined with finely striate-microreticulate one (Figure 6j, Figure 7h). A similar type of sculpture is also noted for the pollen of approximately twenty species of the genus Rubus in the Iberian Peninsula (Monasterio- Huelin & Pardo, 1995). The exception is R. genevierii Boreau, “… whose ornamentation is striate-gemmate- perforate and with a striated margin” (Monasterio- Huelin & Pardo, 1995, p. 229). Pollen studies of Rubus representatives have also revealed some other different types of ornamentation besides the perforate-stiate one, including rugulate, rugulate-striate, striate-scabrate, stiate-gemmate, stiate-reticulate, rugulate, reticulate, clavate-bacculate (Gonzalez Romano & Candau, 1989; Ueda, 1992; Tomlik-Wyremblewska, 1995, 2000, 2004; Zhou et al., 1999; etc.). A wide-ranging research of the pollen morphology of 155 species and 13 varieties representing all 12 subgen- era of Rubus revealed six types of exine ornamentation (I – perforate, II – microreticulate, III – striate-perforate, IV – rugulate-perforate, V – echinate, VI – striate-micro- reticulate) and three subtypes (IA– scabrate-perforate, IB – perforations and discontinuous muri; IIIA – scabrate- striate-perforate) (Xiong et al., 2019). It is possible that the pronounced polyploidy has played an undoubted role in the display of pollen polymorphism within the genus Rubus. For example, in contrast to the striate or reticulate sculpture, sometimes a vermiculate sculpture is characteristic of the pollen of many species (Ghosh & Saha, 2017; Valdés et al., 1987; Wronska-Pi- larek et al., 2012); the systematically and ecologically iso- lated dioecious octoploid glacial relict R. chamaemorus L. (2n = 8x = 56) (Thiem, 2003) exhibits spinose (Erdtman, 1952; Demchenko, 1967; Faegri & Iversen, 1989), ver- rucate, gemmate (Reitsma, 1966; Hebda & Chinnappa, 1990, 1994) or perforate-striate (Eide, 1981a) pollen ex- ine ornamentations. Disagreements also arise when characterizing the type of apertures in the aforementioned species, namely, 3-colpor(oid)ate (Erdtman, 1952) vs tricolpate (Dem- chenko, 1967). The latter author also noted clear differ- ences in pollen characteristics between R. chamaemorus and two closely related species, R. trifidus Thunb. and R. nutkanus (synonym of R. parviflorus Nutt.), both in terms of aperture type (tricolpate vs tricolp-orate) and exine ornamentation type (spinose vs reticulate-foveolate and sinuously reticulate, respectively). Additionally, tricolpate pollen grains (Eide, 1981b) and tuberculate sculpture for the species R. arcticus L. (Surova, 1975), as well as micro- verrucate exine ornamentation for R. parviflorus (Hebda & Chinnappa, 1990) were reported. In both R. idaeus (Eide, 1981b) and R. sanctus (our studies), a significant diversity in the total size of pollen grains within the same sample (almost twice) was observed. A considerable vari- ability in pollen grain sizes between the different samples of species R. caesius and R. idaeus is shown in Figure 1. On the other hand, a study of pollen morphology and pollen variability in R. gracilis from 13 natural Polish lo- calities “… revealed no differences among the grains from the individual localities, likely the result of apomixis” (Wronska-Pilarek et al., 2006, p. 69). Conclusions Pollen morphology of 10 Armenian species of the genus Rubus was studied using both light microscopy (LM) and scanning electron microscopy (SEM), including the spe- cies R. candicans, R. cartalinicus and R. takhtadjanii inves- tigated for the first time. Analysis of the data obtained revealed significant paly- nomorphological uniformity both in the type of aper- tures (mainly 3(4)-zonocolporate) and the type of exine ornamentation (finely striate-perforate), in combination with finely striate-microreticulate one in R. armeniacus and R. caesius. On the other hand, the obtained data con- firmed the observations of Wronska-Pilarek et al. (2012) and Xiong at al. (2019) regarding the significant variabil- ity of certain pollen features within individual species of the genus Rubus (such as pollen shape, size, etc.), and es- 24/1 • 2025, 67–81 79 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia pecially within the subgenus Rubus (= Eubatus), to which most of the Armenian species of the genus Rubus belong. For example, in R. sanctus a significant variability in the length of the polar axis (P) was revealed, ranging from 15.5 to 33.5 μm. In this context, our data support the previously held view that pollen grain morphology within the genus Ru- bus can only be used as an auxiliary feature for the diag- nosis of individual species. Acknowledgements We thank Sh. Ohanyan for technical assistance with LM photography and L. Kartzeva for assistance with SEM photography. We are also grateful to the anonymous ref- erees for their suggestions, which helped to substantially improve the original manuscript. We would like to thank Nina Caf for the translation into Slovenian. ORCID iDs Alla Hayrapetyan  https://orcid.org/0000-0002-8038-7422 Marieta Asatryan  https://orcid.org/0009-0009-3875-3677 Hasmik Sonyan  https://orcid.org/0009-0007-9442-3424 Karine Balayan  https://orcid.org/0009-0002-7875-1085 Dmitri Beketovski  https://orcid.org/0009-0007-1660-8204 References Alice, L. A. (2002). Evolutionary relationships in Rubus (Rosaceae) based on molecular data. Acta Horticulturae, 585, 79–83. https://doi. org/10.17660/ActaHortic.2002.585.9 Alice, L. A., & Campbell, C. S. (1999). Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. American Journal of Botany, 86, 81–97. https://doi. org/10.2307/2656957 Angiosperm Phylogeny Website, https://www.mobot.org/mobot/ research/apweb/ Avetisyan, E. M. (1950). Uproshchenny atsetolizny metod obrabotki pyl’tsi [Simplified acetolyzed method of the pollen grains treatment]. Botanicheskii Zhurnal, 35(4), 385–387 (in Russian). Avetisyan, E. M., & Manukyan, L. K. (1958). Opisanie pyl’tsevykh zeren roda Rubus L. [Description of pollen of the genus Rubus L.]. In Takhtajan, A. L. (Ed.). Flora Armenii [Flora of Armenia], 3 (p. 37). Academy of Sciences of Armenia (in Russian). Carter, K. A., Liston, A., Bassil, N. V., Alice, L. A., Bushakra, J. M., Sutherland, B. L., Mockler, T. C., Bryant, D. W., & Hummer, K. E. (2019). Target capture sequencing unravels Rubus evolution. Frontiers in Plant Science, 10, 1615. https://doi.org/10.3389/fpls.2019.01615 Chen, R. Y., Song, W. Q., Liang, G. L., Lin, S. H., Li, X. L., & An, Z. P. (1993). Chromosome atlas of Chinese principal economic plants. Volume 1. Chromosome atlas of Chinese fruit trees and their close wild relatives. International Academic Publishers. Chen, Z.-D., Yang, T., Lin, L., Lu, L.-M., Li, H.-L., Sun, M., Liu,B., Chen, M., Niu, Y.-T., Ye, J.-F., Cao,Zh.-Y., Liu, H.-M., Wang, X.-M., Wang, W., Zhang, J.-B., Meng, Zh., Cao,W., Li, J.-H., Wu, Sh.-D., Zhao H.-L., Liu, Zh.-J., Du, Zh.-Y., Wang, Q.-F., Guo, J., Tan, X.-X., Su, J.-X., Zhang, L.-J., Yang, L.-L., Liao, Y.-Y., Li, M.-H., Zhang, G.- Q., Chung, Sh.-W., Zhang, J., Xiang, K.-L., Li, R.-Q., Soltis, D. E., Soltis, P. S., Zhou, Sh.-L., Ran, J.-H., Wang, X.-Q., Jin, X.-H., Chen, Y.-Sh., Gao, T.-G., Li, J.-H., Zhang, Sh.-Zh., & Lu, A.-M. (2016). China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants. Journal of Systematics and Evolution, 54(4), 277–306. https://doi.org/10.1111/jse.12219 Chen, X., Li, J., Cheng, T., Zhang, W., Liu, Y., Wu, P., Yang, X., Wang, L., & Zhou, Sh. (2020). Molecular systematics of Rosoideae (Rosaceae). Plant Systematics and Evolution, 9, 306. https://doi. org/10.1007/s00606-020-01629-z Connolly, T. J. (1999). Newberry Crater: A ten-thousand-year record of human occupation and environmental change in the basin-plateau borderlands. Anthropological Papers, 121, University of Utah. Daehler, C. C. (1998). The taxonomic distribution of invasive angiosperm plants: Ecological insights and comparison to agricultural weeds. Biological Conservation, 84, 167–180. https://doi.org/10.1016/ S0006-3207(97)00096-7 Demchenko, N. I. (1967). O pyl’tse Rubus chamaemorus [On the pollen of Rubus chamaemorus]. Botanicheskii Zhurnal, 52(4), 535–538 (in Russian). Eide, F. (1981a). On the pollen morphology of Rubus chamaemorus L. (Rosaceae). Grana, 20(1), 25–27. https://doi. org/10.1080/00173138109436733 Eide, F. (1981b). Key for Northwest European Rosaceae pollen. Grana, 20(2), 101–118. https://doi.org/10.1080/00173138109427651 Erdtman, G. (1952). Pollen morphology and plant taxonomy 1. Angiosperms. Almqvist et Wiksell. Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis (Fourth edition). John Wiley & Sons. Fayvush, G. M., & Aleksanyan, A. S. (2016). Habitats of Armenia. NAS RA, Institute of Botany. Focke, W.O. (1910). Species Ruborum. Monographiae generis Rubi prodromus I. Bibliotheca Botanica, 17(72), 1–120. http://dx.doi. org/10.5962/bhl.title.15533 Focke, W.O. (1911). Species Ruborum. Monographiae generis Rubi prodromus II. Bibliotheca Botanica, 17(72), 121–223. http://dx.doi. org/10.5962/bhl.title.15533 Focke, W.O. (1914). Species Ruborum. Monographiae generis Rubi prodromus III. Bibliotheca Botanica, 19(83), 1–274. http://dx.doi. org/10.5962/bhl.title.15533 Foster, T. M., Bassil, N. V., Dossett, M., Worthington, M. L., & Graham, J. (2019). Genetic and genomic resources for Rubus breeding: a roadmap for the future. Horticulture Research, 6, 116. https://doi. org/10.1038/s41438-019-0199-2 Gao, X.-F., Xiong, X.-H., Boufford, D. E., Gao, Y.-D., Xu, B., & Zhang, C. (2023). Phylogeny of the diploid species of Rubus (Rosa- ceae). Genes, 14(6), 1152. https://doi.org/10.3390/genes14061152 Ghosh, A., & Saha, I. (2017). Pollen morphological study of some selected Indian taxa of Rosaceae. Indian Journal of Applied and Pure Biology, 32(2), 121–130. 24/1 • 2025, 67–81 80 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Gonzalez Romano, M. L., & Candau, P. A. (1989). Contribution to palynological studies in the Rosaceae. Acta Botánica Malacitiana, 14, 105–116. Gustafsson, A. (1943). The genesis of the European blackberry flora. Acta Universitatis Lundensis, 36(6), 1–200. Halbritter, H., Ulrich, S., Grimsson, F., Weber, M., Zetter, R., Hesse, M., Buchner, R., Svojtka M., & Frosch-Radivo, A. (2018). Illustrated Pollen Terminology (2-nd Edition). Springer. https://doi. org/10.1007/978-3-319-71365-6 Hanchana, K., Saensouk, S., & Saensouk, P. (2023). Pollen morphology and anatomy of Rubus L. (Rosaceae) in Thailand. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13070. https://doi. org/10.15835/nbha51113070 Hayrapetyan, A., & Bruch A. A. (2020). Pollen morphology of some species of the genus Quercus L. (Fagaceae) in the Southern Caucasus and adjacent areas. Acta Palaeobotanica, 60(1), 1–42. https://doi. org/10.35535/acpa-2020-0001 Hayrapetyan, A. M., Fayvush, G. M., & Muradyan, A. G. (2017). Predstavlennost’ redkikh endemichnykh vidov rasteniy Armenii v gerbarii Instituta botaniki NAN RA (ERE). Chast’ V. Informatsiya po otdel’nym vidam (semeystva Poaceae – Rosaceae) [Representativeness of rare endemic plant species in the herbarium of the Institute of botany NAS RA (ERE). Part V. Information on some species (fam. Poaceae – Rosaceae)]. Biological Journal of Armenia, 3(69), 12–17 (in Russian). Hebda, R. J., & Chinnappa, C. C. (1990). Studies on pollen morphol- ogy of Rosaceae in Canada. Review of Palaeobotany and Palynology, 64, 103–108. https://doi.org/10.1016/0034-6667(90)90123-Z Hebda, R. J., & Chinnappa, C. C. (1994). Studies on pollen morphology of Rosaceae. Acta Botanica Gallica, 141(2), 183–193. https://doi.org/10.1080/12538078.1994.10515150 Hendrickson, J. (1981). The berry book. Doubleday. Huang, T.-R., Chen, J.-H., Hummer, K. E., Alice, L. A., Wang, W.- H., He, Y., Yu, S.-X., Yang, M.-F., Chai, T.-Y., Zhu, X.-Y., Ma, L.-Q., & Wang, H. (2023). Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. Taxon, 72(2), 278–306. https://doi.org/10.1002/tax.12885 Hummer, K. E. (2010). Rubus pharmacology: Antiquity to the present. Hortscience, 45(11), 1587–1591. https://doi.org/10.21273/ HORTSCI.45.11.1587 Ikuse, M. (1955). General survey list of pollen grains in Japan (7). Rosales. 4. Journal of Japanese Botany, 30, 365–368. Ivanova, D. (2005). Mediterranean chromosome number reports 15 (1445–1456). Flora Mediterranea, 15, 719–728. Kosenko, V. N., Hiep N. T., & Yakovlev, G. P. (1984). Palinomorfologicheskoe izuchenie predstaviteley roda Rubus (Rosaceae) flory V’etnama [Palynomorphological study of the representatives of the genus Rubus (Rosaceae) in the flora of Viet-Nam]. Botanicheskii Zhurnal, 69(4), 497–503 (in Russian). Krahulcová, A., & Holub, J. (1997). Chromosome number variation in the genus Rubus in the Czech Republic. II. Preslia 69, 289–310. Kuprianova, L. A. (1978). Genus Rubus L. In Kuprianova, L. A., & Alyoshina, L. A. (Eds.). Pyl’tsa dvudol’nykh rasteniy flory Yevropeyskoy chasti SSSR [Pollen and spores of plants from the flora of European part of the USSR]. 2. Lamiaceae-Zygophyllaceae. Nauka (in Russian). Kuprianova, L. A., & Alyoshina, L. A. (1967). Palinologicheskaya terminologiya pokritosemennikh rasteny [Palynological terminology of angiosperms]. Nauka (in Russian). Kurtto, A., Weber, H. E., Lampinen, R., & Sennikov, A. N. (Eds.) (2011). Atlas florae Europaeae. Distribution of vascular plants in Europe. 15: Rosaceae (Rubus). The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki. https://doi.org/10.2307/41549119 Lechowicz, K., Wrońska-Pilarek, D., Bocianowski, J., & Maliński, T․ (2020) Pollen morphology of Polish species from the genus Rubus L. (Rosaceae) and its systematic importance. PLoS ONE, 15(5), e0221607. https://doi.org/10.1371/journal.pone.0221607 Lechowicz, K., Bocianowski, J., & Wrońska-Pilarek, D. (2021). Pollen morphology and variability of species from the genus Rubus L. (Rosaceae) alien and invasive in Poland. Webbia. Journal of Plant Taxonomy and Geography, 76(1), 109–121. https://doi.org/10.36253/ jopt-10355 Lechowicz, K., Bocianowski, J., & Wrońska-Pilarek, D. (2022). Pollen morphological inter- and intraspecific variability in selected species of Rubus L. (Rosaceae). Forests, 13, 1946. https://doi.org/10.3390/ f13111946 Li, W.-L., He, S.-A., Gu, Y., Shu, P., & Pu, Z.-M. (2001). Pollen morphology of the genus Rubus from China. Acta Phytotaxonomica Sinica, 39(3), 234–247. Lu, L.-T. (1983). A study on the genus Rubus of China. Acta Phytotaxonomica Sinica, 21(1), 13–25. Mabberley, D. J. (2017). Mabberley’s plant-book: A portable dictionary of plants, their classification and uses (4th edition). Cambridge University Press. https://doi.org/10.1017/9781316335581 Monasterio-Huelin, E., & Pardo, C. (1995). Pollen morphology and wall stratification in Rubus L. (Rosaceae) in the Iberian Peninsula. Grana, 34, 229–236. https://doi.org/10.1080/00173139509429050 Mulkijanyan, Ya. I. (1958). Genus Rubus L. In: Takhtajan, A. L. (Ed.), Flora Armenii [Flora of Armenia], 3 (pp. 37–66). Academy of Sciences of Armenia (in Russian). Nybom, H. (1986). Chromosome numbers and reproduction in Rubus subgen. Malachobatus. Plant Systematics and Evolution, 152(3/4), 211–218. Potonié, R. (1934). I. Zur Morphologie der fossilen Pollen und Sporen. Arbeiten aus dem Institut für Paläobotanik und Petrographie der Brennsteine, 4, 5–24. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143(1−2), 1−81. https://doi. org/10.1016/j.revpalbo.2006.06.008 Reitsma, Tj. (1966). Pollen morphology of some European Rosaceae. Acta Botanica Neerlandica, 15(2), 290−307. https://doi. org/10.1111/j.1438-8677.1966.tb00234.x Runemark, H. (2006). Mediterranean chromosome number reports 16 (1473–1571). Flora Mediterranea, 16, 408–425. Smolyaninova, L. A., & Golubkova, V. F. (1950). K metodike issledovaniya pyl’tsi [To pollen research method]. Doklady Akademii Nauk SSSR, 75(1), 125−126 (in Russian). 24/1 • 2025, 67–81 81 Hayrapetyan et al. Pollen study of the genus Rubus L. in Armenia Sochor, M., Vasut, R. J., Sharbel, T. F., & Travnicek, B. (2015). How just a few makes a lot: Speciation via reticulation and apomixes on example of European brambles (Rubus subgen. Rubus, Rosaceae). Molecular Phylogenetics and Evolution, 89, 13–27. https://doi. org/10.1016/j.ympev.2015.04.007 Surova, T. G. (1975). Elektronno-mikroskopicheskoe issledovanie pyl’tsy i spor rasteniy [Electron microscope investigation of plants pollen and spores]. Nauka (in Russian). Takhtajan, A. (1997). Diversity and classification of flowering plants. Columbia University Press. Takhtajan, A. (2009). Flowering Plants (Second Edition). Springer Science+Business Media B.V. https://doi.org/10.1007/978-1-4020- 9609-9 Tamanyan, K., Fayvush, G., Nanagyulyan, S., & Danielyan, T. (Eds.) (2010). The Red Book of Plants of the Republic of Armenia. Higher Plants and Fungi (Second edition). Zangak. The Plant List. Genus Rubus. http://www.theplantlist.org/tpl1.1/ search?q=Rubus Thiem, B. (2003). Rubus chamaemorus L. – a boreal plant rich in biologically active metabolites: A review. Biology Letters, 40, 3–13. Tomlik-Wyremblewska, A. (1995). Pollen morphology of genus Rubus L. Part I. Introductory studies of the European representatives of the subgenus Rubus L. Acta Societatis Botanicorum Poloniae, 64, 187–203. Tomlik-Wyremblewska, A. (2000). Pollen morphology of genus Rubus L. Part II. Introductory studies on the Malesian species of subgenus Micranthobatus Fritsch. Acta Societatis Botanicorum Poloniae, 69, 31–40. Tomlik-Wyremblewska, A., Van Der Ham, R. W. J. M., & Kosiński, P. (2004). Pollen morphology of genus Rubus L. Part III. Studies on the Malesian species of subgenera Chamaebatus L. and Idaeobatus L. Acta Societatis Botanicorum Poloniae, 73, 207–227. Ueda, Y. (1992). Pollen surface morphology in the genus Rosa and related genera. Japanese Journal of Palynology, 38, 94–105. Valdés, B., Díez, M. J., & Fernández, I. (1987). Atlas polínico de Andalucía occidental. Universidad de Sevilla, Sevilla. Van der Pluym, A., & Hideux, M. (1997). Applications d’une methodologie quantitative a la palynologie d’Eryngium maritimum (Umbelliferae). Plant Systematic and Evolution, 127, 55–85. http:// dx.doi.org/10.1007/BF00984142 Wronska-Pilarek, D., Maliński, T., & Lira, J. (2006). Pollen morphology of Polish species of genus Rubus – Part I. Rubus gracilis. Dendrobiology, 56, 69–77. Wronska-Pilarek, D., Jagodzinski, A. M., & Malinski, T. (2012). Morphological studies of pollen grains of the Polish endemic species of the genus Rubus (Rosaceae). Biologia (Section Botany), 67(1), 87–96. https://doi.org/10.2478/s11756-011-0141-z Xiong, X.-H., Zhou, X.-M., Li, M., Xu, B., Deng, H.-N., Yu, Q., & Gao, X.-F. (2019). Pollen morphology in Rubus (Rosaceae) and its taxonomic implications. Plant Systematics and Evolution, 305, 705–716. https://doi.org/10.1007/s00606-019-01600-7 Zhou, L.-H., Wei, Z.-X., & Wu, Z.-Y. (1999). Pollen morphology of Rosoideae (Rosaceae) of China. Acta Botanica Yunnanica, 21, 455–460. Zieliński, J. (2004). The genus Rubus (Rosaceae) in Poland. Polish Botanical Studies, 16, 1–300.