creative ARS MATHEMATICA
@commons CONTEMPORANEA
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)
ARS MATHEMATICA CONTEMPORANEA 23 (2023) #P1.04

https://doi.org/10.26493/1855-3974.2704.31a
(Also available at http://amc-journal.eu)

Finitizable set of reductions for polyhedral
quadrangulations of closed surfaces

Yusuke Suzuki *

Department of Mathematics, Niigata University, 8050 lkarashi 2-no-cho, Nishi-ku,
Niigata, 950-2181, Japan

Received 27 September 2021, accepted 19 March 2022, published online 22 September 2022

Abstract

In this paper, we discuss generating theorems of polyhedral quadrangulations of closed
surfaces. We prove that the set of the eight reductional operations {Ry,..., Rg} de-
fined for polyhedral quadrangulations is finitizable for any closed surface F2, that is,
there exist finitely many minimal polyhedral quadrangulations of F'? using such opera-
tions Ry, ..., Ry and Rs. Furthermore, we show that any proper subset of {R1,..., Rg}
is not finitizable for polyhedral quadrangulations of the torus.
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1 Introduction

In this paper, we consider simple connected graphs embedded on closed surfaces. Al-
though we follow the standard graph theory terminology, for some technical terms without
description here, refer to Section 2. Sometimes, such an embedded graph is expected to
be a “good” one, that is, every facial walk is a cycle, and any two of them are disjoint,
intersect in one vertex, or intersect in one edge. It is known that a graph G embedded on
the sphere satisfies the above good conditions if and only if G is 3-connected. However,
if G is embedded on a non-spherical closed surface, then G is required to be polyhedral,
i.e., 3-connected and 3-representative; note that 3-connected graphs on the sphere are also
polyhedral.

For example, a simple graph G cellularly embedded on a closed surface F? each of
whose face is bounded by a cycle of length 3 is polyhedral if G is not a 3-cycle on the
sphere. Such a graph triangulating a closed surface F? is known as a triangulation of
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F2. On the other hand, following the convention in topological graph theory, a 4-cycle
embedded on the sphere is regarded as a quadrangulation, which is a graph cellularly
embedded on a closed surface F? so that each face is bounded by a cycle of length 4. In
this paper, our main subject is the set of polyhedral quadrangulations of closed surfaces.

In topological graph theory, we sometimes discuss generating theorems of graphs em-
bedded on closed surfaces (i.e., constructing all graphs in a certain class C from Cy C C
by a repeated applications of certain expanding operations only through C). This notion is
equivalent to that every graph in C can be reduced to one in Cy by a repeated applications of
the reductional operations (or reductions, simply), which are inverses of the above expand-
ing operations; we denote the set of such reductions by X here. In a generating theorem
of graphs, | X| and |Cy| are expected to be small. In particular, X is called finitizable for C
if |Co| is finite. If X’ is not finitizable for any proper subset X’ C X, then the finitizable
set X is minimal. For example, if C is the set of simple triangulations of the sphere, then
X = {contraction} is finitizable and Cy = {tetrahedron}. (See [19]. A contraction of e in
a triangulation G is to remove e, identify the two ends of e and replace two pairs of multiple
edges by two single edges respectively.) In fact, it was proved in [2, 3, 7, 16] that for every
closed surface 2, {contraction} is finitizable for the set of simple triangulations of F2.
Furthermore, see [1, 9, 10, 20, 21] for the complete lists of minimal triangulations on fixed
non-spherical closed surfaces with low genera. Moreover, finitizable sets of reductions for
even triangulations, i.e., triangulations such that each vertex has even degree, are discussed
in literatures; e.g., see [0, 18].

As mentioned above, in this paper, we focus on quadrangulations of closed surfaces.
Figure 1 shows the eight reductions, denoted by R1, ..., R; and Rg simply for our pur-
pose, defined for quadrangulations of closed surfaces. In fact, Ry, Ro and R3 are typical
ones which were first given by Batagelj [4] (see e.g., [23] for the formal definition); es-
pecially, R; and Rq are called a face-contraction and a 4-cycle removal, respectively, in
the literature. Further, the fourth reduction R4 was defined and discussed in [22]; which is
called a cube-contraction in the paper. The other four reductions will be defined in the next
section.

Let C be a set of quadrangulations of a closed surface F'? with some certain conditions,
andlet G € C. Forasubset X C {Ry,..., Rg}, G is X-irreducible if we cannot apply any
reduction in X without violating the condition of C; i.e., the resulting graph is no longer in
C. In particular, an { R, }-irreducible quadrangulation in the set of simple quadrangulations
of a closed surface 2 is known as just a irreducible quadrangulation of F2. In [16],
it was proved that for any closed surface F'? there exist only finitely many irreducible
quadrangulations of F2, that is, {Ry} is finitizable for the set of simple quadrangulations
of every closed surface. Actually, the complete lists of irreducible quadrangulations of the
sphere, the projective plane, the torus and the Klein bottle were obtained in [4, 5, 14, 17]
and [13], respectively; for example, a 4-cycle is the unique irreducible quadrangulation
of the sphere, and the unique quadrangular embeddings of K4 and K3 4 are irreducible
quadrangulations of the projective plane. (Note that a restricted R; was used in [5].)

The situation for 3-connected (and simple) quadrangulations of closed surfaces is a
little bit complicated in comparison with the above case of irreducible quadrangulations.
Throughout the researches in [4, 5, 12, 15], it had been proved that for any closed surface
F?, {R1, Ra, R3} is finitizable for 3-connected quadrangulations of F2: note that the min-
imal one on the sphere is the cube, and for any non-spherical closed surface F'2, the set of
the minimal graphs coincides with the set of irreducible quadrangulations of 2. Further-
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Figure 1: Reductional operations for quadrangulations.

more, it was shown that { Ry, Ro, R3} is minimal for those graphs on the sphere and the
projective plane while it is not minimal on the other closed surfaces; in fact, R3 is unneces-
sary and hence { R, R2} is minimal and finitizable for those closed surfaces. Moreover, it
was proved in [22] that { Ry, R3, R4} is minimal and finitizable for 3-connected quadran-
gulations of the sphere and the projective plane, and { Ry, R4} is minimal and finitizable
for those graphs on the other closed surfaces.

As mentioned above, in this paper, we deal with polyhedral quadrangulations of closed
surfaces. Recently in [23], the generating theorem for such polyhedral quadrangulations
of the projective plane was discussed using three reductions R;, Ry and R3, and they ob-
tained 26 families of { Ry, Ra, R3 }-irreducible quadrangulations of the projective plane.
However, such families contains infinite series of graphs; i.e., unfortunately, { Ry, R2, R3}
is not finitizable for those graphs. The following is our main result in the paper:

Theorem 1.1. For every closed surface F2, {Ry, ..., Rg} is finitizable for polyhedral
quadrangulations of F2.

Since every reduction in the above theorem preserves bipartiteness of quadrangulations
and each of R5 and R; requires an essential cycle of length 3, we obtain the following
corollary.

Corollary 1.2. For every closed surface F?, {R1, Ry, R3, Ry, Re, Rg} is finitizable for
bipartite polyhedral quadrangulations of F?.

One might think that the eight reductions in Theorem 1.1 are a little bit too many.
However, at least those on the torus, we can show the necessity of such eight reductions as
follows.

Theorem 1.3. For polyhedral quadrangulations of the torus, {Ry, ..., Rs} is minimal
finitizable.
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Furthermore, R7 (resp., Rg) requires an annular region on the closed surface which is
bounded by two 2-sided 3-cycles (resp., 4-cycles). Therefore, in particular on the projective
plane, {Ry,..., Rg} is finitizable by Theorem 1.1. As well as the previous case on the
torus, we can show the following.

Theorem 1.4. For polyhedral quadrangulations of the projective plane, {R1, ..., Rg} is
minimal finitizable.

This paper is organized as follows. In the next section, we define terminology and
the remaining four new reductions for our argument in the paper. Next, we show some
propositions and lemmas holding for polyhedral quadrangulations for our purpose, some
of which are quoted from [23]. Section 4 is devoted to prove our main result in the paper.
In Section 5, we discuss the minimality of the set of eight reductions by showing some
infinite series of polyhedral quadrangulations.

2 Basic definitions

We denote the vertex set and the edge set of a graph G embedded on a closed surface F2
by V(G) and E(G), respectively. A k-path (resp., k-cycle) in a graph G is a path (resp.,
cycle) of length k. (The length of a path (or cycle) is the number of its edges in this paper.)
We denote the set of vertices of degree 3 by V3 in our argument, and (V3) ¢ represents the
subgraph induced by V3 in G.

Let G be a graph embedded on a closed surface F2. Then, a connected component
of F?2 — G is a face of G, and we denote the face set of G by F(G). If every face of
G is homeomorphic to an open 2-cell (or an open disc), then, G is a 2-cell embedding or
2-cell embedded graph on F2. Clearly, every quadrangulation (or triangulation) of a closed
surface is a 2-cell embedded graph. A facial cycle C of aface f is a cycle bounding f in G;
i.e., C = Of. Then, f denotes a closure of f,i.e., f = f U df. For brevity, we sometimes
denote like f = wov1v2vs Where vouivavs is a facial cycle of f € F(G). Furthermore
in our argument, we often discuss the interior of a 2-cell region D bounded by a closed
walk W of G, i.e., W = 0D, which contains some vertices and edges. (Note that a 2-cell
region implies an “open” 2-cell region in this paper.) Similarly, D denotes a closure of D,
ie, D = DUOJD. Let fi,..., fr denote the faces of G incident to v € V(G) where
deg(v) = k. Then, the boundary walk of f; U - - - U f} is the link walk of v and denoted by
lw(v). Clearly, lw(v) bounds a 2-cell region containing a unique vertex v.

A simple closed curve vy on a closed surface F? is trivial if -y bounds a 2-cell region on
F2, and essential otherwise. Among essential simple closed curves, one with an annular
neighborhood is called 2-sided while one whose tubular neighborhood forms a Mobius
band is called 1-sided. Since cycles in graphs embedded on surfaces can be regarded as
simple closed curves, we use the above terminology for them; e.g., we say that a cycle is
essential and 2-sided.

The representativity of G, denoted by 7(G), is the minimum number of intersecting
points of G and ~y, where  ranges over all essential simple closed curves on the surface. A
graph G embedded on F? is r-representative if (G) > r. Note that the “representativity”
is also called the “face-width” in the literature; see e.g., [11] for the details. A graph G
embedded on a non-spherical closed surface F? is polyhedral if G is 3-connected and 3-
representative. Observe that for every vertex v of a polyhedral graph, the link walk of v
forms a cycle.
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Let G be a quadrangulation of a closed surface F2 and let f = wyvivov3 be a face
of G. Then a pair {v;, v;12} is called a diagonal pair of f in G for each i € {0,1}.
A closed curve v on F? is a diagonal k-curve for G if - passes only through distinct k&
faces fo,..., fr—1 and distinct k vertices xg, ..., xx—1 of G such that for each 4, f; and
fi+1 share x;, and that for each 4, {x;_1,x;} forms a diagonal pair of f; of G, where the
subscripts are taken modulo k. Furthermore, we call a simple closed curve y on F'? a semi-
diagonal k-curve if in the above definition {x;_1, z; } is not a diagonal pair for exactly one
1; note that x;_qx; is an edge of Jf; in this case. Each simple curve f3; along -y joining
z;_1 and x; in f; is called a y-segment; where Ui:ol = .

For a simple closed curve £ on F'2, when / intersects with G at only vertices of G, that
is, GN {isasubset S C V(G), then we say that ¢ passes S; observe that ¢ does not pass
through any vertex in V(G) \ S in this case. For example, in the above definition of a
diagonal (or semi-diagonal) k-curve, we say that  passes {zg,...,Zx—1}. On the other
hand, when we say that ¢ passes through a vertex v (or some vertices) of G, then £ probably
passes through other vertices of G.

Let G be a simple quadrangulation of a non-spherical closed surface F'2. Assume that G
has a hexagonal 2-cell region D bounded by a closed walk 0D = wvgv;v2v9v3v4 containing
exactly two vertices w1 and us such that voviuq vy, V1V2U2U1, V3V4U1 U2 and VoVV3 Uy are
faces of GG in D, and that vyvyvs is an essential cycle of length 3. Furthermore, we assume
that vg, v1, v2, v3 and vy are different vertices, and that each of v, v2, v3 and v4 has degree
at least 4 ; otherwise, G would not be polyhedral under the condition. A reduction Rj
of D is to eliminate u; and us, and identify vy (resp., vo) and vy (resp., vs), and replace
three pairs of multiple edges by three single edges, respectively, as shown in Figure 1.
Throughout the paper, the vertex obtained by the identification of two vertices a and b is
denoted by [ab]. That is, vo[v1v4][v2v3] is an essential 3-cycle in the resulting graph.

Secondly, assume that G has an octagonal 2-cell region D bounded by a closed walk
W = wgv1v9v3v9v4V5V6 containing exactly one vertex w such that vyv;uvg, v1vov4u,
vausveu and vovzvguy are faces of G in D, and that vyvyvovs is an essential cycle of
length 4. Furthermore, we assume that vy, v1, v2, V3, V4, vs and vg are different vertices.
Note that v; and v, has degree at least 4 under the condition. (If deg(v;) = 3, then G is
representativity at most 2. On the other hand, deg(v4) = 3 implies that vy = v5, a contra-
diction.) A reduction Rg of D is to eliminate u and an edge vovy, and identify vy (resp.,
v9, v3) and vg (resp., vs, v4), and replace four pairs of multiple edges by four single edges,
respectively, as shown in Figure 1. Then, vg[v1vg][v2vs][vsva4] is an essential 4-cycle in the
resulting graph.

Thirdly, assume that G has an annular region A bounded by two essential cycles C' =
Vo1V and C' = v3v4U5 such that f1 = VU143, fg = VU5V and f3 = V2UgV3Vs5 are
faces of G in A. (Sometimes, f1 f2f5(= W) is called a face walk of length 3 in G, which
corresponds to a 3-cycle in the dual of G.) Here, note that C'; and C'; are essential 2-sided
cycles of G on F' 2: if Cy is trivial, then it contradicts Proposition 3.2 in the next section.
The seventh reduction R7; of A (or the above face walk W) is to contract edges vgvs, v1v4
and vovs simultaneously, and replace three pairs of multiple edges by three single edges,
respectively, as shown in Figure 1. Note that C' = [vgus][v1v4][v2vs5] is also an essential
2-sided 3-cycle in the resulting graph.

Fourthly, assume that G has an annular region A bounded by two essential cycles
C1 = vovivevs and Cy = wv4usvgv7 such that fi = wvouivgvs, fo = vivavrvg, f3 =
vou3vovr and fy = vgusvavy are faces of G in A. (As well as the previous reduction,
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f1fafsfa(= Wp) is a face walk of length 4.) Furthermore, we assume that C; and Cy
are essential cycles of G on F'?; observe that they are 2-sided. The eighth reduction Rg of
A (or the face walk W) is to eliminate edges vovs, v1vg, v2v7 and vgvy, and identify v;
and v; 14 for each i € {0, 1,2, 3}, and replace four pairs of multiple edges by four single
edges, respectively, as shown in Figure 1. Note that C' = [vgv4][vivs][v2vs][vzvr] s also
an essential 2-sided 4-cycle in the resulting graph.

As mentioned in the introduction, for Ry, Ro, R3 and Ry, see e.g., [22, 23] for formal
definitions. Note that the boundary of the hexagon of the graph in R3 in the figure is a cycle.
Furthermore, every quadrangulation of a closed surface is locally bipartite, and hence we
color vertices of graphs in R, Ro, R3, R4, g and Rg by black and white; however, graphs
in the reductions R5 and R contain short odd cycles, and hence we cannot do so.

3 Lemmas

First of all, we introduce the following two propositions for quadrangulations of closed
surfaces; these are well-known in topological graph theory, and hence we omit the proofs.

Proposition 3.1. The length of two essential cycles in a quadrangulation of a closed sur-
face have the same parity if they are homotopic to each other on F2.

Proposition 3.2. A quadrangulation of a closed surface has no separating odd cycle.

It was shown in [23] that many facts hold for {R;, Ry, R3}-irreducible polyhedral
quadrangulations of non-spherical closed surfaces. First, we show some of them, which
will be used in our later argument in the paper. In the following lemmas, G represents
a {R1, Ry, R3}-irreducible polyhedral quadrangulations of a non-spherical closed surface
F? otherwise specified. (The assertions are a little bit changed so as to suit for this paper.)

Lemma 3.3 (Lemmas 3.5, 3.13 and 3.15 in [23]). Every connected component of (V)¢ is
a 4-cycle bounding a face of G or a path of length at most 2.

Lemma 3.4 (Lemmas 3.8, 3.10 and 3.12 in [23]). Let f = vgvivovs be a face of G with
deg(vg), deg(ve) > 4. Then, there exists

(i) an essential 4-cycle vovizvs for © ¢ {vg,v1,v2,v3},
(ii) an essential diagonal 3-curve passing through v1 and vs, or
(iii) an essential semi-diagonal 3-curve passing through v, and vs.

Lemma 3.5. Let f = vouivavs be a face of G with deg(vg),deg(vy) > 4. Then, there
exists an essential cycle passing through vy, vy and vs with length 4,5 or 6.

Proof. 1t is clear by Lemma 3.4. (For example, if (ii) in the previous lemma holds, then
there exists an essential cycle of length 6 along the essential diagonal 3-curve.) O

Lemma 3.6 (Lemma 3.14 in [23]). Let P = ugujus be a 2-path in (V3)¢ as shown in the
left-hand side of Rs in Figure | where deg(vy) > 4. Then, there is an essential diagonal
3-curve or an essential semi-diagonal 3-curve passing {v1,u1, vs }.
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Assume that G has a 4-cycle C' = upujugus in (V3) bounding a face of G such that
u; is adjacent to a third vertex v; & {ug, u1,us,us} for each ¢ € {0,1,2,3}. Under the
situation, a 4-cycle vov1vv3 bounds a 2-cell region which contains exactly four vertices
ug, 1, w2 and us. We call the subgraph H isomorphic to a cube with eight vertices u;, v;
for ¢ € {0,1,2,3} an attached cube. We denote O(H) = wvov1v2v3, and we call C an
attached 4-cycle of H.

Lemma 3.7 (Lemma 3.16 in [23]). Assume that G has an attached cube H with O(H) =
VoV1V2v3, an attached 4-cycle C = ugujugug and u;v; € E(G) for each i € {0,1,2,3}.
Then there is an essential diagonal (or semi-diagonal) 3-curve v passing {vo,u1,v2} or
{Ul, Uug, Ug}.

Next, we show three lemmas holding for { Ry, Ro, R3, R4 }-irreducible polyhedral quad-
rangulations of non-spherical closed surfaces.

Lemma 3.8. Let G be an {R1, Ry, R3, Ry}-irreducible polyhedral quadrangulation of
a non-spherical closed surface F? having an attached cube H with O(H) = vovivav3,
an attached 4-cycle C = ugujiugug and wv; € E(Q) for each i € {0,1,2,3}. By
Lemma 3.7, we may assume that there exists an essential simple closed curve vy, pass-
ing {vo,u1,vo}. Then, there exists an essential simple closed curve o passing either
{v1, ug,v3} or {v1, us, vs, x} where x ¢ V(H). In particular, if v, is 2-sided, then vz is
not homotopic to 7.

Proof. Let G’ denote the quadrangulation obtained from G by applying an R4 of H so as
to identify v; and vs. We denote the 2-path vg[vivs]vg in G’ by P. By our assumption, G’
is not polyhedral. If G’ has a loop e, then e is incident to [v;v3] such that e and P cross
transversally at [v;vs]; otherwise, G would have a loop, a contradiction. Further, this e is
essential by Proposition 3.2. Thus in this case, we find an essential semi-diagonal 3-curve
2 passing {v1, us,v3} in G, half of which is along e.

Secondly, we suppose that G’ has a pair of multiple edges. Similar to the previous
case, we may assume that such multiple edges join [v1v3] and another vertex = ¢ {vg, va};
otherwise, G would have multiple edges. Then, the 2-cycle C' = [v1v3)z formed by the
above multiple edges crosses P transversally, similar to the previous case. Thus, C' cannot
be trivial by the above observation and the existence of y;, and hence we have our desired
simple closed curve v passing {v1, us,vs,z} in G; note that if viavs forms a corner
of a face of G, then we can take an essential diagonal 3-curve passing {v1, us,v3}. In
the following argument, we assume that G’ is simple and hence G’ is 2-connected and
2-representative.

By the above argument, we may assume that G’ has a diagonal (or semi-diagonal)
2-curve ~' passing {[vivs], x} such that 4 and P cross at [vjv3] transversally; note that
if G’ has a 2-cut, then G also has a surface separating diagonal 2-curve by Lemma 3.6
in [23]. Observe that at least one of two +'-segments Sy and 31, say Sy without loss of
generality, joins the diagonal pair of fy = [vivs]szt for s,t € V(G”). Here, suppose that
x is either vy or vs, say vg. Then, let By denote a simple closed curve obtained from [
by joining [v1vs] and vy by a simple curve along the edge [v1v3]vg. In this case, 5, must
be essential by Proposition 3.2. Under the situation, we can take an essential simple closed
curve intersecting with G at exactly two vertices vg and either vy or vs, which corresponds
to BO, a contradiction. Thus, we conclude that x is neither vg nor vs.
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Observe that even when ~; is an essential diagonal 3-curve passing through a face
f = vopvaq for p,q € V(G), we have {vg,v2} N {p,q} = 0 since G is simple. This
implies that the v, -segment in f and 7’ cannot cross transversally, and hence we conclude
that 4/ is essential. Therefore, we have an essential diagonal (or semi-diagonal) 4-curve
o passing {v1, ug, v3,x} in the statement, half of which is along +/, and the other half is
inside the quadrangular region bounded by 0(H).

Finally, assume that ~y; is 2-sided. Suppose, for a contradiction, that 5 is homotopic to
~1. Under the condition, o must cross ~y; even times, i.e., twice here. However, this is not
the case by the above argument. O

Lemma 3.9. Let G be an {R1, Ro, Rs, Ry }-irreducible polyhedral quadrangulation of
non-spherical closed surface. Then any 2-cell region bounded by a 4-cycle is either a face
of G or contains exactly four vertices which is of an attached cube.

Proof. Using the above Lemma 3.8 and Lemma 4.3 in [23], we immediately have the
conclusion of the lemma. O

Furthermore in [23], Suzuki determined configurations in a 2-cell region bounded by a
6-cycle in { Ry, Ra, R3}-irreducible polyhedral quadrangulations of non-spherical closed
surfaces. By combining the results of Lemmas 3.7, 3.8 and 3.9, we can easily obtain the
following lemma; so, we omit the proof.

Lemma 3.10. Let G be an { Ry, Ra, R3, Ry }-irreducible polyhedral quadrangulation of
a non-spherical closed surface F2. Then the number of vertices inside a 2-cell region
bounded by a 6-cycle (resp., 4-cycle) is at most 16 (resp., 4).

In the latter half of the section, we discuss reductions Rs5, Rg, R7 and Rg applied to
polyhedral quadrangulations in turn.

Lemma 3.11. Let G be a polyhedral quadrangulation of a closed surface F? having a
2-cell region D with 0D = vgv1v2v9u3vy containing two vertices uy and us as shown in
the left-hand side of Rs in Figure 1, and let G’ denote a quadrangulation obtained from G
by an Ry of D. If G’ is not polyhedral, then there exists an essential simple closed curve
~' such that

(i) v intersects exactly two vertices of G,
(if) ' passes through at least one vertex of [v1v4] and [vovs), and
(iii) +' does not pass through v.
In particular, if C = vg[v1v4][vavs] is 2-sided, then ' is not homotopic to C.

Proof. Some similar arguments as in Lemma 3.8 will appear, and we omit the long ex-
planation at that time for brevity. If G’ has a loop e with a vertex u, then v must be one
of [v1v4] and [vovs], say [v1v4] up to symmetry, such that e and C' = vg[viv4]vavs cross
transversally at [v1v4]. Clearly e is essential, and we can take an essential simple closed
curve intersecting G at only v; and vy, a contradiction.

Next, assume that G’ has a pair of multiple edges, which joins [v3v4] and another vertex
x # vg. If the 2-cycle C’ = [vjv4]a formed by the multiple edges is essential, then we can
take our desired simple closed curve along C’. Thus, we suppose that C” is trivial below.
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If ¢ V(C), then G would have multiple edges joining z and either v; or vy; observe that
C and C’ do not cross transversally, otherwise z € V(C) since C’ is trivial. If z € V(C'),
then 2 must be [vav3]. Also in this case, G would have multiple edges joining either vy
and vy or vs and vy, a contradiction. Therefore, we assume that G’ is 2-connected and
2-representative below.

Now, G’ has a diagonal (or semi-diagonal) 2-curve v’ passing {[viv4], 2} such that v/
and C cross at [v1v,] transversally. We consider the 4/-segment 5y and By which play the
same role as in the argument in Lemma 3.8. If x = vy, then Sy is essential by Propo-
sition 3.2, and hence G is not polyhedral as well, a contradiction. If 4/ is trivial, then x
must be [vovs] since x # vg. However, this contradicts Proposition 3.2 for Bo. Therefore,
~' is essential and satisfying the conditions in the statement. Similar to the argument in
Lemma 3.8, if C is 2-sided, then C and ~' are not homotopic. O

Lemma 3.12. Let G be a polyhedral quadrangulation of a closed surface F? having a
2-cell region D with 0D = vgu1v20300V4V5V6 containing a unique vertex u as shown in
the left-hand side of Rg in Figure 1, and let G’ denote a quadrangulation obtained from G
by an Rg of D. If G’ is not polyhedral, then there exists an essential simple closed curve
~' such that

(i) 7/ intersects at most two vertices of G/,
(i) ' passes through at least one vertex of [v1vg), [vavs] and [vsvs), and
(iii) ' does not pass through vy.
In particular, if C = vg[v1ve][vavs][vsva] is 2-sided, then ' is not homotopic to C.

Proof. The most part is same as the argument in Lemma 3.11, and hence we implicitly omit
the argument which had already done before. First, observe that there does not exist a face
f ¢ D such that vy, vy € Of; otherwise, we can find a simple closed curve intersecting
with G at exactly two vertices, which passes through the face vovsvgvs and f. Similarly,
there is no face f ¢ D of G such that vy, vg € Of. Further, in the case when G’ is not
simple, a loop of a vertex [vov5] might exist, unlike the argument in Lemma 3.11, and then,
it is essential by Proposition 3.2.

Thus, we assume that G’ has a diagonal (or semi-diagonal) 2-curve ' passing {x,y},
and we may assume that y is one of [v1vg], [u2vs] and [vsvy] such that 7/ and C' =
vo[v1v6][Uavs][vgvs] cross at y transversally. If @ = wvg, then y must be [vgus] by the
same argument as in the previous lemma; recall the argument of Bo. However, under the
condition, G would have a face f ¢ D such that vy, vo € 9f, which is passed by a +'-
segment, a contradiction. Thus, 7" does not pass through v in the following argument. If
' is trivial, then {x,y} = {[vive], [vsv4]}, and ' crosses C exactly twice by the former
argument. Similarly, there exists a face f ¢ D such that vy, vg € Of and f is passed by a
~'-segment, a contradiction. Therefore, 7/ is essential. Further, it is not difficult to see that
~" is not homotopic to C' when C' is 2-sided. O

Lemma 3.13. Let G be a polyhedral quadrangulation of a closed surface F? having an
annular region A formed by three faces vyv1v4v3, V1020504 and vovgv3Us as shown in the
left-hand side of Ry in Figure 1, and let G' be a quadrangulation obtained from G by an
Ry of A. If G' is not polyhedral, then there exists an essential simple closed curve v’ such
that
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(i) + intersects exactly two vertices of G,
(i) ' passes through exactly one vertex of [vovs], [v1v4] and [vavs], and
(i) C = [vgus][viva][vavs] and ~" are not homotopic.

Proof. Almost the same argument as in the proofs of Lemmas 3.11 and 3.12 holds, and
hence we omit the proof. (This is easier than those proofs.) Since any two homotopic
2-sided simple closed curves on a closed surface cross even times, (iii) immediately holds
from (ii). O

Lemma 3.14. Let G be a polyhedral quadrangulation of a closed surface F? having an
annular region A formed by four faces vov1vgVs, V1020706, V2UsVoU7 and vVgUsV4V7 aS
shown in the left-hand side of Rg in Figure 1, and let G’ be a quadrangulation obtained
from G by an Rg of A. If G’ is not polyhedral, then there exists an essential simple closed
curve ' such that

(1) + intersects exactly two vertices of G',
(ii) +' passes through at least one vertex of [vov4), [V1Vs], [Uavg] and [v3v7], and
(iii) C = [vgvyg][vivs][vave][v3vy] and 4" are not homotopic.

Proof. Note that there does not exist a face f ¢ A (resp., f ¢ A) such that vy, vy € Of
(resp., vs,v7 € f’), similar to the argument in the proof of Lemma 3.12. Furthermore, for
example, there might be an edge vv5 in G such that 2-cycle C' = [vyv5][vavg] formed by
a pair of multiple edges is essential in G’; this is different from the previous lemma. The
argument is almost same, and hence we omit it as well. O

4 Main result

First, we refer to the following lemma, which plays an important role in the proof of our
main result.

Lemma 4.1 (Juvan, Malni¢ and Mohar [8]). For any closed surface F? and any non-
negative integer k, there exists a constant f(k, F?) such that if L is a set of pairwise
non-homotopic simple closed curves on F? such that any two elements of L cross at most
k times, then |L| < f(k, F?).

In the next lemmas, we show that there is an upper bound of the maximum degree
(resp., the diameter) of {Ry, ..., Rg}-irreducible (resp., { Ry, ..., Rg}-irreducible) poly-
hedral quadrangulations of a non-spherical closed surface F2.

Lemma 4.2. Let G be an { Ry, ..., Rg}-irreducible polyhedral quadrangulation of a non-
spherical closed surface F?. Then the maximum degree of G is bounded by a constant
depending only on F?.

Proof. We prove that A(G) < 640f(5, F?) + 79, where f(-, F'?) is the function in
Lemma 4.1. Suppose, for a contradiction, that G has a vertex v with deg(v) >
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6401 (5, F%) + 80. Let Lgbe the link walk of v in G. Give a direction to L, and de-
note the directed cycle by L. Let

1 171 11 12 2 72 2 2 2
ays.--,016,075. .., b7,¢1,. . Cc17,a7, ..., 016,07, .., b7, ¢T, .., ¢, ot

l gl 1l !
ai,...,016,07,...,b7,¢1, ..., cir

be 40! consecutive vertices of L, taken along fv, wherel > 16 (5, F 2)+2. Then, we may
assume that vb}b}b3 is a face of G; note that vbi bi by is also a face for each i € {2,...,1}
under the assumption. Let P(a, b) denote the path in L, starting at @ € V (L, ) and ending
atb € V(L,) along fv.

In the former half of the proof, we show the following fact: For each i € {1,...,l},
there exists either (A) a cycle of length at most 6 containing a path bvb: (1 < s < t < 6),
or (B) a cycle of length at most 4 containing a path bivu (1 < s < 6) where u € V(L,).
We call the cycle having the above property (A) (resp., (B)) a type-A cycle (resp., type-B
cycle). Note that there might be a cycle having both properties (A) and (B); in that case,
we can classify it into either.

In the following argument, we discuss several cases around vertices b, . .., b} and b%.
To simplify notation, we put b; = b, for each j € {1,...,7} by omitting the upper sub-
script “”. First of all, assume that deg(bs) > 4. In this case, we apply an Ry of vbybobs
at {by, b3}, i.e., identifying b; and b3. By Lemma 3.4, we can easily find our desired cy-
cle containing a path b;vbs; take such a path using edges of faces passed by the diagonal
3-curve or the semi-diagonal 3-curve. The same fact holds for b4 and bg, and hence we
assume that deg(by,) = 3 for each h € {2,4, 6} below.

Next, assume deg(bs) = 3. Then, there exist faces byboxy, babsbyx and bybszax for
x,y,2z € V(Q). If deg(z) > 4, then we can find our desired cycle containing a path by vbs
by Lemma 3.6 as a type-A cycle. On the other hand, if deg(x) = 3, i.e., y = z in this case,
then bybsbyx is an attached 4-cycle. In this case, there exists either a type-A cycle or a type
B cycle, both of which contain vb;, by Lemma 3.7. Thus, we assume that deg(bs) > 4 and
deg(bs) > 4 in the following argument.

For the face vb3bsbs, there is

(i) an essential 4-cycle vbzbyax for x ¢ {v, b3, by, b5},
(i1) an essential diagonal 3-curve ~y passing through v and by, or
(iii) an essential semi-diagonal 3-curve -y passing through v and b4, by Lemma 3.4.

First, we discuss (i). In this case, x is a vetex of L, such that zv € F(G), and hence there
exists our desired type-B cycle. Secondly, assume (ii), and let f; = vbsbybs, fo = bypgr
and f3 = wvsqt be faces passed by v where ¢,s,t € V(L,) (see the left-hand side of
Figure 2). Since deg(vy4) = 3, we have |{b3, b5} N {p,r}| = 1. Without loss of generality,
we may assume that p = b3, and we find our desired type-B 4-cycle vbsgs.

Thirdly, we discuss (iii). We further divide this case into the following two subcases:

(1) ~ passes through f1 = vb3bybs, fo = bypqr and f3 = vgst where ¢, s,t € V(L,),
and

(2) ~ passes through f; = vbsbsbs, fo = bapgr and f3 = vsrt where s,r,t € V(L,).
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Figure 2: Configurations around L,,.

First, assume the former case (iii)(1). Similar to the above argument, we have |{bs, b5} N
{p,r}| = 1 since deg(v4) = 3, and we may assume that p = b3 here. In this case, we find
a type-B cycle vbsq of length 3.

Next, suppose the latter case (iii)(2). Similarly, we have deg(v4) = 3, and hence we
may assume that p = bs (see the center of Figure 2). Furthermore, if deg(r) = 3, then ¢
must be either s or ¢, and hence we find our desired type-B cycle vbsq of length 3. Thus,
we assume deg(r) > 4 in the following argument. By applying Lemma 3.4 to fo = bsbsrq
since deg(b3) > 4 and deg(r) > 4, we find either a 2-path P joining ¢ and b4 such that
the cycle byb3gP is essential, or an essential simple closed curve 4 passing {gq, by, } for
x € V(G). If the former holds, then P = ¢bsb, since deg(bs) = 3. In this case, there
exists our desired type-A cycle vb3gbs of length 4. Next, we assume the latter, and suppose
that 4’ is an essential diagonal 3-curve. If 4/ passes through rbsbsy for y € V(G), then
there exists a 2-path P’ joining y and ¢ along «’ (see the right-hand side of Figure 2).
That is, there exists a type-A cycle vb3q P ybs of length 6. If 7/ passes through b3bsbsv,
then ¢ € V(L,) and ' passes {v, by, q}. In this case, there exists a type-B cycle vbsqq’
of length 4 where q¢' € E(L,). When ~/ is an essential semi-diagonal 3-curve, similar
argument holds, and we have either a type-A cycle of length 5 or a type-B cycle of length
3.

In the latter half of the proof, we lead to a contradiction. For our purpose, let C} denote
a type-A cycle containing b,vb} where 1 < s < t < 6, and let Cjy”’ denote a type-B cy-

cle containing a 2-path bivu where 1 < s < 6 such that u € {al,...,als,b),... 00,
ch, . 017} ie., C’B’] was obtained by the argument above when dlscussmg vertices
bt,...,bt. (Note that C’ might exist for some ¢.) Then, any two type-A cycles cross

at most 5 times, since they cannot cross at a vertex v. Clearly, the number of crossing
points of a type-B cycle and another type-A or type-B cycle is at most 4.

First, assume that there exist at least 2f(5, F'?) + 1 type-A cycles. By the definition
of the function, F'2 admits at most f(5, F'?) simple closed curves which are pairwise non-
homotopic and cross at most 5 times, and hence there exist three such homotopic cycles
Cy,Cy and GyF (i < j < k) by the Pigeonhole Principle. Let D denote the configuration
which is the union of the closed disk D bounded by L, and the three cycles Cy/, C;{ and
CF. First, suppose that D is an embedding on F2 such that Gy, C; and C,* are 2-sided.
Moreover, assume that C,’ (resp., CX ) contains bvbt with 1 < s < t < 6 (resp., bg,vb{,
withl < s’ < t' <6).
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Figure 3: Type-A cycles around v.

Observe that in D, Gy and G bound a pinched annulus A (i.e., an annulus where the
two boundary components might touch several times) having a pinched point v (see the
left-hand side of Figure 3). If CX and CAJ have a common vertex other than v, then there
exists a 2-cell region I in A bounded by a cycle of length either 4 or 6 such that R contains
P(bi,b’,) or P(b],,b’). However, this contradicts Lemma 3.10 since P(bi,b’,) (resp.,
P(b{,,bi))_contains vertices ¢4, ...,cio,al, ... als, and alg (resp., ¢l,..., o al,. ..,
ais, and ajs). In the following argument, we call a region like the above R a dense quad-
rangle or a dense hexagon, which contains at least 5 or 17 inner vertices, respectively. Thus,
we conclude that CX and CX have the unique common vertex v. However, under the situa-
tion, the third type-A cycle C;* must cross transversally either C, or Q’qj (see the center of
Figure 3), contradicting the same argument as above. In the case when each of Cy/, Q4j and
C,F is 1-sided, any two of them must cross, and hence there exists a dense quadrangle or a
dense hexagon, as well as the previous case (see the right-hand side of Figure 3). N

Next, we discuss type-B cycles. Under our definition, for some ¢ # j, Cg” and C3J"
might exist; as an extreme example, CBi’j might coincide with CBj T S0, i.e., there exist
C’Eﬁ’j and C;', then we choose one from them. By the above argument, we may assume
that there exist at most 2f (5, F'2) type-A cycles. That is, there exist at least 7f(5, F2) + 1,
which is the half of 14f(5, F' 2) + 2, distinct type-B cycles around v, such that the set of
those cycles contains no pair of two cycles C” and C* for 1 <i < j <.

Similar to the argument for type-A cycles, there exist eight such homotopic cycles
simply denoted by I'1,I's,...,I's having a common vertex v such that they are placed on
F? as shown in the left-hand side of Figure 4. Note that the lengths of those cycles are
same, which is either 3 or 4, by Proposition 3.1. Furthermore, note that if I'; and I'; ;1 have
a common vertex other than v for some ¢ € {1,...,7}, then we can easily find a dense
quadrangle or a dense hexagon, contradicting Lemma 3.10; only I'; and I's might have a
common vertex other than v. Therefore, I'; UT';; ; bounds an octagonal (resp., a hexagonal)
2-cell region for each i € {1,...,7}if |T';| = 4 (resp., if [T;| = 3).

Let D; ; denote an octagonal (or a hexagonal) region bounded by I'; UT'; for 1 <14 <
j < 8. By Euler’s formula, I'y 5 contains a vertex u of degree 3; e.g., see Lemma 4.1 in
[23]. By Lemma 3.3, u belongs to a connected component of (V3) which is

(i) a4-cycle,
(i) a 2-path,
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Figure 4: Type-B cycles around v.

(ii1) a K or
(iv) an isolated vertex.

First, we assume that |T';| = 4, and discuss the above four cases in order.

Case (i): In this case, an attached cube H with 9(H) = wvovjvovs containing w as an
vertex of the attached 4-cycle is in D3’6. (Observe that faces incident to w are in Dy 5, and
the other two faces in the 2-cell region bounded by J(H) are at least in D3 .) Then, by
Lemma 3.7 and the existence of I'; and I'7, one of vg, vy, ve and vs, say vy without loss
of generality, must be v; we call the above I's and I'; obstructions throughout the proof.
However, Lemma 3.8 requires one more essential simple closed curve which does not pass
through v = vy, a contradiction; by the existence of obstructions again.

Case (ii): We assume that u belongs to a 2-path P = ugu;us and the configuration around
P is given by the left-hand side of R3 in Figure 1. Similarly, the hexagon bounded by
VU1 VU345 1S contained in Dg,g, and hence the obstructions, which are I'; and I'7, play
the same role in this argument. By Lemma 3.6, one of vy and vs, say v; without loss
of generality, must be v (see the right-hand side of Figure 4). Since deg(vs) > 4 and
deg(vs) > 4, there is an essential diagonal 3-curve passing {vy, u2,vo} or {vy, uz, up}
by Lemma 3.4. However, in each case, such three vertices are inner vertices of D 7, a
contradiction.

Case (iii): We assume that ugu; € F(G) is a connected component of (V5) ¢, and there are
four faces vov1u1vg, V1V2u2u; and ugugvsvy and ugvevius contained in Dy . Here, we
locally color vertices in D376 by two colors black and white; we assume that v is colored
by black. Further, we may assume that v{, is colored by black without loss of generality;
note that vy, vo and v3 are white vertices. When considering a face vgvyuqvy, there is an
essential diagonal 3-curve passing either {vg, u1,v2} or {vg, u1,v3} by Lemma 3.4, since
we have deg(v;) > 4 and deg(vy) > 4. By the existence of obstructions, one of v, v2 and
vs must be v under the situation. However, it contradicts the above bipartition.

Case (iv): Assume that u is incident to three faces vgvyuvg, v1v2v4u and uv4v5vg, Which
are in D, 5, and note that deg(v;) > 4 for each i € {1,4,6}. As well as the previous
case, we locally color vertices in D376; assume that v is colored by black. If w is a white
vertex, then it contradicts Lemma 3.4 by the existence of obstructions; note that there
should be a diagonal 3-curve passing three white vertices including w. Therefore, u is a

black vertex below. By Lemma 3.4 again, exactly one of vy, vo and vs, say vg without loss
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Figure 5: Configurations in the 2-cell region bounded by Type-B cycles.

of generality, coincides with v, and there exists a diagonal 3-curve passing through three
faces vov1uvg, v1V2v4u and vavsvgp for v, p € V(G), up to symmetry (see the left-hand
side of Figure 5). If deg(vs) > 4, then Lemma 3.4 works for vav3vgp, and it contradicts the
existence of the obstructions. Thus, we conclude that [{vy, v4} N {vs, p}| = 1, and we may
suppose vq = p since {v1,v4} N{vs,p} # {v1}; otherwise, G would have multiple edges.
Then, G has an octagonal region bounded by vyv1v2v3v9v4V5V6 satisfying the condition of
areduction Rg. However, it contradicts Lemma 3.12 by the existence of the obstructions.

Next, we assume that |T';| = 3. We implicitly omit the same argument as in the case
assuming |T';| = 4. (That is, we give only the different and important points below.)

Case (i): The same argument as in the case of |I';| = 4 works.

Case (ii): We may assume that v; = v, and there is an essential semi-diagonal 3-curve
passing {vy, u2,vo}, {v4,u2,u1} or {vy, us,up} by Lemma 3.4. However, in any case,
such three vertices are inner vertices of Do 7, a contradiction.

Case (iii): In this case, the similar argument (not using the bipartition) leads us to the
conclusion that vy = v{, = v such that the 3-cycle vyv;v2 is homotopic to I';. However, it
contradicts Lemma 3.11 by the existence of the obstructions.

Case (iv): Assume that u is incident to three faces vgvyuvs, uv1v9v3 and uvsv4vs, which
are in Dy 5, and note that deg(v;) > 4 for each i € {1,3,5}. For a face vyvjuvs, there
exists a semi-diagonal 3-curve passing either {vg, u, v3} or {vo,u,v4}, up to symmetry,
by Lemma 3.4. Fist assume the former case. If v = vy, then there is a face f = vspvg
for p,q € V(G) (see the center of Figure 5). For f, Lemma 3.4 works and we conclude a
contradiction by the existence of the obstructions since deg(vs) > 4. On the other hand, if
v = vg, then there is a face vsuvgt for s,¢ € V(G). As well as the previous case, we can
apply Lemma 3.4 for vsvgt since deg(vo) > 4; if {v1,vs} N {s,t} # 0, then G would not
become 3-representative.

Next, we assume the latter case. In this case, v is either vy or vy, say vy, up to sym-
metry. By the assumption, there exists an edge v4vy such that vovsv4 is homotopic to T';.
Furthermore, applying Lemma 3.4 for a face v;vsv3u, there must be a semi-diagonal 3-
curve passing {vg, u, v }; note that vo, u, v4 and v are vertices in D475, i.e., inner vertices
of D3 . That is, we have vavg € E(G) such that vavgv4vs bounds a 2-cell region R inside
Dy 5 (see the right-hand side of Figure 5). By the above argument of (i), we may assume
that Dy 5 does not contain a vertex of degree 3 belonging to an attached 4-cycle, and hence
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R is a face of G by Lemma 3.9. However, vs has degree 3, contrary to u being an isolated
vertex of (V3) . Therefore, we got our desired conclusion. O

Lemma 4.3. Let G be an { Ry, Rz, R3}-irreducible polyhedral quadrangulation of a non-
spherical closed surface F2. For any vertex v € V(GQ), there exists an essential cycle of
length at most 6 either

(i) containing v, or
(ii) containing uw € V(G) such that wv € E(G).

Proof. First, assume that deg(v) = 3, and let ug, u; and us be vertices adjacent to v. If two
of ug, u; and ug, say ug and u; without loss of generality, have degree at least 4, then we
can easily find our desired cycle by Lemma 3.5. Thus, by Lemma 3.3, we may assume that
deg(ug) = deg(u1) = 3 and deg(usz) > 4 below. If v is contained in a 4-cycle of (V3)¢,
then there exists such a cycle by Lemma 3.7. On the other hand, if v is not contained in the
above 4-cycle in (V3) ¢, that is, if a 2-path ugvu, is a connected component of (V3) ¢, then
G also has our desired cycle by Lemma 3.6.

Next, we assume deg(v) > 4, and let ug and u; be vertices adjacent to v such that
ugvu, forms a corner of a face of G. If one of ug and uy, say uy without loss of generality,
has degree 3, then GG has a cycle of length at most 6 passing through u( by the above
argument, and hence it satisfies (ii) of the statement in the lemma. If deg(ug) > 4 and
deg(u1) > 4, then there exists our desired cycle by Lemma 3.5 again. O

Lemma 4.4. Let G be an {Ry,. .., Rg}-irreducible polyhedral quadrangulation of a non-
spherical closed surface F?. Then the diameter of G is bounded by a constant depending
only on F2.

Proof. In this proof, we prove that diam(G) < 50f(0, F?)—1 where diam(G) is a diameter
of G and f(-, F?) is the function in Lemma 4.1. Suppose, for a contradiction, that G' has
two vertices x and y with distance at least 50 f (0, F'2). Let P be a path from x to y attaining
the distance, and let x = vy, vs,..., v be the vertices on P lying in this order, where
k > 5f(0, F2) + 1, so that the distance between v; and v; 1 is exactly 10 on P, for each
i €{1,...,k—1}. Then, there exists a cycle C; of length at most 6 passing through either
v; or a vertex u; adjacent to v; for each ¢ € {1,...,k} by Lemma 4.3. Since the distance
between v; and v; is at least 10 for any 7 < j, two cycles C; and C; are mutually disjoint.
Since F? admits only f(0, F?) pairwise non-crossing non-homotopic essential cycles, and
since we assumed k > 5f(0, F?) + 1, we can take six pairwise homotopic cycles from
{C1,...,Cy} by the Pigeonhole Principle. Let I'q, ..., g be such six cycles of length at
most 6, which are mutually homotopic. Note that those cycles are 2-sided since any two of
them are disjoint, and that the parities of those cycles are pairwise same. We may assume
that these I'1, ..., ' lie on an annulus in this order.

Let A; ; denote the annular region bounded by I'; and I'; for 1 < ¢ < j < 6; similarly,
A;, ;j contains its two boundaries I'; and I';. Note that there is no edge joining vertices on I';
and I'; ;1 for each i € {1,...,5}; for otherwise, the distance between v; and v;; would
be at most 9, contradicting that P is a shortest path joining z and y in G. Similar to the
argument in Lemma 4.2, we call I'; and I'g obstructions for our purpose.

First, we discuss the case when G has a vertex u of degree 3 in /71374. By Lemma 3.3, u
belongs to a connected component of (V)¢ which is
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Figure 6: Configurations around connected components of (V3)q.

(i) a4-cycle,
(ii) a 2-path,
(iii) a Ky or
(iv) an isolated vertex.

‘We discuss the above four cases in order.

Case (i): Under the assumption, an attached cube containing u as an vertex of an attached
4-cycle is in 2127 5. (For example, even if u is on '3, then there is no face f such that 0 f
contains both u and a vertex on I';, since there is no edge joining vertices on I'; and I's,
and since deg(u) = 3.) Similar argument in Case (i) in the proof of Lemma 4.2 works, and
we conclude that this is not the case; i.e, we cannot take two essential simple closed curves
~1 and 2 in Lemma 3.8 by the existence of the obstructions.

Case (i1): We assume that u belongs to a 2-path P = upu1u2 and the configuration around
P is given by the left-hand side of R3 in Figure 1. Similarly, the hexagonal region R
bounded by voviv2v3v4v5 is contained in 212,5. By Lemma 3.6, there exists an essen-
tial diagonal (or a semi-diagonal) 3-curve ~y passing {v1,u1,vs5} (see the left-hand side of
Figure 6). On the other hand, since deg(v;) > 4 and deg(vs) > 4 hold, there exists an
essential diagonal (or semi-diagonal) 3-curve 7 passing {vg, ug, v2} by Lemma 3.4. Ob-
serve that both « and ' are homotopic to I'; by the existence of obstructions. Under the
situation, « and ' cross transversally in R, and it must cross transversally one more time
since these two curves are 2-sided. This implies that there should be a face incident to four
vertices vg, v1, vz and vs, in which v and +' pass through. However, it contradicts that G is
simple.

Case (iii): Assume that ujus € E(G) is a connected component of (V3) ¢, and there are
four faces vovyu1vy, V1V2U2UT, U u2U3Vy and usvav)vs incident to uy and ug. Note that
deg(v;) > 4 for any ¢ € {1,2,3,4}. When considering a face voviu;vy, there exists an
essential diagonal (or semi-diagonal) 3-curve + passing either {vg, u1,us} or {vg, u1,v2}
by Lemma 3.4, up to symmetry. Note that « is homotopic to I';. In the former case, we
have vy = v, and hence we discuss an R to the hexagonal region containing u; and us.
However, it immediately contradicts that G is {Ry, ..., Rg}-irreducible by the existence
of obstructions and by Lemma 3.11.
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Figure 7: Configurations around connected components of (V3)q.

Therefore, we assume the latter case. In this case, we may assume that there exists
an essential diagonal (or semi-diagonal) 3-curve +' passing {v), u2, v4} by the same argu-
ment as above. Note that 7/ is homotopic to  under the condition. If v and ' are both
essential semi-diagonal 3-curves (by Proposition 3.1) then, there exists a face vovav{ve
by Lemma 3.9 and our former argument (see the center of Figure 6). However, since
deg(v2) > 4 and deg(v4) > 4, we apply Lemma 3.4, and conclude a contradiction.

Thus, we suppose that -y is an essential diagonal 3-curve, and there is a face f = vopvaq
for p, ¢ € V(G) which is passed by v. Here, observe that v; ¢ {p, ¢} by the simplicity of
G, and hence we have deg(vy) > 4. For f, if deg(vg) > 4, then it is contrary to G being
{R1,..., Rg}-irreducible by the existence of obstructions and by Lemma 3.4. Therefore,
we assume that deg(vg) = 3 below. Without loss of generality, we may assume that p = vy
(see the right-hand side of Figure 6). Under the situation, we can apply Lemma 3.12 to the
octagonal region bounded by vov1v9qU2v4v3U2, and obtain a contradiction.

Case (iv): Assume that u is incident to three faces vgvuvs, v1v2v3u and uvsvavs. Note
that deg(v;) > 4 for any ¢ € {1,3,5}. Hence, for a face vyv; uvs, we have

(a) an essential 4-cycle voviuvs, or
(b) an essential diagonal 3-curve or semi-diagonal 3-curve ~y passing

(1) {U()7U,’U3} or
(2) {U07uav2}

by Lemma 3.4, up to symmetry.

First, assume (a). In this case, for a face vvovsu, there must be an essential diagonal 3-
curve passing {vo, u, v2} by Lemma 3.4; it is not difficult to check that this is the unique
case by Proposition 3.1 and the existence of obstructions. Furthermore, by Lemma 3.9,
there exists a face vapvgvs for p € V(G), and it contradicts Lemma 3.12 for an octagonal
region bounded by vyv;vapvyv3v4v5 by the similar argument as above (see the first figure
of Figure 7).

Secondly, we assume (b)(1). In this case, v is an essential semi-diagonal 3-curve, and
hence there exists a face vgpusq for p, ¢ € V(G) which « passes through (see the second
figure of Figure 7). Then, we have deg(vg) > 4 since {p, ¢} N {v1,v5} = 0; otherwise, G
would become representativity at most 2. Therefore, for vopvsq, we apply Lemma 3.4, and
obtain a contradiction as well as former cases.
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Figure 8: Configurations of Case (I) in Lemma 4.4.

Thirdly, we discuss the case (b)(2). First, assume that y is an essential semi-diagonal 3-
curve; i.e., vova € F(G) which is along v (see the third figure of Figure 7). Then, for a face
uUV3V4V5, there exists either v4vy or v4ve, say v4vg without loss of generality, as an edge
of GG such that vgvsvy is homotopic to I';. Under the situation, there exists a 2-cell region
R bounded by vgv4v3ve, which is a face of G by Lemma 3.9 and the former argument.
However, we obtain a contradiction since deg(vs) > 4. Therefore, we suppose that -y is
an essential diagonal 3-curve; i.e., there exists a face bounded by vopv2q for p, ¢ € V(G)
(see the last figure of Figure 7). If {p,q} N {vs,v5} # 0, then it gives rise to the above
case (a), which had already discussed. On the other hand, if v; € {p, ¢}, then G would
have multiple edges, a contradiction. Thus, we have deg(vg) > 4 and deg(vy) > 4, and
conclude a contradiction by Lemma 3.4, similar to the former cases.

Therefore, in the following argument, we discuss the case when deg(u) > 4 for any
vertex u in /713,4. In this case, we focus on a face f = vgvivovs in A3’4 with deg(v;) > 4
for each i € {0,1,2,3}. By Propositions 3.1 and 3.2, Lemma 3.4 and the existence of
obstructions, it suffices to discuss the following two cases (I) and (II), up to symmetry.

Case (I): There exist two essential semi-diagonal 3-curves v and ' passing {vg, v2, 2} and
{v1, vs, x}, respectively, for x € V(G) such that v and 7" are homotopic to I'; (see the first
figure of Figure 8). Then, there are two faces f = vovsat and f' = vy sz, for s, t € V(G)
by Lemma 3.9 (see the second figure of Figure 8). Under the situation, if s = ¢, then
there exists an annular region A bounded by two 3-cycles svpvy and xvzve wWhich contains
exactly three edges dividing it into three faces (see the third figure of Figure 8). Then, we
apply Lemma 3.13 to A and obtain a contradiction by the existence of the obstructions.

Thus, we assume s # t below, and hence s, ¢, vo and v3 are distinct vertices; i.e., we
have deg(z) > 4. Then, we apply Lemma 3.4 to f’ and find an essential semi-diagonal
3-curve " passing {s,vs, 2z} for z € V(G). By the existence of the obstructions, 4" and
~" should be homotopic. That is, 4" and " cross even times (actually twice), and hence
we have z = vg and svg € F(QG) (see the last figure of Figure 8). Then, there exists a
2-cell region bounded by svgvsz, and it contradicts Lemma 3.9 since s # t.

Case (II): There exists an essential diagonal 3-curve  passing {v1,vs, 2} for z € V(G),
and voz,vex € E(G) such that v and the 4-cycle vyvjvax are homotopic to I'; (see the
left-hand side of Figure 9). Then, there are two faces f = wouvisx and f/ = wgustz
for s,t € V(G) by Lemma 3.9 (see the center of Figure 9). By the simplicity of G,
s,t ¢ {vg, v1,v2,v3}, and hence deg(x) > 4. Thus, for f, there exists an essential diagonal
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Figure 9: Configurations of Case (II) in Lemma 4.4.

3-curve ' passing {vg, v2, s} by Lemma 3.4; this is a unique case by the same argument
as in Case (I). Then, by Lemma 3.9, there is a face " = spuvgx for p € V(G) which 4/
passes through (see the right-hand side of Figure 9). Apply Lemma 3.14 to the annular
region bounded by two 4-cycles vgvy sp and v3vaxt, and obtain a contradiction. O

Now, we prove our main result as follows.

Proof of Theorem 1.1. Let G be a graph with maximum degree A and diameter d. Then,
the following inequality holds.

d
_ A((A-1)T-1)
< — 1)k = _\=
V(@) <1+> AA-1) 1+ N
k=1
Therefore, every { R, ..., Rg}-irreducible quadrangulation G of F? has a finite number

of vertices, since its maximum degree and diameter are bounded by Lemmas 4.2 and 4.4,
respectively. Thus, F2 admits only finitely many {R;, ..., Rg}-irreducible quadrangula-
tions, up to homeomorphism. O

5 Minimality of reductions

In the previous section, we proved that { Ry, ..., Rg} is sufficient to finitize the number of
minimal quadrangulations of any closed surface. However, one might think that the eight
reductions are little too much. As mentioned in the introduction, Theorem 1.3 describes
more accurate facts for the torus.

Proof of Theorem 1.3. See Figure 10. Each J; represents an infinite series of {Ry, ...,
Rs} \ {R;}-irreducible quadrangulations of the torus. (To obtain the torus, identify two
horizontal segments and two vertical segments of the rectangle, respectively.) In each gray
colored quadrangular region in figures contains exactly four vertices which is of an attached
4-cycle. We can construct only Jg and Jg as bipartite quadrangulations since the others
require essential cycles of length 3. Observe that we cannot apply Rg to .Jg, since the dual
of Js has no essential cycle of length at most 4. Moreover, each of J; and Js is an infinite
series of 4-regular quadrangulations of the torus. O
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Figure 10: Infinite series of quadrangulations of the torus.

Proof of Theorem 1.4. As mentioned in the introduction, the projective plane does not ad-
mit 2-sided essential simple closed curves and hence {Ry, ..., Rg} is finitizable for poly-
hedral quadrangulations of the projective plane by Theorem 1.1. The infinite series of
minimal graphs can be obtained in a similar way as those of torus; we leave it for read-
ers. For example, an infinite series of polyhedral quadrangulations denoted by Ig(2n + 1)
(n > 2), which can be found in [23], is { Ry, ..., R5}-irreducible quadrangulations of the
projective plane. O

In the end of the paper, we pose the following problem.

Problem 5.1. For any closed surface F'? other than the sphere, the projective plane and the
torus, is {R1,. .., Rg} a minimal finitizable set of reductions for polyhedral quadrangula-
tions of F'2?
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