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Abstract 

In this study, two hydroxycinnamic acids and two hydroxylated benzoic acids, namely 4-
hydroxycinnamic acid (p-coumaric acid), 4-hydroxy-3,5-dimethoxycinnamic acid (sinapinic 
acid), 3,4-dihydroxy benzoic acid (vanillic acid) and 3-hydroxy-4-methoxy benzoic acid 
(izovanillic acid), were titrated potentiometrically using tetrabuthylammonium hydroxide in 
2-propanol under a nitrogen atmosphere at 25 °C. An artificial neural network (ANN) was 
applied for data treatment as a multivariate calibration tool in a potentiometric acid-base 
titration. The artificial neural network trained by the back-propagation learning was used to 
model the complex non-linear relationship between the concentration of p-coumaric acid 
(HpC), sinapinic acid (HS), vanillic acid (HV), and izovanillic acid (HiV), and the milivolt 
(mV) of solutions at different volumes of the added titrant. The principal components of the 
mV matrix were used as the input of the network. The optimized network predicted the 
concentrations of acids in synthetic mixtures. The results showed that the ANN used can 
proceed the titration data with an average relative error of less than 4.18%. 

 
Introduction 

A multivariate calibration has historically been a major cornerstone of the 

chemometrics as applied to the analytical chemistry. Most of the chemometrics involves 

the multivariate calibration.  Some groups have based much of their development over 

the past two decades primarily on applications of the partial least squares (PLS) 

algorithm. The PLS is often regarded as the major regression technique for multivariate 

data. In fact, in many cases it is applied inappropriately and is not justified by the data. 

In areas outside the main stream of the analytical chemistry, or even biometrics and 

psychometrics, the PLS certainly is an invaluable tool, because the underlying factors 

have little or no physical meaning so a linearly additive model in which each underlying 

factor can be interpreted chemically is not expected.1  The PLS is the multivariate 

calibration method that has received considerable attention in the chemometric 
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literature.2-4 Recently, much attention has been paid to the application of the novel 

method of artificial neural networks in chemistry and some satisfactory results have 

been achieved.5-10 In the analytical chemistry, ANN have been used for calibration,11-13 

parameter estimation,14-16 spectrophotometric research,17-20 and optimization of 

analytical conditions.21,22 The corresponding non-linear multivariate maps use a non-

linear transformation of the input variable to project inputs on to the designated attribute 

values in the output space. The strength of the modeling with layered; feed-forward 

ANN lies in the flexibility of the distributed soft model defined by the weights of the 

network. Both linear and non-linear mapping functions can be modeled by suitably 

configuring the network. The multilayer feed-forward neural network trained with back-

propagation learning algorithm becomes an increasingly popular technique.23-26 

The PLS regression, one of the multivariate calibration methods, was applied to 

potentiometric titration for determination of acid mixture.27 In this study, the researchers 

used the volumes needed to reach a given pH as response data. They assumed a linear 

relationship between the volume of titrant added and the analytes concentrations. The 

PLS calibration method has been applied to acid-base titration, complexometric 

titration28 and potentiometric precipitation titration29 also by other authors. However, in 

the complex acid-base systems the interactions between components in the titration 

vessel becomes complicated. To overcome this problem, Song et al.,30 Bronjdak-

Voncina et al.31 and Zampronia et al.32 used ANN to treat potentiometric acid-base 

titration.   

Hydroxycinnamic acids are commonly found in foods such as fruits, vegetables 

and grains. The highest concentrations of these phenolics are typically found in the 

surface layer. Accordingly, it has been speculated that these compounds play some role 

in the natural fungal resistance33 of these foods. These phenolics acids have also been 

associated with sour, bitter and astringent flavors found in the vegetable proteins.34 

Hydroxycinnamic acids have also been associated with accelerated browning.35,36 

Because these acids can influence both the color and the flavor of a variety of food 

products, many analytical procedures have been developed for their determination.  

There are number of publications on the titration of carboxylic acids and phenolics 

in non-aqueous media.37-42 But only one report with the titration of cinnamic acids in 

non-aqueous media has appeared.43 
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The non-linear relationship between mV and analyte concentration can be 

modeled by ANN. In this study, we used a four-layer ANN with back-propagation of 

error algorithm for modeling the complex relationship between mV and concentration 

through a multicomponent acid-base titration. In order to decrease the number of data 

points, the data were factor analyzed before entering into ANN. The original data were 

used as input of the neural network. The method was applied to simultaneous 

determination of weak hydroxylated cinnamic acids and hydroxylated benzoic acids 

(i.e., p-coumaric acid (HpC), sinapinic acid (HS), vanillic acid (HV), and izovanillic 

acid (HiV)) in their quarternary mixtures and satisfactory results were obtained.  

 

 
Experimental 

Apparatus 

Electrode potentials were measured using a Hanna HI 9321 Microprocessor 

pHmeter. A glass-silver-silver chloride electrode system was used and the silver-silver 

chloride electrode was modified by replacing the saturated aqueous KCl solution with a 

saturated solution of KCl in methanol. 

 
Reagents 

Analytical reagent grade chemicals were used unless indicated otherwise.  

p-coumaric acid, sinapinic acid, vanillic acid and izovanillic acid were purchased from 

Sigma (99% pure) and used without purification. Tetrabuthylammonium hydroxide 

(TBAOH) was purchased from Merck as a 0.100 M solution in 2-propanol/methanol and 

was diluted with pure, dry 2-propanol to give an approximately 0.020 M solution.  

Throughout the work ca. 2.0×10-3 M solutions of the phenolic compounds were 

titrated (five runs) with 0.0200 M solutions of titrants.  

 
Procedure 

In a typical titration, suitable amounts of individual acids or acids mixture were 

placed in a 50 mL vessel and 5 mL 2-propanol was added to the solution. The solution 

was stirred and titrated with 0.0200 M tetrabuthylammonium hydroxide solution using a 
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micro-burette. The mV was recorded after each 0.02 mL addition of titrant. For each 

solution, at least 70 data point were recorded. 

 
Methodology 

A feed-forward ANN model with four layers of nodes was constructed as in  

Figure 1.  

 

 
 

Figure 1. Network architecture used in the potentiometric titration modeling. 

 

The logistic function was used as the activation function in a neural network. The 

training and testing data sets must be normalized into a range 0.1-0.9. The input and the 

output data sets were normalized by using following equation: 
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where XN is normalized value of a variable (the network input or the network output), X 

is an original value of the variable, and Xmax  and Xmin are the maximum and the 

minimum original values of the variables, respectively. In order to produce sufficient 

data for training and testing of the model shown in Figure 1, 15 different standard 

solutions were prepared using different acid concentrations and each standard solutions 
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1070 data pairs were used for training of the neural network, and the rest of the data 

were used for testing. The root mean square error values were calculated from following 

equation to prove quantitatively the accuracy of the testing results of neural network 

models:  
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where N is the number of testing data and '
1X  is target value. 

 
Results and Discussion 

The acids used in this study are chemically related compounds with close acidity 

constants. Figure 2 and 3 show the mV titration curves of these acids and their mixtures. 

It is obvious that the titration curves of these four acids are overlapped seriously. 
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Figure 2. Titration curves for HpC, HS, HV and HiV with 
tetrabuthylammonium hydroxide. 
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Figure 3. Titration curves equimolar quaternary mixtures with 
tetrabuthylammonium hydroxide. 
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To obtain the best network performance, the optimal network architecture and 

parameters must be chosen. Studies of the network structure include the selection of the 

number of layers and number of nodes in each layer. The number of layers used for this 

neural network modeling was four, i.e. an input layer, one or two hidden layers and an 

output layer. As can be seen from Figure 1, two neurons were used in the input layer, 

which were the mV and volume of titrant (mL). The titrant volume and mV value of the 

solution were considered as independent variables of the potentiometric titration 

method. Therefore, these variables were used as input variables in the network 

architecture. The neurons in the hidden layer were optimized for each acid and mixture 

solutions.  In Table 1, the concentration of standard solutions is represented (or output 

data of the network).  

 
Table 1. Concentration of different acids in quaternary standard solutions. 

Sample  Concentration mM 
number HpC HS HV HiV 

1 0.50 0.40 0.45 0.40 
2 1.00 0.80 0.90 0.95 
3 1.50 1.20 1.35 1.60 
4 2.00 1.60 1.80 2.00 
5 2.00 0.40 0.90 2.00 
6 1.50 0.80 0.45 0.95 
7 1.00 1.20 1.80 0.40 
8 0.50 1.60 1.35 0.90 
9 1.00 0.40 1.35 2.00 

10 0.50 0.80 1.80 1.60 
11 2.00 1.20 0.45 0.90 
12 1.50 1.60 0.90 0.45 
13 1.50 0.40 1.80 0.90 
14 2.00 0.80 1.35 0.45 
15 0.50 1.20 0.90 2.00 

 

The various neural network models, which have the logistic function, were trained 

and tested. In this step, the number of the hidden layer units of the network was 

determined by performance evaluating of the network models defined in Table 2. 

According to RMS errors given in Table 2, the NN 3-17-15-4 model, which performs 

best on the testing data set, were selected as neural network model to predict the acid 

concentrations.  
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Table 2. Comparison of the performances of the neural network models. 

                 RMS error 
HpC HS HV HiV 

Model Training Testing Training Testing Training Testing Training Testing
NN1 
2-17-
11-4 

0.1855 0.21184 0.1195 0.18854 0.02572 0.03281 0.24539 0.21965

NN2 
2-17-
13-4 

0.00497 0.00563 0.00351 0.00463 0.0177 0.0693 0.02368 0.02855

NN3 
2-17-
15-4 

0.000394 9.03x10-5 0.000315 7.0276x10-5 0.00039 0.000193 0.000566 0.000229

NN4 
2-17-
17-4 

0.03814 0.1025 0.02479 0.029984 0.04107 0.1874 0.05684 0.23684

NN5 
2-17-
21-4 

7.0276x10-5 0.02401 0.1893 0.2469 9.03x10-5 0.03154 0.006847 0.00899

 

 
Figure 4. Comparison of predicted results from the NN3 model with target values from the 
actual values HpC, HS, HV and HiV for the training data set. 
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Figure 4 shows parity plots of predicted values of acid concentrations from NN3 

model and the output values for the training data set. Figure 5 represents correlation 

between the outputs of the NN3 model and the target values from the actual values for 

the testing data set. Predictions with a RMS error of less than 0.001 for all acids 

indicated that each acid concentration in a given solution was accurately predicted by 

using the NN3 model. In addition to this, there is a good agreement between actual 

(target) results and predicted results from the model structured (see Figures 4 and 5). 

     

    
Figure 5. Comparison of predicted results from the NN3 model with target values from the 
actual values HpC, HS, HV and HiV for the testing data set. 

 
Furthermore, several additional solutions, were prepared and titrated to show validation 

of the model selected.  Experimental results and estimated results from the model were 

given in Table 3. As can be seen from the table, the error in the obtained estimation is at 

negligible level. The percent relative standard error of prediction is varied between -12.4 

and 7.68.  The low average relative error of prediction (<4.18%) indicates that the 
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networks used can properly process the titration data and model the complex 

relationship between the concentration of acids in the mixture and mV data at different 

volumes of the titrant. 

 
Table 3. Statistical parameters calculated for the prediction set using optimized neural network models. 

Acid mixture composition 
HpC HS HV HiV  

Actual 
(mM) 

Predicted 
(mM) 

RE % Actual 
(mM) 

Predicted 
(mM) 

RE % Actual 
(mM) 

Predicted 
(mM) 

RE % Actual 
(mM) 

Predicted 
(mM) 

RE %

1 
2 
3 
4 
5 
6 
7 
8 

0.616 
0.553 
0.9 
0.754 
0.697 
0.264 
0.9 
0.6333 

0.60764 
0.55925 
0.86005 
0.76745 
0.72573 
0.23109 
0.883 
0.61445 

-1.35 
1.13 

-4.43 
1.78 
4.12 

-12.4 
-1.88 
-2.97 

0.296 
0.804 
0.816 
0.715 
0.449 
0.268 
0.35 
0.24 

0.3 
0.84271 
0.845 
0.72337 
0.43093 
0.28643 
0.362 
0.2376 

1.35
4.81
3.55
1.17

-4.02
7.68
4.85

-1.00

0.1 
0.572 
0.9 
0.214 
0.367 
0.9 
0.633 
0.9 

0.094 
0.56384 
0.91279 
0.19251 
0.38 
0.958 
0.66183 
0.925 

-6.00
-1.42
1.42

-10.0
3.63
6.44
4.50
2.77

0.491 
0.56 
0.804 
0.28 
0.484 
0.732 
0.384 
0.547 

0.49829 
0.57515 
0.8515 
0.25639 
0.51415 
0.74558 
0.396 
0.57609 

1.48
2.70
5.90

-8.43
6.22
6.20
3.12
5.31

 
Conclusions 

Acid concentrations of these potentiometric titrations could be estimated by the 
neural network with an error that might easily be negligible. The neural network 
modeling could process the non-linear relationship between the mV of solutions at a 
given volume of titrant, and predict the concentration of acids in unknown sample 
solutions. For all acids, low prediction errors (<4.18%) and high correlation coefficients 
(0.9918, 0.9921, 0.9932 and 0.9930 for HpC, HS, HV and HiV, respectively) emphasize 
the high linear relationship between the predicted and actual concentrations. 
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Povzetek 

V opisani raziskavi smo opravili potenciometrično titracijo dveh hidroksicimetovih kislin  
(4-hidroksicimetove kisline in 4-hidroksi-3,5-dimetoksicimetove kisline) in dveh 
hidroksiliranih benzojskih kislin (3,4-dihidroksibenzojske kisline in 3-hidroksi-4-metoksi 
benzojske kisline) s tatrabutilamonijevim hidroksidom v 2-propanolu v dušikovi atmosferi 
pri 25 °C. Za multikomponentno kalibracijo pri nevtralizacijski titraciji smo uporabili 
umetne nevronske mreže (UNM). UNM z vzvratnim širjenjem napake smo uporabili za 
modeliranje kompleksnih nelinearnih povezav med koncentracijo kislin in potencialom 
raztopine v mV pri različnih dodatkih titrne raztopine. Kot vhodne podatke za UNM smo 
uporabili glavne komponente matrike potencialov v mV. Optimizirana UNM je uspešno 
napovedovala koncentracije posameznih kislin v sintetični mešanici. Predstavljen model 
UNM lahko napove koncentacije prisotnih kislin iz podatkov titracijske krivulje s 
povprečno realtivno napako manj kot 4,18%. 


