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Abstract

Continuing the previous research, we consider trees with given number of vertices and
minimal spectral gap. Using the computer search, we conjecture that this spectral invariant
is minimized for double comet trees. The conjecture is confirmed for trees with at most
20 vertices; simultaneously no counterexamples are encountered. We provide theoretical
results concerning double comets and putative trees that minimize the spectral gap. We also
compare the spectral gap of regular graphs and paths. Finally, a sequence of inequalities
that involve the same invariant is obtained.
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1 Introduction
We use standard graph-theoretic terminology and notation. For example, for a graph G,
n = n(G) and m = m(G) denote its order and size, while A = A(G) stands for its
adjacency matrix. The characteristic polynomial ofA is the characteristic polynomial ofG,
denoted PG. Its roots are the eigenvalues of G, denoted λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).
Non-isomorphic graphs that share the same spectrum are said to be cospectral.
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The difference between the first two eigenvalues δ(G) = λ1(G)− λ2(G) is called the
spectral gap of G. In the previous investigation (see [13]), graphs with small spectral gap
are considered. The purpose of this paper is to continue this investigation in the case of
trees (this part can be considered as counterpart to [13], as well), consider regular graphs
with small spectral gap, and give certain upper and lower bounds for this spectral invariant.

As announced in the Abstract, we conjecture that a minimal spectral gap of trees with
given order is attained for a double comet tree (the conjecture is formulated in the very
beginning of the next section). We also give certain theoretical and computational results
supporting this conjecture, and consider cospectrality of double comets. The conjecture is
open, but nevertheless we give additional (structural and spectral) properties of a tree with
minimal spectral gap.

Next, we compare the spectral gap of regular graphs and paths by showing that, under
some restrictions, the spectral gap of a regular graph is bounded from below by the spectral
gap of the corresponding path. Finally, we give some new bounds on δ expressed in terms
of order, size, clique number, and minimal or maximal vertex degree.

We conclude this section by certain terminology and notation. The main results are
given in Sections 2–4.

We use Pn, Cn,Kn, and Kn1,n2 (n1 + n2 = n) to denote the path, cycle, complete
graph (or clique), and complete bipartite graph on n vertices, respectively. The disjoint
union of graphs G and H is denoted by G∪H , while the disjoint union of k copies of G is
denoted by kG.

The generalized double comet C∗(k1, k2, l), where k1, k2 ≥ 0 and l ≥ 2, is a tree
obtained by attaching k1 pendant vertices at one end of the path Pl and k2 pendant vertices
at the other end of the same path. The path Pl is referred to as the internal path. The double
comet C(k, l) is obtained from C∗(k1, k2, l) for k1 = k2 = k.

2 Spectral gap of trees
We start with the following conjecture.

Conjecture 2.1. Among all trees of order n, the spectral gap is minimized for some double
comet.

The conjecture is confirmed by computer search for trees with at most 20 vertices. In
all situations, there is a unique tree attaining the minimal spectral gap. For n ≤ 8, this is
the path Pn (which is a special case of double comet), for 9 ≤ n ≤ 11 this is C(2, n− 4),
for 12 ≤ n ≤ 15 this is C(3, n− 6), and for 16 ≤ n ≤ 20 this is C(4, n− 8).

If ∆ and ∆′ (< ∆) are the largest and second largest degree in a tree T and the dis-
tance between the vertices having these degrees is at least three, then using the Interlacing
Theorem (cf. [14, Theorem 1.6]), we get λ2(T ) ≥ λ1(K1,∆′) =

√
∆′. In other words,√

∆′ makes a lower bound on λ2(T ). Since an increase in ∆′ increases this bound, it is
natural to assume that the spectral gap is minimized for a tree with two vertices of maximal
degree. We provide more theoretical results supporting Conjecture 2.1.

Theorem 2.2. In the set of trees of order n (n ≥ 2) and two vertices of maximal degree ∆,
the largest eigenvalue λ1 is minimized for the double comet C(∆− 1, n− 2(∆− 1)).

Proof. Clearly, the statement holds for ∆ ≤ 2. Assume next that u, v are the two vertices
of degree ∆ (≥ 3) in a tree T and let N(u), N(v) be their open neighbourhoods. Then,
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removing a pendant vertex which does not belong toN(u)∪N(v) (if such a vertex does not
exist, then T is the required double comet) impose a strict decrease in λ1 (as a consequence
of the Perron-Frobenius Theorem, cf. [2, Theorem 1.3.6]). In addition, by the well-known
result of Hoffman and Smith [4], inserting a vertex in the unique path between u and v
is again followed by a strict decrease in λ1. Therefore, rearranging a described pendant
vertex into the corresponding path gives a tree with smaller largest eigenvalue. Repeating
this procedure, after finite number of steps, we arrive at C(∆− 1, n− 2(∆− 1)).

In the following theorem we use another result of Hoffman [3]: Let H be the graph
obtained from a graph G by attaching a hanging path of an arbitrary length at any vertex
v (of G) of the degree at least two. When the length of the path attached tends to infinity
then the largest eigenvalue of H increases and tends to the largest root of the equation

f(x) =

(
x+
√
x2 − 4

2

)
PG(x)− PG−v(x) = 0,

whenever the largest eigenvalue of H is greater than 2.
Now we have the following theorem comparing spectral gaps of generalized double

comets with equal internal paths.

Theorem 2.3. Given a generalized double comet C∗(k1, k2, l). If l ≥ 2 and k1 ≤ k2 − 2,
then δ(C∗(k1, k2, l)) > δ(C∗(k1 + 1, k2 − 1, l)).

Proof. Let, for short, T (resp. S) stand for C∗(k1, k2, l) (resp. C∗(k1 + 1, k2 − 1, l)).
We have λ1(T ) > λ1(S), as proved in [12], and so it remains to prove that λ2(T ) ≤

λ2(S). First, we consider the three singular cases.
For l = 2, Using the Schwenk formula [2, Theorem 2.4.3], we compute

PT (x) = xk1+k2−2Q(x) and PS(x) = xk1+k2−2R(x),

where

Q(x) =
(
x4 − (k1 + k2 + 1)x2 + k1k2

)
and

R(x) =
(
x4 − (k1 + k2 + 1)x2 + k1k2 − k1 + k2 − 1

)
.

The second largest eigenvalues of both trees coincide with second largest roots of the
polynomials Q and R. Since R(x)−Q(x) = −k1 + k2 − 1 > 0, we get λ2(T ) < λ2(S).

For l = 3, by removing the vertex of maximal degree in T and using the interlacing
argument, we get λ2(T ) ≤

√
k1 + 1. Similarly, by removing the middle vertex of the

internal path in S, we get λ2(S) ≥
√
k1 + 1, and we are done.

For l = 4, following the case l = 2, we get that the characteristic polynomials of trees T
and S are PT (x) = xk1+k2−2Q1(x) and PS(x) = xk1+k2−2R1(x), where the polynomials
Q1 and R1 are computed in a similar way, while their difference is R1(x) − Q1(x) =
(k1 − k2 + 1)(1− x2). Computing this value for x = λ2(T ), we get the assertion.

Let now l ≥ 5. For k1 = 2 we directly get λ2(T ) ≤ 2 ≤ λ2(S), and similarly for
k1 = 1. Let in further T ′ stand for the non-trivial component of the graph obtained by
removing the vertex of degree k2 + 1 in T . By interlacing we have λ2(T ) ≤ λ1(T ′). Since
k1 ≥ 3, we may apply the result given before Theorem 2.3 to get that λ1(T ′) is less than
the largest root of

1

2

(
x+

√
x2 − 4

)
PK1,k1

(x)− Pk1K1(x),
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Figure 1: Double comet C(k, l).

that is the largest root of

1

2

(
x+

√
x2 − 4

)
(x2 − k2)− x.

Setting x =
√
k1 + 2, the last expression becomes equal to

√
k1 − 2, i.e. it is positive in

this point, which implies λ1(T ′) <
√
k1 + 2.

On the other hand, using interlacing once again, we get λ2(S) ≥
√
k1 + 2, which

completes the proof.

In other words, in the set of generalized double comets with fixed internal path Pl, the
minimal spectral gap is attained when the cocliques on k1 and k2 vertices are as equal as
possible.

In order to compute the spectral gap of an arbitrarily large double comet, we derive
formulas for computing its largest and second largest eigenvalue. The following two results
may be viewed as a counterpart to [13, Proposition 2.4].

Theorem 2.4. If λ1(C(k, l)) > 2, then λ1(C(k, l)) is equal to 2 cosh(2t), where t is the
unique positive root of

(
e2t(l−1) + 1

)
k − e−4t

(
e4t + 1

) (
e2t(l+1) + 1

)
= 0. (2.1)

Proof. Let the vertices of C(k, l) be labeled 1, 2, . . . , 2k+ l in natural order (see Figure 1),
and let an eigenvector associated with λ1 = λ1(C(k, l)) be denoted x = (x1, x2, . . . , xn)T .
Then we have

λ1xi =
∑

j∼i
xj (1 ≤ i ≤ 2k + l). (2.2)

Using (2.2), we derive (2.1) in the following way. First, using the symmetry of C(k, l),
we may assume that x1 = x2 = · · · = xk = xk+l+1 = xk+l+2 = · · · = x2k+l (cf. [3]).
Since the coordinates of the eigenvector x are of the same sign and the eigenvector itself is
determined up to a multiplicative constant, we may take x1 = λ1. Then, we have

xk+1 = xk+l = λ2
1. (2.3)

For 0 ≤ i ≤ l−1, using (2.2), we arrive at the following system of recurrence equations

xk+i − λ1xk+i+1 + xk+i+2 = 0 (1 ≤ i ≤ l − 1). (2.4)
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The former equality, that is (2.3), may be regarded as a boundary condition for (2.4).

Solving the related characteristic equation t2−λ1t+ 1 = 0, we get t1 = 1
t2

=
λ1+
√
λ2
1−4

2 ,
which yields

xk+i+1 = c1t
k+i+1
1 + c2t

−(k+i+1)
1 . (2.5)

Setting i = k + 2 and i = k + l − 1 in (2.2), we deduce that

xk+2 = xk+l−1 = λ1(λ2
1 − k).

Next, using the first, and then the second equality in the last chain, we get c2 = c1t
2k+l+1
1

and c1 =
λ1(λ2

1−k)

tk+2
1 +tk+l−1

1

, respectively. Substituting these expressions in (2.5) and using our
boundary condition, we get

λ1

(
tk+2
1 + tk+l−1

1

)
= (λ2

1 − k)
(
tk+1
1 + tk+l

1

)
.

Finally, using the obtained expression for t1 and setting λ1 = 2 cosh(2t), after a
straightforward computation we arrive at (2.1).

A simple analysis shows that the equation (2.1) has a positive real root. Moreover, it
must be unique, because otherwise we would have two non-collinear eigenvectors corre-
sponding to a simple eigenvalue λ1. This observation completes the proof.

Our next result is obtained in the same way. We omit the proof and refer the reader to
the previous theorem and [13].

Theorem 2.5. If λ2(C(k, l)) > 2, then λ2(C(k, l)) is equal to 2 cosh(2t), where t is the
unique positive root of

(
e4t − e2t(l+1)

)
(k − 1) + e2t(l+3) − 1 = 0. (2.6)

The last two theorems enable us to compute the spectral gap of an arbitrary double
comet. All what we need is to find the positive roots of (2.1) and (2.6) by means of nu-
merical computation. In this way we get the trees with extremely small spectral gaps. For
example, we have the following results for double comets determined by parameters (k, l):

(k, l) (10, 10) (50, 10) (100, 10) (4, 10) (4, 50) (4, 100)

δ ≈ 0.0001 1.7 · 10−7 1.0 · 10−8 0.0073 2.1 · 10−12 2.5 · 10−24

So, Conjecture 2.1 remains open. If, for some n there exists a tree which is not a double
comet but has the minimal spectral gap then, by the previous computation, its spectral gap
is very close to zero. Moreover, its second largest eigenvalue must be simple, as proved in
our next statement.

Theorem 2.6. If T is a graph with minimal spectral gap in the set of trees of order n, then
λ2(T ) > λ3(T ).

Proof. Assume to the contrary. Since T is a tree, it contains a vertex with two hanging
paths attached. If these paths are Pn1 and Pn2 where, say n1 ≥ n2 ≥ 2, then let T ′ be the
tree obtained by the relocation of the endvertex of Pn2

to the end of Pn1
. It is known from

numerous literature, see for example [14, Lemma 1.29(i)], that λ1(T ) > λ1(T ′). Next,
since λ2(T ) = λ3(T ), by interlacing, we get λ2(T ) ≤ λ2(T ′). Altogether, δ(T ) > δ(T ′),
a contradiction.
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Recall that, according to the computer search, for n ≤ 20, there is a unique tree that
minimizes the spectral gap. So, there is another question: is such a tree unique for all n?
A contribution to this question may be given by considering cospectrality of double comet
graphs. It is not difficult to see that no every double comet has the unique spectrum (an easy
exercise for the reader: show that C(2, l) is cospectral with C4 ∪ Pl). However, connected
graphs that are cospectral with double comets are more interesting in our context. Here we
provide the following result.

Theorem 2.7. The double comet C(k, 2) is cospectral with a connected graph if and only
if k = t2 − t+ 1, for t ∈ N. The spectrum of a double comet C(k, l), 3 ≤ l ≤ 5, is unique
in the set of connected graphs.

Sketch proof. Observe that cospectral graphs have equal orders and sizes, and therefore if
a connected graph is cospectral with a double comet, then such a graph must be a tree.
Next, recall from [6] that the multiplicity of zero (also known as nullity) in the spectrum
of a tree is n − 4 if and only if that tree is a generalized double comet C∗(k1, k2, l), for
2 ≤ l ≤ 3. Similarly, the trees of nullity n − 6 are those illustrated in Figure 2. Clearly,
double comets specified in this theorem are covered by these sets of trees, and so to consider
their cospectrality we need to compare their spectra with spectra of trees with equal number
of zero eigenvalues.

For l = 2, the possible candidates are the mentioned two generalized double comets
with nullity equal to n − 4. Recall (from the proof of Theorem 2.3) that the characteristic
polynomial of C∗(k1, k2, 2) is:

PC∗(k1,k2,2)(x) = xk1+k2−2
(
x4 − (k1 + k2 + 1)x2 + k1k2

)
.

Also, using the same method, we compute

PC∗(k1,k2,3)(x) = xk1+k2−1
(
x4 − (k1 + k2 + 2)x2 + k1k2 + k1 + k2

)
.

By setting k1 = k2 = k in the first polynomial, we get the characteristic polynomial of
C(k, 2). Next, comparing the characteristic polynomials of C(k, 2) and C∗(k1, k2, 2), we
get k1 + k2 = k and k1k2 = k2, which implies k1 = k2, i.e. the only solution is obtained
when the corresponding trees are isomorphic.

k1︷ ︸︸ ︷ k2︷ ︸︸ ︷ k3︷ ︸︸ ︷ k1︷ ︸︸ ︷ k2︷ ︸︸ ︷ k3︷ ︸︸ ︷

k1︷ ︸︸ ︷ k2︷ ︸︸ ︷ k3︷ ︸︸ ︷

Figure 2: Trees of nullity n− 6.

Taking into account C∗(k1, k2, 3), we get k1 + k2 = 2k − 1 and k1k2 = (k − 1)2,
which means that k1 and k2 are the solutions of s2 − (2k − 1)s + (k − 1)2 = 0, i.e. they
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are of the form 2k−1±
√

4k−3
2 . Since we are interested in integral solutions, 4k − 3 must

be a perfect square (clearly, an odd integer). Setting 4k − 3 = (2t − 1)2, t ∈ N, we get
k = t2 − t + 1. In addition, each k of this form gives two distinct positive values for k1

and k2, and we are done.
The cases l ∈ {3, 4, 5} are considered in exactly the same way, i.e. by comparing

the corresponding characteristic polynomials and, in some situations, by reducing the pro-
cedure by using theoretic reasoning based on more sophisticated results like eigenvalue
interlacing. In all cases we get that the double comet under consideration is not cospectral
with any of possible candidates, and the proof follows.

So, in general case, a double comet may be cospectral with another graph. Even more,
it may occur that this graph is connected (and then, it is also a tree). On the other hand, in
our computational results double comets that are cospectral with other trees do not appear
in the role of those with minimal spectral gap.

3 Comparing the spectral gap of paths and regular graphs

It is proved in [13] that the spectral gap of the path Pn is always less than the spectral gap
of the cycleCn. In other words, the spectral gap of any connected 2-regular graph is greater
than δ(Pn). Perhaps surprisingly, but a similar conclusion cannot be deduced for all regular
graphs. A counterexample is the regular graph illustrated in Figure 3. Its spectral gap is
close to 0.105, while we simultaneously have δ(P14) ≈ 0.129 (both values are rounded to
three decimal places).

Figure 3: A regular graph whose spectral gap is smaller than the spectral gap of the corre-
sponding path.

If the vertex degree is sufficiently large, then we have the following result.

Theorem 3.1. Let G be a connected r-regular graph of order n (n ≥ 3). If r ≥ 22, then

δ(G) > δ(Pn).

Proof. If n ≤ 2r + 1, then

λ2(G) = −λn(G) ≤ λ1(G) = n− r − 2,

and so δ(G) = λ1(G) − λ2(G) ≥ r − (n − r − 2) ≥ 1. On the other hand, δ(Pn) < 1
holds for any n ≥ 5, while the cases n = 3 and n = 4 are resolved easily.



204 Ars Math. Contemp. 14 (2018) 197–207

Let now n ≥ 2r + 2. Considering δ(Pn) and using the Taylor series, we get

δ(Pn) = 2

(
cos

π

n+ 1
− cos

2π

n+ 1

)

< 2

(
1− 1

2

(
π

n+ 1

)2

+
1

4!

(
π

n+ 1

)4

− 1

+
1

2

(
2π

n+ 1

)2

− 1

4!

(
2π

n+ 1

)4

+
1

6!

(
2π

n+ 1

)6
)

= 2

(
3

2

(
π

n+ 1

)2

− 15

4!

(
π

n+ 1

)4

+
1

6!

(
2π

n+ 1

)6
)

= 3

(
π

n+ 1

)2
(

1− 5

12

(
π

n+ 1

)2

+
23

5 · 33

(
π

n+ 1

)4
)

< 3

(
π

n+ 1

)2

.

We next use the inequalities for regular graphs, δ ≥ 4
nD [7] and D ≤ 3

⌊
n
r+1

⌋
− 1 [1],

where D stands for the diameter. We compute

δ(G) ≥ 4

nD
≥ 4

n
(

3
⌊
n
r+1

⌋
− 1
) ≥ 4

n
(

3
(
n
r+1

)
− 1
)

=
4(r + 1)

n(3n− r − 1)
>

4(r + 1)

3n2
.

Since, for r ≥ 22 it holds 3
(

π
n+1

)2

< 4(r+1)
3n2 , we get the assertion.

4 Bounds for spectral gap
In this section we give some bounds on δ(G). We start with the following lemma.

Lemma 4.1. Given a connected graph G, let K denote its proper subgraph isomorphic to
either a complete graph Kp or a complete bipartite graph Kp,q . If H is a graph obtained
from G by deleting all edges belonging to K, then

λ2(G) ≤ λ1(H).

Proof. Assume that G has n vertices, and K has k vertices. Since K is a proper subgraph,
k < n must hold. If A is the adjacency matrix of K ∪ (n − k)K1 and B is the adjacency
matrix of H then, by applying the Courant-Weyl inequality λ2(A+B) ≤ λ2(A) + λ1(B)
(cf. [2, Theorem 1.3.5]), we get

λ2(G) ≤ λ2(K ∪ (n− k)K1) + λ1(H) = 0 + λ1(H).

In what follows, we use the following upper bound for λk1 (k being a positive integer)
in terms of the clique number ω and the number of k-walks wk in G [9],

λk1 ≤
ω − 1

ω
wk. (4.1)
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Theorem 4.2. For a connected graph G with n vertices, m edges, and the clique number
ω (ω ≥ 3),

δ ≥ ω − 1−

√
(ω − 2)

(
2m

ω − 1
− ω

)
. (4.2)

Proof. Setting k = 2 in (4.1), we get λ2
1 ≤ 2ω−1

ω m. Deleting the edges belonging to a
largest clique of G and using Lemma 4.1, we get

λ2(G)2 ≤ 2
ω − 2

ω − 1

(
m−

(
ω

2

))
,

or

λ2(G) ≤

√
(ω − 2)

(
2m

ω − 1
− ω

)
.

On the other hand, λ1(G) ≥ ω − 1, and we get the assertion.

Analyzing the lower bound (4.2), we get ω−1−
√

(ω − 2)
(

2m
ω−1 − ω

)
≥ 0 whenever

m ≤ 1

2
+ ω(ω − 1) +

1

2ω − 4
.

In other words, this lower bound gives a non-trivial result only if the above inequality
(on m) holds. Moreover, although the previous theorem is easily proved, the obtained
inequality can give a good estimate in some cases. If we consider the graph G obtained
from the complete graph Kp by attaching k pendant edges at one of its vertices then (4.2)

gives δ ≤ p − 1 −
√
k p−2
p−1 . Setting p = 10 and k = 1 we get δ ≈ 8.572. The deviation

form the exact value is close to 0.390.
In the following theorem we provide more lower bounds on δ. The first of them is based

on the following inequality for a graph with n vertices, m edges and minimal vertex degree
dmin [5, 8],

λ1 ≤
dmin − 1 +

√
(dmin + 1)2 + 4(2m− dminn)

2
. (4.3)

Theorem 4.3. LetG be a connected r-regular graph with n vertices and letH be obtained
form G by deleting

(a) all edges belonging to a clique Kp (p < n),

(b) all edges belonging to a proper induced subgraph Kp,q (p ≤ q),

then

(a) δ(G) ≥ r+p−
√

4n(p−1)+(r+2)2−3p2−2rp

2 ,

(b) δ(G) ≥ r+q+1−
√

4nq+(r−q+1)2−8pq

2 if H is connected, and

δ(G) ≥ r+p+1−
√

4np+(r−p+1)2−8pq−4p(r−p)
2 if H is disconnected.
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Proof. Consider (a). By Lemma 4.1, λ2(G) ≤ λ1(H). The graph H has n vertices,
rn
2 −

(
p
2

)
edges, and the minimal vertex degree in H is r − p + 1. Using the inequality

(4.3), we get

λ2(G) ≤ λ1(H) ≤
r − p+

√
4n(p− 1) + (r + 2)2 − 3p2 − 2rp

2
,

and since λ1(G) = r, we get the assertion.
Consider now (b). If H is connected then it has n vertices, rn

2 − pq edges, and the
minimal vertex degree inH is r−q. Using (4.3), we get the assertion. IfH is disconnected
then p < q = r, and it contains p isolated vertices. Excluding these vertices, we get the
graph with n− p vertices and minimal vertex degree r− p. The desired inequality is again
obtained by using the same argument.

Here is an upper bound for a special class of regular graphs.

Theorem 4.4. Let G be an r-regular graph of order n. If G is triangle free, then

δ(G) ≤ n
(

2− n

r + 1

)
. (4.4)

Equality holds if G is isomorphic to Kn
2 ,

n
2

.

Proof. We have λn(G) ≤ − (n−r−1)2

r+1 (cf. [10]), and thus λ2(G) = −1− λn(G) ≥ −1 +
(n−r−1)2

r+1 . Now, δ(G) = r − λ2(G) would be less than or equal to r + 1 − (n−r−1)2

r+1 =

n
(

2− n
r+1

)
whenever this number is non-negative, i.e. whenever r ≥ n−2

2 . On the other

hand, if G is triangle-free, then λ1(G) ≤
√
m(G) (see [11]), i.e. n− r−1 ≤

√
n(n−r−1)

2 ,
which again gives r ≥ n−2

2 . Hence, inequality (4.4) holds for any graph specified in the
theorem.

The equality is verified by direct computation.

References
[1] L. Caccetta and W. F. Smyth, Graphs of maximum diameter, Discrete Math. 102 (1992), 121–

141, doi:10.1016/0012-365x(92)90047-j.
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