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Human metabolism was studied in three different projects focusing on different levels of
inactivity. Urine, liquor and serum metabolomics were used to assess the impact of nusinersen
treatment in patients with spinal muscular atrophy. Urine samples were contrasted with
samples from matching healthy cohort. In the PreTerm project, metabolomics (fecal and urine)
and fecal microbial metagenomics were used to assess the differences between preterm and
full-term born adults. In the X-Adapt project, urinary metabolomics was used to evaluate the
10-day training regime and the differences between trained and untrained individuals. In all
projects, classification models based on different data sets were developed as a proof of
principle and to foster their use in future studies or possibly in medical diagnostics. In addition,
two workflows (GUMPP and MAGO tool) and a method to study physicochemical parameters
(minimum pressure of piercing strength) were developed to study the microbiome and its
environment, respectively. The final work resulted in the creation of the first Slovenian urine
'"H-NMR database, which consists of 1200 urine metabolomes from different projects
(PlanHab, Spinal Muscular Atrophy, X-Adapt, PreTerm, Healthy males and females)
measured by 'H-NMR, outlining the baseline for future extensions. The entire database can
be used to build machine-learning models for classification between different diseases or
levels of physical activity at a national level.
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V okviru vecih projektov smo preucevali metabolome preiskovancev z razli¢énimi stopnjami
neaktivnosti. Za oceno ucinka zdravljenja z zdravilom nusinersen pri bolnikih s spinalno
misi¢no atrofijo smo uporabili metabolomiko urina, likvorja in seruma. Dodatne vzorce urina
smo primerjali s tistimi iz zdrave kontrolne skupine. V projektu PreTerm smo s kombinacijo
metabolomike fecesa in urina ter z metagenomiko fekalnega mikrobioma raziskovali razlike
med pred€asno in pravocasno rojenimi odraslimi. V projektu X-Adapt smo z metabolomiko
urina ocenili u€inke 10-dnevnega rezima treninga in razlik med treniranimi in netreniranimi
posamezniki. V vseh projektih smo na zbranih podatkih razvili modele za razvrS¢anje skupin
z namenom razvoja analitskih poti ter prikaza moZnostjo uporabe teh modelov v prihodnjih
Studijah ali morda v medicinski diagnostiki. Poleg tega sta bila razvita dva cevovoda (orodje
GUMPP in MAGO) ter metoda za preucevanje fizikalno-kemijskih parametrov (minimalna
prebodna sila) za preuc¢evanje mikrobioma in njegovega okolja. Kon¢ni rezultat analize je bila
izdelava prve slovenske metabolomske baze podatkov '"H-NMR urina, ki jo sestavlja 1200
metabolomov urina iz razliénih projektov (PlanHab, Spinalna misi¢na atrofija, X-Adapt,
PreTerm, Zdravi moski in Zenske), merjenih z 'H-NMR, ki predstavljajo osnovo za prihodnje
raz$iritve iz novih projektov. Celotno bazo podatkov je mogoce uporabiti za gradnjo modelov
strojnega ucenja za razvrScanje med razli¢nimi boleznimi ali stopnjami telesne aktivnosti na
nacionalni ravni.
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1 INTRODUCTION

This study built upon our past work in the field of metagenomics and metabolomics and significantly
extended our analytical approaches developed for the Planetary Habitat simulation project (PlanHab)
(Debevec et al., 2014; Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018), which was used to
study the short-term and reversible effects of human host physical inactivity. The effects of short-
term inactivity resulted in maladjustments in physiology, intestinal microbiota, and metabolomic
profiles giving rise to increased inflammation, depression, and insulin resistance, resembling
metabolic syndrome and type 2 diabetes symptoms. In contrast, the effects of long-term physical
inactivity, the lack of oxygenation (e.g., cardiovascular fitness) and signals from large body muscles
(e.g., lower limbs) are not well understood despite their direct and widespread biomedical relevance
for people delivered preterm and/or genetic disorders, such as Spinal Muscle Atrophy (SMA),
obesity, cardiovascular deconditioning, chronic obstructive pulmonary disease, and many other
noncommunicable diseases.

To extend our understanding in the field of human physiology in relation to human gut microbiome,
a diverse range of samples was collected within the following three major projects: i) the
physiological responses at adulthood as a result of preterm delivery (PreTerm project; ARRS J3-
7536; EU project https://recap-preterm.eu/); ii) the Spinal Muscular Atrophy (project at the University
Clinical Centre Ljubljana) as an extreme case of physical inactivity, and iii) cross-adaptation between
heat and hypoxia: a novel strategy for performance and work-ability enhancement in various
environments (X-Adapt; research project ARRS J5-9350). The SMA and PreTerm projects dealt with
the lifelong exposure to systemic effects of reduced physical activity that can be summarized as
following: 1) intermittent episodes of systemic hypoxia at rest/sleep (PreTerm), and ii) continuous
systemic hypoxia due to reduced physical activity of the host and the alleviation of hypoxia after
therapy. The X-Adapt project dealt with the influence of a standard 10-day training regime on the
physiology of healthy trained and untrained individuals. The biochemical characterization of bodily
fluids collected within the three projects was used to explore the biochemical makeup (metabolites)
and their interactions (metabolic pathways) next to the differences between studied groups. The
PreTerm and X-Adapt projects contained healthy baseline data collection for the SMA project to
determine the different metabolic pathways between the healthy and affected groups, as well as before
and after SMA genetic treatment. Additionally, samples from healthy individuals and their children
(father and sons, mothers and daughters) were collected to match those of SMA group and in addition
to provide a baseline healthy cohort for metabolomic database. As a result, a national Slovenian urine
nuclear magnetic resonance (NMR) database was established with the intent to enable distinction
between various “diseased” groups of participant form “healthy” group of participants based on urine
metabolites in the future. The extended inclusion of novel samples is planned.
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In addition, little is known about the existence of differences in the human-gut microbiome
relationship due to the lifelong exposure to hypoxic episodes in the preterm (compared to full-term
born adolescents (The PreTerm project)) that could affect the functionalities and metabolism of
microbiomes within such hosts and be linked to the various physiological differences observed
globally between the two groups in previous research (Martin et al., 2018).

In short, a high number of wet-lab measurements was conducted on a large number of parameters,
utilizing makeup of three major projects in the field of biomedical science, utilizing metagenomics,
metabolomics, bioinformatics, and data integration approaches. The data generated within each
‘omics technology was analysed and finally integrated to gain better understanding of humans as
(holobiont) systems.

1.1 HUMAN SYSTEMS BIOLOGY AND HEALTH

Systems medicine or systems biology is a relatively new term (even as of 2022) that combines the
application of systems biology concepts, methods, and analytical tools to scientific research and
medical practice. The main goal of systems medicine is to integrate data from different levels of
research into biomedical models that can predict the behaviour of a system, enhance our
understanding of it, and ultimately be used in the prevention, cure, or treatment of disease. These
approaches are utilized to study the daunting complexity of chronic (noncommunicable) and acute
diseases, be they in humans, animals, or plants. Noncommunicable diseases were shown to develop
slowly over prolonged periods of time (years to decades; Alzheimer’s disease, type 2 diabetes,
metabolic syndrome, insulin resistance, psychological disorders, etc.). Multiple factors were shown
to contribute to the development of particular disease types, making them even more complex to study
and understand. These factors range from host gene variants, epigenetic regulation of expression, to
the microbiome and its metabolic activities, all in response to detrimental environmental factors (e.g.,
sedentary lifestyle, diet, stress, hydration, circadian rhythm, etc.) (Craig, 2008; Bousquet et al., 2011;
Mizeranschi et al., 2016)). The term “system” has thus far been used depending on the scale of the
study domain to describe behaviour at selected chemical compounds at the molecular level, extending
to its reaction (an enzyme bound to a ligand) or a microbe or complex microbiome at the level of a
single human gut or the population globally. Consequently, a system can be observed at different time
and size scales (a few milliseconds and a few micrometres compared to the entire human body and
70 years) (Noble, 2002; Hunter and Nielsen, 2005). At the same time, the surrounding short- and
long-term environment with its physical and chemical parameters exerts significant multivariate
effects on the entire system of observation (diet, level of activity, use of medications, society, etc.).
From this point of view, the microbiome is only one subsystem of the many present in human body,
which interacts in many directions over various ‘omic layers, thus generating a complex network of
interfering signals acting differently over time and space (Figure 1, (Stres and Kronegger, 2019)).
The first step in the systems medicine approach is to identify the key structuring variables important
for systems functioning out of all that are measured in relation to the nature of the disease. In the
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design of ‘omics studies, each layer of ‘omics data provides a list of differences associated with the
disease state relative to previous time point or healthy state. Analysing a single type of ‘omics data
in the absence of other datasets has the potential to generate oversimplified conclusions; therefore,
researchers should integrate various types of ‘omics data from large cohorts (Hasin et al., 2017).
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Figure 1: Interactions between biological systems (Kronegger and Stres, 2019, Hasin et al., 2017).
Bidirectional interaction between different biological systems (e.g. Microbiome and human), between ‘omics layers
((meta)genomics, transcriptomics, proteomics, metabolomics) and within individual ‘omic layers.

Slika 1: Interakcija med bioloskimi sistemi (Kronegger in Stres, 2019; Hasin in sod., 2017).
Obojestranska interakcija med razlicnimi sistemi (npr. Mikrobiomom in c¢lovekom), med ‘omskimi nivoji
((meta)genomiko, transkriptomiko, proteomiko, metabolomiko) in znotraj posameznih ‘omskih nivojev.

The rise of ‘omics technologies has enabled researchers to measure thousands of data points; this
ability is now at the heart of systems biology and medicine. These high throughput technologies
(genomics, transcriptomics, metabolomics, proteomics) enabled the discovery of complex sets of
biomarkers describing healthy and disease states that can be objectively measured and evaluated.
These variables can be used as indicators of a biological process (healthy versus diseased, active
versus inactive, pre-treatment versus post-treatment) in the data-driven top-down research coupled to
multivariate statistics and machine learning/artificial intelligence. Using high-throughput methods for
analysis that capture the properties of systemic homeostasis and dysregulation, we can examine a
large number of ‘omic markers (also called “biochemical entities”) simultaneously (Biomarkers
working group, 2001; Holmes et al., 2008b; Fanos, 2016; Tebani et al., 2016; Apweiler et al., 2018;
Gallo Cantafio et al., 2018). In this work, metabolomics and microbial metagenomics were used as
the ‘omics methods of choice.
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1.1.1 Metabolomics

Metabolites are small molecules (< 1 kDa) in body fluids such as urine and serum. All metabolites
detected in samples are part of the metabolome, which a quantitative description of low molecular
weight molecules in a biological sample above the detection threshold of analytical approach. The
metabolome is controlled partially by the host genome (primary metabolome), but it also depends on
the microbiome metabolic activity (co-metabolome) (Holmes et al., 2008a; Vignoli et al., 2019) in
response to changing local and outer environments. Using different spectroscopy methods (nuclear
magnetic resonance, mass spectrometry (MS)), metabolic profiles can be analysed at a precise time
point. This provides a top-down view of the biochemical processes that occur due to physiological
status or environmental exposure (Barr, 2018). The genome is (as currently accepted) unchanged
throughout the life span of an individual compared to the high responsiveness and fluidity of
metabolome. The latter is heavily influenced by environmental factors such as gender, age, diet,
physical activity, health status, and microbiome, to name the most relevant. Metabolome-wide
association studies are improving the understanding of the relationship between metabolic profiles
and disease risk factors in the general population (Holmes et al., 2008b; Elliott et al., 2015; Vignoli
et al., 2019). Metabolomics complements functional metagenomics by mapping the complex
metabolic interactions between the host and microbiota via metabolic profiles, compound identity
and quantity, characterization of unknown small molecules produced by microbes, and defining the
biochemical pathways of metabolites and biochemical reactions (Peisl et al., 2018).

In the previous two decades, NMR has become one of the most important methods for measuring
metabolites in different samples (liquid or solid) (Emwas et al., 2019; Wishart, 2019). It is based on
the quantum mechanical property (spin) of each nucleus in the molecule. When a nucleus is excited
in a magnetic field, a frequency domain spectrum with a peak corresponding to the frequency of the
nucleus can be scanned. The frequency, or chemical shift, is reported in parts per million (ppm), and
the amplitude of the peak corresponds to the number of nuclei present in the sample (Figure 2). Both
can be used to determine the concentration of a molecule in the sample (Maguire, 2014; Keun and
Athersuch, 2022). 'TH-NMR spectroscopy is used in the majority of NMR based studies. Protons ('H)
are present in every metabolite and exhibit the greatest NMR signal sensitivity (Emwas et al., 2019).
NMR spectra are usually recorded in water and therefore require solvent suppression (Zheng and
Price, 2010; Giraudeau et al., 2015). Compared to MS, the NMR method is robust and reproducible,
requires minimal sample preparation, sample measurement is rapid and robust, hence highly
replicable; at the same time, it is non-destructive, no chemical derivatization is required, and all types
of metabolites can be measured simultaneously and automatically (Table 1). However, the analytical
sensitivity is low (10 to 100 times lower than MS), the spectra are complex and computationally
intensive to deconvolute, and the NMR spectrometer requires a significant amount of physical space
compared to MS. NMR detects molecules at concentrations greater than 1 uM, while MS can detect
molecules at concentrations greater than 10 nM (Emwas et al., 2019; Wishart, 2019).
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Figure 2: Representative spectra obtained in the X-Adapt study.

Slika 2: Spektri pridobljeni v okviru projekta X-Adapt.

Table 1:
(Wishart, 2019).

Preglednica 1:
2019).

NMR

MS

Non-destructive (sample)

Robust instrumentation

Instrument downtime minimal

Excellent reproducibility

Simple sample preparation

No requirement for
chromatography

No need for chemical derivatization

Spectra are predictable

Allows precise structure
determination

Inherently quantitative

Easily automated workflow

Poor to moderate sensitivity (LWM)

Modest metabolite coverage

Very expensive instrumentation

Large instrument footprint
Requires cryogens
Expensive to maintain
Small spectral databases
Few software resources

Destructive (sample)

Frail instrumentation

Instrument downtime frequent
Moderate reproducibility
Complex sample preparation
Requirement for chromatography

Frequent need for chemical
derivatization

Spectra not very predictable

Allows partial structure determination

Not inherently quantitative
Difficult-to-automate workflow
Excellent sensitivity (nM)
Extensive metabolite coverage
Moderately expensive
instrumentation

Small instrument footprint
No required cryogens
Moderately expensive to maintain
Large spectral databases
Many software resources

NMRExperiment
xadapt_22

—— xadapt_33

= xadapt_70
xadapt_86

Representation of differences between nuclear magnetic resonance (NMR) and mass spectrometry (MS)

Primerjava razlik med jedrsko magnetno resonanco (NMR) in masno spektrometrijo (MS) (Wishart,
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Thus far, 'TH-NMR has been used to investigate the modulation of metabolites on cellular stress
(Lindon et al., 2003), breast cancer markers (Bro et al., 2015), acute pancreatitis (Dumas et al., 2014),
the influence of the metabolome on health and disease (Marin et al., 2015), biomarkers for Crohn’s
disease and ulcerative colitis (Bjerrum et al., 2015), obesity (Zhang et al., 2015), and coronary heart
disease and stroke (Holmes et al., 2008a; Murovec et al., 2018; Sket et al., 2018; Vignoli et al., 2019).
However, it is very difficult to distinguish between microbial and human metabolites. The metabolism
of all parts of the holobiont (human cells and microbial cells) is highly dynamic and variable. For this
reason, some authors have used the term “dark matter” of metabolomics, which (in short) means that
some metabolites have already been described, but orders of magnitude higher numbers of other
metabolites remain unknown. With each study, the data increase which will aid in illuminating the
metabolomic dark matter. Modern statistical approaches and data integration combined with ongoing
‘omics research and methods development will accelerate the reduction of dark matter and reveal new
insights, which will lead to the use of metabolomics methods in general diagnostics (da Silva et al.,
2015; Peisl et al., 2018).

1.1.2 Microbial metagenomics

Classical microbiological approaches such as cultivation methods are notoriously incomplete,
tedious, irreproducible, and ineffective as only 1% of microorganisms (out of 1500 species) can be
easily cultured. For the study of the entire gut microbiome system (microbiome, host, and
environment), top-down approaches have taken the leap forward with the introduction of ‘omics
technologies (Stres and Kronegger, 2019; Lin et al., 2021). For decades, amplicon sequencing was
the most commonly used method in microbiome research. The most commonly used gold standard
for amplicon sequencing was the sequencing of the gene for 16S rRNA. Variable regions of 16S
rRNA are used to determine taxonomic profiles of the microbiota. The major weakness of this method
is that we can only determine which taxa are present in the sample, and this can be effectively
accomplished only down to the genus level, while species or strain resolution cannot be achieved. In
addition, the functional potential of such a community remains obscured as only predictions of
functional genes, metabolic pathways involved in the community of interest can be accomplished
utilizing different tools such as Picrust2 tool (Langille et al., 2013b; D’ Amore et al., 2016; Sinha et
al., 2017; Fricker et al., 2019; Douglas et al., 2020). Recently, pipelines for automated analysis of
amplicon sequences have been developed for more standardized and efficient analysis on high-
performance computing clusters (HPC) (Murovec et al., 2020). The amplicon-sequencing approach
is fast, simple, and requires low-cost sample preparation and analysis. However, it is not possible to
distinguish living, dead or active microbes. The amplification method can lead to biases (selection of
primers for PCR reaction), requires negative control, and functional information is limited (Knight et
al., 2018).
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Metagenomics, in contrast, uses whole genome shotgun sequencing to fragment and sequence the
entire DNA pool of the microbiome in the sample, rather than just one gene (e.g., gene for 16S rRNA)
as in amplicon sequencing. The data, quality control, and the information derived from this method
are orders of magnitude more comprehensive and enable the recovery of information about phages,
viruses, bacteria, archaea, fungi, protozoa, and human DNA. With this approach there is no need for
gene prediction based on 16S rRNA as functional genes are determined by comparison to complex
gene-family databases with concomitant contamination recognition and removal. With the
development of novel quality control tools (KneadData), microbiome taxonomy can be deciphered at
the species level with MetaPhlAn3 next to the functional genes recovered from the sample
(HUMAnNN3) (Brown et al., 2013; Nayfach and Pollard, 2016; Garud et al., 2019; Beghini et al.,
2021). Due to the tens of thousands up to millions of variables obtained, the analysis of such
datamatrices becomes computationally intensive and requires the utilization of HPC clusters. The
metagenomics approach also allows us to use the latest method in microbial genomics: de novo
metagenome assembly. Metagenomics can reveal microbial taxonomic and phylogenetic identity,
require no PCR amplification, and enable identification of previously known and new species
(MAGs) next to new gene families. However, the metagenomics wet-lab and HPC operations are
currently still very costly (Knight et al., 2018).

Microbiome analyses are currently focusing on the use of metagenomics due to its wealth of data and
reproducible analyses. The microbiome taxonomic description includes the representatives of the
community (microbiota - bacteria, archaea, protists, fungi), while also providing the information on
so-called “theatre of activity” (Figure 3). Therefore, the information provided includes not only
taxonomic descriptions but also molecules produced by these taxonomic units (Whipps et al., 1988;
Berg et al., 2020). This approach is becoming increasingly important as the estimates of the number
of unique microbial genes per single unique human gene are becoming inherently higher over time,
ranging from 50 (Qin et al., 2010) to more than 500 (as of 2022). For this reason, a holistic approach
to the study of this system is required. Taking into account the considerable complexity, it becomes
increasingly more evident that the disruption of the human microbiome and its activities is
significantly associated to the development of various diseases, which in turn depend on the
environment and lifestyle of the host (e.g., human). Various environmental factors can affect the gut
microbiota: diet, medications, cultural habits, physical activity, transit time, gender, local
environment, etc., to variable extent over time and space. (Schmidt et al., 2018; Deutsch and Stres,
2021).
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Figure 3: Differences between “microbiota” and “microbiome” terms (Berg et al., 2020).

Slika 3: Razlike med izrazi “mikrobiota” in “mikrobiom” (Berg in sod., 2020).

Metagenomics has become a powerful tool for understanding host-microbiome relationships and
enables linking biomarkers (genera, species, functional genes) to noncommunicable diseases such as
inflammatory bowel disease (Frank et al., 2007), liver cirrhosis (Qin et al., 2014), diabetes (Giongo
et al.,, 2011; Qin et al., 2012), cardiovascular (Wang et al., 2011b) and Parkinson’s disease
(Scheperjans et al., 2015), colorectal cancer (Kostic et al., 2012), rheumatoid arthritis (Scher et al.,
2013), obesity, metabolic syndrome and others. Therefore, metagenomics has become the currently
most important approach to study the genetic potential of microbial populations in the intestinal tract.

Figure 4 shows the importance of microbiome influence on our future health span (Wilkinson et al.,
2021).
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Figure 4: Increase importance of microbiome research (Wilkinson et al., 2021).
Research of microbiome is becoming more and more important from the angle of improved wellness, timely interventions
and search for biomarkers.

Slika 4: Narascajoca pomembnost raziskovanja microbiome (Wilkinson et al., 2021).
Raziskovanje mikrobioma postaja vedno bolj pomembno iz perspektive izbolj$anja nasih zivljenj, medicinskih intervencij
in iskanja biomarkerjev.

1.1.3 Analysis of data

Both methods (metagenomics and metabolomics) require various steps of quality control and data
processing from the sequences or spectra obtained to the final conclusions. After quality checking the
sequences with programmes such as FastQC, fastp (Chen et al., 2018) or KneadData, the next step is
to obtain actionable sequence data. We can determine which taxa are present in the sample
(MetaPhlAn), identify strains (StrainPhlAn), and determine which functional genes are present in the
sample (HUMAaN3) or even predict metabolites (MelonnPan) (Segata et al., 2012; Beghini et al.,
2021; Mallick et al., 2019). To facilitate the use of such pipelines, workflows were developed by
various groups, such as bioBakery or MetaBakery (in preparation by our group). These workflows
simplify the use of programs for nature scientists, as they do not need to be installed separately and
are already prepared as pipelines that work on HPC cluster as a Singularity images (Kurtzer et al.,
2017) or Docker containers. All of these tools generate various matrices for visualisations, statistics,
modelling, and machine-learning approaches (Costea et al., 2017; Quince et al., 2017; Knight et al.,
2018; Moreno-Indias et al., 2021). These pipelines result in matrices of variables describing the
samples.

As a second option, de novo metagenome assembly represents a second option for metagenomics
data analysis and results in the assembly of novel draft genomes that may represent new and not yet
described species (Yang et al., 2021). Slightly different steps are required. After quality control, the
read sequences have to be assembled. There are different assemblers, including metaSPAdes (Nurk
et al., 2017), megahit (Li et al., 2015) or IDBA-UD (Peng et al., 2012). Assembled sequences are
binned in the next steps using binning tools, such as BinSanity (Graham et al., 2017), CONCOCT
(Alneberg et al., 2014), MetaBat, MaxBin, and DAStool (Wu et al., 2016; Sieber et al., 2018).
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Assembled metagenomes can be scored for quality (% completeness and % contamination) using
CheckM (Parks et al., 2015) according to the MIMAG standard (> 90% complete and < 5%
contamination) (Bowers et al., 2017). All MAGs obtained can be used for annotation with Prokka
(Seemann, 2014) in GeneBank format or analysed with Roary (Page et al., 2015) as pan and core
genomes. ezTree (Wu, 2018) can be used to extract protein-coding single-copy orthologous marker
genes with functional annotation and to build maximum likelihood trees from amino acid sequences.
High-throughput analysis of average nucleotide identity (ANI) of MAGs is used in FastANI (Jain et
al., 2018). All the above programs are available as a single pipeline for MAGs development in MAGO
and prepared for HPC computing as a Singularity image or Docker container (Murovec et al., 2020).
The JSpeciesWS taxonomic threshold web service measures the probability of whether genomes
belong to the same species or not based on their complete or tentative nucleotide sequence (Richter
et al., 2016). For more in-depth analyses, the recently developed Genome Taxonomy Database can
be utilized.

Metabolome profiling is usually performed using either targeted or untargeted methods. Targeted
metabolomics studies (metabolic profiling) focus on the accurate identification and quantification of
a defined group of metabolites in biological samples. Untargeted studies (metabolic fingerprinting)
focus on measuring and comparing as many signals as possible in a sample set, followed by the
assignment of these signals to metabolites IDs using metabolomics databases. NMR measurements
generate spectra that must be processed (Bingol, 2018; Klein, 2021). The untargeted approach does
not require prior knowledge of the metabolites in the sample, so its analysis can be more complex
and difficult (Klein, 2021). NMR spectra can be referenced with an internal chemical shift standard,
such as DSS or TSP, which are the most commonly used standards in the NMR community (Emwas,
2015; Dona et al., 2016; Emwas et al., 2016; Emwas et al., 2018). In the pre-processing step, spectra
must be phased and baseline corrected. With phasing, the absorptive character and symmetry of all
NMR peaks are maximized (Wishart, 2008). Baseline correction is a processing step that removes all
artefacts caused by electronic distortion or incomplete digital sampling, ultimately resulting in a
completely flat part of the spectra in signal-free regions (Emwas et al., 2018). Several elements of the
spectra need to be removed as they represent artefacts originating from protons in water (4.5-4.9 ppm)
and urea (5.5-6.1 ppm). Software for targeted approaches, such as Chenomx NMR Suite, Amix, and
AssureNMR, match the obtained spectra with reference spectra (in Human Metabolome Database
(HMDB) (Wishart et al., 2007a; Wishart et al., 2013; Wishart et al., 2018; Wishart et al., 2022)) to
calculate the concentrations of identified metabolites in the sample (Klein, 2021). Untargeted
approaches can be divided into two groups of spectra processing. The peak-picking approach requires
clearly visible peaks and generates a feature list for the spectral positions of the successfully detected
peaks. This approach is not able to identify low intensity signals or signals with distorted line shapes.
AlpsNMR (Madrid-Gambin et al., 2020), rDolphin (Canueto et al., 2018), or speaq 2 (Beirnaert et
al., 2018) are tools that use the peak-picking approach. The other approach is spectral binning, which
can be used to identify signals that are missed by the peak-picking approach. The data from binning
contain a large number of features from spectral regions. However, they also contain signals from
spectral noise, which can reduce the statistical power of the data analysis in the next step (Klein,
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2021). Data from untargeted approaches often contain negative values. These negative values must
be replaced by an affine transformation of the negative values, which is implemented in the R package
mcrbin (Klein, 2021). The resulting bins or matrices of concentrations and metabolites are processed
for statistical analysis (Ebbels et al., 2013; Barnes et al., 2016).

Metabolomics and metagenomics generate different data matrices with a large number of variables
(taxa, functional genes, enzymatic reactions, metabolic pathways, metabolites) that are variably
associated with different additional datamatrices describing the environmental factors, such as diet or
patient metadata (health status, body mass index (BMI), age, etc.). These data matrices require more
modern statistical approaches that use multivariate statistics (Figure 5). The high dimensionality of
‘omics data can range from 300+ metabolites in NMR metabolomics to several thousand and millions
of variables from microbiomes (taxa, functional genes, enzymatic reactions, metabolic pathways,
predicted metabolites) and require data reduction methods (Argmann et al., 2016; Barnes et al., 2016)
and nonparametric statistical methods (NPMANOVA) (Legendre and Legendre, 2012; Anderson and
Walsh, 2013). Normalization must be used to remove variation between samples and make them
comparable to each other (Emwas et al., 2018). To find the best normalization approach, the web tool
NOREVA was developed to compare 20 different normalization methods (Yang et al., 2020). Scaling
and transformation should also be applied to reduce the stronger influence of analysing features that
are present in larger quantities compared to others, which means that this approach helps to distribute
the data more normally (Ebbels et al., 2013; Emwas et al., 2018). There are two different approaches
to data analysis. First, the unsupervised methods that do not require prior knowledge, such as principal
component analysis (PCA) or hierarchical cluster analysis (HCA), utilize loadings plot created within
PCA analysis to see which feature discriminates target groups of interest (Barnes et al., 2016).
Second, the supervised methods assume that a known structure of patterns exists and use rules to
predict new data. Supervised methods include partial least squares regression discriminant analysis
(PLSDA) (Wold et al., 2001; Trygg and Wold, 2002), regression, and classification. The Variable
Importance in Projection (VIP) score can be used to see which feature contributed the most to
discrimination (Barnes et al., 2016). Supervised methods are very powerful and require validation
methods to confirm the true relationship between different groups (Ebbels et al., 2011). Unsupervised
methods may miss an interesting correlation, while supervised methods are more likely to produce
false positives (Maguire, 2014). Web servers were developed to facilitate the use of these methods,
such as MicrobiomeAnalyst (Dhariwal et al., 2017; Chong et al., 2020), MetaboAnalyst (Chong et
al., 2018; Chong et al., 2019; Pang et al., 2021) or OmicsAnalyst (Zhou et al., 2021).

11



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

Biological Data Clinical Data

! o

Data matrix -

-

Disciminant features §/ x
selection o
=

Predictive model building

(Training set) *a s®

Predictive model validation

External or cross-validation :
(Validation set) W Caniral Prepionic aciduria
B Cysbring Tyroalnamila
W craating detichney

Clinical validation

(Large-scale validation)

Figure 5: Representation of data analysis in multi-omics research (Tebani et al., 2016).

Slika 5: Prikaz analize podatkov pridobljenih z multi-omskimi metodami (Tebani in sod., 2016).

Multivariate statistical methods provide results whose feature can successfully distinguish between
different groups. The next step in modern data science is the machine learning (ML) approach, which
creates models that can be used in the future to diagnose, treat, and predict the health status of
individuals. ML methods rely on algorithms that describe the relationship between variables (Sidey-
Gibbons and Sidey-Gibbons, 2019). ML models, such as Support Vector Machines, K Nearest
Neighbours, Naive Bayes, Random Forest, and others, can be used for this purpose (Cristianini and
Shawe-Taylor, 2000; Shen et al., 2003; Susnow and Dixon, 2003; Bender et al., 2007; Deo, 2015;
Ekins et al., 2019). There is no clear boundary to distinguish statistical from ML methods. In short,
the main goal of the statistical approach is to draw conclusions and inferences about populations
based on measured data. The primary goal of ML methods, in contrast, is to make predictions. The
main steps for ML are (i) importing and preparing the data set, (i1) training the ML model, (iii) testing
the ML model (validating the model), (iv) evaluating the sensitivity, specificity, and accuracy of the
model, (v) plotting the area under the curve and the receiver operating characteristics curve, and (vi)
applying new data to the trained model (Sidey-Gibbons and Sidey-Gibbons, 2019). Regularization
techniques must be used to ensure the correctness of the model. The regularization or penalty
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parameter controls the complexity of the model (controls the number of features included in the
prediction). Each model must be subjected to cross-validation, which means that the data must be
split into a training set (for training the model) and a validation set (for validating the model). Model
validation compares the predictive performance of the selected model if its performance from training
is similar (Teschendorff, 2019). In recent years, AutoML platforms have been created for building
ML models without human intervention JADBIO (Tsamardinos et al., 2020; Tsamardinos et al.,
2022), AutoWEKA (Thornton et al., 2013; Kotthoff et al., 2017), AutoSklearn (Feurer et al., 2021),
GoogleAutoML, RapidMiner) (Mustafa and Rahimi Azghadi, 2021). AutoML has already been
applied in various fields of human healthcare, such as diabetes diagnosis, Alzheimer’s disease,
electronic medical record analysis, and medical imaging (Borkowski et al., 2019; Karaglani et al.,
2020; Tsamardinos et al., 2020; Waring et al., 2020; Mustafa and Rahimi Azghadi, 2021). AutoML
automates the main processes of ML, from data preparation to feature extraction and selection,
algorithm selection, hyperparameter optimization and evaluation (Feurer et al., 2015; Kotthoff et al.,
2017; Hutter et al., 2019; Mustafa and Rahimi Azghadi, 2021). However, experienced data scientists
are still required to professionally evaluate the results obtained with AutoML (Mustafa and Rahimi
Azghadi, 2021).

For proper interpretation of the obtained results, the right data integration process should be used.
Identifying a combination of distinguishing characteristics satisfies biological assumptions that
cannot be satisfied by univariate methods. Therefore, the combination of different statistical methods
(univariate, multivariate, machine learning) provides the key to answer complex biological questions.
The mixOmics-R package (Rohart et al., 2017; Singh et al., 2019) is dedicated to the multivariate
analysis of biological datasets with a particular focus on data exploration, dimensionality reduction
and visualisation, thus providing a systems biology approach, a wide range of methods that
statistically integrate multiple datasets simultaneously to explore relationships between
heterogeneous ‘omics datasets to identify molecular signatures. mixOmics supports the inclusion of
different types of biological data and their analysis beyond the scope of ‘omics, as long as they are
expressed as continuous values.

The other important issue should also be discussed. Batch effects are an important part of the natural
sciences. Different processing, different samples can lead to spurious findings and obscure the true
signals due to differences in experiments and methods. Biological studies depend on many different
factors. This can lead to confounding factors that are unavoidable and come from biological,
technical, and computational sources (Ma et al., 2019; Wang and L¢é Cao, 2020). Batch effects are an
obstacle to comparing the results of different studies. Traditional meta-analysis techniques for
combining p-values from independent studies, such as Fisher’s method, are effective but statistically
conservative. If batch effects can be corrected, statistical tests can be performed on data pooled across
studies, increasing the sensitivity for detecting differences between treatment groups. Removing or
accounting for batch effects requires computational and analytical multivariate methods (Wang et al.,
2019), such as ConQuR (Ling et al., 2021) or ComBat (Gibbons et al., 2018). Most of the above-
mentioned methods were use in different projects of this work (Figure 6).
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Slika 6: Metode analize podatkov zajete v tem delu.

Bayes network utility]
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1.2 INACTIVITY

Physical inactivity associated with the modern sedentary lifestyle (Figure 7) is becoming a global
problem and is ranked as the fourth largest behavioural risk for mortality worldwide (Kohl et al.,
2012; Kelly et al., 2020a). Every adult should engage in at least 75 minutes of vigorous physical
activity per week or 150 minutes of moderate physical activity per week (Sallis et al., 2016), engage
in muscle training twice per week, and try to spend as little time as possible in a sedentary position
(Kelly et al., 2020a). Regular physical activity reduces the risk of obesity, some cancers, diabetes,
coronary heart disease, stroke, dementia, etc. (Booth et al., 2012). Several observational, short-term
and long-term intervention studies have used different metabolomics methods to monitor changes in
physiological levels due to inactivity as they change following different exercise regimes (Kelly et
al., 2020a). Varying levels of physical activity are associated with quantifiable changes in the
metabolic profile of individuals. Possible changes may be observed in metabolism of fatty acid,
cholesterol and carnitine, lipolysis, the tricarboxylic acid (TCA) cycle, glycolysis, and insulin
sensitivity (Kelly et al., 2020a). Metabolic syndrome has a number of risk factors associated with the
development of type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Biogenic amines,
such as trimethylamine N-oxide (TMAO), choline and L-carnitine (all found in red meat), and
branched-chain amino acids may increase the likelihood of metabolic syndrome. In contrast, histidine
and lysine correlate with a lower likelihood of metabolic syndrome. Moreover, there is a plethora of
molecules, and more research is needed to understand their role in the development of metabolic
syndrome (Lent-Schochet et al., 2019). Inactivity also causes hypoxic conditions leading to redox
imbalance, which may also be observed on metabolic levels. Differentially expressed levels of
creatine, hypoxantine, acetylcarnitine, and taurine were reported, due to hypoxic conditions (Crass
and Lombardini, 1977; Franconi et al., 1985; Malcangio et al., 1989; Aureli et al., 1994; Michalk et
al., 1997; Amano et al., 2003; Chen et al., 2009; Scafidi et al., 2010; Powers et al., 2011; Chen et al.,
2013; Turner et al., 2015; Scheer et al., 2016; Lee et al., 2017; Sibomana et al., 2021; Wilken et al.,
2022). Inactivity also leads to muscle loading (alteration I muscle protein synthesis) and heart failure
(Rittweger et al., 2016), both leading to systemic hypoxemia and elevated levels of reactive oxygen
substances (ROS). For the majority of people, life can be improved with moderate activity. Physical
exercise is one of the main stimuli in restoring prooxidant to antioxidant balance in chronic disease
patients (Vincent at el., 2007). Sitting less and moving more (low-to-moderate exercise) or a staircase
approach with an increase in activity can prevent the development of metabolic syndrome (Debevec
et al., 2017; Dunstan et al., 2021). However, this approach must be considered a never-ending story,
which means that physical activity must continue even if health has improved (Figure 8). However,
there are also people who face various health problems from birth (premature born infants, patients
with spinal muscular disease) and whose possibilities of being physically active are limited, such as
in spinal muscular atrophy, which will be discussed later in this work.
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Figure 7: Lifestyle of modern humans (Dunstan et al., 2021).

Slika 7:  Zivljenjski stil modernega &loveka (Dunstan in sod., 2021).
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Figure 8. Staircase approach for increased activity level (Dunstan et al., 2021).
Staircase approach should be used to increase level of activity with small steps towards reduced probabilities of
reducing non-communicable disease.

Slika 8. Postopno povecevanje aktivnosti (Dunstan in sod., 2021).
Postopno povecevanje aktivnosti z majhnimi koraki zmanjsa verjetnost kroni¢nih bolezni.

1.3 PURPOSE OF THE RESEARCH

As stated above, three biomedically relevant reduced-exercise models form the backbone of our
current work (Figure 9). The overall aim of our research was to determine the physiological responses
at metabolic level to different levels of physical (in)activity and health status (PreTerm, SMA, X-
Adapt) in relation to personal characteristics of participants.

To achieve this goal, it was necessary to prepare the entire infrastructure of bioinformatics analytical
pathways for pre-processing of molecular data and the correct statistical, modelling, and integration
approaches for data processing and interpretation.
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Within each project, additional explorations were made based once different ‘omics layers are made

available in our measurements (Figure 8):

1) PreTerm ((taxonomy (Bacteria, Archaea, Fungi, Protozoa, Viruses) + functional genes +
metabolic pathways + predicted metabolomes + MAGs assembly)) coupled to 'H-NMR
metabolomics (metabolites + metabolic pathways);

i) SMA ("H-NMR metabolomics (metabolites + metabolic pathways));

1i1) X-Adapt ("H-NMR metabolomics (metabolites + metabolic pathways))

1v) Healthy baseline ("H-NMR metabolomics)

Omics
Metagenomics Metabolomics
technoloy
Functional | metabolic | predicted 1H-NMR | metabolic | 1H-NMR | metabolic | 1H-NMR | metabolic | 1H-NMR | metabolic
Taxonomy (B,AF,P,V) ) MAGs X X . )
genes pathways |metabolites metabolites| pathways |metabolites| pathways [metabolites| pathways |metabolites| pathways

Omics layer
PreTerm
SMA
X-adapt
Healthy

Figure 9: Graphical presentation of collected samples and ‘omics layers.
Graphical presentation of collected samples and ‘omics layers in PreTerm, SMA and X-Adapt projects. In addition, a
healthy urine database was also collected, and it represents healthy baseline for Slovenian NMR urinary database.

Slika 9: Grafi¢na predstavitev pobranih vzorcev in ‘omskih nivojev
Grafi¢na predstavitev pobranih vzorcev in ‘omskih nivojev v projektih PreTerm, SMA in X-Adapt. Dodatno so bili Se
pobrani vzorci zdravih, ki predstavljajo bazno linijo za Slovensko NMR podatkovno bazo.

1.4 HYPOTHESES

1.4.1 PreTerm related

The PreTerm-related hypotheses are discussed in the published paper presented in chapter 2.1.7 and
additionally in chapters 2.2.1 and 3.1.6.

HO: No significant difference exists between preterm and term groups of participants at the levels of
faecal or urine metabolomes or faecal metagenomes.

HI1: There are significant differences between preterm and term groups of participants in faecal and
urine metabolomes that can be linked to their physical performance in experiments and physiological
data at exercise and rest.

H2: There are significant differences at the level of metagenomics makeup of both groups, giving rise
to identification of specific metabolic pathways differing between the two groups and their gut

environment characteristics.
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H3: Term and preterm gut samples contain specific MAGs associated with differences in gut
environmental conditions between the two groups.

1.4.2 SMA related

The SMA-related hypothesis is discussed in published paper presented in chapter 2.1.3 and
additionally in chapter 3.1.4.

HO: There are no significant differences in metabolomes before and after treatment.

H1: There are significant differences in urine (systemic) and liquor (local) metabolomes before and
after treatment with gene therapy, enabling identification of characteristic metabolic pathways
discerning the two groups.

1.4.3 Hypotheses of merged dataset
Hypotheses of the merged dataset are discussed in chapters 2.2.2 and 3.1.7.

HO: There is no significant difference between metabolomes of prematurely born, born on time,
before SMA treatment, and after SMA treatment groups.

HI1: There are significant differences in urine metabolomes that enable identification of biomarker
pools and metabolic pathways delineating various groups under investigation.
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2 SCIENTIFIC WORKS
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2.1.1 Computational framework for high-quality production and large-scale evolutionary
analysis of metagenome assembled genomes

Murovec B., Deutsch L., Stres B. 2019. Computational framework for high-quality production and
large-scale evolutionary analysis of metagenome assembled genomes. Molecular Biology and
Evolution, 37, 2: 593-598

Abstract

Microbial species play important roles in different environments and the production of high-quality
genomes from metagenome data sets represents a major obstacle to understanding their ecological
and evolutionary dynamics. Metagenome-Assembled Genomes Orchestra (MAGO) is a
computational framework that integrates and simplifies metagenome assembly, binning, bin
improvement, bin quality (completeness and contamination), bin annotation, and evolutionary
placement of bins via detailed maximum-likelihood phylogeny based on multiple marker genes using
different amino acid substitution models, next to average nucleotide identity analysis of genomes for
delineation of species boundaries and operational taxonomic units. MAGO offers streamlined
execution of the entire metagenomics pipeline, error checking, computational resource distribution
and compatibility of data formats, governed by user-tailored pipeline processing. MAGO is an open-
source-software package released in three different ways, as a singularity image and a Docker
container for HPC purposes as well as for running MAGO on a commodity hardware, and a virtual
machine for gaining a full access to MAGO underlying structure and source code. MAGO is open to
suggestions for extensions and is amenable for use in both research and teaching of genomics and
molecular evolution of genomes assembled from small single-cell projects or large-scale and complex
environmental metagenomes.

QO]

This work was published as an Open Access article distributed under the terms of the Creative
Commons Attribution Non-Commercial License (CC-BY-NC 4.0).

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2
(page 142).
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Abstract

Microbial species play important roles in different environments and the production of high-quality genomes from
metagenome data sets represents a major obstacle to understanding their ecological and evolutionary dynamics.
Metagenome-Assembled Genomes Orchestra (MAGO) is a computational framework that integrates and simplifies
metagenome assembly, binning, bin improvement, bin quality (completeness and contamination), bin annotation,
and evolutionary placement of bins via detailed maximum-likelihood phylogeny based on multiple marker genes using
different amino acid substitution models, next to average nucleotide identity analysis of genomes for delineation of
species boundaries and operational taxonomic units. MAGO offers streamlined execution of the entire metagenomics
pipeline, error checking, computational resource distribution and compatibility of data formats, governed by user-
tailored pipeline processing. MAGO is an open-source-software package released in three different ways, as a singularity
image and a Docker container for HPC purposes as well as for running MAGO on a commodity hardware, and a virtual
machine for gaining a full access to MAGO underlying structure and source code. MAGO is open to suggestions for
extensions and is amenable for use in both research and teaching of genomics and molecular evolution of genomes
assembled from small single-cell projects or large-scale and complex environmental metagenomes.

Key words: metagenomics, evolutionary analyses, microbial draft genomes, species boundaries, FastANI, genome
assembly and binning.

Microbial species play important roles in different environ-
ments characterized by a span of organismal complexities.
The shotgun sequendng coupled to metagenomic analyses
are used to study microbial communities in these environ-
ments. The analysis and biological interpretation of sequence
information derived from complex communities or single-
amplified cell communities represented as metagenome or
whole-genome sequencing data sets, respectively, is challeng-
ing and crucially depends on sophisticated computational
resources and analyses. These include various pieces of soft-
ware and steps (e.g, read assembly, binning, annetation, bin
evaluation) next to program-specific settings, file format con-
versions and decision points that require and consume sub-
stantial time, computational resources and may introduce
unintended bias (Sczyrba et al. 2017). Obtaining genomes
from metagenomes is an emerging approach with the poten-
tial for large-scale recovery of high-quality near-complete
genomes amenable for analyses of their evolutionary

divergence, evolutionary dynamics, and abundance in original
samples (Meyer et al. 2018).

Advances in computational tools have improved our abil-
ity to address relevant evolutionary questions. However, com-
putational costs for hundreds of samples are measured in
tenths of thousands of CPU hours. The development of highly
successful tools such as FastQC (Andrews 2010), fastp (Chen
et al. 2018), IDBA-UD (Peng et al. 2012), megaHIT (Li et al.
2015), metaSPAdes (Nurk et al. 2017), maxBin (Wu et al
2016), MeBAT (Kang et al. 2015), CONCOCT (Alneberg
et al. 2014), BinSanity (Graham et al. 2017), Dereplication-
Aggregation Scoring Tool (Sieber et al. 2018), CheckM
(Parks et al. 2015), ezTree (Wu, 2018), and lessons learned
through the Critical Assessment of Metagenomic
Information (CAMI; Sczyrba et al. 2017; Meyer et al. 2018;
Fritz et al. 2019) enabled the field of molecular evolution of
Bacteria and Archaea domains to progress from being a de-
scriptive to an experimental endeavor, providing insight into
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Fic. 1. A schematic representation of steps integrated within MAGO
starting from the input of raw sequencing data to MAGs, bin quality
checking and the production of a collection of high-quality MAGs.
These are further utilized in analysis of evolutionary relationships to
produce maximume-likelihood (ML) phylogenomic placement, MAGs
annotation, and core/pan genome calculations next to determina-
tion of species boundaries and operational taxonomic units at geno-
mic level. The outputs are easily integrated into recently developed
tools (eg, MEGA-X, Kumar et al. 2018; GTDB-Tk, Parks et al. 2018;
MAGpy, Stewart et al. 2019).

evolutionary wealth of novel metagenome-assembled
genomes (MAGs), novel microbial lineages uncovered from
the environment, hence substantially revising and expanding
the tree of life (Parks et al. 2017 Parks et al. 2018) and evo-
lutionary dynamic in complex environments and medicine
(Lin and Kussell, 2019; Garud et al. 2019). Although the tools
are widely used, a number of limitations (supplementary table
51, Supplementary Material online) and their dispersed and
boutique nature is limiting their integration and presents an
obstade to their reproducible use within community, their
further adoption alongside the ubiquitous increases in se-
quendng volumes, study complexity (Jain et al. 2018),
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emerging standards (Sczyrba et al. 2017, Bowers et al. 2017),
and technology upgrades (eg, Nanopores).

To date, no uniform piece of software exists that would
integrate efficiently, scalable and reprodudbly all the steps
linking the raw outputs from the sequencing platform (ie,
sequence data sets) over the steps of sequence quality trim-
ming, assembly, binning, bin improvement, bin quality con-
trol, bin annotation, to evolutionary and phylogenomic
placement of bins based on multiple orthologous marker
genes on protein level, provide core- and pan-genome anal-
yses and species boundary delineation through fast average
nucleotide identity (ANI) of resulting draft genomes. The
field-wide analysis standards are emerging due to the ongoing
efforts (Sczyrba et al. 2017; Meyer et al. 2018; Fritz et al. 2019);
however, the lack of reproducible framework makes it difficult
to embrace these standards, perform meta-analyses of exist-
ing data (Schloss et al. 2009; Parks et al. 2017) or simply remap
and extend past analyses (Parks et al. 2018; Jain et al. 2018) to
evolutionary dynamics (Carud et al. 2019).

A single software platform, Metagenome Assembled
Genomes Orchestra (MAGO) (fig. 1; supplementary table
S1, Supplementary Material online) was developed to fill
this gap and to overcome the limitations (supplementary
table S2, Supplementary Material online) by integrating an
ensemble of previously developed tools, streamlining their
performance and deliver compatibility of data formats, to-
gether with additional features for error checking, effective
computational resource use, governed by user-tailored pipe-
line processing (as specified by a textual configuration file).
MAGO currently makes use of the three most effective
assemblers and six binners put forward by CAMISIM
(Fritz et al. 2019) and AMBER (Meyer et al. 2018) studies,
respectively. The resulting bins are further improved by addi-
tional (the seventh) binner, Dereplication-Aggregation
Scoring Tool (Sieber et al. 2018) and evaluated by ChedkM
according to their quality (% completeness and % contami-
nation; Parks et al. 2015) in line with MIMAG standard
(Bowers et al. 2017). CheckM utilizes a broader set of orthol-
ogous protein marker genes specific to the position of each
MAG within a reference genome tree and information about
collocation of these genes, based on amino acid identity be-
tween marker genes. Finally, the produced collection of high
quality MAGCs can be used to extract protein-coding single-
copy orthologous marker genes using functional annotation
and build maximum likelihood trees from amino acid sequen-
ces with different amino acid substitution models within
MAGO using ezTree (Wu, 2018). The resulting alignment
file can be exported to build user specific trees in existing
high-end software (e.g, MEGA, Kumar et al. 2018). To anno-
tate and calculate core- and pan-genomes MAGO integrates
Prokka (Seemann, 2014) and Roary (Page et al. 2015) and
makes outputs (fasta, gbk) available for additional down-
stream analyses of genome rearrangements (eg. Mauve,
Darling et al. 2010). FastANI (Jain et al. 2018) is utilized for
high-throughput ANI analysis of MAGs that is used to define
spedes boundaries and Operational Taxenomic Unit (OTU)
delineation at various thresholds of ANL. All outputs are read-
ily made available in structured directories for additional
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Fic. 2. Overview of the basic quality metrics of MAGs reconstructed from the moose rumen microbiome collection (samples 51-6) (supple-
mentary table 53, Supplementary Material onling Svartstrdm et al. 2017): (A) completeness (>>50%); (B) contamination (< 10%).

inspection and inclusion in other types of analyses tools (e.g.
MEGA-X, Kumar et al. 2018 GTDB-Tk, Parks et al. 2018;
MAGpy, Stewart et al. 2019). In total, MACO consists of a
number (n = 53) of externally developed pieces of software
(supplementary table S1, Supplementary Material online) and
=9,000 lines of Python code integrated into seamless work-
flow to perform error checking of pipeline configuration and
to prevent suboptimal utilization of computational resources.

To overcome the constraints of web-based implementa-
tions of existing software and the known software limitations
described above (supplementary table 52, Supplementary
Material online) MAGO was made available as a singularity
image  (https//wwwsylabsio/singularity/; last  accessed
September 04, 2019) and a Docker container (https://www.
docker.com; last accessed September 04, 2019) for high perfor-
mance computing (HPC) purposes, and also as a VirtualBox
(https:/ fwwwuirtualboxorg/: last accessed September 04,
2019) virtual machine (as outlined in supplementary materials
and methods, Supplementary Material online). By making
MAGO an open-source-software package under the
Commons Creative Attribution CC-BY License (https//

22

creativecommons.org/licenses/; last accessed September 04,
2019) the software is free and open to modifications by other
researchers. It is available for download at the project website
(http://magofeunidjsi; last accessed October 28 2019). The
accompanying preprepared example pipelines and test data
set document necessary information about the use of MAGO,
enhance reproducibility as the entire pipeline settings can now
easily be shared as a single textual pipeline file berween
researchers, and results reproduced independently (supple-
mentary figs. 51 and 52, Supplementary Material online).

The abilities of MACO are attested by the quality of the
underlying pieces of software (supplementary table 51,
Supplementary Material online) and their respective publica-
tions. Increasingly complex model data sets spanning CAMI
(Sazyrba etal. 2017) and EBI (https/ /www.ebiacuk/ena/data/
view/PRJEB8286; last accessed September 04, 2019) were used
in benchmarking MAGO (supplementary table S3,
Supplementary Material online; results not shown). The
Genome Assembly Gold-standard Evaluations (GAGE) and
single-cell amplified genome project (Salzberg et al. 2012
Kogawa et al. 2018) were used for realistic pure culture
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ANI).

data analyses (supplementary table 53, Supplementary
Material online; supplementary figs. $3-57, Supplementary
Material online). Finally, a number of real case metagenomics
data sets (n=106 s=04 TB; supplementary table S3,
Supplementary Material online) were analyzed: 1) the moose
rumen microbiome (Svartstrom et al. 2017; figs. 2 and 3), and
2) longitudinal American prefterm delivery microbiomes
(Colsman et al 2018 supplementary figs. S$4-59,
Supplementary Material online).

Unless otherwise stated, in analyses of 280 GB data set of
the moose rumen microbiome collection (supplementary ta-
ble 53, Supplementary Material online; Svartstrém et al. 2017)
all parameters used were the default for each subroutine.
After initial sequence quality control (FastQC fastp), each
sample was assembled (MEGAHIT) and binned individually
(MaxBin, metaBAT, and Concoct), aggregated and derepli-
cated (Dereplication-Aggregation Scoring Tool). CheckM
was used to assess the quality of resulting MAGs (% com-
pleteness; % contamination). Single-sample binning produced
a total of 3,012 bins. The distribution of the produced MAGs
into high- and medium-quality MAGs was based on the cri-
teria defined by the minimum information about a metage-
nome-assembled genome (MIMAG) standards (Bowers et al.
2017) (high: >90% completeness and <5% contamination,
presence of 55, 165, and 235 rRNA genes, and at least 18
tRNAs; medium: = 50% completeness and < 10% contamina-
tion). Given that few of the MAGs with >90% completeness
and <5% contamination in general pass the MIMAG thresh-
olds regarding the presence of rRNA and tRNA genes due to
known issues relating to the difficulties in assembly of rRNA
regions, the MAGs of high quality are described as “near
complete” in general (Bowers et al. 2017). Medium quality
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bins (h=670) represented 22.2 = 34% of all bins, whereas
75%, 80% complete bins (10% contamination) (Stewart et al.
2019) next to near complete bins represented 14.7 = 3.4%
(n=443), 129 = 29% (n = 389), and 6.5 = 1.2% (197) of all
recovered MAGs, respectively. In general, MAGO enabled to
recover 13 MAGs (80% complete; 10% contamination; der-
eplicated) per each 10 GB of input sequence data.

The resulting MAGs obtained in this study were first used
to explore the existence of genetic discontinuity among the
microbial species as observed in large collections of complete
genomes from unrelated studies (Jain et al. 2018). The bi-
modal distribution, with the vast majority (99.8%) of the total
genome comparisons showing either > 95% intraspedes ANI
or < 83% interspecies ANI values, was observed also for the
pairwise comparisons of MAGs recovered in this study (fig. 3).
Itis highly likely that the discontinuity represents a true bio-
logical signature, confirming the existence of sequence-dis-
crete populations in natural environments. Although the
exact biological mechanisms giving rise to this phenomenon
were not explored in this study, the existence of genetic dis-
continuity in various environments provides opportunity to
reconsider its potential origins: 1) decreased recombination
frequency below 95% ANI; 2) dispersal limitations in habitats;
3) reduced diversity due to ongoing competition; 4) stochas-
tic eventsover long periods of time, and provides opportunity
to extend analyses from Bacterial and Archaeal domain to-
ward plasmids (Nurk et al. 2017) and viruses (Sutton et al.
2019) for which MAGO can be adopted. In addition, the
reconstructed MAGs were compared with a large and het-
erogeneous collection of characterized prokaryotic genomes
(n=91,761;Jain etal.2018). The majority of MAGs recovered
in this study exhibited ANI< 83% (ie, interspecies ANI
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values) with genomes in the collection. According to the
species demarcation cut-off of ~95% ANI the MAGs recov-
ered from actively fermenting wild moose rumen represent
potentially new species amenable for detailed genomic
analyses.

MAGO efficiently alleviates the metagenome data analysis
bottleneck and provides an important and straightforward-
to-implement step toward making the future large-scale evo-
lutionary analyses of MAGs efficient, flexible, scalable and re-
producible, enforcing the MIMAG standard. Its outputs are
easily integrated into downstream pipelines such as The
Genome Taxonomy Database (CTDB) to establish a stan-
dardized microbial taxonomy based on genome phylogeny
(http://gtdb.ecogenomicorg/; last accessed September 04,
2019). MAGO is open to suggestions for extensions and is
amenable for use in both research and teaching of genomics
and molecular evolution of genomes assembled from small
single-cell projects or large-scale and complex environmental
metagenomes.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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Abstract

General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale, streamlined
and reproducible analysis of bacterial 16S rRNA data and prediction of microbial metagenomes,
enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow introduces
reproducible data analyses at each of the three levels of resolution (genus; operational taxonomic
units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible analyses
enables production of datasets that ultimately identify the biochemical pathways characteristic of
disease pathology. These datasets coupled to biostatistics and mathematical approaches of machine
learning can play a significant role in extraction of truly significant and meaningful information from
a wide set of 16S rRNA datasets. The adoption of GUMPP in the gut-microbiota related research
enables focusing on the generation of novel biomarkers that can lead to the development of
mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.

(0 @

This work was published as an Open Access article distributed under the terms of the Creative
Commons Attribution License (CC-BY 4.0).

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2
(page 142).

26


https://doi.org/10.3390/metabo11060336

Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

metabolites

Article

General Unified Microbiome Profiling Pipeline (GUMPP) for
Large Scale, Streamlined and Reproducible Analysis of
Bacterial 16S rRNA Data to Predicted Microbial Metagenomes,
Enzymatic Reactions and Metabolic Pathways

Bostjan Murovec 1, Leon Deutsch 2

check for

updates
Citation: Murovec, B.; Deutsch, L.;
Stres, B. General Unified Microbiome
Profiling Pipeline (GUMPP) for Large
Scale, Streamlined and Reproducible
Analysis of Bacterial 165 rRNA Data
to Predicted Microbial Metagenomes,
Enzymatic Reactions and Metabolic
Pathways. Metabolites 2021, 11, 336,
https:/ / doi.org,/10.3390/
metabol 1060336

Academic Editors: Marika Cordaro,
Rosalba Siracusa and Cholsoon Jang

Received: 9 April 2021
Accepted: 23 May 2021
Published: 24 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

(oM

Copyright & 2021 by the authors.
Licensee MDPIL Basel, Switzerland.
This article is an open access artick
distributed wunder the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https:/ /
creativecommons. org, licenses /by /

40/

and Blaz Stres 2345

! Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia;
bostjan. murovec@fe. uni-lj.si

I Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SF1000 Ljubljana, Slovenia;

leon.deutsch@bf.uni-1j.si

Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 5I-1000 Ljubljana, Slovenia

Department of Automation, JoZef Stefan Institute, Biocybernetics and Robotics, Jamova 39,

SI-1000 Ljubljana, Slovenia

Department of Microbiclogy, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria

*  Correspondence: blaz.stres@bf. uni-lj.si; Tel.: +386-41-567-633

w

Abstract: General Unified Microbiome Profiling Pipeline (GUMPP) was developed for large scale,
streamlined and reproducible analysis of bacterial 165 rRNA data and prediction of microbial
metagenomes, enzymatic reactions and metabolic pathways from amplicon data. GUMPP workflow
introduces reproducible data analyses at each of the three levels of resolution (genus; operational
taxonomic units (OTUs); amplicon sequence variants (ASVs)). The ability to support reproducible
analyses enables production of datasets that ultimately identify the biochemical pathways character-
istic of disease pathology. These datasets coupled to biostatistics and mathematical approaches of
machine learming can play a significant role in extraction of truly significant and meaningful informa-
tion from a wide set of 165 rRNA datasets. The adoption of GUMPP in the gut-microbiota related
research enables focusing on the generation of novel biomarkers that can lead to the development of
mechanistic hypotheses applicable to the development of novel therapies in personalized medicine.

Keywords: 165 rRNA; amplicon; Mothur; PICRUSt 2; Piphillin; genus; OTU; ASV; predicted
metagenomes; predicted enzymatic reactions; predicted metabolic pathways; reproducible anal-
yses; human microbiome; gut; intestine; mice

1. Introduction

The gut microbiota is composed of a huge number of different bacteria, archaea, fungi
and protozoa, next to viruses and various mobile elements [1,2]. All these microbes interact
with the host, environmental stimuli and each other, thus producing an enormous diversity
of chemical compounds that play a key role in host development, wellbeing and aging [3-7].
The advent of large scale microbiome studies generates analytical opportunities to un-
derstand how these communities operate and respond to their complex environmental
stimuli [8]. Although knowledge of taxonomy and functional genes of microorganisms
are both important, functional genes are more directly related to enzymatic reactions and
metabolic pathways. It is increasingly recognized that the microbiome influences the host
health state and disease progression. For instance, disease progression can range from
mild gastrointestinal symptoms to inflammatory bowel disease and colorectal and liver
cancer [9]. In addition, a range of diseases have been implicated in metabolic imbalances,
ranging from metabolic syndrome and obesity to autoimmune diseases, psychological
disorders and infections [Y].
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Amplicon sequencing of 165 rRNA has served as the key approach of the last decade
for the understanding microbial community structure, dynamics and how organisms might
influence or be influenced by environmental conditions [10]. Extensive sequencing of
bacterial communities is generating large collections of datasets available through public
repositories such as European Bioinformatics Institute (https:/ /www.ebiac.uk/ accessed
on 30 April 2021), CuratedMetagenomicsData [11], or individual studies [12]. These data
have so far been described on the level of 165 rRNA taxonomy ufilizing either (i) genus [12],
(ii) 97-98.5% 165 rRNA identity operational taxonomic units (OTU) [13] or (iii) amplicon
sequence variants (ASV) [14,15]. However, the processing and analyses of such datasets
are highly diverse due to the high number of published and benchmarked pieces of
software [16-20] and reports that lack significant technical details despite the Human
Microbiome Project outlines and introduction of standard operating procedures [21-23].

In addition, this wealth of 165 rRNA data gives access to an untapped pool of infor-
mation beyond the 165 rRNA taxonomy (genus, OTU, ASV), such as predicted functional
genes, enzymatic reactions and metabolic pathways (Figure 51). The tools such as Mi-
crobiomeAnalyst [24,25], PICRUSt [26], PICRUSt2 [27], Tax4Fun [28]; Tax4Fun2 [29] and
Piphillin [30,21] link 165 rRNA sequence information to representative genome sequences
and approximate metagenomics functional gene content relevant for the interpretation
of the studied human disease phenomena and clinical metadata [32]. As a number of
unexplored and large datasets encompassing thousands of samples and corresponding
metadata are made available in repositories (e.g., [12,33] the analyses (genus, OTU, ASV)
and improved predicted metagenomic, enzymatic and metabolic pathway datasets have the
potential to unravel important taxonomic, functional, biochemical and metabolic findings
(Figure 51).

However, in order to accomplish such intensive large scale data analyses effective
workflows are required. These workflows should ideally (i) integrate various pieces soft-
ware, (ii) streamline input and output formats, (iii) accommodate large datasets, (iv) main-
tain portability between benchtop PC and high performance computing clusters (HPC),
(v) enable flexible (customizable) but also reproducible analyses (setting documentation)
that can be (vi) shared with and utilized by other interested researchers.

In this study, we introduce a workflow (Figure 1) that integrates Human Microbiome
Project tested procedures for amplicon sequence analysis with one of the most popular
programs Mothur [34], and PICRUSt2 [27] for prediction of metagenomic functional genes,
enzymatic reactions and metabolic pathways. In addition, the workflow presented here
generates also formatted inputs for Piphillin [30,31], another popular sister program for
metagenomic predictions. The benchmarking of the integrated programs such as Mothur,
PICRUSt2, Piphillin and other comparable sister programs were already reported before
in numerous studies [16-20,23,27,20,31]. The inbuilt Human Microbiome Project stan-
dard operating procedures can be tailored according to user analytical preferences and
sequencing details. The whole workflow is delivered as portable all-inclusive container
(Singularity [35]; https:/ /sylabs.io accessed on 14 April 2021) amenable for teaching or /and
research purposes, using personal computer or HPC. Depending on the size of data and
complexity of analyses (genus-, OTU-, ASV- levels), the GUMPP workflow enables max-
imum utilization of information present in the original 165 rRNA amplicon datasets by
producing additional three data types approaching multiomics view of the microbiome:
metagenomics functional genes, enzymatic reactions and metabolic pathways. All four
data types can serve as inputs for machine learning to unravel novel mechanistic insight
into human disease development in relation to microbiome characteristics. To showcase the
efficient analyses and utilization of computing resources two datasets describing human
(n = 307) and mice gut (1 = 365) were used for demonstration purposes.
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GUMPP overview

1. Inputs i User adjustable settings in config file
: Amplicon sequencing data (fastq)

2. Processing
(Analysis) mothur ac
. Pipeline Asembly
B config file o L
python i Chimera
piphillin Output tables
Prediction
Analysis types
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165rRNA | Genus OoTU ASV
Predicted: Picrust2
Functional genes KO

Enzymatic reactions
Metabolic pathways

EC
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Data integration step

R, WEKA, orange Statistical analysis

. Machine learning
JAPB 1o . Biomarker discovery
MicrobiomeAnalyst Models and classification samples

Figure 1. Schematic representation of the General Universal Microbiome Profiling Pipeline (GUMPF).
The integral part consists of Mothur, PICRUSt2 and Piphillin cutputs. Paired-end or single-end fastq
sequence are used as input for mothur processing. The resulting biom and fasta files serve as an
input for PICRUSt2. The data can be analyzed at genus-, OTU- and ASV- levels. QC-sequence quality
control; OTU-Operational Taxonomic Units (generally 97% identity of 165 rRNA); ASV=Amplicon
Sequence Variants (unique sequence variants). KO-KEGG Orthologs (Kyoto Encyclopedia of Genes
and Genomes); EC-Enzyme Commission number; BioCyc-BioCyc collection of Pathway / Genome
Databases. For each level, four output tables are generated (Please see Figures 51 and 52 for additional
information). The resulting data can be analyzed in the data integration step using a variety of distinct
machine learning approaches.

2. Results and Discussion
2.1. Design of GUMPP Workflow

GUMPP (http:// gumpp.fe.uni-1j.si, accessed on 24 May 2021) is a freely available
skeleton application for executing Mothur [34] using paired-end fastq files and executing
the PICRUSt2 analyses next to producing also Piphillin [30,31] web-server input files
(Figur@ 1). A sing]e GUMPP run can process an arbitrary number of i.nput files. Inputs are
preprocessed by an integrated Mothur (V1.44.1) script in conjunction with Silva database
(version 138), and creates biom and fasta representative sequence files as input for PICRUSt2
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and outputs necessary for Piphillin [30,31]. The workflow was designed to support three
levels of analysis differing in the increased extent of utilized information and fairness
in data treatment: genus-, OTU- and ASV- levels (Figures 51 and 52). Users may freely
replace the built in scripts and databases with their own. Customization of the built-in
script (http:/ /gumpp.fe.uni-1j.si) is also possible by template parameters.

The primary design goal of the GUMPP application was to deliver efficient analyses
and utilization of computing resources. The application relies on recently developed
Singularity container technology ([35]; https://sylabs.io accessed on 14 April 2021) making
the pipeline straightforward to use as all its ingredients are fully integrated, preinstalled
and preconfigured in a ready-made Singularity image. These consist of the Mothur and
PICRUSt2 programs, the needed Mothur scripts, two Silva taxonomy databases (V138 and
V138 seed), a few Supporﬁ_ng utilities written in C++, as well as a skeleton framework
consisting of slightly less than 11,000 lines of Python code which orchestrates the execution
of individual pieces and takes care of executing programs and building their command
lines. The actual parameters under which the workflow is executed are at the control of the

user (Figure 2, ESM Figures R1-R3).

bostjangCarnott:~% singularity rum Shome/bostjan/gumpp_vl.simg /home/bostjan/gumpp_example_script.txt

GUMPP: General Unified Microbiome Profiling Pipeline: vi.o 2021-Apr-@7

Developers: Blaz Stres, blaz.stres@fgg.uni-1j.si
Bostjan Murovec, bhostjan.murovec@fe.uni-1j.si

Current date and time: 2021-05-84 15-10-25.

Determining number of processors: 64

Determining amount of system memory ...
total: 527 GB
free: 23 GB
available: 528 GB

Configuration file:
/home/bostjan/gumpp_example_script.txt

Input directory:
/home/bostjan/Mothur_MiSeq

Qutput directory:
/home/bostjan/Mothur_MiSeq_out_2821_April_ASV

History of workflow executions will be preserved.

Number of threads is not specified in the config file.
Applying number of processors from the operating system: 64

Determining imposed memory Limit
Memory consumption is not Limited.

Figure 2. An example of the program startup and the initial checkups done by the Python code.
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Aside from reproducible execution of the workflow and the control of algorithm
settings, GUMPP offers some additional benefits. First, results of Mothur preprocessing
may optionally be stored in a specially crafted storage area, where each result is associated
with its full context (hash of input files, Mothur script and its values of template parameters,
or other relevant information). This enables efficient workflow re-executions with different
Mothur and PICRUSt2 parameters. When GUMPT detects that upon its re-execution only
PICRUStE2 parameters are changed, it instantly recycles the previously obtained Mothur
results. This opens up a possibility of efficient experimenting with changed PICRUSt2
parameters to observe their impact on end results. In addition, Mothur processing is split
into a common and an analysis specific part. If only analysis type or its related parameters
are changed, the previously computed common results are again recycled instantly, which
is a significant time saver, since the common part consists of e.g., sequence alignment to
a taxonomy database. The system also enables crash recovery: in the case of GUMPP
interruption during e.g., PICRUSt2 step (operating system crash, power outage, abort due
to administrative policies on High-Performance Computer (HPC), upon restart only the
PICRUSt2 step is re-executed. Crash recovery is completely automatic and transparent. A
user need not to specify any directives to inform GUMPP that execution is being repeated.

The system is suitable for autonomous execution on domestic hardware as well
as on HPC facilities. All command-line parameters and intermediate file formats are
handled automatically by the system, enabling the experienced users to prescribe their own
parameters for PICRUSt2 or for template Mothur script parameters in order to finetune the
workflow execution.

In order to aid in documenting analyses and inspection of execution, GUMPF stores
an accurate verbatim copy of its screen output as a part of end report. Also, the actual com-
mand lines, standard output streams, standard error streams and exit codes of individual
programs are stored on a disk in a hierarchical way for easy navigation, inspection and
debugging. Analysis setup relies on configuration files, where a complete workflow config-
uration is prescribed and hence also documented. GUMPP presented in this study thus
builds on the highly popular and tested programs that were benchmarked in numerous
past studies as reported before [16-20,27,30,31].

2.2. Reanalysis and Extension of Mice Gut Microbiome Data Using GUMPP: The Choice of Level
of Analysis (Genus, OTLL, ASV) Is far from Arbitrary

Mice data analysis using GUMPP enabled us to explore a technical question of how
user reports on different taxonomic levels (genus; OTU; ASV) affected the exact rela-
tionships between underlying samples when studied utilizing the four data types (165
rRNA; functional genes; enzyme reactions; metabolic pathways). The results of Mantel
test between taxonomic levels (Figure 3) show that the correlations between 165 rRNA vs.
KO, 165 TRNA vs. EC and 165 rRNA vs. pathways decreased from 0.90, 0.91 and 0.90 at
genus level, to 0.75, 0.75 and 0.76 at OTU level, and to 0.61, 0.61 and 0.66 at ASV level,
respectively (n = 9999 permutations, p < 0.0002). The fact that ASV type of analysis resulted
in lower correlations between datatypes is in line with past observations that there is little
congruency between rather variable taxonomic descriptions of microbial communities and
their corresponding even more diverse metagenomic functional gene makeup [36].

A between level analysis for each data type separately (Figure 4) illustrates the re-
lationships between data of the same type, obtained using a different taxonomic level
of analysis (Genus, OTU or ASV). The correlations > (.88, describing the relationships
between samples were retained only for distance matrices from genus and OTU levels of
analyses and were also reproduced in all four data types (Figure 4). On the other hand, the
initially high correlation between OTU and ASV at 165 rRNA level dropped below (.55 for
KO, EC and Pathway datasets, reflecting the increased number of categories (genus = 148,
OUT = 1328, ASV = 13,244) and their different numerical abundance [11]. These results
illustrate how the user selected levels of taxonomic assignment of the sequence data can
affect the relationships between samples. Switching from genus level to utilizing ASV
level of analysis does not only represent a way to maximize information content of the
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underlying 165 rRNA sequences [30], but it also represents a distorting transformation of
the information due to the many predominantly biological limitations of such analyses:
(i) differences in 165 rRNA gene copy numbers range from 1 to 15 in bacteria and 1 to 5in
Archaea [37], hence a frequently recovered sequence may represent a high copy number
taxon of lesser abundance, or a low copy number taxon of higher abundance. This 165
copy number of the organism that contributed the sequence is estimated and data adjusted
accordingly by utilizing PICRUSt2 [27] in GUMPP; (ii) intragenomic heterogeneity of 165
rRNA operons can be as large as 20.4%. Genus level classification encompasses rather
divergent sequences of that specific genus into one category. On the other hand, single
nucleotide polymorphism present within e.g., 10 copies of 165 rRNA operon within one
organism represent distinct ASVs. In comparison to genus level analysis 165 rRNA variants
of one organism are split to several A5V categories inflating A5V estimates of microbial
taxonomic diversity and of functional diversity of underlying metagenomes [38-40]; (iii) In
contrast, almost identical 165 rRNA copies and hence the lack of differences found within
some genera do not enable stratification of species and strains present within, falsely de-
flating the number of present ASVs [10,38-42]; (iv) different hypervariable regions of 165
rRNA utilized in amplicon sequencing can result in additional distortion of signal relative
to each other [43] hence compromising direct comparison of the results between studies
utilizing distinct primers.

oTu ASV

(B) 075 (C) 0.6l

KO 168 e 165 KO
[ ] [Xa] ] (1] o
o ™ ) o o . o
o = w o 0

5y &
7 Q
EC Pathw EC Pathw EC

Figure 3. A within level analysis for all derived data types. A schematic representation of GUMPP generated data types
analyzed at each of the three levels of 165 rRNA analysis (A} genus, (B) OTU, (C) ASV for the same sequence dataset and
extended further to respective predicted functional genes (KO), enzymatic reactions (EC) and metabolic pathways (Pathw).

Numbers designate the Mantel test correlation coefficients between various pairs of data types: (i) 165 and functional genes
(KO)(orange), (ii) 165 and enzymatic reactions (EC) (yellow), (iii) 165 and metabolic pathways (Pathw) (blue), (iv) pathw
and EC (pur-ple), (v) pathw and EC (grey), (vi) KO and EC (green). All analyses were performed with 9999 permutations
and were statistically significant (p = 0.0001).

These cautionary notes listed above are intended to raise the awareness of the biologi-
cal caveats of the genus, OUT and ASV levels of analyses for users. From this integrative
view of biological influences the genus level analysis fits a more reserved type of analysis
with arguably lower resolution, but congruent with an existing microbial taxonomy system
in comparison to the ASV level of analysis, whereas OTU represents a compromise [14,44].
By utilizing ASV some genera expand into species and strains that have sufficient diversity
within the 165 rRNA and contribute to ASVs, while other genera that contain species and
strains with identical 165 rRNA in the region analyzed do not [14,44]. This biological
distinction between genus, OTU or ASV levels of analysis has potentially large implica-
tions for the information forwarded to subsequent data types (functional genes, enzymatic
reactions, metabolic pathays) irrespective of program utilized (PICRUSt, Tax4Tun, Piphillin
or GUMPP).
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Recent research highlights the risk of splitting a single bacterial genome into separate
clusters when A5Vs are used to analyze 165 rRNA gene sequence data. Although there is
also a risk of clustering ASVs from different species into the same OTU when using broad
distance thresholds, those risks are of less concern than artificially splitting a genome into
separate ASVs and OTUs [14,44]. Based on the results presented here (Figures 2 and 4), the
choice of level of analysis (genus, OTU, ASV) is far from arbitrary and may lead researchers
to draw different biological conclusions. The work presented in this study highlights the
utility of GUMPP that enables researchers to analyze the data at all three levels at the same
time, generates functional gene, enzymatic reactions and metabolic pathways datasets for
downstream machine learning exploration in relation to human diseases [44].

165
(A) Genus (8) Genus
2 o o
G2 \, -
& oy . \x{;
/ S / N\
OoTu ASY oTuy — _ ASV
0.93 0.52
Genus Genus
(@) Y (D) =
\ \
\ o
A oy -
1‘?" C? {}O: \L%\
o, >
'\\
o1y ASV oTu ASV
0.48 0.55

Figure 4. A schematic representation of GUMPP results showing a between level correlations for each data type: (A)165
rRNA (165), (B) functional genes (KO), (C) enzymatic reactions (EC) and (D) metabolic pathways (Pathw). Numbers
designate the Mantel test correlation coefficients between various pairs of levels for the same data type: (i) Genus and OTU
(orange), (ii) OTU and A5V (blue), (iii) Genus and ASV (green). All analyses were performed with 9999 permutations and
were statistically significant (p = 0.0001).

2.3. Reanalysis and Extension of Human Gut Microbiome Data Using GUMPP

In this study a reanalysis of published human gut data (n = 307) [45] was conducted
utilizing GUMPP at the levels of 165 rRNA, predicted metagenomes, enzymatic reactions
and metabolic pathways. Differences between the gastrointestinal patients (1 = 121) from
a single ward and 186 healthy volunteers were explored. This effectively enabled us to
reproduce previously reported findings [45] utilizing GUMPPF. Analyses were extended to
three additional data types: predicted functional genes, enzymatic reactions and metabolic
pathways. First, as reported before in the original study [45], gut microbial community
description was not sufficient to differentiate the subjects based on their underlying five
broad medical diagnoses: (i) ulcerative colitis; (ii) Crohn’s disease, (iii) tumor (pancreatic,
gastric or liver cancer), (iv) infection (pneumonia, cholangitis, hepatitis, gastritis or pancre-
atitis) and (v) other (cirrhosis or peptic ulcers, unidentifiable abdominal pain) [45]. The
three mixed clusters independent of the underlying medical diagnosis were also repro-
duced (Figure 53), showing the robustness of GUMPP analysis. Second, by calculating the
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statistical power for each medical diagnosis a much larger number of samples (within each
medical diagnosis) would be needed (n > 1000) to be able to build dlassification models
for each diagnosis (Table 52). Third, the PCA representation confirmed the existence of a
core microbiome in healthy individuals as described in the original study [45]. Human
gut microbiome in patients was disturbed and significantly altered relative to the healthy
microbiome (Figure 53).

Extending the original 165 rRNA analysis by GUMPP derived datasets (functional
genes (KO), enzymatic reactions (EC), metabolic pathways (pathway)) enabled us to explore
the differences between the gastrointestinal patients and healthy volunteers utilizing
machine learning. This coupling between GUMPP produced datasets and machine learning
enabled us to generate, train and validate four separate models for classification of samples
(Figure 53; Supplementary Electronic Material) using JADBIO AutoML approach [46,47].
In short, at all four data levels, logistic ridge regression with penalty hyperparameter
lambda = (0.1 was selected as the best interpretable model with AUC metrics of 0.937 (165
rRNA), 0.949 (KO), 0.954 (EC), and 0.947 (pathway) (Figure 53). For the best microbial
feature selection, LASSO algorithm was selected for the most differentiating pathways,
and Test-Budgeted Statistically Equivalent Signature (SES) algorithm was selected for the
search of the most differenﬁaﬁng 165 rENA, KO and EC between groups of pa[‘ients and
healthy individuals. Models based on KO and EC data performed better than those based
on 165 rRNA and pathway data (Figure 54).

The optimization of model selection allowed us to reliably identify microbial features
(taxa, functional genes, enzymatic reactions, metabolic pathways) from datasets analyzed
and produced by GUMPP (Figure 1, Figures 52 and 53) that discriminated between gut
microbiomes of gastrointestinal patients and healthy volunteers: 25 taxonomy level 165
rRNA OTUs, four KOs, 12 ECs and 15 pathways (Table 51). As the complete in-depth bio-
logical description of these results is beyond the scope of this study, the major differences
between the healthy in diseased groups at the level of metabolic pathways are reported
(Figure 5). The following findings are highlighted as proof of concept of GUMPF extended
data analysis: lactocepin (EC:3.4.21.96; K01361) was identified in this study as one of the
most important features at the level of functional genes and enzymatic reactions distin-
guishing healthy from IBD, UC and CD. High lactocepin in healthy cohort is involved in the
selective degradation of pro-inflammatory chemokines, leading to reduced cell infiltration
and reduced inflammation in IBD models [48,49]. Further, Cu+-exporting ATPase were
also found to be significantly increased in healthy, hence acting at the level of enzymatic
reactions in metabolism [50]. In contrast, the elevated values of the P-type Mg2+ transporter
observed in gastrointestinal patients were previously shown to be important for increased
virulence in Escherichia coli and Salmonella thyphimurium [51]. Similarly, higher activity of
enzyme maltose-6’-phosphate glucosidase were identified in the maltose degradation path-
way of Enterococcus fiecalis leading to increased virulence of this pathogen [52]. Another
important enzyme NADH oxidase that exerts the main protection against oxidative stress
in the human gut was low in the healthy group [53]. Thiazole component of thiamine
diphosphate biosynthesis pathway I and thiamine phosphate synthase were identified as
important for separation between healthy and diseased individuals [54-56]. One of the
distinguishing features was also the peptidoglycan biosynthesis pathway IV, previously
described in Ruminococcus gravus, which is abundant in the intestines of patients with
Crohn's disease [57]. Bifibacterium shunt was identified as another pathway that has been
previously shown to be important in providing positive health benefits to their host with
its metabolic activities [58].

These results illustrate the insight supported by GUMPP into the potential differences
in the gut microbiomes, functional genes, enzymatic reactions and metabolic pathways
between the diffuse group of gastrointestinal patients (five medical diagnoses) and healthy
cohort coupled to machine learning.
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Figure 5. Heatmap showing the differences between the gastrointestinal patients (n = 121; red) from a single ward compared

to 186 healthy volunteers (green) utilizing metabolic pathway information produced by GUMPP workflow from 165 rRNA
data published before [45,59]. The first 50 most informative pathways are shown.

3. Materials and Methods
3.1. GUMPP Implementation

GUMPF utilization is described in user manual, Electronic Supplementar‘y Materials,
Contfig file, all available as part of this publication at http://gumpp.fe.uni-lj.si. Analyses
running GUMPP were executed on a Dual Xeon system with 32 CPU cores (64 hyper-
threads), 512 GB of RAM and 6 TB SATA disk. The runtime depends on the data size,
Sequenci_ng depfh and type of analysis (genus—, OTU-, ASV- level). For instance, human
gut microbiome data analysis consisted of 307 samples, that each contained independent
forward (R1) and reverse (R2) files. In total, it took <10 h, <50 h and <60 h runtime to
finalize genus-, OTU- and ASV- levels of analyses, respectively. Similarly, runtime of
analyzing less deeply sequenced mice dataset (1 = 365 paired-end samples) took <4, <16
and <18 h to finalize genus-, OTU- and ASV- levels of analyses, respectively. Portability
and HPC performance of the GUMPP generated in this study was confirmed on Leo3e
(https:/ /www.uibk.ac.at/zid /systeme /hpc-systeme/ leo3e/ accessed on 30 April 2021)
and Leo4 (https:/ /www.uibk.ac.at/zid /systeme /hpc-systeme /lecd/ accessed on 30 April
2021) HPC infrastructure of the University of Innsbruck as described recently [60].
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3.2. Sequence Data Collections

The workflow was tested using two large collections of data sets arising from hu-
man [45,59] and mice experiments ([7]; https:/ /mothur.org/ accessed on 30 April 2021). In
short, a multi-disease hospitalized cohort included various gastroenterological pathologies:
ulcerative colitis, Crohn's disease, tumor, infection, cirrhosis and peptic ulcer, unidentifiable
abdominal pain. Gastrointestinal patients (n = 121) from a single ward were compared to
186 healthy volunteers [45] in order to fine-map the gut microbiota dysbiosis, using the bac-
terial (V3 V4) amplicon sequencing. In total, 6.6 million pairs of sequences were analyzed
with an average coverage of 35,484 pairs of sequence reads from the 165 rRNA gene.

The mice dataset explored the separation between daily murine fecal samples (n = 360)
obtained from C57BL/ 6 male and female mice at 0 to 9 (early) and 141 to 150 (late) days
after weaning [7]. In total, 4.3 million pairs of sequence reads from the 165 rRNA gene with
an average coverage of 9913 pairs of V4V5 reads per sample [22] were analyzed. During the
first 150 days post weaning mice were allowed ad libitum feed with no specific influence
in order to monitor whether the rapid change in weight at 10 days post weaning (obesity)
affected the stability microbiome compared to the microbiome observed between days 140
and 150.

3.3. Statistical Analyses and Machine Learning

The two 165 rRNA sequence data collections were analyzed using GUMPP and
according to three layers of information, namely genus, 97% OTU and A5V, and the addi-
tional three data types were calculated using PICRUSt2 integrated in GUMPP: predicted
metagenomes; enzyme reactions; metabolic pathways. Piphillin-ready outputs for clinical
exploraﬁon were calculated alongside, formatted and prepared. The Lmderlyi_ng Selﬁ_ngs
used in these analyses are part of the GUMPP configuration file and can be utilized and
shared among researchers for reproducibility and ease of additional calculations. The
resulting genus level data analysis of human gut microbiomes (four data matrices (165
rRNA; metagenomes; enzyme reactions; metabolic pathways} were subjected to machine
learning in JADBIO [47] (version 1.1.164) for identification of microbial, genetic, enzymatic
and pathway variables responsible for separation of the healthy and patient groups.

JADBIO [47] provides high-quality predictive models for diagnostics using state-of-
the-art statistical and machine learning methods. Personal analytical biases and method-
ological statistical errors were eliminated from the analysis by autonomous exploration
of several settings in modeling steps, exploring wide analytical space and producing con-
vincing discovered features to discriminate between patients and healthy individuals. The
JADBIO approach was adopted for modeling because of number of reason: First, auto-
mated parameter and algorithm selection without human inference enables testing and
coverage of a wide machine learning algorithm-settings space. Second, JADBIO includes
several algorithms for feature selection and modeling (linear regression, SVM, decision
trees, random forest and Gaussian kernel SVMs) and all possible options with different
parameters are tested during the process. Third, the obtained models were trained with
different configurations of sub-data of the original dataset (all results are cross-validated
with recently developed Bootstrap Bias Corrected CV (BBC-CV) [61]). Fourth, analyses
were run on data with biomedical characteristics (sparse matrices, nonnormal distribu-
tions). Algorithm, hyperparameter and space selection protocols (AHPS) in JADBIO were
used for selecting the most appropriate algorithm for preprocessing and transformation
of a given dataset, for feature selection and modeling. The output of AHPS step was then
evaluated through the configuration evaluation protocol in order to find the optimal model
configuration for a given dataset [46,47]. JADBIO 1.1.164 was used with extensive tuning
effort and 6 CPU cores in modelling various dataset selections. All four datasets were split
70 to 30 according to machine learning protocols. The training set (70% of the data in the
dataset) was used to build the best interpretable models and the rest of the data (30%)
was used for performance validations at all four levels of data analysis (165 rRNA genus
level (424 features), KO (6126 features), EC (1887 features), pathways (365 features)). The
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area under the curve (AUC) metric was used to evaluate model performance. In total, the
analytical space of algorithms and their corresponding settings was explored and 5960 of
models and their individual settings were tested for genus and 11,920 for functional gene,
enzymatic reactions and metabolic pathways, before the optimal configuration for the most
informative model were obtained.

In addition to this, statistical power analysis of human microbiome data was per-
formed [45,59] on all four data levels: 165 rENA, KO, EC and pathwa}'::‘-, between paﬁents
with different diseases and healthy individuals and accu.‘:rdi.ng to presence Jabsence of
the disease. Data was cube root normalized and mean centered. False discovery rate set
to 0.1 was used in MetaboAnalyst module prepared for data analysis of population and
metabolic studies [62].

All models created in analyses of the human gastrointestinal dataset can also be run
on the local machine and are provided as part of the supplementary data (for local model
execution, see the instructions in the electronic supplementary materials).

Mice data (n = 365) were processed and analyzed as described above in order to
explore the differences between the four data types (165 rRNA; metagenomes; enzyme
reactions; metabolic pathways) in terms of consistency of intersample relationships between
the three layers of information routinely utilized in studies (genus; OTU; ASV). The
intersample relationships were assessed by Mantel tests (p < (0.0002) utilizing (i) Pearson
and (ii) Spearman correlation between data matrices (Bray-Curtis distance measure) and
permutations (1 = 9999) in either vegan-R [63] and /or PAST software (version 2.17c) [64].
The Mantel test tests the correlation between two distance matrices. It is non-parametric
test and computes the significance of the correlation through permutations of the rows and
columns of the input distance matrices.

4. Conclusions

By including the user preferences of genus, OTU or ASV type of analyses, GUMPP
is the first workflow that introduces traceability and portability of all its parameters
used in analyses. The workflow integrates and orchestrates end to end the inputs and
outputs of the highly cited programs Mothur, PICRUSt2 and Pipihillin, controlled by
Python code, delivered as portable Singularity image and accompanied by customizable
COnﬁguraﬁﬂn files. The whole GUMPP workflow can be executed for teachi.ng or/and
research purposes using personal computer or HPC. The ability to support reproducible
analyses enables production of datasets that match multiomics layers of information,
such as metagenomics, metaproteomics and metabolomics that ultimately identify the
biochemical pathways characteristic of certain pathology [8]. These datasets coupled to
biostatistics and mathematical approaches of machine learning can play significant role in
extraction of truly significant and meaningful information from wide array of previously
unexplored datasets (e.g., [45,59]) in relation to (i) a number of diseases (metabolic [65]
or neurodegenerative [66] diseases), (ii) medical interventions, manipulations of bacteria-
gut-brain axis [67] or (iii) treatment strategies for complex diseases [68]. The adoption of
GUMPP in the gut-microbiota related research enables focusing on the identification of
novel biomarkers that can lead to the development of mechanistic hypotheses applicable
to the development of novel therapies in personalized medicine [2,9].

Supplementary Materials: The following are available online at https: // www.mdpi.com /article /10
.3390/ metabol11060336 /s1. Figure 51: A schematic overview of data layers, Figure S2: The data can
be analyzed at three different levels, Figure 53: An overview of the modelling step based on the four
layers of information obtained through the use of GUMPF, Figure 54: An overview of characteristics
of the models based on 165 rENA, predicted metagenomes (KO), predicted enzymatic reactions
(EC) and metabolic pathways (Pathway) data. KO and EC data performed slightly better than those
based on 165 rRNA and pathway data, Table 51: Performance metrics of built models based on four
different levels of data generated by GUMPP from human dataset, Table 52: Human dataset, power
analysis. Sample size corresponding to calculated statistical power, Minimanual 1: GUMPF's quick
run routine, Minimanual 2: Instructions for running a model on a local machine.
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Abstract

Spinal muscular atrophy (SMA) is a genetically heterogeneous group of rare neuromuscular diseases
and was until recently the most common genetic cause of death in children. The effects of 2-month
nusinersen therapy on urine, serum, and liquor 'H-NMR metabolomes in SMA males and females
were not explored yet, especially not in comparison to the urine 'H-NMR metabolomes of matching
male and female cohorts. In this prospective, single-centered study, urine, serum, and liquor samples
were collected from 25 male and female pediatric patients with SMA before and after 2 months of
nusinersen therapy and urine samples from a matching healthy cohort (n = 125). Nusinersen
intrathecal application was the first therapy for the treatment of SMA by the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA). Metabolomes were analyzed
using targeted metabolomics utilizing 600 MHz '"H-NMR, parametric and nonparametric multivariate
statistical analyses, machine learning, and modeling. Medical assessment before and after nusinersen
therapy showed significant improvements of movement, posture, and strength according to various
medical tests. No significant differences were found in metabolomes before and after nusinersen
therapy in urine, serum, and liquor samples using an ensemble of statistical and machine-learning
approaches. In comparison to a healthy cohort, 'H-NMR metabolomes of SMA patients contained a
reduced number and concentration of urine metabolites and differed significantly between males and
females as well. Significantly larger data scatter was observed for SMA patients in comparison to
matched healthy controls. Machine learning confirmed urinary creatinine as the most significant,
distinguishing SMA patients from the healthy cohort. The positive effects of nusinersen therapy
clearly preceded or took place devoid of significant rearrangements in the 'H-NMR metabolomic
makeup of serum, urine, and liquor. Urine creatinine was successful at distinguishing SMA patients
from the matched healthy cohort, which is a simple systemic novelty linking creatinine and SMA to
the physiology of inactivity and diabetes, and it facilitates the monitoring of SMA disease in pediatric
patients through non-invasive urine collection.
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Abstract: Spinal muscular atrophy (SMA) is a genetically heterogeneous group of rare neuromuscular
diseases and was until recently the most common genetic cause of death in children. The effects
of 2-month nusinersen therapy on urine, serum, and liquor 1H-NMR metabolomes in SMA males
and females were not explored yet, especially not in comparison to the urine TH-NMR metabolomes
of matching male and female cohorts. In this prospective, single-centered study, urine, serum, and
liquor samples were collected from 25 male and female pediatric patients with SMA before and after
2 months of nusinersen therapy and urine samples from a matching healthy cohort (n = 125). Nusin-
ersen intrathecal application was the first therapy for the treatment of SMA by the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA). Metabolomes were analyzed us-
ing targeted metabolomics utilizing 600 MHz 1H-NMR, parametric and nonparametric multivariate
statistical analyses, machine learning, and modeling. Medical assessment before and after nusinersen
therapy showed significant improvements of movement, posture, and strength according to various
medical tests. No significant differences were found in metabolomes before and after nusinersen
therapy in urine, serum, and liquor samples using an ensemble of statistical and machine learning
approaches. In comparison to a healthy cohort, 1H-NMR metabolomes of SMA patients contained a
reduced number and concentration of urine metabolites and differed significantly between males
and females as well. Significantly larger data scatter was observed for SMA patients in comparison
to matched healthy controls. Machine learning confirmed urinary creatinine as the most significant,
distinguishing SMA patients from the healthy cohort. The positive effects of nusinersen therapy
clearly preceded or took place devoid of significant rearrangements in the 1H-NMR metabolomic
makeup of serum, urine, and liquor. Urine creatinine was successful at distinguishing SMA patients
from the matched healthy cohort, which is a simple systemic novelty linking creatinine and SMA to
the physiology of inactivity and diabetes, and it facilitates the monitoring of SMA disease in pediatric
patients through non-invasive urine collection.

Keywords: spinal musular atrophy; nusinersen; 1H-NMR metabolomics; males; females; serum;
liquor; urine; healthy control cohort
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1. Introduction

The 5q spinal muscular atrophy (SMA) is a rare neuromuscular disorder, which leads
to progressive atrophy and weakening of skeletal muscles due to the progressive loss of
motor neurons [1]. It is characterized by degeneration of the motor neurons in the anterior
horn of the spinal cord, resulting in atrophy and weakness of the voluntary muscles of
the limbs and trunk. With the incidence of about one in 11,000 live births, it was, until
the development of disease—modifymg drugs, the most common genetic cause of child
deaths [2]. The gene for the survival motor neuron (SMN) was localized in 1990 by two
different groups [3,4] on chromosome 5q13 and in 1996 was identified as the disease-
causing gene. The SMN protein is produced by two genes, the telomeric SMN1 gene, which
is deleted or interrupted in patients with SMA, and the centromeric SMN2 gene, which
differs from SMN1 by five nucleotides and is present in several copies (Figure 51). SMN1
Pmduees ['u]_l—length l'rzmscripts, while SMN2 in 90% produees transcripts without exon 7,
because of the C to T mutation that produces an exon-splicing suppressor sequence [5,6].
In SMA patients, SMN2 is present in at least one copy and is usually truncated because
of C to T substitution (c.840C — T), since in 90-95% of the cases, the exon is spliced out
of the produced SMN. The remaining 10% produce the SMN protein in full length, which
indicates a low SMN expression [7]. SMN is a 38 kDa protein that is expressed in all somatic
tissues and is located in the nucleus, in the cytoplasm, and in the axons of motor neurons.
Its role is not yet fully understood, but the phenotype of the SMA depends largely on the
number of SMN2 gene copies present [5].

However, SMA is a motor neuron disease that also affects the skeletal muscle, heart,
kid_ney, liver, pancreas, s.pleen, bone, connective tissues, and immune systems [9].

Novel therapies for the treatment of SMA have emerged that modify the natural course
of the disease by modifying the expression or replacing mutated genes involved in the
development of SMA. Such treatment options are currently nusinersen [10] (an antisense
oligonucleotide that modifies mRNA splicing) (Figure 51), onasemnogene abeparvovec [11]
(gene replacement therapy), and risdiplam [12] (a small molecule that modifies mRNA
splicing). Nusinersen was the first drug approved for SMA. It was approved by the US
Food and Drug Administration (FDA) in December 2016 and by the European Medicines
Agency (EMA) in June 2017 [13,14]. Nusinersen (Figure S1) is an antisense oligonucleotide
that promotes the inclusion of exon 7 into mRNA transcripts of SMN2. It binds to an
intromnic spliee site in intron 7 of SMN2 and inhibits the action of other splicing factors,
thereby promoting exon 7 incorporation into the mRNA. This leads to the production of
a fully functional SMN protein. Antisense oligonucleotides do not cross the blood-brain
barrier, which means that they must be administered intrathecally [15-17]. The nusinersen
drug improved motor function and increased the amplitude of muscle action potential of
the ulnar and peroneal nerve. An autopsy analysis showed the uptake of nusinersen into
motor neurons throughout the spinal cord and into neurons in the brainstem [18]. Increased
motor function was manifested as an increased ability to sit or walk independently [19-21],
increased bite force [22], and increased hand strength [23]. Although nusinersen is ad-
ministered intrathecally, which requires a lot of expertise, it has been shown that such
application is well tolerated and safe [24]. Nusinersen is available in many countries for
most types of SMA patients, depending mostly on inclusion criteria and financing defined
by the country of residence. However, there is an enormous need for real-world evidence
of nusinersen efficacy, for better understanding of the variability of effect and side effects
in a broader cohort of SMA patients [25].

In the last two decades, new approaches have been developed in the natural sciences.
These include various ‘omics techniques: from genomics, which is an irnportant method
for establishing the SMA diagnosis, to metatranscriptomics, proteomics, and metabolomics
to monitor and investigate disease [7]. A systemic approach to therapy during early
development is most likely to maximize the positive clinical outcome. Metabolomics is
a useful method to evaluate the metabolites that we can identify in different biological
samples, leading to the end of a cascade of biological processes, hence helping us to under-
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stand the molecular phenotype and the underlying metabolic mechanisms [26]. Nuclear
magnetic resonance spectroscopy (NMR) is one of the most widely used approaches due
to its minimal sample preparation, non-destructive measurement method, quantitative
aspect, and high reproducibility [27-29]. TH-NMR has been used to study the modulation
of metabolites to cellular stress [30], breast cancer markers [31], acute pancreatitis [32],
influence of metabolome on health and disease [33], biomarkers for Crohn's disease and
ulcerative colitis [34], obesity [35], coronary heart disease and stroke [36], next to physi-
ological deconditioning through inactivity and hypoxia [37]. In line with these reports,
serum creatinine was only recently identified as a potential biomarker for monitoring
the SMA progression of denervation with decreasing levels reflecting the severity of the
disease [38]. However, it is currently unknown whether (i) creatinine concentration showed
improvement upon early medical intervention with nusinersen therapy, (ii) whether these
changes are detectable in liquor, serum, or urine samples using 1H-NMR metabolomics
approaches, and (iii) in relation to age- and sex- matched healthy male and female cohorts,
next to (iv) whether additional biomarkers can be identified using urine samples relative to
healthy cohorts.

In this study, the effects of nusinersen on the 1TH-NMR metabolomes of three bodily
fluids urine, liquor, or serum were explored in male and female pediatric patients with
SMA (Figure 52). Matched healthy male and female cohorts (Table 51) were used to explore
urine as the more ubiquitous and accessible matrix for SMA detection and monitoring,
Ensemble multivariate statistical approaches (nonparametric and parametric) coupled to
machine learning were used to interrogate the metabolomics data in order to establish the
significance of differences between SMA before and after treatment and a healthy cohort in
order to build the respective sample classification model based on the most important and
validated urine biomarkers for the first time.

2. Results and Discussion

2.1. Comparison of 1H-NMR Metabolomes of Urine, Serum, and Liquor Samples before and after
Nusinersen Intervention: Positive Effects of Nusinersen Therapy Clearly Preceded or Took Place
Devoid of Significant Rearrangements in the Metabolomic Makeup of Serum, Urine, or Liquor

SMA samples of urine, serum, and liquor were collected before and after the 4th
application of nusinersen therapy and processed as described below. Medical checkup
before the first and after the 4th treatment showed significant improvements at the level
of better movement, easier writing and sitting or standing, and feeling more strength
next to easier finger extension, which were all measured according to The Children’s
Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) [39],
Hammersmith Functional Motor Scale (HFMS), or Expanded Hammersmith Functional
Motor Scale (HFMSE) [40] scales or Motor Function Measurement (MFM) [41] tests (Table 1).
Twenty pal'ients showed impmvement in moving, alongside 8 in head control, 7 in eaﬁng,
3 in breathing, 5 in wheelchair control, 10 in tiredness, 4 in hygiene, 5 in mood, 7 in speech,
2 in sleep, and one in excretion after the 4th application of nusinersen.

In contrast, the nonparametric tests (npMANOVA; p > 0.05; FDR corrected) used in
our analyses showed no significant differences in metabolites in samples collected before
and after the 4th application of nusinersen, irrespective of the sample matrix (urine, serum,
liquor), sex, or data transformation and normalization procedures. These findings were
further corroborated by additional parametric analyses using analyses as implemented
within Metaboanalyst (PLSDA, random forest) (Figure 1) and extensive modelling using
Just Add Data Bio (JADBIO), all showing no significant difference between the metabolomes
collected before and after 4th application of nusinersen. Lastly, the exploration of statistical
power also supported the same conclusion. The differences between the metabolic profiles
of samples collected before and after the 4th application of nusinersen were so small that at
least a two orders of magnitude larger sample size per group (amounting to thousands of
samples) would be needed to detect significant differences between the two SMA groups
at the level of metabolites and their concentrations obtained by 1H-NME.
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Table 1. Clinical data obtained from spinal muscular atrophy (SMA) patients. Due to the small cohort size, patients’ data
were anonymized.

Ageat Weight Height Summary
Patient Sex ?:;: 33;;5 1st at 1st at 1st Score at
i App  App App  IstApp

Ambulatory Ambulatory Ambulatory

at1stApp  atT7th App Change Other

More strength in
1 1 2 3 135 57 152 7.5 0 0 No the legs while
laying on the back

2 1 2 4 5.8 16 103 30 0 More strength

3 2 3 3 43 124 92 87.5 1 1 No More strength
She stands easier

4 2 2 3 11.7 42 134 75 0 0 No when supported
when going to the

toilet

5 2 2 3 17 10 78 45.3 0 0 No Stronger

A 1 3 4 7.6 37 136 100 1 1 No Walks easier

7 2 2 4 123 225 135 547 0 0 MNo Writes easier

5i .
8 2 2 3 8.6 25 126 15 0 0 No its easier and

better torso control

Talks easier and
9 2 2 4 188 50 143 15 0 0 No moves upper and
lower limbs easier

Muscle pain after

=
=
w
—
=
o

10 160 100 1 1 No

long walk
11 2 2 3 113 13 125 15.6 0 0 No Stronger voice
12 1 2 3 116 3 144 7.8 0 0 No e:‘r';i':;;i;zﬁ
13 1 2 3 154 19 150 6.3 0 0 No No changes
observed
14 2 3 3 52 16.5 105 52.5 0 0 No Easier movement
15 2 2 4 23 10.2 82 55 0 0 No More strength
16 2 1 4 1.3 123 745 313 0 0 No
17 1 2 3 6.4 13 114 17.2 0 0 No Better movement
18 2 3 3 186 4 154 100 1
19 2 2 3 1 7.6 75 59.4 0 0 No Movement better
0 1 2 3 9.8 395 146 203 0 0 No ti]f:lzgfgi E:lsbr;
21 1 3 4 142 58 174 97.5 1 1 No Can walk further
22 2 2 4 5.9 14 110 30 0 0 No Better movement
23 2 2 3 3.3 24 102 47.5 0 0 No No difference
24 1 3 3 13 41 152 85 0 0 No Better movement
25 1 9.1 304 1385
26 1 1.41 10
X 1 3.92 45.2 152
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Figure 1. A Partial least square discriminant analysis (PLSDA) of 1H-NMR metabolomes of SMA patients based on
{A) urine, (B) serum, and (C) liquor before (red) and after (green) the 4th application of nusinersen. Ellipses designate
95% confidence intervals for each group. The differences are not significant (ensemble statistical approach (npMANOVA,
MetaboAnalyst, JADBio)).

Taken together, these results show that the pusitive effects of nusinersen therapy
(Table 1) preceded or took place devoid of significant changes in the actual metabolomics
makeup of all three matrices: serum, urine, or liquor (Figure 1). Therefore, the existence of
subtle differences could be explored only using approaches utilizing detection thresholds
beyond the routine TH-NMR approaches, such as mass spectrometry methods with higher
sensitivity and the possible identification of metabolites present at nM concentrations.
However, the relative ease of sample preparation, the ability to quantify metabolite levels,
the high level of experimental reproducibility, and the inherently nondestructive nature of
NMR spectroscopy support the selection of TH-NMR as the preferred platform for clinical
metabolomic studies [42].

The congruency between the results obtained using various bodily fluids (urine, serum,
liquor) showed that the lack of differences in the metabolite profile due to nusinersen
therapy were reproducible on all three matrices and hence indeed remarkably small. Our
approach also introduced urine as a more straightforward sampling approach to monitor
the overall physical status in SMA patients relative to a healthy population compared to
more complex serum or liquor samples utilized so far.

2.2. Search for Additional SMA Biomarkers Utilizing Routine TH-NMR in Urine: Sex Differences,
Lower Overall Metabelite Concentrations and Diversity, and Creatinine Content

The collection of urine samples from SMA patients and also from the healthy cohort
enabled us to compare the two groups in search of biomarkers for the delineation of SMA
and healthy controls next to the detailed targeted 1H-NMR metabolite biomarker search.
The ensemble statistical approaches (npMANOVA, MetaboAnalyst; JADBIO) applied to
the data matrices (all analyzed metabolites x all samples) clearly identified the existence of
significant differences between male and female metabolism on one side next to differences
between the healthy cohort and SMA on the other.

First, npMANOWVA showed the importance of sex (F=54.9; p = 0.0001) and SMA status
before or after treatment (F = 20.7; p = 0.0001) as significant, while their interaction or SMA
status itself (pre vs. post) were not, irrespective of the three different approaches to data
preparation and transformation (composition (%), Box—Cox, Log(x + 1)).

Second, the same distinction between the groups of metabolites detectable in urine
samples was obtained using PLSDA and randomForest classification as implemented in
MetaboAnalyst approach (Figure 2, Figure 3, Figures 57 and S8), clearly showing that the
differences between male and female physiology were significant at the level of overall
urine data encompassing SMA and healthy cohort (p < 0.05). Using the same data sizes
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(A)

and matched composition, the differences between males and females were still observable
in the healthy cohort (Figure 3) (p < 0.05), while they were less pronounced in the SMA
dataset due to the larger scatter observed in SMA groups of males and females (p < (0.85).
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Figure 2. MetaboAnalyst heatmaps of urine 1H-NMR metabolomes representing existing differences between SMA cohort
(before and after) and healthy cohort, for males (A) and females (B). The differences on metabolic level between the
before-treatment (green) and after 4th application (red) groups were not significant due to the large variability in SMA
samples. The most differentiating metabolites were selected by the PLSDA variable importance in projection (VIP) score,
where decreasing metabolites were presented with negative values (blue color) and increasing metabolites were presented

with positive values (red color). Individual data are presented in the Supplementary Material (Figures 57 and 58).

We further explored differences in measured concentrations and numbers of differ-
ent metabolites between SMA and the healthy cohort. The cumulative concentration of
metabolites found in the urine of SMA patients corresponded to 58% of those found in the
healthy cohort, which was a significant reduction (p < 0.05). The higher concentrations
of metabolites observed in males relative to females were not significant due to the twice
as large scatter observed in SMA groups of males and females (p < 0.05). These results
show the general picture of a significantly lower overall concentration of urine metabo-
lites in SMA patients relative to the healthy cohort. In addition, the presence /absence
pattern of metabolites, i.e., the number of detected metabolites was also significantly higher
(p < 0.001) in the healthy cohort relative to SMA; however, it was not significantly different
between SMA male and female patients, again, due to the large scatter observed in SMA
groups of males and females, relative to that observed in matching healthy cohorts of males
and females (Table 52). In comparison, the healthy male cohort exhibited a significantly
larger number of metabolties (n = 178.2 4 10.8) in comparison to the healthy female cohort
(n = 154.9 & 24) used in this study, providing future guidance for introducing female
participants to such experiments. This is the first report describing the existence of such
differences in the context of SMA; hence, the underlying mechanisms for the observed
significant differences in metabolic makeup between SMA and healthy next to males and
females warrant further analyses in the future.
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Figure 3. The significant differences in urine 1TH-NMR metabolomic profiles between females and males in matched healthy
cohorts. (A) PLSDA analysis and (B) heatmap analysis representing existing differences in the first 30 most important
metabolites. (F—females (red), M—males (green)). The most differentiating metabolites were selected by the PLSDA
VIP score, where decreasing metabolites had negative values (blue color) and increasing metabolites had positive values

(red color).

Some tentative parallels exist with research conducted in the fields of exercise and
inactivity. In the context of exercise medicine, analyses of exercise showed that runners
experienced a profound systemic shift in blood metabolites related to energy production
(especially from the lipid super pathway) and that following the 3-day exercise period,
significant 2-fold or higher increases in 75 metabolites persisted for longer than a day [43]. A
recent review on exercise metabolic changes revealed that in total, at least 196 metabolites
changed their concentration significantly within 24 h after exercise in at least studies,
signifying the importance of daily exercise bouts for the maintenance of metabolic diversity
and concentration [44]. On the other hand, in the context of body deconditioning due to
physical inactivity, similar findings as observed here for the SMA cohort wene rep.orted in
controlled bed-rest studies. Three-week inactivity resulted in a 30% reduction in the number
of statistically significantly connected metabolites, a 2.5 times reduction in the number
of interactions, and diminished metabolic diversity within the human body. Conversely,
the short-term complete inactivity exhibited also rather similar physiological changes
(Figure 53) such as insulin resistance, bone and muscle resorption, constipation, changes in
lipid metabolism, and progressively negative interactions with microbiome [29,45,46] that
are all listed as part of the SMA makeup as well.

Third, extensive statistical analyses using MetaboAnalyst (Figure 54) and machine
learning JADBIO modeling (Figure 4) were adopted to explore the importance of metabo-
lites measured in urine samples. In total, 60,340 models were trained based on the complete
urine metabolomics dataset comprising the SMA before, SMA after, and Healthy partici-
pants. PLSDA based on all three groups showed that the only significant difference existed
again between SMA on one side and the healthy cohort on the other (Figure 4A). The most
interpretable model was identified as the ridge logistic regression with the penalty hyperpa-
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rameter lambda equal to 0.1 with an area under the curve (AUC) value of 0.958 (Table 53).
In addition to AUC, all other threshold metrics were also statistically significantly different
from baseline. Data were preprocessed with constant removal and standardized. Features
were selected based on Test-Budgeted Statistically Equivalent Signature (SES) algorithm
with hyperparameters: maxK = 2, alpha = 0.01, and budget = 3 *nvars. The performance of
the model when only creatinine from urine is used is 97.378% (with 95% CI from 94.043% to
100%). Out of all metabolites, creatinine measured in urine samples was the most significant
metabolite uniformly separating the healthy group from the SMA group (Figure 4B and
Figure 54), whereas no additional metabolic features could be identified to separate SMA
before from SMA after, in analogy with the other tests described in this study (Figure 55).
We used the trained model on the test part of our data (30% of our total dataset) and
achieved the validation performance with an AUC of 0.970. Our work shows that decreas-
ing creatinine concentrations in urine can be used as an additional easy way to measure
differentiations between SMA patients and healthy groups (Figure 5 and Figure 59) in
analogy with creatinine in serum, which was only recently put forward as a potential
biomarker for monitoring the SMA progression of denervation with decreasing levels,
reflecting the severity of the disease [38]. However, in response to the open question put
forward of whether creatinine responded to molecular therapies [38], the results presented
in this study showed that the levels of creatinine did not change significantly in response
to the application of nusinersen therapy. Inclusion and analysis of the urinary 1H-NMR
metabolomics data following extended nusinersen therapy is projected to further answer
this question in the future.
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Figure 4. Results of partial least square discriminant analysis (PLSDA) (A) and (B) Receiver Operating Characteristics curve
of modeling of the data. A PLSDA-based ordination of 1H-NMR urine metabolomes: healthy (blue), before (red), and
after (green) 4th application of nusinersen. Ellipses designate 95% confidence intervals for each group (A). (B) Receiver
Operating Characteristic (ROC) curve for SMA patients obtained with model. The Just Add Data Bio (JADBIO) model is
available as part of the electronic Supplementary Material for the classification of novel 1H-NMR metabolomic data.

50



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

Metabalites 2021, 11, 206 9of15
G _
1%10
c
o
s
= Sex
3
g & ¢
O 5. 1]
o110 =
e
=}
5
1%10*

Before trleatment After dth alpplication Healthy
Group

Figure 5. Box-plots representing logl0 transformed creatinine concentrations in all three groups (before treatment, after 4th
application, healthy) in females and males separately. Original concentrations are presented in Figure 59.

Spinal muscular atrophy patient data suggest that spinal muscular atrophy is a dis-
ease affecting neurons, which has diverse consequences for multiple tissues (skeletal
muscle, heart, kidney, liver, pancreas, spleen, bone, connective tissues, intestinal tract,
and immune systems) [9]. Space-exploration studies adopting bed-rest, e.g., our PlanHab
experiment [29,37,45,46], represent a controlled environment for elucidation of the effects
physical inactivity as such. Valuable insight was obtained into body deconditioning includ-
ing insulin resistance, bone and muscle resorption, constipation, mood changes such as
depression, negative changes in lipid metabolism, and inflammatory interactions with the
microbiome and cardiovascular hypertension (Figure 53) [29,45,46], next to modifications
in bacterial metabolism and mucosal turnover in the gut, contributing to the transfer of
inflammatory compounds into the bloodstream [47].

These similarities point to a complex interplay and joint effects of physical inac-
tivity and the congenital SMA disease of the patients. We highlight the fact that these
are all distinct medical conditions which, despite their different etiologies, share certain
characteristics of their metabolic phenotype and clinical characteristics that deserve fur-
ther exploration.

Decreased creatinine concentrations were observed in urine samples of bed-rest im-
mobilized healthy male participants of the planetary habitat exploration studies [37]
(Figure 56). The reintroduction of exercise effectively alleviated and completely reversed
the negative effects observed in the PlanHab project [29,37,45,46]. In another study, bed-rest
immobilized participants that received vibrational therapy [48] showed numerous benefits
relative to controls and could be considered as a step in the physical activation of SMA
patients after nusinersen therapy, similar to the prevention and treatment of many diseases,
including diabetes and obesity in the future.
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3. Materials and Methods
3.1. Patients and Healthy Volunteers

This was a single-center study. Biological samples were collected from all patients,
clinically diagnosed, and genetically confirmed with SMA. Patients were younger than
19 years and were treated with nusinersen at the Department of Child, Adolescent and
Developmental Neurology at the University Children’s Hospital Ljubljana, Slovenia.

In March 2017, nusinersen was available through the early access program. Five
children received the application before was approved by the European Medicines Agency
(EMA). After the approval, The Health Insurance Institute of Slovenia offered the treatment
to all children and eligible young adults. Those who decided on treatment were enrolled in
the study between March 2017 and by June 2020 and received four consecutive applications
of nusinersen.

The study and all experimental protocols were approved by the National Medical
Ethics Committee of Republic of Slovenia (0120-305,/2018/6 and 0120-305/2018/11). All
participants and /or their legal guardians signed the informed consent. The study was regis-
tered at ClinicalTrials.gov (accessed on 29 January 2021) under the identifier NCT04587492.

In total (Table 51), 48 samples of urine (25 before treatment and 23 after the 4th
application of nusinersen), 41 samples of serum (21 before and 22 after), and 46 samples of
liquor (24 before and 22 after) were collected by medical professionals at the University
Children’s Hospital Ljubljana, Slovenia. The SMA cohort consisted of 15 female patients
(age: B.8 £+ 5.5 years; height: 131 + 21 em; weight: 26 + 15 kg) and 10 male patients
(age: 9.3 £ 5.1 years; height: 131 = 20 cm; weighf:: 28 + 16 kg}. The matchi.ng healthy
female and male cohort consisted 48 female volunteers (age: 9.4 £ 3.5 years; height:
136 + 20 em; weight: 32 + 13 kg) and 77 healthy male volunteers {(age: 9.6 = 4.3 years;
height: 142 £ 24 cm; weight: 36 & 16 kg). Daily urine samples were collected for three
consecutive days to capture daily variation in routines and dietary habits. All samples
(SMA and the healthy group) were included in a newly established Slovenian Urine NMR
database (manuscript in preparation).

3.2. Evaluation

We analyzed the number of SMN2 copies in all genetically confirmed SMA patients.
Evaluation of patients were performed before the initiation of treatment, before the 5th
application (after 6 months). Neurological, pulmological, gastroenterological, endocrino-
logical, and psychological exams were performed by pediatric specialists before the start
of treatment. The physical capabilities were performed by standardized test by a physio-
therapist: The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders
(CHOP INTEND) [39], Hammersmith Functional Motor Scale (HFMS), or Expanded Ham-
mersmith Functional Motor Scale (HFMSE) [40] scales or Motor Function Measurement
(MFEM) [41] test. Testing was performed by a physiotherapist trained to use the tests, de-
pending on the age and capabilities of the patient, before the treatment and at all follow-up
examinations. The same test was used for all time-points in each particular patient.

3.3. Treatment with Nusinersen

All patients were treated with intrathecal (IT) application of nusinersen. The applica-
tion was performed under controlled hospital environment. The majority of applications
were performed without sedation or under sedation with midazolam or with a combination
of midazolam and ketamine. The IT application in very anxious patients was performed
under general anesthesia. All patients were recommended to be well hydrated for at least
one day before application.

The IT injection of nusinersen was performed on days 0, 14, 30, and 60 in all patients
in a standard dose of 5 mL (12 mg/mL). In smaller children, the dose was appropriately
reduced after the application; all children were advised to lie prone for 2 h to reduce the
risk of post lumbar puncture (LP) symptoms. To reduce the risk of post lumbar puncture
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symptoms, all patients were advised to lie prone for at least 2 h after IT application and
werne monitored for potential side effects for the entire duration of the study.

After the first application, patients were dismissed from the hospital one day after the
application and on the same day in the evening for the following applications.

3.4. Sample Collection

For all patients treated with nusinersen who received the medicine intrathecally,
samples of urine, blood serum, and cerebrospinal fluid (CSF) were collected before the
initiation of treatment, and after the 4th (2 months) app]ical:iun of nusinersen. All obtained
samples were frozen at —20 “C for further analysis. Replicate stability analyses were
performed as described before [29,37] (Figure 52).

3.5. Metabolome Analysis Using Proton Nuclear Magnetic Resonance ( TH-NMR)

All collected samples were centrifuged (1.5 mL) at 10,000« g for 30 min to remove
fine particles. Then, 400 uL of supernatant were mixed with 200 uL 1H-NMR buffer as
described before [49] and stored at —25 °C until analysis. Serum samples were filtered
usi.ng 3 kDa colons (Amicom Ultra 3 kDa (Merck Mi]].ipore, Burlj.ngton, MA, USA)) for the
additional removal of large molecules [50]. Before analysis, samples were thawed at room
temperature and transferred into a 5 mm NMR tube. TSP was used as an internal standard
for quantification, as described before [49]

An Agilent Technologies DD2 600 MHz spectrometer equipped with a 5 mm HCN
Cold probe was used for the acquisition of NMR spectra at 25 °C. The TH NMR spectra
of the samples were recorded with a spectral width of 9.0 kHz, relaxation delay of 2.0 s,
32 scans, and 32 K data points. A double-pulsed field gradient spin echo (DPFGSE)
pulse sequence was used for water suppression. Total correlated spectrum (TOCSY) was
measured with TH spectral widths of 7.0 kHz, 4096 complex points, a relaxation delay
of 1.5 s, 32 transients, and 144 time increments. An exponential and cosine-squared
function were used for apodization. Zeros were filled before Fourier transform. VINMR]
(Agilent/ Varian) software was used for processing urine and liquor NMR spectra.

Serum spectra were acquired on the same spectrometer equipped with a 24-sample
automation system processed with Topspin v. 4.0.9 software (Bruker, Billerica, MA, USA).

Metabolites were identified with the support of the Chenomx Compound Library
extended to the Human Metabolome Database [51,52], giving access to chemical shift
profiles of 674 compounds used in analyses. The number of database-derived chemical
shift profiles of metabolites used in analyses was further decreased by the procedures
described below.

3.6. Bioinformatics and Statistical Analysis

The resulting spectra were consequently analyzed using targeted quantitative metabolomics
using Chenomx NMR Suite version 8.6 (Chenomyx, Inc., Edmonton, AB, Canada). For the
latter, all spectra were randomly ordered for spectral fitting using the ChenomX profiler. An
ensemble approach to data analysis was utilized, employing three different approaches to
asymmetric sparse matrix data analysis, establishing significant differences between tested
groups as follows: nonparametric MANOVA (PERMANOVA) [53], MetaboAnalyst [54,55],
and JADBIO [56].

First, for npMANOVA, each compound concentration obtained was analyzed as de-
scribed before in three different ways [29,37]: (i) by dividing the measured concentration
by the concentration of all metabolites in that sample; (ii) Box—Cox; or (iii) log(x + 1)
transformed. The significance of metabolic differences between various groups of samples
was tested usi.ng ANOSIM, NP-MANOVA, and expr@ssed as an overlap in non-metric
multidimensional scaling (nm-MDS) trait space (using Euclidean distance measures). The
stress function was used to select the dimensionality reduction, whereas Shepard's plots
were used to describe the correspondence between the target and obtained ranks [57].
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Benjamini-Hochberg significance correction for multiple comparisons was used as de-
scribed before [45,46].

Second, for MetaboAnalyst, log or cube root transformation in connection to Mean
or Pareto scaling was utilized as implemented in MetaboAnalyst [54,55] followed by
supervised classification using partial least squares discriminant analysis (PLSDA) method,
random forest (RF), and pathway enrichment analysis. PLSDA results were cross-validated
with a caret package implemented in MeatboAnalyst. The most important metabolites
identified by PLSDA were determined according to variable importance in projection
(VIP). The randomForest package implemented in MetaboAnalyst was used for supervised
classification between different groups of interest. The most important features defined
by RF were ranked by a mean decrease in classification accuracy. Hierarchical clustering
was performed according to the VIP scores to obtain a heat map representing differences in
metabolic pmﬁ.les between Samples and groups. Euclidean distance, Pearson’s correlation,
and Spearman’s correlation were used as similarity measures and Ward's linkage was used
as a clustering algorithm. Statistical power for the identification of significant differences
before and after treatment was also calculated using MetaboAnalyst Statistical Power
module. MetaboAnalyst and ggplot2 were used for graph generating,.

KEGG human pathway libraries were used for metabolic pathway and enrichment
analysis. For topological analysis, the globaltest analysis method and relative betweenness
centrality were used. Significant pathways were determined using the raw p-value, Holm-
Bonferroni p-adjusted value, and adjusted p-value using the False Discovery Rate. The
impact of pathways was calculated using pathway topology analysis.

Metabolite Set Enrichment (MSEA) was used to identify biologically significant pat-
terns between quantitative metabolome data from different groups. HMDB compound
names were used to link to the KEGG database. Enrichment analysis was performed
using the globaltest package implemented in MetaboAnalyst. The enrichment ratio was
calculated by dividing observed hits and expected hits.

Last, Just Add Data Bio (JADBIO), a web-based auto machine learning platform for
analyzing potential biomarkers [56], was used. The JADBIO platform was designed for
predictive modeling and to provide high-quality predictive models for diagnostics using
state-of-the-art statistical and machine learning methods. Personal analytic biases and
methodological statistical errors were eliminated from the analysis by the autonomous
exploration of various settings in modeling steps producing more convincing discovered
features to discriminate between SMA and the healthy group. JADBIO 1.1.164 with ex-
tensive tuning effort and 6 CPU was used to model various dataset selections next to
the overall 336 metabolites observed in urine samples in all groups (healthy versus SMA
group) by splitting the total urine metabolite data into a training set and a test setin a
70:30 ratio. The training set was used for model training and the test set was used for
model evaluation.

The resulting model can be obtained as part of Supplementary Material (ESM2) and
run with java executor for the classification of novel urine samples based on TH-NMR
metabolomes in further exploration.

Supplementary Materials: The following are available online at https: / /www.mdpi.com/ article /
10.3390/ metabo11040206/ 51, Figure 51: Healthy individuals have active protein SMN1, Figure 52:
Sample collection and data analysis scheme, Figure S3: Heatmap plot showing the relationship
between parameters describing human physiology, psychology, and intestinal environment that
differed significantly at the end of the PlanHab experiment, Figure 54: Feature importance plots
(MetaboAnalyst PLSDA analysis), Figure 55: Progressive feature inclusion plot, Figure S6: Heatmap
of the 50 most important urine metabolites of the PlanHab metabolomes. Figure 57: Heatmap
representing 40 the most discriminative metabolic features for female SMA patients before and after
treatment and matched healthy cohort, Figure 58: Heatmap representing the 40 most discriminative
metabolic features for male SMA patients before and after treatment and matched healthy cohort,
Figure 59: Box-plots representing creatinine concentrations in all three groups (Before treatment,
After 4th application, Healthy) in females and males separately. Table 51: Descriptive statistics of
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analyzed cohorts, Table 52: The number of detected metabolites in healthy cohort relative to SMA.
Table 53: Performance metrics, Instructions for running a model on a local machine, model zip
{model, java executor and test data included).
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2.1.4 The importance of objective stool classification in fecal "H-NMR metabolomics:
exponential increase in stool crosslinking is mirrored in systemic inflammation and associated
to fecal acetate and methionine

Deutsch L., Stres B. 2021. The importance of objective stool classification in fecal 'H-NMR
metabolomics: exponential increase in stool crosslinking is mirrored in systemic inflammation and
associated to fecal acetate and methionine. Metabolites, 11, 3: 172, doi.
https://doi.org/10.3390/metabo11030172, 16 p.

Abstract

Past studies strongly connected stool consistency-as measured by Bristol Stool Scale (BSS)-with
microbial gene richness and intestinal inflammation, colonic transit time and metabolome
characteristics that are of clinical relevance in numerous gastro intestinal conditions. While retention
time, defecation rate, BSS but not water activity have been shown to account for BSS-associated
inflammatory effects, the potential correlation with the strength of a gel in the context of intestinal
forces, abrasion, mucus imprinting, fecal pore clogging remains unexplored as a shaping factor for
intestinal inflammation and has yet to be determined. Our study introduced a minimal pressure
approach (MP) by probe indentation as measure of stool material crosslinking in fecal samples.
Results reported here were obtained from 170 samples collected in two independent projects,
including males and females, covering a wide span of moisture contents and BSS. MP values
increased exponentially with increasing consistency (i.e., lower BSS) and enabled stratification of
samples exhibiting mixed BSS classes. A trade-off between lowest MP and highest dry matter content
delineated the span of intermediate healthy density of gel crosslinks. The crossectional transects
identified fecal surface layers with exceptionally high MP and of <5 mm thickness followed by
internal structures with an order of magnitude lower MP, characteristic of healthy stool consistency.
The MP and BSS values reported in this study were coupled to reanalysis of the PlanHab data and
fecal "TH-NMR metabolomes reported before. The exponential association between stool consistency
and MP determined in this study was mirrored in the elevated intestinal and also systemic
inflammation and other detrimental physiological deconditioning effects observed in the PlanHab
participants reported before. The MP approach described in this study can be used to better understand
fecal hardness and its relationships to human health as it provides a simple, fine scale and objective
stool classification approach for the characterization of the exact sampling locations in future
microbiome and metabolome studies.
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Abstract: Past studies strongly connected stool consistency—as measured by Bristol Stool Scale
(BSS}—with microbial gene richness and intestinal inflammation, colonic transit time and metabolome
characteristics that are of clinical relevance in numerous gastro intestinal conditions. While retention
time, defecation rate, BSS but not water activity have been shown to account for BSS-associated
inflammatory effects, the potential correlation with the strength of a gel in the context of intestinal
forces, abrasion, mucus imprinting, fecal pore clogging remains unexplored as a shaping factor for
intestinal inflammation and has yet to be determined. Cur study introduced a minimal pressure ap-
proach (MP) by probe indentation as measure of stool material crosslinking in fecal samples. Results
reported here were obtained from 170 samples collected in two independent projects, including males
and females, covering a wide span of moisture contents and BS5. MP values increased exponentially
with increasing consistency (ie., lower BS5) and enabled stratification of samples exhibiting mixed
BSS classes. A trade-off between lowest MP and highest dry matter content delineated the span of
intermediate healthy density of gel crosslinks. The crossectional transects identified fecal surface
layers with exceptionally high MP and of <5 mm thickness followed by internal structures with an
order of magnitude lower MF, characteristic of healthy stool consistency. The MP and BSS values re-
ported in this study were coupled to reanalysis of the PlanHab data and fecal 1H-NMR metabolomes
reported before. The exponential association between stool consistency and MP determined in this
study was mirrored in the elevated intestinal and also systemic inflammation and other detrimental
physiological deconditioning effects observed in the PlanHab participants reported before. The MP
approach described in this study can be used to better understand fecal hardness and its relationships
to human health as it provides a simple, fine scale and objective stool classification approach for the
characterization of the exact sampling locations in future microbiome and metabolome studies.
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1. Introduction

The contractile patterns of small intestine propagate toward the colon and are caused
by the enteric nervous system (the interstitial cells of Cajal) that generate slow waves of
smooth muscle contraction and contribute to the transit rates along the intestine [1-3]. The
number and the length of peristaltic waves, i.e., circular constrictions propagating aborally,
determine chime transport that decreases along the gut in the same proportion as the
volume of luminal content declines by absorption of nutrients and water [4,5]. Repeated
contractions are essential for maintenance of a steady-state bacterial population as mixing
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of chime helps to overcome flow, and controlled contractions by the colon strongly influence
microbiota density and composition. Consequently, flow and mixing play a major role in
shaping the microbial metabolic reactions and interactions with the host [6]. In addition,
with increasing filling of distal intestinal segments (i.e., constipation), the motility of the
proximal intestine is inhibited, the number of peristaltic waves decreases while the number
of stationary segmenting contractions increases [1-3]. In addition to peristaltic waves,
stationary or segmenting contractions are pushing, mixing and separating chime into
segments. These contractions are isolated at a single site without spatio-temporal pattern
and are responsible for inflicting intestinal abrasions during prolonged and increasing
constipation. The derived intestinal abrasions are highly amenable for further microbial
colonization at locations with a thin (e.g., small intestine) or modified mucus layer (e.g.,
abrasions, imprinh'.ng, reduced mucus thickness, increased Pomt.‘it'y and modified mucus
glycosylation pattern; [7]). Local pH values in the lumen differentially affect the growth of
different bacteria and drive changes in microbiota composition. The key factors influencing
the delicate regulation of colonic pH are epithelial water absorption, nutrient inflow, and
luminal buffering capacity [5].

Stool consistency was strongly associated with the gut microbiota richness and compo-
sition, enterotypes, increased local inflammation, lipopulysaccharides and bacterial gmwth
rates [8,9]. Stool consistency is generally assessed using the widely adopted Bristol Stool
Scale (BS5) [10,11]. In addition, long colonic transit time corresponded to lower BSS score,
higher microbial richness and a shift in colonic metabolism from carbohydrate fermentation
towards protein catabolism [12], interlinking thus the status of systemic levels of metabo-
lites with microbiome and BS5. This central role of BS5 as a major important confounding
factor affecting microbial physiology, significant microbial community rearrangements and
interactions with host showcases the importance of the local conditions for transformation
of microbial physiology to a causative phenotype [3,12-15]. Strong connection of stool
consistency, ie., BS5, with microbial gene richness and intestinal inflammation were re-
ported recently for 61 severely obese subjects [16]. Other recent communications [8,9,17,18]
focused on BS5 stool consistency in (healthy) male and female subjects due to its estab-
lished correlation with colonic transit time, inflammation, microbiome and metabolome
characteristics that are of clinical relevance in numerous gastrointestinal conditions. We
recently reported on strong association of BSS, retention time and defecation frequency
with increased systemic inflammation, insulin resistance, cardiovascular dec0nditior|jng,
depression, increased levels of the genus Bacteroides and their virulence genes in healthy
males after prolonged physical inactivity and hypoxia (PlanHab project) [3,13,14].

The BSS was also shown to demonstrate substantial validity and reliability in gen-
eral, alﬂu‘mgh difficulties arose around clinical decision poi.nts (BSS TYpeS 2/3,4/5) [19].
Although BSS can be easily evaluated by participants themselves a substantial intra- and
inter-rater variance were observed [20,21] due to sensation of straining during defecation.
Consequently, self-rating was susceptible to subjective bias despite its effectiveness in
clinical use. BSS offered a reliable surrogate measure of stool consistency only when rated
by well-trained expert [22]. The non-uniform or mixed makeup of fecal samples, exhibiting
two or three or more different BSS classes was identified as another large source of variabil-
ity in BS5 values, preventing the exact classification of mixed form samples and allowing
classification errors when ascribing one BSS class to such mixed form samples. These
observations point to the need for improved validity and reliability through modifications
to the BSS [19].

While retention time, defecation rate, BSS but not water activity have been shown to
account for BSS-associated inflammatory effects [3,5,9,13,14,16-18] the potential correlation
with the strength of a gel [23] in the context of intestinal abrasion forces remains unexplored.
In response to external force (stress) complex materials either maintain rigidity, deform
semipermanently (viscoelastic materials) or permanently (plastic materials). In the semi-
solid materials (i.e., pastes) such as fecal matter minimal pressure (MF; force per unit area)
required to induce permanent deformation is proportional to the density of crosslinks with

60



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

Metabalites 2021, 11, 172

Jofle

stiffer gels having a higher density of crosslinks [23]. Its importance as a shaping factor for
intestinal abrasions and inflammation is currently unclear and has yet to be determined.

In this study, BSS and classical parameters (total solids, water content) [24,25] were
recorded for a heterogenous collection of samples and mapped to MP measured in longitu-
dinal and lateral transects of fecal samples. Random samples from prospective male-female
study were collected and upgraded with healthy young male samples collected within the
controlled four-week bed-rest space-exploration project PlanHab [26]. Gut environment
was explored from the perspective of ecosystem development [15] in order to elucidate the
relationship between the progressive increase in stool consistency (MF, dry matter) and the
progressive intestinal and systemic inflammation observed over the course of the PlanHab
project. The MP values reported in this study were coupled to reanalysis of the PlanHab
data and fecal 1H-NMR metabolomes reported before [2,13,14] to explore the association
between stool consistency (MP), individual signatures in 1TH-NMR metabolites and the ele-
vated intestinal, systemic inflammation and other detrimental physiological deconditioning
effects observed in the PlanHab participants reported before [3,13,14,26-43].

2. Results and Discussion
2.1. Exploration of the Tripartite Relationship between BSS, Dry Matter Content and Novel
MP Values

Fecal samples were collected from the prospective male-female random study that
served to provide the backbone observations on the tripartite relationship between BSS,
dry matter content and novel MP values. This relationship was further amended by
superposition of samples collected within the PlanHab project ([3,13,14,26-43]; Table 51;
Figures 51 and 52) that was designed to capture systemic body deconditioning parameters
in response to three-week controlled bed-rest inactivity and hypoxia, a simulation of the
space exploration environment. In summary, the decision of the host to reduce physical
activity to three-week 24/7 bed-rest resulted in significant increase in insulin resistance,
muscle resorption, bone demineralization and other numerous adaptations, hence the
complexity of human body physiological responses were collated from the PlanHab litera-
ture and summarized in Table 51. The following observations became apparent from the
exploration of the tripartite relationship between BSS, dry matter content and MP values:

First, exponential increase in MP [23] values was observed with decreasing
BSS (Figure 1A) in 78 fresh stool samples exhibiting a wide array of fecal consistencies
(43 males; 35 females) (Spearman r = —0.86, p < 0.0001). No significant difference could be
detected between male and female samples in this study (p > 0.05). Samples within the
same BSS class contained highly heterogeneous MP values, giving rise to five times larger
variability in observed MF values within the three lowest BSS categories (1-3) (Figure 1A).
The same observed relationships between MP and dry matter content were observed also
for the PlanHab project samples (n = 92) [3,13,14]. The exponential function (Figure 1A)
has little meaning in describing the relationship between MP and BSS beyond establishing
the existence of nonlinear relationship in stool hardness (MP) and BSS. These results show
that fecal samples exhibit continuous (MP) rather than discrete (BSS) characteristics, hence
overcoming the discrete BSS boundaries.
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Figure 1. (A) Large heterogeneity in stool surface minimal pressure (MP (g/3.14 mm?}) was identified within the same BSS
class. Note the nonlinear increase in MP. (B) Healthy BSS values (3—4) were concentrated around the trade-off between the
lowest MP and highest dry matter content. The intermediate density of crosslinks is beneficial for maintenance of human
health as based on () 78 sample collection and our PlanHab project data (n=96; [3,13,14]) (¢) and (+)). (C) An example
of stool containing mixed BSS classes (#) and more than an order of magnitude difference in surface minimal pressure ()
along the longitudinal transect of fecal specimen scanned from all 4 sides (n = 4). (D) The crossectional (lateral) transects of
the same stool example as shown in (C) and their respective internal MP values at locations 3, 6,9, 12 and 15 cm from the
fecal tip. A decrease in surface MP and relatively small change in internal MP values can be seen along fecal specimen.
Please consult Figures 54 and 55 for more details.

Second, the overall relationship between MP and dry matter content (Figure 1B)
for all samples corresponded to rather uniform asymptotic function (y = 0.1343x%1%,
R*=0.89). A surprisingly nonlinear, continuous and complex relationship between the
two, and the rather disturbing increase in MP at almost negligible increase in observed
dry matter content was identified (Figure 1B). Such dependence in fact confirms that the
increasing molecular weight of the polymer chain connecting the crosslinks [23] generated
the higher density of crosslinks. These results also suggests that at high MP the more rigid
gel network, residing for a prolonged time in intestinal environment during constipation,
could hardly be remodeled by intestinal muscles (peristaltic waves and segmenting con-
tractions) without any abrasion being inflicted to the soft intestinal mucus and tissues.
The correlation between DM and BSS (Figure S3) further confirmed the linear relationship
between the two (R? = 0.92) in this study, including the large overlaps between DM in
various BSS classes also observed before [3,24]. In this sense (Figure 1A,B) MP was more
informative for fine scale and conclusive stratification of stool samples than DM.

Third, the intersection of lowest MP values and highest dry matter content (i.e., the
apparent breaking point) corresponded to BSS values designated as healthy (BSS 3-4)
(Figure 1B), despite the lower correlation between BSS and dry matter content (Spearman
r=—0.76, p < 0.0001) in comparison to correlation between MP and dry matter above. This
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clearly implicates intermediate MP values as highly important for maintenance of microbial
activities, mixing and hence maintenance of human health. Beneficial characteristics at
such density of gel crosslinks exist at intermediate MP to support non-inflammatory
interactions between the microbiome and the host. The further increase in MP at roughly
the same dry matter content was highly associated with progressive increase in gut and
systemic inflammation reported before [3,13,14] for the same samples in the PlanHab
project, showing detrimental effects of excessive crosslinking (Figure 1B).

Four, in this study, the longitudinal mapping of surface MP was performed over
the entire length of stool sample to illustrate the difficulty of assigning uniform BS55 to
complex fecal samples (Figure 1C; Figure 54). These results show that more than an order
of magnitude difference in MP can be detected along the length of a single fecal sample
(Figure 51) and testifies that MP approach described in this study was able to discern fine
grained internal, local differences (four transects over the same sample) that could not have
been observed through the sole use of BSS for the whole fecal sample.

Five, lateral transects (Figure 1D) were inspected at 3 cm equidistance over the stool
longitudinal transect and showed the existence of resistant surface layer followed by much
softer internal structures exhibiting an order of magnitude lower MP values, that were
characteristic of healthy, inflammation-free stool consistency (Figure 55).

From measurements obtained in this study it is conceivable that fecal matter is ap-
parently easily mixed by intestinal tract contractions without accompanying negative
symptoms characteristic of physical abrasions up to MP < 75. In this study, MP < 75
roughly corresponded to the clinically relevant boundary between BSS 2 and 3, i.e., the
boundary between the BSS constipated and BSS normal values, that was so far hard to dis-
cern from visual inspection of fecal surface [19]. In contrast, MP > 75 already corresponded
to prolonged intestinal transit and signs of constipation [3,13,14] at rather comparable dry
matter content. In addition, internal differences in structure could be observed, such as
progressively harder surface (e.g., MP~300) with the core MP values only twofold higher
than in healthy makeup (Figure 1D). On the other hand, MP < 30 corresponded to the
category of loose /watery fecal samples in analogy with the degree of stool characteristics
described recently (hard/lumpy; normal; loose/ watery) [22]. These two MP boundaries
(MP < 30; MP = 75; Figure 1B) in fact corresPOnd well to the clinically relevant boundaries
for BSS > 4 and BS5 < 3, respectively, that have been hard to determine unequivocally
by visual inspection of specimen and BSS assignment only. In addition, fecal samples
showing characteristics of BSS3 and 4 were shown to likely comprise multiple stool forms
mixed together (Figure 1C), increasing thus BSS assignment errors when categorizing
such mixed-forms [22]. In this sense, MP approach introduced in this study resolved this
problem (Figure 1B) by introducing the continuous scale.

Taken together, in this study we established an exponential relationship between
BSS and MP on one side and a complex saturation curve —like relationship between dry
matter and MP. The PlanHab samples with decreased BSS values (Figure 51) were re-
ported to be associated with a number of detrimental physiological and psychological
characteristics next to intestinal inflammation (Figure S2; Table 51; [3,13,14,26,27,36]). Con-
sequently, the increased stool resistance to remodeling as measured in this study by MP
in the PlanHab samples was apparently related to intestinal abrasions, diet associated
mucus imprinting and surface pore clogging on stool. These parameters were all shown
to exert selective pressure on gut microbiome, its gene expression and metabolic activ-
ities, generating thus metabolic makeup associated with observed local and systemic
inflammation [3,8,13,14,16], mirrored also in the urinary metabolomes of the same PlanHab
project [26]. This clearly showed that parameters other than BS5 accurately described
clinically relevant fecal hardness.

The relationship observed in this study showed the generalizability and the poten-
tial of the MP approach to unequivocally characterize sampling sites in mixed samples
(mixed BS5) for future metagenomic and metabolomic studies including mapping of the
biochemical nature of the intestinal environment. Within-sample variation is still unre-
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solved problem due to the observed variation between sampling sites in samples with
inconsistent structure [44,45]. MP approach resolved this problem with exact character-
ization of the sampling microlocation. Its small surface area (d = 2 mm; p = 3.14 mm?)
enabled measurements to be uniformly repeated on many different locations over the same
fecal sample to provide a multitude of measurements and hence a microscale estimate for
particular location or consistency transect of fecal matter, or to map the longitudinal or
lateral BSS and MP characteristics of a fecal specimen, hence linking the compactness of
material to exact sample location for stratified analyses of metabolomes, host physiology,
immune responses or microbiome.

Owr results were obtained from samples collected in two independent projects, includ-
ing males and females, covering a wide span of moisture contents and stool consistencies
determined as described before [3,8,9,15,14,16-18]. Our data do provide independent
evidence for the exponential association between stool consistency and MP as measure
of crosslinking (Figure 1) corresponding to the intestinal and also systemic inflammation
observed before [3,13,14] (Figures 51 and 52). In addition, simple two dimensional classifi-
cation by dry matter and MP enables fast mapping of fecal samples for comparisons with
unprecedented resolution, surpassing that of user dependent BSS values that have been
also criticized for lack of consistency between studies [20].

In this study we presented an approach of minimal pressure (MP) required to induce
permanent deformation (piercing) that is proportional to the density of crosslinks with
stiffer gels having a higher density of crosslinks. The value of this novel approach comes
from the relationship between the stress (compressive loading; forcer per unit area) and
strain (deformation) that a particular material exhibits in general. Entangled polymers such
as fecal matter are variably characterized by a mixture of physical entanglements between
polymer chains and also chemical crosslinks that give the material gel-like properties and
can span brittle-ductile material behavior [23]. Different approaches to measurement of
material characteristics exist such as penetrometer [46], viscosimeter [47,48] and texture
analyzer [25,49,50] and are utilized depending on the necessary sample pretreatment (flat-
tenj_ng, humugenizatiun, mixing, averaging, Subsampli.ng), complexit‘y of the apparatus
(e.g., TA XTExpressC), measurement approaches (viscosity, stickiness, hardness), and the
necessity to record the fine-scale 3D structure of the non-homogenous material specimen.
In this sense the MP concept presented in this study and terminology of minimal pres-
sure (MP) represent a significant extension to the existing approaches analyzing stool
consistency as site-specific measurements of stool characteristics important for identify-
ing unique metabolome and microbiome signatures are enabled, linking them to exact
sampling locations. Further, MP approach does not require any pretreatment (e.g., homog-
enization, packing, flattening) but enables 3D mapping of the sampling locations relevant
for biogeography of intestinal environment. MP approach described in this study provides
clinical benefits from being able to more precisely classify BSS group 1, 2 and 3, to better
delineate clinically relevant boundaries of consistencies (2/3 B55; 3/4 B5S), i.e., delineating
the central optimal span in MP relevant for the medical delineation between classes.

In addition, the MP approach operates on unmodified fecal sample that can be stored
at 4 °C and rewarmed, enables fine-scale longitudinal, crossectional site-specific measure-
ments before actual subsampling for various chemical and molecular analyses, giving rise
to descriptions of fecal sample locations relevant for 3D biogeography. Finally, the MP
approach does not require sample pretreatment but supports simple direct measurement
devoid of complex or expensive apparatus, and hence represents a cheap and operator
independent, reproducible and objective alternative that can be utilized globally.

2.2. The PlanHab Project Metabolite Signatures Characteristic of High MP

MP values recorded for the PlanHab samples were used to show that large vari-
ability in stool consistency was hidden within BSS values (Figure 2) recorded for partici-
pants [3,13,14,26]. First, these data show the high inter-individual heterogeneity despite
the fact that the PlanHab project experiment was conducted under strictly controlled
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conditions, including diet, immobilization, oxygen level, hydration, circadian rhythm,
24/7 medical surveillance. The three-week experiment under different conditions re-
sulted in progressive body deconditioning (Table 51) next to constipation and increased
intestinal and systemic inflammatory responses (Figures S1 and 52). The MP data for the
same samples illustrate the profound increase in MP values of progressively constipated
participants (Figure 2) that matched with the deconditioning and inflammation markers
recorded before (Figure 52). The dose dependent increase in MP in the most affected
PlanHab experimental variants illustrated the importance of the MP for the detection of
modified intestinal conditions, characterized by five to six times higher MF, previously
linked to the access of pathogens and endotoxins to the epithelium through physical mucus
compaction [51] and abrasions due to long-term residence and regular intestinal muscle
contractions [3,13,14].

400
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Figure 2. Presentation of MP values for the PlanHab samples in relation to the experimental variants
described with BSS (Figure 56). Error bars designate standard deviation. NBR-normoxic bedrest,
HBR-hy poxic bedrest, HAmb-hypoxic ambulatory variants of the PlanHab experiment.

Second, to further explore the utility of MP strategy in metabolomic analyses of in-
testinal tracts, MP was utilized in reanalysis of our previously published fecal 1TH-NMR
metabolomes from the same samples obtained from the 4-week PlanHab
project [14] (Table 51). The corresponding 1H-NMR data were reanalyzed using the latest
ChenomX 8.6 software and linked to MP data collected for the same samples. Principal
coordinate analysis of the PlanHab 1H-NMR metabolomes showed the existence of rather
unique and highly individualized metabolic signatures over the course of the PlanHab
experiment (Figure 56). Essentially, each sample received unique MP value, show casing
the much finer and continuous resolution for the locations from which the samples were
collected. Consequently, much larger numbers of samples would need to be collected to
model MP relative to complexity of 1H-NMR metabolomes. Power analysis estimates
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suggested two orders of magnitude larger sample size in the range of 10.000 would be
required as observed in recent metagenomic studies [52,53].

Third, when the same 1H-NMR data were utilized on more coarse scale to ex-
plore the more recent classification [22] with the loose/watery, normal/healthy and
hard/ lumpy classification [22], the two MP boundaries identified in this study (MP < 30;
MP =75; Figure 1B) matched the clinically relevant boundaries for BS5 < 3 and BS5 > 4,
giving rise to three rather broad categories of MP classes: MP1 < 30; 30 < MP2 < 75;
MP3 = 75. These classes further match with the loose /watery normal/healthy and
hard /lumpy classification [22] and were used in machine learning and modeling in search
of significant differences in metabolomics. Analyses utilizing BSS assignments were de-
scribed before [14]. Ridge logistic regression model with penalty hyperparameter 1.0
as the predictive algorithm was selected as the best interpretable model
(AUC = 0.783). Constant Removal and standardization and LASSO feature selection
(Penalty = 1.0, Lambda = 1.558e-01) were used in this context. The output of selected
features with LASSO regression was used for prediction with ridge logistic regression
model. Both were chosen with automatic machine learning process as the best option form
168952 trained models. Acetate and methionine were selected as reference signatures from
the 174 analyzed metabolites. According to Individual Conditional Expectation (ICE) plots,
increased concentrations of acetate increased the probability of such a sample being classi-
fied in the low minimum pressure group, while increased concentrations of methionine
increased the likelihood of such a sample being classified as the medium to high MP group.
The 95% CI of the model performance achievable by using acetate alone ranged from 94.1
to 100%. The addition of methionine to the analysis, the model performance was effectively
close to 100%. The best interpretable model was validated on the test data, selecting acetate
and methionine as predictive features, and with AUC = 0.833, the validation of the model
was successful. According to the receiver operating characteristic curves (ROC), the model
showed better performance in classifying in MP1 and MP3 groups (Figure 3A,C), with
lower or higher MP values. On the other hand, the performance was lowest in MP2 group
(Figure 3B). This further showcases the large inter-individual differences and variable
responses to the same diet in the PlanHab participants. Power analysis showed that two
orders of magnitude larger samples would be needed to effectively build submodels for
the metabolic diversity of the apparently healthy gut metabolomes.

Taken together, metabolomes belonging to MP1 and MP3 groups outside the central
span of MP2 values possessed sufficient information for acceptable sample classification.
Surprisi_ngly, the makeup of the intermediate MP2 group did not exhibit any characteristic
signatures (Figure 2B). A wide array of metabolic makeups mirroring characteristic of
inter-individual differences in physiological makeup of healthy microbiomes in feces were
reported before [12]. From this it follows that lower and upper extremes (i.e., MP1 or
MP3) contained features distributed characteristically enabling their separation. JADBIO
machine learning and modelling [54] showed that out of all measured metabolites, the
two most important features responsible for separation of the three groups were acetate,
a short chain fatty acid, produoed by microbes, and methionine, a -::L‘:mpound involved
in regulation of metabolic processes, the innate immune system, digestive functioning in
mammials next to their lipid metabolism, activation of endogenous antioxidant enzymes
(methionine sulfoxide reductase A), and the biosynthesis of glutathione to counteract
oxidative stress [55]. Finally, methionine restriction was shown to decrease DNA damage
and carcinogenic processes, averting arterial, neuropsychiatric, and neurodegenerative
disease [55]. Fecal acetate was shown to be inversely related to acetate absorption from the
human colon, and high circulating acetate concentrations were negatively correlated to in-
sulin sensitivity [56]. In our past analyses of the PlanHab urine TH-NMR metabolomes [26]
elevated acetate concentrations were observed in most constipated participants, exhibiting
insulin resistance, modified fat oxidation, bone demineralization, muscle deconditioning
and depression (Table 51; Figure 51; Figure 52) [27,34,39,40]. The fact that the PlanHab
data was derived from a medically prescreened cohort receiving defined and synchronized
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diet, characteristic of Western Diet [3,27,34] in tightly controlled environment of the $week
PlanHab study (levels of exercise, circadian rhythm, medical care, oxygen pressure) en-
abled us to study the existence of significant differences between fecal metabolomes and
exact fecal makeup at the sampling location (MP), rather than average BSS assignment
(Figure 51) described before [3]. Therefore the observed differences in the acetate and
methionine levels in fecal samples stem from the conserved differences in their uptake as
a result of responses to inactivity, coupled with Western type of the diet utilized in the
PlanHab project.
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Figure 3. An overview of the model performance in three different groups between fecal metabolomes
in delineation with three different groups of MP (MP1 < 30 (A), 30 < MP2 < 75 (B) and MP3 > 75
(C)). Please note the rather uncharacteristic and hard to classify makeup of metabolomes observed in
the intermediate, healthy, group (B). Horizontal and vertical dashed lines represent 95% confidence
interval for false positive and true positive rates, respectively. The black dashed line represents
model performance in case of random guessing; blue line represents training mean performance of
the model
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The inclusion of the newly described parameters such as MF, acetate and methionine
extends our previous findings on the significant parameters associated with detrimental
effects of inactivity on human body [3,13,14,26] and its mechanisms: the decision of the
host to reduce physical activity gave rise to increased fecal electrical conductivity that lead
to decreased BS5 (constipation) and increased bile acids (BA) levels, while at the same time
reduced indole concentrations at retained high electrical conductivity resulted in higher
intestinal inflammation (EDN) levels (Figure 52). The relationships observed in Bayesian
modelling [14] identified that nonlinear responses take place over the network as small
changes in indole levels exhibited unexpectedly large effects on BA content. Taken together,
this clearly shows that introduction of nonlinear MF as an extension to BSS and observing
an increasing MP in fecal samples describing fecal surface deformability, represents the
link between physical abrasions due to intestinal muscle contractions, microbial indole and
acetate production and intestinal inflammation marker EDN reported before [3,13,14,26].

3. Materials and Methods
3.1. Fecal Sample Collection and Analysis

Samples utilized in analyses in this study were collected within the prospective study
(n = 78) and the PlanHab project (n = 96), anonymized by coding following collection and
subsequently characterized for various physical and chemical characteristics as described
before [3,13,14,26]. All participants gave written informed consent after receiving detailed
information regarding the study protocol and all experimental procedures. Ethics Com-
mittee permission was obtained from the National Ethics Committee of the Republic of
Slovenia and is held by Jozef Stefan Institute.

The participants of the prospective study represented a one-time sampling cohort span-
ning 78 fresh stool samples exhibiting a wide array of fecal consistencies of otherwise healthy
nonsmoking 43 males and 35 females. The participants of the prospective study were repre-
sented by healthy, non-obese (BMI < 30 kg/ m?) males and females (2242 years). Baseline
male and female characteristics were as following; age (28 £ 5 years and 29 +4 years); body
mass (76 = 10.5 kg and 61+ 8 kg), BMI (23 £ 5 kg/m? and 23+ 3 kg/m?), respectively.

Further, the PlanHab healthy male participants were characterized by numerous
clinically relevant measurements to assert absence of disease with a state of ph}'sical, mental,
and social welfare. Their baseline characteristics were as following; age (27 £ 6 years);
body mass (76.7 + 11.8 kg), BMI (23.7 + 3 kg/m?) [27,34]. The participants underwent
5 days of baseline data collection during which participants were ambulant, 21 intervention
days and 5-14 days of medical follow-up. The PlanHab project participants (n = 11) were
provided with an individually tailored, standardized, and controlled diet fhmughﬂut the
intervention as described before [3,27,34]. Energy requirements were assessed with the
Harris-Benedict method, and correction factors of 1.4 and 1.2 were used to account for
activity levels in the ambulatory phases and the bed rest phases, respectively. In addition
to a controlled intake of fat (30%) and protein (1.2 g per kg body mass), sodium intake was
set to 3500 mg per day. Participants were supplemented with 1000 TU vitamin D3 per day.
Fluid intake was ad libitum, but participants were encouraged to drink at least 28.5 mL
per kg per day. Importantly, menu plans were cycled in the same way for each participant
across the three experimental conditions, adjusting the quantity according to activity factors
above. The collected fecal samples (Figure 51) thus represent a longitudinal transect where
intestinal tracts developed progressive constipation and a number of systemic physiological
deconditioning symptoms (Figure 52) [3,13,14,26]. In total, 96 samples were collected over
the course of the PlanHab experiment for 11 participants. Their data relevant for this study
(BSS, inflammation (eosinolcn}ﬁle derived neurotoxin, systemic inflammation) are premnted
in Figures 51 and S2.

The BSS score was assigned immediately after the collection of specimen as
before [3,10,11,13,14].

Water content of the fresh sample was determined by collecting samples (~70 g) into
pre-weighted 200 mL collection jars and sample mass determined by second weighing of
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the jar. Water content of a sample was determined by drying at 60 °C for 48 h. The sample
was cooled in a laboratory desiccator and weighed again. The water content of a sample
was calculated as the difference in final and initial mass of the sample, divided by the initial
mass [57]. The dry matter content of the fresh sample was calculated by subtracting water
content from 1.

3.2. Measurements of Minimal Pressure

Here, we measure minimal pressure of 170 fecal samples with different BSS consisten-
cies using a defined flat-cut stainless steel probe (d = 2 mm; s = 3.14 mm?) with attachable
adjustable weights (1-400 g) at constant temperature (25 °C). Probe indentation [23] by
gravity that is independent of probe velocity tests primarily the response of the gel network
and hence the measured hardness shows a strong dependence on the increasing molecular
weight of the polymer chain connecting the crosslinks [23] generating the higher density of
crosslinks [23].

In practice the approach is used to determine the minimum weight per unit area
needed to pierce through the surface of fecal specimen. The utility was developed in a
way that additional weights were attached to the stainless steel rod until the weight was
sufficient to pierce through the material. Due to its small surface area the MP measurements
were uniformly repeated on many different locations over each specimen. This enabled
us to provide a multitude of measurements and hence a microscale estimate for particular
location of fecal specimen. Longitudinal transects were probed 0.5 cm apart, then the
specimen was rotated for 90° and measured again. Lateral transects were obtained after
the specimen was cut at locations of 3 ecm, 6 cm, 9 cm, 12 cm and 15 cm. Readings were
recorded for two perpendicular transects within each specimen.

The MP measurements at 37 “C were in general 10% lower in comparison to those
determined at 24 °C. In addition, MP measurements taken within the 24 and 48 h stored at
4 °C and measured at 24 °C after 60 min reheating were not significantly different.

Principal coordinate analysis was conducted on Box-Cox transformed metabolomics
data and Benjamini-Hochberg significance correction for multiple comparisons was used
in non-parametric npMANOVA as described before [3,13].

3.3. Intestinal Metabolome Analysis Using Proton Nuclear Magnetic Resonance (1IH-NMR)

The 1H-NMR intestinal metabolomic data published before [14] were reanalyzed
using a novel version of ChenomX 8.6 and analyzed utilizing machine learning approach
(Just Add Data Bio (JADBIO, version 1.1.182)) [54].

In essence, the reanalyzed data were obtained as described before [14]: fecal sam-
ples (200 mg of dry matter) were resuspended in 800 uL. of NMR phosphate buffer and
centrifuged at 10,000 g for 30 min at 4 “C to remove fine particles. Samples were fil-
tered through 0.22 um HPLC compatible filters (Millipore, Germany), 400 uL aliquots
were mixed with 200 ul. 1TH-NMR buffer as described before [58] and stored at —25 “C
until analysis. Phosphate buffer (pH 7.4) was prepared by weighing 1.443 g Na;HPOy,
0.263 g NaHpPOy, 2 mM TSF, and 1 mM NaNj into 50 mL volumetric flask. Ten milliliter of
D;0 was added and filled up to 50 mL with Milli-Q water. Before analysis, samples were
thawed at room temperature, centrifuged at 12,000 g for 5 min at 4 °C. In total, 550 pL of
each sample was transferred into 5 mm NMR tube.

1H-NMR spectra were acquired on an Agilent Technologies DD2 600 MHz NMR
spectrometer equipped with 5 mm HCN Cold probe. The 2D experiments were measured
on Agilent Technologies (Varian) VNMRS 800 MHz NMR spectrometer equipped with
5 mm HCN Cold probe. All experiments were measured at 25 “C. TH-NMR spectra of the
samples were recorded with spectral width of 9.0 kHz, relaxation delay 2.0 s, 32 scans and
32 K data points. Water signal was suppressed using Double-pulsed field gradient spin echo
(DPFGSE) pulse sequence. Heteronuclear single quantum coherence spectrum (HSQC) was
acquired for 1H and 13C dimensions and total correlated spectrum (TOCSY) was measured
with 1H spectral widths of 7.0 kHz, relaxation delay 1.5 s, 160 number of transient and
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128 time increments. For apodization of acquired spectra, we used exponential and a
cosine-squared functions. NMR spectra were processed using VMR] (Agilent/Varian) and
Sparky (UCSF) software and MestReNova.

The resulting spectra were consequently analyzed using targeted quantitative
metabolomics using Chenomx NMR Suite version 8.6 (2020; Chenomyx, Canada). All
spectra were randomly ordered for spectral fitting using ChenomX profiler. Metabolites
analyzed in this study were identified using the support of Chenomx Compound Library
extended by Human Metabolome Data Base [59].

Automated Machine Learning was used to identify most important metabolic features
separating the groups of fecal matter plasticity. Samples were divided into three separate
groups indicating low ((MP1 < 30), medium (30 < MP2 <75), and high (MP3 = 75) MF, and
174 metabolic features were analyzed for possible differentiation. JADBIO version 1.1.182
was used for model generation. Data were split in a 70:30 ratio for model training (70%) and
model validation (30%). An extensive tuning effort with six CPU cores was used to compute
the most interpretable classification model, which was selected based on the area under
the curve (AUC) metric among 168952 trained models. Different algorithms with different
combinations of tuned parameters were used for feature selection (LASSO regression and
test-budgeted statistically equivalent signature) and for prediction (ridge logistic regression,
support vector machines, classification random forest and classification trees). Metabolic
data were preprocessed with constant removal and standardized. LASSO feature selection
(penalty = 1.0, lambda = 1.558¢-01) was used for metabolite feature selection. The output of
feature selection was used for obtaining the best interpretable model using the predictive
ridge logistic regression algorithm (with hyper-parameter penalty equal to 1.0).

The machine learning process described in this study was adopted for several reasons:
(i) automation in parameter and algorithm selection results in reduced bias and human
interference; (ii) the approach includes several different ML algorithms (linear regression,
SVM, decision tree, random forest and Gaussian kernel SVMs and automatically choose
the most interpretable model based on AUC metric; (iii) the resulting models were trained
with different configurations on different sub-samples of the original dataset (cross- val-
idation); (iv) focus on relevant humanly interpretable models. Consequently, algorithm,
hyperparameter and space selection (AHPS) as implemented in JADBIO was used for
selecting the most suitable algorithm for preprocessing and transformation of a given
dataset, its feature selection and modeling. The output of AHPS step was analyzed by
configuration evaluation protocol (CEP) in order to find the optimal configuration reported
in this study [54,60].

To evaluate model classification, a receiver-operating characteristic curve (ROC curve)
was constructed for all three groups, plotting the true-positive rate (sensitivity) against the
false-positive rate (1-specificity). Individual conditional expectation (ICE) plots revealed
the nature of the contribution of each metabolite feature to the model.

4. Conclusions

In this study, a minimal pressure (MP) approach utilizing probe indentation of intact
fecal samples was introduced as a measure of stool consistency. MP values recorded over a
spectrum of moisture contents increased exponentially relative to BSS and enabled stratifi-
cation of samples exhibiting mixed BSS classes. A trade-off between lowest MP and highest
dry matter content delineated the span of intermediate healthy density of gel crosslinks.
The crossectional transects identified fecal surface layers with exceptionally high MFP sug-
gestive of mucus imprinting overlying internal fecal structures with an order of magnitude
lower MP characteristic of healthy stool consistency. The exponential association between
stool consistency and MP determined in this study was mirrored in the elevated intestinal
and systemic inflammation next to other detrimental physiological deconditioning effects
observed in the PlanHab participants reported before. High inter-individual differences in
fecal 1IH-NMR metabolomes derived from a wide spectrum of MP showed the importance
of the exact sampling location in future microbiome and metabolome studies. In conclusion,

70



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

Metabalites 2021, 11, 172

130f 16

References

we believe that the MP approach described in this study it can be used to better understand
fecal hardness and its relationships to human health as it provides a simple, fine scale and
objective stool classification approach.
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2.1.5 Systems view of deconditioning during spaceflight simulation in the PlanHab project: the
departure of urine 'H-NMR metabolomes from healthy state in young males subjected to
bedrest inactivity and hypoxia

Sket R., Deutsch L., Prevorsek Z., Mekjavi¢ I.B., Plavec J., Rittweger, J., Debevec T., Eiken O.,
Stres B. 2020. Deutsch L., Stres B. 2021. Systems view of deconditioning during spaceflight
simulation in the PlanHab Project: The departure of urine "H-NMR metabolomes from healthy state
in young males subjected to bedrest inactivity and hypoxia. Frontiers in Physiology, 11: 532271, doi.
https://doi.org/10.3389/fphys.2020.532271, 15 p.

Abstract

We explored the metabolic makeup of urine in prescreened healthy male participants within the
PlanHab experiment. The run-in (5 day) and the following three 21-day interventions [normoxic
bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation (HAmb)] were executed in a
crossover manner within a controlled laboratory setup (medical oversight, fluid and dietary intakes,
microbial bioburden, circadian rhythm, and oxygen level). The inspired O2 (FiO2) fraction next to
inspired O2 (Pi02) partial pressure were 0.209 and 133.1 + 0.3 mmHg for the NBR variant in contrast
to 0.141 + 0.004 and 90.0 = 0.4 mmHg (approx. 4,000 m of simulated altitude) for HBR and HAmb
interventions, respectively. 'H-NMR metabolomes were processed using standard quantitative
approaches. A consensus of ensemble of multivariate analyses showed that the metabolic makeup at
the start of the experiment and at HAmb endpoint differed significantly from the NBR and HBR
endpoints. Inactivity alone or combined with hypoxia resulted in a significant reduction of metabolic
diversity and increasing number of affected metabolic pathways. Sliding window analysis (3 + 1)
unraveled that metabolic changes in the NBR lagged behind those observed in the HBR. These results
show that the negative effects of cessation of activity on systemic metabolism are further aggravated
by additional hypoxia. The PlanHab HAmb variant that enabled ambulation, maintained vertical
posture, and controlled but limited activity levels apparently prevented the development of negative
physiological symptoms such as insulin resistance, low-level systemic inflammation, constipation,
and depression. This indicates that exercise apparently prevented the negative spiral between the
host’s metabolism, intestinal environment, microbiome physiology, and proinflammatory immune
activities in the host.

EO

This work was published as an Open Access article distributed under the terms of the Creative
Commons Attribution License (CC-BY 4.0).

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2
(page 142).
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We explored the metabalic makeup of uring in prescreensd healthy male participants
within the PlanHab experiment. The run-in (5 day) and the following three 21-day
interventions [normoxic bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation
(HAmMB)] were executed in a crossover manner within a controlled laboratory setup
(medical oversight, fluid and distary intakes, microbial bicburden, circadian rhythm,
and oxygen level). The inspired O (FOs) fraction next to inspired Os (F02) partial
pressure were 0.209 and 133.1 £ 0.3 mmHg for the NBR wvariant in contrast to
0.141 £ 0.004 and 90.0 + 0.4 mmHg (approx. 4,000 m of simulated altitude) for HER
and HAmb interventions, respectively. 'H-NMR metabolomes were processed using
standard quantitative approaches. A consensus of ensemble of multivariate analyses
showed that the metabolic makeup at the start of the experiment and at HAmb
endpoint differed significantly rom the NBR and HER endpoints. Inactivity alone or
combined with hypoxia resulted in a significant reduction of metabolic diversity and
increasing number of affected metabolic pathways. Sliding window analysis (3 + 1)
unraveled that metabolic changes in the NBR lagged behind those cobserved in the
HEBR. These results show that the negative effects of cessation of activity on systemic
metabolism are further aggravated by additional hypoxia. The PlanHab HAmb variant
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that enabled ambulation, maintained vertical posture, and controlled but limited activity
levels apparently prevented the development of negative physiological symptoms such
as insulin resistance, low-level systemic inflammation, constipation, and depression.
This indicates that exercise apparently prevented the negative spiral between the
host's metabolism, intestinal environment, microbiome physiology, and proinflammatory

immune activities in the host.

Keywords: urine, metabolome, NMR, inactivity, interplanetary travel, medicine, deconditioning, inflammation

INTRODUCTION

Metabolomics has developed into a technology-driven discipline
enabling improved data collection, analysis, and interpretation.
In particular, 'H-NMR spectroscopy has received significant
attention since it is non-destructive, non-biased, quantitative, and
at the same time requires no sample derivatization (Emwas et al.,
2019), is reproducible, quantitative, and enables identification
of unknown novel compounds routinely in complex biological
systems, such as human body or built environments (Murovec
et al., 2018; Sket et al., 2018; Emwas et al., 2019).

The PlanHab project encompasses the two faceted nature of
spaceflight, where human physiclogical responses are coupled
to microbial responses to inactivity on one side and 21-day
(prolonged) confination within built environment, similar to
hospital settings, on the other (Debevec et al,, 2014a; Simpson
et al.,, 2016). The combined effects of 21-day inactivity/unloading
and hypoxia were investigated in a controlled manner (crossover
design) using medically prescreened cohort of healthy male
volunteers. The experiment was executed adopting the European
Space Agency (ESA) and NASA core bedrest data collection SOP
(Standardization of bedrest study conditions 1.5, August 2009)
controlling a number of parameters such as atmospheric oxygen
content, levels of exercise (immobilization), daily water and
nutritional intake, circadian rhythm, and microbial ambiental
and aerosol bioburden next to the 24/7 medical surveillance
(Debevec et al, 2014a; Simpson et al, 2016). In this study,
the PlanHab repertoire of exploration was extended by analyses
of urine '"H-NMR metabolomes during the run-in (5 day)
and three consecutive experimental phases [21-day normoxic
bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation
(HAmb)] in healthy male test participants. Bedrest approach
in experiments is widely adopted to simulate the effects of
microgravity on various physiological systems of human body,
especially for studies of bone, muscle, and the cardiovascular
systemn by NASA, ESA, and Roscosmos (Hargens and Vico, 2016;
Sundblad et al.,, 2016). On the other hand, physical inactivity
in general has emerged as the fourth leading behavioral risk
factor for worldwide mortality (Kelly et al., 2020). Risk of over
20 chronic conditions [e.g., coronary heart disease, stroke, type
2 diabetes, some cancers, obesity, mental health problems (e.g.,
depression), and neurological conditions (e.g., dementia)] is
increased by physical inactivity making lack of exercise a global
health problem (Kelly et al., 2020).

The past findings obtained within the PlanHab platform
showed that a number of negative physiological symptoms

related to obesity and metabolic syndrome developed in a dose-
dependent manner over the course of 21-day experimental period
in the HBR and NBR but were absent from the HAmb variant
(Debevec et al., 2014b, 2016b; Rittweger et al., 2016; Simpson
et al.,, 2016; Stavrou et al, 2016; Sket et al, 2017ab; Strewe
et al, 2017). In addition, the observed negative physiological
symptoms faded effectively in 14, 10, and <4 days for HBER,
NBR, and HAmb, respectively (Debevec et al, 2014b; Sket
et al,, 2017a,b). Also, many of the microbial parameters such
as butyrate producing microbial community, the general
bacterial and archaeal microbial communities were shown to
respond to modifications in human intestinal environment
but lagged behind the changes in human physiology and
intestinal environment (Sket et al, 2017ab). These findings
suggested a time-dependent and complex interplay between the
host physiology (including apparent constipation), immunity
(inflammation), controlled diet, intestinal environment variables,
and microbiome physiology in absence of exercise. The analyses
of microbiome and associated environmental parameters
suggested that the onset of inactivity gave rise to progressive
shifts in intestinal environment boiling down to modified
microbial metabolic activity and increased metabolism toward
degradation of host mucus layer in bedrest variants (HBR,
NBR) (Sket et al,, 2017b). On the other hand, in the absence
of such changes the healthy HAmb variant was coupled to the
production of beneficial indole derivatives (Sket et al., 2017b).
Further metagenomic analyses within the PlanHab platform (Sket
et al., 2018) confirmed that inactivity and hypoxia resulted in a
significant increase in the relative abundance of genus Bacteroides
in HBR next to Bacteroides cell wall, capsule, virulence, defense,
and mucin degradation genes [beta-galactosidase (EC3.2.1.23),
o-L-fucosidase (EC3.2.1.51), Sialidase (EC3.2.1.18), and «-
N-acetylglucosaminidase (EC3.2.1.50)] and genes coding for
iron acquisition and metabolism proteins (Sket et al, 2018).
In contrast, the corresponding microbial fecal metabolomes,
intestinal chemical and metal profiles, and the diversity of
bacterial, archaeal, and fungal microbial communities were not
significantly affected within the timeframe using the experimental
set-up of the PlanHab project (Sket et al., 2018). The fact that
the genus Bacteroides and proteins involved in iron acquisition
and metabolism, cell wall, capsule, virulence, and mucin
degradation were also enriched at the end of HBR revealed that
significantly increased constipation and electrical conductivity
led to decreased intestinal metal availability that consequently
affected the expression of codependent and coregulated genes
in Bacteroides genomes. Data integration utilizing Bayesian
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network analysis resulted in the establishment of the first
hierarchical model describing the onset of inactivity-mediated
deconditioning over time (Sket et al., 2018).

The PlanHab wash-out period corresponded to a
reintroduction of exercise, wvertical position, and posture
maintenance that resulted in stepwise amelioration of the
negative physiological symptoms, indicating that physical
activity as such introduced changes into the crosstalk between
the host physiology, microbial physiology, mucin degradation,
and proinflammatory immune activities within the host (Sket
etal., 2017a,b, 2018). This observation was based on the fact that
the observed progressive decrease in some of the parameters (e.g.,
defecation frequency, intestinal indole content) and concomitant
increase in other (eg., intestinal electrical conductivity,
inflammatory markers) preceded or took place in absence of
significant changes at the levels of microbial taxonomy, the
corresponding functional genes, intestinal metabolomes, and
accompanying metal profiles (Sket et al., 2017a,b, 2018).

Metabolic signal can be divided into three categories, human,
microbial, and human-microbial cometabolites (Dumas et al.,
2017; Wilmanski et al., 2019) and can represent a significant
portion of dissolved organic matter in blood and urine. Hence,
the selection of metabolomics layer for in-depth analysis of the
PlanHab project-derived urine samples thus represents a logical
continuation of efforts to discern and improve our understanding
of the timing and the consequences of 21-day inactivity and
hypoxia on human pathophysiology.

As there is a lack of data and understanding on the
progressive changes in human metabolic responses coupled to
microbial metabolites in the absence of exercise, we hypothesized
that reduction in physical activity (complete inactivity) would
(i) result in structured and significant changes in urine
metabolomes of healthy participants; (ii) enable identification
of significant groupings of experimental variants; (iii) provide
discriminant metabolites between observed physiological states;
(iv) enable the construction of metabolic network of co-
occurring metabolites; (v) provide insight into the time-
dependent changes in metabolomes; and finally (vi) enlighten
the significantly different metabolic pathways between the
experimental variants and also relative to the healthy initial
state. In addition, the systemic hypoxia due to inactivity
(HBR) versus ambulation in hypoxia (HAmb) was predicted
to be an additional important factor aggravating the observed
physiological changes within the 21-day PlanHab execution,
unraveling the difference due to retained physical activity levels,
hydrostatic pressures, and posture-related muscle activity in
HAmb (Debevec et al., 2014a; Miles-Chan and Dulloo, 2017; Sket
etal., 2017a,b).

METHODS
Experimental Setup

Experimental setup, registration, approval, recruitment, medical
prescreening, acquisition of clinical data and supervision, and
hypoxic facility next to the detailed outline of the PlanHab study
were prepared and conducted according to the European Space

Agency’s standardization plan for bedrest studies (ESA, 2009),
including sample size calculation and were extensively detailed
before (Debevec et al, 2014a, 2016a; Rittweger et al, 2016;
Simpson et al, 2016; Sket et al,, 2017a,b, 2018; Stavrou et al.,
2016; Strewe et al., 2017). In short, for this study, each healthy
male, participant, characterized by numerous clinically relevant
measurements to assert absence of disease with a state of
physical, mental, and social welfare, underwent 5 days of baseline
data collection during which participants were ambulant, 21
intervention days and 5-14 days of medical follow-up. The
participants underwent the following three protocols: (1)
normobaric NBR (fraction of inspired O; (Fi0z) = 0.209;
partial pressure of inspired Oz (P;O:) = 133.1 £ 0.3 mmHg);
(2) normobaric hypoxic ambulatory confinement (HAmb;
FiO; = 0141 =+ 0.004; PO, = 900 £+ 04 mmHg;
~4000 m simulated altitude); and (3) normobaric HBR
(Fi0; = 0.141 £+ 0.004; P;0; = 90.0 & 0.4 mmHg; ~4,000 m
simulated altitude). Altogether, 11 healthy men underwent
all three campaigns in randomized crossover design of
PlanHab project. Subjects were enrolled by project manager
and randomly allocated between campaigns using Latin
square design method. Sample size was determined based
on previous reports on bedrest studies to obtain sufficient
predictive power > 0.80 (Traon et al, 2007; Angerer et al,
2014; Debevec et al, 2014a, 2016a,b; Simpson et al, 2016;
Sundblad et al., 2016). For detailed experimental protocols,
please see Debevec et al. (2014a); Sket et al. (2017b). In
essence, the combined effects of 21-day complete inactivity
and hypoxia on healthy participants were examined within
the PlanHab study utilizing 11 healthy medically prescreened
participants in the crossover design under strictly controlled
conditions according to ESA/NASA core bedrest data collection
SOP in order to determine significant differences between
samples and experimental variants relative to healthy baseline
data collection.

The PlanHab Project Acquisition of
Clinical, Exercise, Dietary, and Ambiental
Data

Acquisition of clinical, exercise, dietary, and ambiental data
were described in detail before (Debevec et al., 2014a, 2016a;
Simpson et al, 2016). The in-house database (Sket et al.,
2017b) containing over 13,000 entries based on all measured
variables in the PlanHab experiment (i.e., clinical, inflammation,
immune, human physiology, and nutrition data next to the
experimental design and characteristics of the participants) was
checked for consistency and updated with recent publications
related to the PlanHab project (Debevec et al.,, 2014a, 2016b,
2018; Keramidas et al., 2016; Louwies et al, 2016; Rittweger
et al, 2016; Rullman et al, 2016, 2018; Simpson et al., 2016;
Morrison et al., 2017; Strewe et al, 2017; Salvadego et al.,
2018; Sarabon et al., 2018; Stavrou et al.,, 2018a,b; Ciuha et al,,
2020). The in-house database was used to identify parameters
that differed significantly between the experimental variants
over the course of the experiment as described before (Sket
et al., 2017h, 2018). This resulted in 48 parameters describing
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diet, intestinal metabolites, immune, and chemical parameters
next to human physiology that were significantly different
between NBR, HBR, and HAmb variants (p < 0.05; corrected
for multiple comparisons). These served as the basis for the
linking of observed body deconditioning to urine metabolites
observed in this study.

Participants

After initial prescreening according to NASA and ESA
guidelines for bedrest studies, the data of 11 participants
that finished all three interventions were included in
our analysis with the following baseline characteristics
(mean £+ SD): age = 27 £ 6 years; body mass = 76.7 £+ 11.8 kg;
stature = 179 + 3 cm; BMI = 23.7 + 3.0 kg m™%; body
fat = 21 £ 5%; maximal oxygen uptake = 443 £ 6.1 ml
kg~ ! min~! (Debevec et al., 2014a; Sket et al., 2017a).

Sample Collection

Urine samples were collected aseptically on a daily basis in the
early morning during the 5 days of run-in period and 21 days
of intervention periods. In total, 523 samples were obtained,
aliquoted, and frozen at —20°C for further analyses.

Urine Metabolome Analysis Using Proton
Nuclear Magnetic Resonance

Urine samples {600 1) were centrifuged at 10,000 x g for 30 min
at 4°C to remove fine particles. Samples were filtered through
0.22 pm HPLC-compatible filters (Millipore, Germany), 400 pl
aliquots were mixed with 200 pl 'H-NMR buffer as described
before (Beckonert et al., 2007) and stored at —20°C until analysis.
Before analysis, samples were thawed at room temperature and
centrifuged at 12,000 =x g for 5 min at 4°C; 550 pl of each
sample was transferred into 5 mm NMR tube as described before
(Murovec et al., 2018).

Proton nuclear magnetic resonance (‘H-NMR) spectra were
acquired on an Agilent Technologies DD2 600 MHz NMR
spectrometer equipped with 5 mm HCN Cold probe. 2D
experiments were measured on Agilent Technologies (Varian)
VNMRS 800 MHz NMR spectrometer equipped with 5 mm
HCN Cold probe. All experiments were measured at 25°C. 'H-
NMR spectra of the samples were recorded with spectral width
of 9.0 kHz, relaxation delay 2.0 s, 32 scans, and 32 K data
points. Water signal was suppressed using double-pulsed field
gradient spin-echo (DPFGSE) pulse sequence. Heteronuclear
single quantum coherence spectrum (HSQC) for 'H- and *C-
dimensions (2D NMR) was acquired with spectral widths of 9.0
and 40 kHz for 'H- and *C-dimensions, respectively, and 1,536
complex points for 'H-dimension, relaxation delay 1.5 s, 160
number of transients, and 128 time increments. Total correlated
spectrum (TOCSY) was measured with 'H spectral widths of
7.0 kHz, 4,096 complex points, relaxation delay 1.5 s, 32 number
of transients, and 144 time increments. The 'H and 2D spectra
were apodized with an exponential function and a cosine-squared
function, respectively, and zero filled before Fourier transform.
NMR spectra were processed and analyzed using VNMR]
(Agilent/Varian) and Sparky (UCSF) software and MestReNova.

The resulting spectra were consequently analyzed in
two complementary ways: (i) human expert chemometric
untargeted metabolomics, including 2D spectra, and (ii) targeted
quantitative metabolomics using Chenomx NMR Suite version
8.3 (Chenomx, Inc.) For the latter, all spectra were randomly
ordered for spectral fitting using ChenomX profiler. Metabolites
were thus identified with the support of Chenomx Compound
Library extended by Human Metabolome Data Base (Wishart
et al., 2009; Markley et al, 2017), giving access to chemical
shift profiles of 674 compounds used in analyses. The number
of database derived chemical shift profiles of metabolites
used in analyses was further decreased by the procedures
described below.

Bioinformatic and Statistical Analysis of

Urine Metabolomes

Two different approaches to asymmetric sparse matrix data
analysis were adopted (Legendre and Legendre, 2012), as
each compound concentration was (i) normalized by dividing
the measured concentration into the total concentration of
all metabolites in that sample and (ii) by Box-Cox or log2
transformation (Sket et al., 2018), The metabolites that were
present in less than 5% of the samples (ie, < the size of
the smallest experimental group of samples in analysis) were
excluded from further analysis.

The significance of difference in the metabolic characteristics
of various groups of samples was tested using ANOSIM,
NP-MANOVA, expressed as an overlap in non-metric
multidimensional scaling (nm-MDS) trait space using Gower
and Euclidean distance measures, and finally the dimensionality
reduction selected through stress function and inspection
of Shepards plots of correspondence between target and
obtained ranks. To analyze the relationship between starting
and endpoints of each variant, and also between the endpoints
of particular variants, a number of established approaches
were used: weighted UniFrac, uweighted UniFrac, analysis of
molecular variance (AMOVA), HOMOVA, LEfSe, indicator
species, and Metastats tests with 999 permutations were used as
implemented in mothur (Schloss et al., 2009). Multiple-group
comparisons were performed using Benjamini-Hochberg false
discovery rate (FDR). Multiple test correction (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001), was used as
described before (Sket et al., 2017a,b, 2018).

Associations between urine metabolites were calculated using
non-linear Spearman correlation as implemented in mothur
(Schloss et al., 2009), and significant interactions (p < 0.005) were
used for further network analysis. Software Cytoscape (Shannon
et al., 2003) was used to create interaction networks between the
significantly different groups of metabolomes identified in the
previous section, giving thus rise to two groups: (i) the beginning
of the experiment and endpoint of HAmb on one side and (ii) the
endpoints of experimental variants NBR and HBER at the other.
Network characteristics were described using parameters, e.g.,
clustering coefficient, number of nodes and edges, and network
density next to centrality measures such as betweenness and
closeness (Shannon et al., 2003).
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Furthermore, a complementary analysis using a completely
distinct analytical approach utilizing a dedicated MetaboAnalyst
tool (Xia et al., 2009) was adopted. The supervised classification
using random forest method and pathway mapping were
utilized where measured metabolites were compared with human
metabolome database for identification of the affected metabolic
pathways (Wishart et al., 2007). Pathway enrichment analysis was
performed using global ANCOVA and topology analysis using
relative-betweeness centrality in MetaboAnalyst (Goeman et al,,
2004; Chong et al., 2019).

The final type of analysis introduced a sliding window analysis
of the relationships between the recorded metabolic profiles.
Metabolomes belonging to a particular day over the run-in
and experimental phase were binned together using window
size of 3 days and the increment step size of 1 day. For each
window, the urine metabolites and their distribution between
samples were used to calculate the mean values of 3 days
span for all three experimental variants (HBR, NBE, HAmb).
Furthermore, the metabolic windows of 3 days calculated
for different experimental variants were compared with the
first 3 days of baseline data collection using permutational
multivariate analysis of variance (PERMANOVA) tests with
9,999 permutations to assess the significance of differences
between multiple-group comparisons and elucidate the possible
trends in changes of significance within each and between
different windows.

RESULTS

The Extent of Body Deconditioning in the

PlanHab Project

The in-house PlanHab database reported before (Sket et al,
2017b) enabled us to incorporate novel recently reported
parameters within the PlanHab project (Supplementary
Table 1) and identify 48 variables from other substudies within
the PlanHab project that differed significantly between the
experimental variants describing the clinical, inflammation,
immune, human physiology, and nutrition characteristics of
the participants (Figure 1). The results show clear separation
between the HAmb variant and the inactive HBR and NBR
variants. In addition, the variables were clearly separated into
two broad response clusters with a number of variable subtypes,
showing the complexity of the developed physiological and
nutritional responses. The healthy levels of measured variables
were retained for the major part of the measured variables
in HAmb and hence constitute the least-affected phenotype,
whereas those observed for HBR and NBR were classified as
characteristic of insulin resistance (type 2 diabetes), low-level
systemic inflammation, constipation, depression, symptoms
related to metabolic syndrome, obesity, and body deconditioning
due to inactivity. A number of specific changes can be observed
in human physiology in response to either hypoxia or inactivity
under hypoxia that are beyond the scope of this work and
were already described in details within the PlanHab project
publications (Sket et al., 2017b, 2018; Supplementary Table 1).

Variations in Measured Urine Metabolites

Between the Experimental Branches

Multiple comparisons using AMOVA test indicated significant
shifts in metabolites between baseline data collection and
endpoints of experimental variants (p < 0.01). Individually
tested correlations between experimental variants showed that
metabolites detected in HBR and NBR campaigns differed
significantly from HAmb and baseline data collections
(Figure 2A). As the metabolites detected in baseline data
collection and HAmb group were not significantly different,
these two groups represented rather healthy physiological
signatures, as observed before in the PlanHab literature
(Supplementary Table 1). Multiple comparisons of the most
significant metabolites according to ANQVA significance testing
(Figures 2B-C) confirmed the joint clustering of HAmb and
baseline data collections as healthy physiclogical signatures on
one side in contrast to HBR and NBR campaigns as affected
states on the other. In this respect, the joint branching of the
baseline data collection of healthy participants with HAmb
variant represented thus the rather healthy human physiological
signatures on one side with NBR and HBR experimental variants
representing severely affected participants on the other (Figure 1;
Supplementary Table 1).

The metabolites most involved in separation of the two
experimental branches (healthy vs. affected) listed within
Figures 2B,C represent the classes of microbial metabolites (e.g.,
acetate, formate, hippurate), human-microbe cometabolites (e.g.,
trimethyl amine, hippurate, carnitine, acetyl carnitine, cresol,
phenyl acetyl glycine), and human-derived metabolites involved
in ATP synthesis (e.g., creatinine, choline, guanidinoacetate,
hypoxanthine, xanthine), DNA (purine) metabolism (eg.,
uric acid, xanthine, hypoxanthine), tricarboxylic acid cycle
(e.g., succinate, citrate), muscle mitochondria (e.g., isoleucine),
generation of reactive oxygen species (ROS; e.g., xanthine,
hypoxanthine), bile acid metabolism (e.g., taurine}, and others. It
can be seen that numerous metabolites were associated and could
be hence involved with distinct complex physiological responses
detailed in Figure 1.

Of interest, the three collections of run-in baseline data
metabolomes obtained from healthy and medically prescreened
participants were not significantly different (PERMANOVA
test; p > 0.05 FDR corrected). This shows that urinary
metabolomes obtained during the run-in baseline data collection
were representative of healthy normal males.

Interaction Network Analysis of

Co-occurring Metabolites

Interaction network of metabolites characteristic of the healthy
state showed us 177 statistically significant connected metabolites
(i.e,, nodes; Spearman correlation p < 0.005) with a total of
1,769 edges representing the co-occurrence patterns between
metabolites (Figure 3). In contrast, the interaction network
in affected participants of NBR and HBR variants showed a
severe reduction of more than 30% in the number of statistically
significantly connected metabolites and a 2.5 times reduced
number of their interactions. This testifies that a reduction in
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physical exercise is coupled to significant reduction in metabolic
diversity within human body.

Based on centrality measurements (betweenness, closeness),
the most important metabolites representing the difference
between healthy and affected states that were identified also
using different statistical approaches (Supplementary Table 1)
were enriched in either healthy or affected states (Figures 2B,C),
suggesting significant shifts existed in the metabolic makeup
of the human urine after introduction to inactivity within the
PlanHab project and secondly very few to the project itself.

In addition, these graphical representations of metabolic
co-occurrence networks clearly demonstrate the complexity of

metabolic makeup of developed metabolic states observed in the
PlanHab project showing that the search for a single or a handful
of biomarkers would be prohibitive and oversimplification and
that a more complex approach needs to be utilized to derive
important information.

Variations in Predicted Urine Metabolic
Pathways

As many metabolites can be involved in different not
necessarily complementary metabolic pathways, the collected
metabolomics data were used to reconstruct the most important
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metabolic pathways contributing to the observed differences
in metabolomes. The pathways were identified based on the
importance of underlying metabolites (pathway impact) and
the significance of comparison between different metabolites
(significance after FDR).

The metabolites involved in propanoate metabolism
(p = 0.0001) were enriched in comparison with the start of
the experiment (Figure 4 and Supplementary Table 2) in all
three campaigns. On the other hand, the metabolites involved
in synthesis and degradation of ketone bodies with pathway
impact 0.7 were enriched solely in HAmb experimental variant
(p < 0.0001) considering FDR but not in HBR and NBR variants.

Most enriched pathway in the most affected variant of the
PlanHab project, the HBR campaign, were, e.g., glycolysis or
gluconeogenesis and furthermore the concentration of glucose 1-
phosphate were lower at the end of HBR in comparison with the
start of the experiment, whether on the other hand metabolite
acetate was increased in both HBR and NBR campaigns
(Figures 3, 4). Acetate was the main factor in HBR and NBR
campaigns suggesting the enriched pyruvate metabolism.

Other significantly affected metabolic pathways enriched in
HER and NBER in comparison with the start of experiment were
aminoacyl-tRNA biosynthesis, arginine and proline metabolism,
beta-alanine metabolism, fructose and mannose metabolism,

galactose metabolism, glycerophospholipid metabolism, methane
metabolism, nitrogen metabolism, pantothenate and CoA
biosynthesis, selenoamino acid metabolism, sulfur metabolism,
taurine and hypotaurine metabolism, valine, leucine, and
isoleucine biosynthesis (Figure 4 and Supplementary Table 2).

Finally, an overview of the number of affected pathways
suggested that the introduction of the participants into the
PlanHab project significantly affected four metabolic pathways
in HAmb in comparison with the starting metabolic makeup,
whereas a five and eight times larger number of pathways were
progressively affected in NBR (n = 22) and HBR (n = 32),
respectively. This is in line with our observation that inactivity
irrespective of hypoxia resulted in 30% reduction in the number
of statistically significantly connected metabolites, a 2.5 times
reduction in the number of interactions and that reduced
physical exercise resulted in diminished metabolic diversity
within human body.

The Sliding Window Time-Frame

Analysis

Sliding window analysis enabled us to compare each bin of 3 days
to the start of the experiment in order to identify the onset
of significant changes in experimental variants (Figure 5) over
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time. The changes in metabolic makeup in both bedrest variants
(HBR, NBR) deviated progressively away from the initial status
until significant changes were detected by the end of the second
week of the experiments. Significant changes in human urine
metabolome were observed by the end of the first week in HBR,
whereas the apparent delay of significant changes in NBR in
comparison with HBR lasted till the day 12, and the difference
can be attributed to the lower levels of oxygen in HBR. It is
interesting to note that the pattern of metabolome deviation
of HAmb variant from its original state actually followed an
acclimation pattern. The initial effects of hypoxia were thus
ameliorated in HAmb by the retained levels of exercise in this

particular variant of the PlanHab project, diurnal vertical posture
maintenance activity, and hence establishment of hydrogradients
within the HAmb, giving rise to overall insignificant changes in
HAmb urine metabolites to the starting point during 21 days
of the experiment.

DISCUSSION

The unique crossover design allowed us to include responses
of the same participants to all three experimental variants,
NBR, HBR, and HAmb, under the controlled nutritional,
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environmental, and experimental conditions. The same general
trends of body deconditioning were recovered in this study
based on '"H-NMR metabolomics of urine, as described before
using different sets of markers and approaches in the PlanHab
subprojects (Debevec et al,, 2014a, 2016b; Rittweger et al., 2016;
Simpson et al., 2016; Strewe et al., 2017, 2018; Stavrou et al.,
2018a,b; Supplementary Table 1). This shows large congruence
between the various independently collected datasets within the
PlanHab and the metabolomics approach used in this study. For
instance, zonulin concentration in blood samples (Strewe et al.,
2018) showed the same patterns as zonulin samples collected
from fecal samples (Sket et al., 2017b).

In this respect, our study demonstrates that 'H-NMR
metabolomics coupled to standardized analytical approaches and
sample preparation next to in-depth statistical analyses allows for
comprehensive characterization of the physiological responses
and enables the detection of subtle metabolic changes during the
initial and reversible body deconditioning in response to 3-week
inactivity. In comparison with HAmb, the participants involved
in NBR and HBR exhibited specific and different metabolic
trajectories giving rise to severely reduced metabolic diversity
and hence the reduction in the number of metabolic pathways
under controlled experimental and nutritional conditions

(Figures 2, 3). In essence, this shows a profound impact of
the onset of 3-week inactivity on human physiology revealing
the progressive systemic maladjustments. Finally, the Bayesian
modeling in our previous work (Sket et al, 2017ab, 2018)
showed that the significant changes in human physiology in
the PlanHab project preceded or took place devoid of the
corresponding changes at the level of intestinal microbiome. The
genus Bacteroides and proteins involved in iron acquisition and
metabolism, cell wall, capsule, virulence, and mucin degradation
were enriched solely at the end of the third week in HBR only.
Apparently, constipation and electrical conductivity decreased
intestinal metal availability, induced modified expression of
coregulated genes in Bacteroides genomes (Sket et al, 2018),
possibly also the zwitterionic capsular polysaccharides with anti-
inflammatory properties (Neff et al., 2016).

Our findings suggest that the decision of the host to minimize
physical activity under hypoxic conditions (HBR) is detectable
within a few days at the level of urine metabolites using 'H-
NMR and by the end of the first 10 days in NBR irrespective
of individual responses to food intake (Sato et al., 2018), daily
composition, time of ingestion, and diurnal cycles of sleep
described before (Sket et al., 2017a,b, 2018). Our results show
reproducibly high flexibility of the underlying physiological
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metabolic pathways in the absence of the diurnal metabolic
signals from the use of skeletal muscles (Schranner et al., 2020).
This is important as in the absence of the metabolic signals
from the use of human skeletal muscles, the metabolomes
of other body organs seem to develop primarily different
metabolic changes with little similar alterations that showcase
the complexity of consequences due to the lack of exercise at the
organismal level (Starnes et al., 2017).

This shows that the hosts metabolic and other physiological
and psychological responses (Sket et al, 2017ab, 2018
Figure 1) actually precede the responses of microbiome at
the community structure level, but the chemical crosstalk
between the two entities remains apparently responsive as
based on the differences in metabolites that are known to
be cometabolized by both and exchanged between the two
subsystems (human and microbiome). Consequently, it is
apparently the host that can be held responsible for the
differences in thermodynamic niches provided to the microbes
and to which microbial constituents respond. The colonic
transit time was put forward as one of the most important
parameters of intestinal tract related to bacterial metabolism
and mucosal turnover in the gut (Roager et al., 2016), as also
observed in our past studies (Sket et al., 2017a,b, 2018), and
is hence a highly important factor to be considered in future
metabolomics studies.

This complex crosstalk between microbiome and host’s
systems is influenced by innumerable environmental parameters
(Rooks and Garrett, 2016), crosstalk within microbial domains
(Neff et al., 2016), and human evolutionary adaptations (Murray
and Montgomery, 2014). In addition, their interaction can act
locally and across greater distances within the human body, with
some yet undetermined temporal delays (Rooks and Garrett,
2016). However, the contribution of microbiome to metabolic
conversions of exercise-induced metabolites was shown to be of
significant importance (Scheiman et al., 2019) acting as natural,
microbiome-encoded enzymatic processes converting muscle
lactate to formate and providing it back to host. In essence, this
provides support for the concept, that mammals are holobionts,
dependent on microbial and host genome information for
optimal performance (Rooks and Garrett, 2016; Sket et al., 2018).

The approach adopted in this study provides an opportunity
to generate new hypotheses on metabolic pathway perturbation.
One can indeed hypothesize that the metabolites involved
in metabolic pathways identified in this study in fact act as
signaling molecules [or account for lack of these (eg., in
HER, NBR)] involved in the PlanHab symptoms as detailed in
Figure 1: insulin resistance, low-grade inflammation, different
mitochondrial function, miRNA expression in large muscles,
differences in lipid oxidation, mood changes, and depression
(Debevec et al., 2014a, 2016b; Rittweger et al., 2016; Simpson
et al, 2016; Sket et al., 2017ab, 2018; Strewe et al, 2017,
2018; Stavrou et al, 2018ab; Supplementary Table 1). In
addition to those listed above, groups of metabolites identified
in this study were also associated with: (i) the chronic
obstructive pulmonary disease (COPD) (Adamko et al, 2015;
Zabek et al, 2015) and included metabolites such as 3-
hydroxyisovalerate, 2-hydroxyisobutyrate, creatinine, formate,

taurine, urea, choline, isoleucine, pantothenate, valine, and its
degradation to beta-aminoisobutyric acid during metabolism
of branched-chain amino acids suggest increased catabolism
associated with COPD; (ii) cardiovascular disease as a results
of associated chain of events such as tissne hypoxia (gut
ischemia) due to reduced oxidative phosphorylation and energy
production that lead to pulmonary hypertension, systemic
inflammatory responses, and increased risk of cardiovascular
disease, type 2 diabetes, depression, and osteoporosis (Jones,
2014). Phospholipids such as trimethylamine (TMA), choline,
and trimethylamine-N-oxide (TMAQ) were strongly correlated
with cardiovascular disease (Senn et al, 2012); and (iii)
diabetes and the metabolic syndrome where different metabolites
and metabolic pathways were correlated with the onset of
the disease, such as isoleucine and phenylalanine, alanine,
aspartate and glutamate metabolism, glycine serine and threonine
metabolism, and phenylalanine metabolism (Wang et al., 2011;
Jones, 2014).

In the single study of human metabolic responses to
microgravity simulated in a 45-day 6° head-down tilt bedrest
(HDBR) experiment (Chen et al, 2016) utilizing 'H-NMR
in urine metabolomic analyses, similar changes in a limited
number of biomarkers were detected (corresponding to NBR
variant of our experiment), such as increased guanidinoacetate
associated with enhancement of protein turnover inducing
further muscle turnover, trimethylamines and taurine associated
with cardiovascular diseases, and mammalian-microbial
cometabolites such as acetate and hippurate, products of
microbial fermentations, and dietary protein metabolism.
This observation signifies congruent detection of a small
number of the most informative metabolites in the two bedrest
studies. However, it also shows that there is little congruency
between different metabolomics studies based on the precise
nature of a handful of specific metabolites to be assigned
as specific biomarkers for certain disease or healthy status
(Schranner et al, 2020). This is further exemplified by the
incompatibilities between the methods, experimental designs,
statistical approaches utilized (biomarker vs. pathways), levels
of disease development, reversibility of the symptoms and
conditions. However, the correspondence is markedly increased
by the adoption of metabolite integration into metabolic
pathways that are up- or downregulated, as shown in this
study and in comparison to other studies utilizing the pathway
approach where the same affected pathways have started to
emerge for specific conditions (Sheedy et al., 2014; Elliott et al.,
2015; Tynkkynen et al., 2019; Kelly et al., 2020).

From this it follows that no simple or single metabolic
biomarker exists for delineation of particular human state
(e.g., healthy vs. diseased in our experiment; trained wvs.
untrained; active vs. sedentary; young vs. old or any other
group comparisons). In contrast, rather complex multivariate
descriptions of metabolic makeup are needed to capture
commonalities in human physiological states due to complex
responses in human physiclogy, large interpersonal variability
and variability over time, the fact that the same metabolites can
act in different metabolic pathways and can hence act as up- or
downregulated depending on the pathway.
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Significant further research work will be needed to understand
how the regulatory cascades of physical exercise and oxygen
supply translate stimuli to various host’s tissues and microbiome
domains that all affect human metabolic makeup and crosstalk
between the domains of holobiont. The adoption of supervised
and automated analyses amenable for re-analyses once improved
algorithms, databases, statistical approaches arise enable us
to continuously expand and learn from the datasets at
hand over time. One has to realize that long-term bedrest
studies with females are significantly more challenging and
hence not many studies with sufficient statistical power were
reported so far to close the gap. With the concomitant
methodological development, the exploration of more complex
female metabolome and responses to inactivity and hypoxia can
be commenced, extending our recent FemHab work on this
topic (Debevec et al., 2016a). Finally, genetic and environmental
parameters likely play pivotal roles and further work is needed
to understand their relative contributions, how these can be
managed using metabolomics as one of the most promising
approaches to explore these relationships (Kelly et al., 2020).

A few limitations and concepts of this study need to be
considered. First, although the sample size utilized in this
study seems relatively small from the perspective of screening
random populations of participants, the sample size was well
within the limits of recent detailed studies adopting the
bedrest format or others (David et al, 2014ab; Thaiss et al.,
2014; Chen et al, 2016). Second, the effects of supposedly
limited statistical power and accompanying potential for type-
II error were at least partly alleviated by the fact that the
test participant population was prescreened for healthy young
males according to SOP used by ESA/NASA (Thevenot et al,
2015). Third, this study was conducted according to the
European Space Agency’s standardization plan for bedrest studies
(ESA, 2009), taking into account results of pre-experiments
(Debevec et al,, 2016b; Keramidas et al., 2016; Rittweger et al,,
2016; Stavrou et al., 2016; Sket et al, 2017b; Strewe et al,
2017), Guidelines for Standardization of Bed Rest Studies
in the Spaceflight Context (Angerer et al., 2014; Sundblad
et al, 2016), and past recommendations on the sufficient
sample size for measurements of the majority of routine
parameters (Traon et al, 2007). Fourth, the PlanHab project
was executed as crossover design experiment, hence the same
participants were subjected to all experimental conditions in
separate campaigns, further minimizing the overall interpersonal
variability between campaigns.

In order to study metabolic deconditioning of the human body
exposed to inactivity or other metabolic disorders, that may arise
as a result of either acute or chronic and communicable or non-
communicable diseases (Supplementary Table 1), the adoption
of multivariate analysis of complex metabolomes in a unified
framework can unravel more biologically relevant findings than
search for a few biomarker metabolic or microbial species
(Visconti et al., 2019; Kelly et al., 2020). In addition, 'H-NMR
metabolomics offers guantitative insight (Beckonert et al., 2007;
Emwas et al,, 2019) as it is not compositional in contrast to shot-
gun or amplicon metagenomics (unless deliberately transformed)
(Vandeputte et al., 2017; Contijoch et al., 2019) and can be used

in metabolic and computational modeling for guided decisions
and health monitoring in personalized medicine approaches
(Sung et al., 2016; Palumbo et al., 2018).

CONCLUSION

The PlanHab project was designed to investigate in a controlled
manner the combined effects of 21-day inactivity/unloading and
hypoxia on a medically prescreened cohort of healthy male
volunteers in crossover design. In total, 523 urine metabolomes
were analyzed and processed using standard quantitative 'H-
NMR approaches and ensemble of multivariate methods from
three interventions: normoxic bedrest, hypoxic bedrest, and
hypoxic ambulation. Results show that in contrast to hypoxic
ambulation and run-in period inactivity alone or combined
with hypoxia resulted in significantly reduced systemic metabolic
diversity, increasing number of affected metabolic pathways, and
faster metabolic deconditioning. The maintained vertical posture
and controlled but limited activity in hypoxic ambulation variant
prevented the development of negative physiclogical symptoms
such as insulin resistance, low-level systemic inflammation,
constipation, depression, symptoms of metabolic syndrome, and
body deconditioning reported before in the PlanHab project.
Metabolic and pathway diversity as a response to physical activity
are apparently required to prevent the negative spiral between
the host and microbiome physiology governed by intestinal
environment and proinflammatory immune activities of the host.
In order to study metabolic deconditioning of the human body
exposed to inactivity or other metabolic disorders, the adoption
of multivariate analysis of complex metabolomes in a unified
framework of metabolic pathways can unravel more biologically
relevant findings than a search for a few specific metabolic
biomarker signatures.
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Abstract

Physical inactivity is a worldwide health problem, an important risk for global mortality and is
associated with chronic noncommunicable diseases. The aim of this study was to explore the
differences in systemic urine "H-NMR metabolomes between physically active and inactive healthy
young males enrolled in the X-Adapt project in response to controlled exercise (before and after the
3-day exercise testing and 10-day training protocol) in normoxic (21% Oz2), normobaric (~1000 hPa)
and normal-temperature (23 °C) conditions at 1 h of 50% maximal pedaling power output (Wpeak) per
day. Interrogation of the exercise database established from past X-Adapt results showed that
significant multivariate differences existed in physiological traits between trained and untrained
groups before and after training sessions and were mirrored in significant differences in urine pH,
salinity, total dissolved solids and conductivity. Cholate, tartrate, cadaverine, lysine and N6-
acetyllisine were the most important metabolites distinguishing trained and untrained groups. The
relatively little effort of 1 h 50% Wpeak per day invested by the untrained effectively modified their
resting urine metabolome into one indistinguishable from the trained group, which hence provides a
good basis for the planning of future recommendations for health maintenance in adults, irrespective
of the starting fitness value. Finally, the 3-day sessions of morning urine samples represent a good
candidate biological matrix for future delineations of active and inactive lifestyles detecting
differences unobservable by single-day sampling due to day-to-day variability.
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Abstract: Physical inactivity is a worldwide health problem, an important risk for global mortality
and is associated with chronic noncommunicable diseases. The aim of this study was to explore the
differences in systemic urine 'H-NMR metabolomes between physically active and inactive healthy
young males enrolled in the X-Adapt project in response to controlled exercise (before and after the 3-
day exercise testing and 10-day training protocol) in normoxic (21% Oz), normobaric (~1000 hPa) and
normal-temperature (23 °C) conditions at 1 h of 50% maximal pedaling power output (Wpe,, ) per day.
Interrogation of the exercise database established from past X-Adapt results showed that significant
multivariate differences existed in physiological traits between trained and untrained groups before
and after training sessions and were mirrored in significant differences in urine pH, salinity, total
dissolved solids and conductivity. Cholate, tartrate, cadaverine, lysine and N6-acetyllisine were the
most important metabolites distinguishing trained and untrained groups. The relatively little effort of
1h 50% W, per day invested by the untrained effectively modified their resting urine metabolome
into one indistinguishable from the trained group, which hence provides a good basis for the planning
of future recommendations for health maintenance in adults, irrespective of the starting fitness value.
Finally, the 3-day sessions of morning urine samples represent a good candidate biological matrix for
future delineations of active and mnactive lifestyles detecting differences unobservable by single-day
sampling due to day-to-day variability.

Keywords: exercise; trained; untrained; TH-NMR me tabolomics; human metabolome; JADBio; biomarkers

1. Introduction

Physical inactivity is a worldwide health problem ranking as the fourth most important
risk for global mortality [1]. The efforts undertaken by the World Health Organization
(WHO) to minimize the time spent sedentary [2] are directed at decreasing the risks for
more than twenty chronic noncommunicable diseases (e.g., coronary heart disease, stroke,
type 2 diabetes, obesity, metabolic syndrome, glucose insensitivity) next to mental health
and neurological problems such as depression and dementia [1]. As physical activity
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in the form of various types of exercise promotes wellbeing and increased quality of life,
understanding the biological mechanisms through which it impacts is of central importance.
Although genetics, lifestyle and environment are likely the most important parameters,
their relative contributions and interactions are not well-understood.

Exercise-related stress alters the chemical steady state of the internal biochemical
environment. The net result is modifications in the rate of production and consumption of
various metabolites within biochemical network affecting the systemic levels of metabolites
relative to the exercise intensity, muscle damag@ or the extent of the exercise as part of the
lifelong history [3-5].

In respect to the progressively emerging picture of metabolic states characteristic of
various noncommunicable diseases, a number of metabolomic studies have clearly shown
that physical activity results in modifications of hundreds of metabolites associated with
fatty-acid mobilization, lipolysis and metabolism, the TCA cycle, glycolysis, amino-acid
metabolism, carnitine, purine and cholesterol metabolism and insulin sensitivity [1]. Based
on these results, it has become obvious that while the metabolomics patterns may differ
f.lightl}.r between groups, it was the overall volume of exercise act-ing as the most i_mportant
driver of the metabolomics makeup [6-9], even irrespective of hypoxia [4]. This points
to the multifactorial dose-response relationship between activity (intensity, frequency,
time frame (exposure measured in hours, days, weeks, years, lifelong)) and metabolomic
signatures [1,4].

Metabolomics has become a technology-driven discipline focusing on improved high-
throughput and large-scale data collection, analysis and interpretation. Metabolomes were
characterized utilizing proton nuclear magnetic resonance (" H-NMR) in minimally user-
invasive biomaterial—the first morning urine. The approach of TH-NMR was utilized in
this study as it is nondestructive, quantitative, cost-effective, reproducible and requires
no sample derivatization [10]. Although the approach captures a modest number of
metabolites (1 > 350 in our past studies [4,5,11]) it enables identification of unknown novel
compounds in complex biological matrices such as serum, saliva, urine or feces [4,10]
and has been frequently utilized (>40% of studies) in observational and experimental
studies next to short-term (<1 week) or long-term (>1 week) interventions [1]. The use
of consecutive three-day urine TH-NMR data points was first tested recently in the form
of a 3-day sliding window within the PlanHab project and showed promising results for
delineation of systemic differences between groups [3-5].

The aim of this study was to explore the differences in systemic urine TH-NMR
metabolomic signatures between groups of physically active and inactive individuals
before and after a 10-day training protocol in normoxic (21% O;) and normal-temperature
conditions (23 “C) of the campaign number 4 within the X-Adapt: Cross-adaptation between
heat and hypoxia project (Figure 51) [12]. The aim of the X-Adapt study itself was to
investigate the effects of a 10-day exercise protocol on aerobic performance in young
males. The X-Adapt training sessions were composed of controlled 60 min normoxic and
normobaric (~1000 hPa) exercise [12] utilizing prescreened participants (graded exercise
test on a cycle ergometer to determine their normoxic VO;max and maximal power output
(W peak—the highest workload sustained by incremental exercise until exhaustion). In short,
aerobic fitness was defined using maximal oxygen uptake (VO2max) values (untrained
VO,max < 45 mL-kg ! -min~!; trained VO;max > 55 mL-kg~1-min~1) [13,14]. Untrained
participzmts were also re'quired to not parﬁcipate in Orga.rﬁzed sports, while minimal
cycling and walking for commuting to work were allowed. In contrast, trained participants
performed endurance-type activities (running, cycling, swimming) several times per week.

The X-Adapt urine-sample collection produced by the original project outline de-
scribed before [12,15,16] (i.e.,) was augmented by including two additional urine-sampling
periods, extending the project outline and resulting in the extended sample collection
(Figure 1 and Figure 51). As a result of these extended urine-sampling periods there was
no effect on human physiology or exercise approaches utilized in the X-Adapt project.
The extended sample collection included the additional three-day baseline urine samples
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before the actual start of the X-Adapt campaign 4 [12] and samples collected during the last
three days of the 10-day exercise session. In total, the time span between the two sampling
periods of extended sample collection contained 3 days testing, 1 day rest and 10 days
exercise, amounting to almost 14 days of exercise [12]. This enabled us to capture the daily
variability between the trained and untrained groups before the actual onset of the X-Adapt
campaign 4 and to observe the actual systemic differences in response to the almost 14-day
concerted exercise between the trained and untrained groups. In addition, this enabled us
to perform additional comparisons between the various sections based on TH-NMR urine
metabolomes collected uniquely over three consecutive days (Figure 51).

H-Adapt H-mdapt

Pre Post

testing | R | 10.dlay training session |r |testing |
Days | -3-2-1 12 3 | 4|5 Normasie narmebaric nometermie 13 14] 15 161718 |19

Fra trining e testing Fastnainlng. Pt besting
Lifestyle rpiey e pretern i
Active T T T T
Inactive
ur uT ur uT

‘Progressively synchronized active lfestyle far all participants,
3-2-1 234 131415 1IT1E19
The 3-day series of first morning urine samples collected for each participant within stuedy
Thee ¥-Adapl urine sample collection
The extended sample collaction

(4)
Samples and analyses
X-Adapt X-Aedapt X-Adapt
Pre Pt
testing | R testing R
123 |4 161718 19
Fis LR
T T
ut ur
E ded
Hende 321 131415

——

T
uT ur

(B)

Figure 1. A schematic outline of the X-Adapt project with the two sampling collections designated
below: the X-Adapt urine-sample collection and the extended sample collection (A). The extended
sampling was conducted at days —3, —2, —1 day before the start of the campaign and at days 13,
14, 15 of the X-Adapt campaign 4. T—trained; UT—untrained group of participants. Blue arrows
indicate sampling days within each of the four 3-day urine-sampling series. The X-Adapt urine-
sample collection thus encompasses samples collected during the X-Adapt pretesting and post-testing
periods. The extended sample collection encompasses the urine samples collected before the actual
onset of the campaign (baseline} and during the last three days of training (days 13, 14, 15 of the
campaign). For simplicity, the collechion days are linked by hy phens to mark the compatible datasets.
(B) A schematic representation of the X-Adapt urine-sample collection and the extended sample-
collection groups with their respective analyses and comparisons delineated with lines. Solid and
dashed lines designate significant and not significant differences between the groups. Analyses were
conducted on overall group, sample collection and daily basis separately.
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As there is a lack of data and understanding on the differences between healthy
trained and untrained young males and the progressive changes in human metabolomics
responses coupled to introduction of exercise, we first compiled and performed a mul-
tivariate analysis of the exercise dataset [12,15,16] and hypothesized that (i) significant
differences existed in the exercise dataset between trained and untrained groups; (ii) the
2-week experimental setup would enable us to detect overall change in resting urinary
metabolome 3-day sequences; (iii) significant differences existed between the trained and
untrained group’s urinary metabolomes despite the nonsynchronized diet of participants;
(iv) the introduction of scheduled 2-week physical exercise would significantly change
urine 'H-NMR metabolomes in the untrained group at least; (v) discriminant metabolites
could be identified between the trained and untrained groups; (vi) the extended X-Adapt
experiment utilized in this study provided insight into the significantly different metabolic
pathways between the trained and untrained experimental variants, signifying the impor-
tance of the training history of participants for responses in human metabolomes that were
also linked to the VO;max values (the maximal rate of oxygen consumption).

2. Results and Discussion

Twenty male participants 23.5 4 2.5 years old were recruited for this study and were
divided into two groups (10 participants per group) based on their physical performance
(trained and untrained group). Table 53 represents their baseline characteristics. Partic-
ipants in the trained group were 23 4 2 years old, 180 £ 5 em tall, weighed 74 4+ 3 kg
and had a body surface area of 1.96 + 0.08 m? and body fat of 9.2 + 2.3%. On the other
side, untrained participants were 25 & 3 years old, 179 & 3 cm tall, weighed 85 = 14 kg,
had a body surface area of 2.05 £ 0.17 m? and body fat of 16.3 + 4.9%. VOpeak, Wcak
and W,y per kg were significantly different between the untrained and trained group.
The untrained group had a lower VO;peak (42 & 5 mL/kg * x min in untrained and
58 + 6 mL/kg x x min in trained group), lower mek performance (309 £ 46 W in un-
trained and 364 + 35 W in trained group) and lower Wy.qx per kg (3.6 = 0.4 W/kg in
untrained and 4.9 & 0.5 in trained group) [12,15-17].

2.1. Integrated Analysis of Exercise Data and the X-Adapt Urine-Sample Collection

In this study, exercise data reported before [17] and TH-NMR metabolomic data
obtained in this study were explored. The previously reported physiological data [12,15-17]
relevant for metabolomic analyses within the same 3-day series of X-Adapt pre /post-testing
were analyzed. Their integrated analysis in this study showed that significant multivariate
differences existed between the trained and untrained groups at pretesting (Figure 1) before
the onset of the 10-day 50% W, training session and after the training (FERMANOVA;
F =7.304; p(same) = 0.0001; npermutations = 5000). In addition, nearly significant differences
(p = 0.054) existed between the pre-exercise untrained and postexercise untrained groups,
suggesting a larger magnitude of changes in human exercise-related characteristics than in
those leading active lifestyles.

The nonmetric multidimensional scaling (nmMDS) results also showed significant
groupings separating trained from untrained (Figure 2) showing that significant differences
at the level of human exercise data also remained detectable after the 10-day training
period. A heatmap (Figures 3 and 5S2) of the measured exercise parameters shows large
differences in measured parameters between trained and untrained groups, but also reflects
significant interpersonal variability within each of the measured parameter. This suggests
that although significant differences in the multivariate description of exercise states can
be reported for the trained and untrained groups before and after the training sessions,
the rate of change within the 10-day training at 50% W, was significantly higher for
the untrained group, as reported before [12]. This observation is further supported by
detailed analyses of the exercise parameters contributing most to differences between
trained and untrained groups, as VO,max values in fact decreased 3.2% and increased for
9.2% in trained and untrained groups, respectively. This observation is in line with past
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observations showing that the pretraining VO;peak and percentage change in VO;peak
with training were inversely correlated, showing that the rate of adaptation is largest in
less physically prepared participants [18]. In addition, the integrated exercise data reported
in this study showed that trained and untrained groups responded differently, as VO;max
of the trained group could not be sustained by 50% Woeak training in comparison to a
further increase in the untrained group in response to 50% Wpeak training. Taken together,
these results show that during the 10-day 50% W .ak training, the trained and untrained
groups were becoming more synchronized in terms of measured exercise parameters, as
also suggested before [12,15-17]. A two-way PERMANOVA confirmed that participant
status (trained or untrained) and 50% W,y training exercise (pre- or post-training) were
significantly associated with the underlying multivariate exercise data (F = 13.07; F = 2.57
and p(same) = 0.0001; p(same) = 0.038), respectively), while interaction between participant
status (trained or untrained) and time of training exercise (pre-or post-fraining) was not
significant (status x exercise; F = 0.47; p(same) = 0.79), suggesting that the response of the
two groups to the application of exercise was not uniform.

03
UTpost

02

0.11
"~
% 0.0

0.1

-0.2

Tpre
03 T
<03 -0z -0 0.0 ol 0.2 03
amMDS axis 1

Figure 2. A nmMDS representation of physical parameters (n = 39) measured in X-Adapt project
(UTpre (green}—untrained pre-exercise testing, UT-post (red }—untrained postexercise testing, Tpre
(black)}—trained pre-exercise testing, Tpost (blue)}—trained postexercise testing). Stress value of
nmMDS was (0.185. Please also see Figure 52 for more details.
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Figure 3. Heatmap representation of the underlying multivariate exercise physicochemical parame-
ters measured in the X-Adapt project. Dendrogram clustering shows differences between the trained
and untrained groups in these parameters before and after training. Higher-resolution heatmap
can be found in electronic supplementary material. Abbreviations: body surface area (BSA), stroke
volume (5V), hearth rate (HR) cardiac output (CO), rectal temperature (Tre), maximal power output
(Wpear), peak power output (PPO), gross mechanical efficiency (GME), respiratory quotient (RQ),
cardiac index (CI). Please see Figure 52 for the heatmap on representation per sample basis of all
participants before and after exercise performance.

In contrast to results from physiological measurements, our TH-NMR analyses of the
X-Adapt urine-sample collection (i.e., the 3-day morning urine samples taken within the
same timeframes of X-Adapt pretraining and post-training test sessions) did not identify
any significant difference between any groups (FERMANOVA; p > 0.3; npermutations = 5000)
(Figure 1). This is in line with past observations that metabolomes at rest (e.g., systemic
morning urine samples) cannot be indicative of physical status and capacity due to their
gradual return to baseline within 24 h after exercise [19]. In addition, these results point to
the potentially homogenizing short-term responses in trained and untrained individuals
to the standardized pre- and post-testing conducted on three consecutive days utilized
in the X-Adapt study [12]. The normoxic, temperature and hypoxic tests utilized in X-
Adapt were described in detail before [12,15-17]. Moreover, additional in-depth tests of
statistical significance between TH-NMR metabolomes from trained and untrained groups
on a day-to-day basis also did not produce significant differences (PFERMANOVA; p > 0.05;
Npermutations = 2000). These results show the lack of significant differences between the
trained and untrained groups on the level of urine TH-NMR metabolomes in response to
the X-Adapt pretesting and post-testing trials (Figure 1).
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2.2. Differences in Urine ' H-NMR Metabolomes between the Trained and Untrained Groups:
The Extended Urine-Sample Collection

In order to elucidate the potentially homogenizing responses in trained and untrained
individuals to the X-Adapt training regimen the extended urine-sample collection (Figure 1)
was analyzed by TH-NMR. The "H-NMR fingerprints of trained and untrained groups
were compared to identify the existence of internaldata-structure characteristics for the two
groups of participants. The results of one-way and two-way PERMANOVA showed that
significant differences existed between metabolomes of trained and untrained participants
(p < 0.01). This was also confirmed by the two-way PERMANOVA test, showing that
activity (trained /untrained) was the only parameter significantly associated with the two
groups (p = 0.0001). Regime (pre- or post-test) and the interaction between regime and
activity was insignificant (p > 0.05). This was also confirmed by the nonsignificant change
in the number of metabolites present and the sum of their concentrations in all sampled
groups (Table 51).

The Mann—Whitmey test showed that significant differences in distributions between
trained and untrained group existed in physical characteristics of urine such as pH, salinity,
total dissolved solids (TDS) and conductivity. Salinity, conductivity and TDS were signifi-
cantly higher in the untrained group than in trained, while pH was slightly more alkaline
in trained (Figure 53).

Based on the nonparametric approaches described below, we used statistical meth-
ods implemented in MetaboAnalyst 5.0 [20-22]. According to the partial least-squares-
discriminant analysis (PLSDA) of variable importance in the projection (VIP) scores, dif-
ferences existed between the trained and untrained groups of participants at the level
of cholate, tartrate, cadaverine, lysine and Né6-acetyllisine (HMDB0000206) as the most
distinguishing metabolites to differentiate the trained and untrained groups (Figure 4). The
first three metabolites were all present at higher concentrations in the untrained group
while concentrations of lysine and Né-acetilysine were higher in the trained group. Pri-
mary bile acid synthesis, glutathione metabolism, aminoacyl-tRNA biosynthesis and lysine
degradation pathways were enriched in the untrained group (Figure 5).
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Figure 4. PLSDA ordination of metabolomics signatures present in the trained and untrained groups
(a,b) VIP scores of the most important metabolites separating the two groups. The three-day series
of urine samples of trained and untrained groups were analyzed with MetaboAnalyst. Prior to the
PLSDA analysis, concentrations were transformed with Logl0 normalization and scaled with Mean
Centering approach. Each dot represents one sample of participant per day.
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Figure 5. Primary bile-acid biosynthesis, glutathione metabolism and aminoacyl-tRNA biosyn-
thesis were enriched in untrained group, based on increased levels of cholate (primary bile-acids
biosynthesis), cadaverine (glutathione metabolism) and L-tryptophan and L-cysteine (aminoacyl-
tRNA biosynthesis).

In addition to the multivariate analyses, we also performed extensive machine-learning
modeling using Just Add Data Bio (JADBIO) [23] to investigate the importance of metabo-
lites and physicochemical parameters in urine samples. A total of 181,020 models were
trained using extensive tuning effort. The most interpretable model was logistic ridge
regression with the penalty hyperparameter lambda of 10* and an area under the curve
(AUC) value of 0.748. In addition to AUC (Figure 6a); all other thresholds were also sta-
tistically significantly different from baseline. Data were preprocessed and standardized
by imputation of means and removal of constants. Features were selected based on the
test-budgeted statistically equivalent signature (SES) algorithm with the following hyper-
parameters: maxK = 2, alpha = 0.1, and budget = 3 x nvars. PCA plot (Figure 6b) shows
that differentiation based on modeled data is not complete, which means that larger groups
should be formed in the future. 12 metabolites and pH were selected as the most important
features for distinguishing the trained from the untrained group based on urine. Table 52
lists all the important metabolites. The major metabolite selected by JADBIO was tartrate.
The power of the model obtained by using only tartrate was 73.8% (with 95% CI from 69.9%
to 77.6%) (Figure 54). We applied the trained model to the test portion of our data (30% of
our total dataset) and achieved validation performance with an AUC of 0.647.
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Figure 6. The receiver operator curve (ROC) (a) plot and PCA plot (b) of modeled data. The dimen-
sionality reduction was performed within JADBio on a subset of the original dataset, keeping only
the features included in the first signature. Features were standardized with statistical normalization
((x — )/ o). A total of 155 samples were included in this analysis for training the model from the
entire dataset. A total of 72 samples belonged to trained and 82 samples belonged to untrained group.

Some metabolites (cholate, tartrate, methanol, N-acetylglucosamine, butanone, caprate)
were selected as the top 25 metabolites using the PLSDA approach in MetaboAnalyst. Both
tartrate and cholate were elevated in the untrained group, which could be related to their
diet. The diet of athletes is much more constant, and the diet was not standardized in the X-
Adapt project. However, the decreased tartrate levels may suggest that tartrate supplemen-
tation is needed in the trained group to reduce metabolic stress, minimize muscle damage,
improve hormone receptor levels, and promote recovery after resistance exercise [24,25].
L-carnitine L-tartrate supplementation increases carbohydrate oxidation rates. Endurance
athletes in particular have higher carnitine uptake in skeletal muscle [24,25]. Tartrate is a
nonhuman metabolite found in grapes, wine, and as an additive in foods [26]. Increased
consumption of tartrate-containing foods and beverages also lowers cardiovascular risk
factors such as LDL cholesterol [27,28]. Tartrate is part of glyoxylate and dicarboxylate
metabolism, which was also observed in the enrichment analysis of metabolic pathways and
enriched in the untrained group. Glyoxylate and dicarboxylate metabolic pathways were
observed in young patients with major depressive disorder. Improving physical activity
improved patients with major depressive disorder and additionally reduced other compli-
cations of cardiovascular disease [29,30]. Inactivity in the bed rest study (e.g., PlanHab) also
led to the development of psychiatric problems after one week of bed rest, showing possible
associations between inactivity, metabolism and mental health problems [4,5,31—44].

Cholate, on the other hand, is one of the primary bile acids that may be involved
in the development of an atrophic state in myotubes [45] and in the invasion of human
colon cancer cells [46], which can be observed in less active and untrained individuals.
Bile acids in geneml have also been associated with obesity [47], higher BMI, elevated
blood glucose levels [48], liver dysfunction [49] and cardiovascular health [50]. Bile acids
in urine can be used for diagnostic purposes, as it has already been shown that bile acids
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in urine have lower variability and higher stability than bile acids in serum [51]. Elevated
cholate concentrations have also been observed in patients with gastric cancer. In our
work, increased concentrations of cholate were observed in untrained individuals. A
meta-analysis has previously shown that regular physical activity can prevent gastric
cancer [52-54]. A single training run in amateur runners resulted in a significant decrease
in circulating bile acids. Recent studies have also shown that bile-acid concentrations were
higher in less fit women than in fit women [55,56].

Polyamines such as lysine and cadaverine, which were also detected in our study, have
also been associated with the development of various diseases described by the common
term “metabolic syndrome”. It has already been shown that elevated cadaverine concen-
trations may correlate with intestinal disease or colon and liver cancer. Cadaverine was
also elevated in the untrained group and is part of the glutathione metabolism previously
described in men with type 1 diabetes [57]. Metabolic syndrome develops mainly due to in-
activity or lack of exercise [58-60]. Lysine is involved in aminoacy HRNA biosynthesis and
was increased in trained group. Aminoacy-tRNA biosynthesis was associated with higher
physical activity, a less sedentary lifestyle and high-intensity interval training [61-63]. Us-
ing metabolomes in stool and serum, the same metabolic pathway was identified as altered
in endurance cross-country athletes, reflecting modifications in protein synthesis [64].

In contrast, 2-hydroxy-3-methyl- valerate was identified only with machine learning
and was decreased in the trained group, confirming that it may also be involved in affecting
physical function through peroxisome proliferator-activated receptor alpha (PPAR- ) acti-
vation, which is associated with microbial metabolism and insulin sensitivity [65]. PPAR-«
is a hormone-receptor transcription factor involved in energy metabolism. Untrained
participants in X-Adapt are less physically active and have increased levels of 2-hydroxy-
3-methyl valerate, leading to possible activation of PPAR-«, as shown in functionally
impaired older adults [65,66]. Né-acetyl-L-lysine is an acetylated amino acid that is in-
creased in the trained group and plays an important role in regulating gene transcription,
cell-cycle progression, apoptosis, DNA repair and cytoskeletal organization, also decreasing
chances of Alzheimer’s disease shown on rats. Physical activity has previously been shown
to reduce the risk of age-related Alzheimer’s disease [67,68] and metabolic syndrome [69].

We also observed that an increased pH increased the chance of classifying participants
into a trained group. A lower urine pH was associated with chronic kidney disease [70],
chronic heart failure [71] and metabolic syndrome [69,72,73].

Our analyses of the same 3-day-series data on a daily basis did not produce in-
terpretable patterns of significant differences between the daily metabolome groups of
the same 3-day sampling campaign after the correction for multiple comparisons (PER-
MANOVA; p = 0.05; npermutations = 5000) and were not reported. This corroborates our
past observation [5] on the higher resolution of 3-day series of TH-NMR metabolomes in
contrast to single-day sampling.

2.3. Differences between Trained and Untrained Groups before and after Synchronizing Normoxic
Training Campaign: The Extended Urine-Sample Collection

Our last analysis focused on the exploration of the extended urine-sample collec-
tion between trained and untrained (Figure 1B) to identify differences in morning urine
metabolomes as a result of their original lifestyle and almost 2 weeks of 1h training at 50%
Woeal (i.e., 3-day exercise tests, 1 day rest, 10 days 1 h training at 50% W, Figure 1A). The
results of PERMANOVA (p(same) = 0.003; npermutations = 5000; Figure 55) showed that in the
trained group, an active lifestyle supported significantly different metabolomic fingerprints
in comparison to the untrained group (Figure 55). The differences between the trained and
untrained groups were no longer significant at the end of training (p = 0.226), while shared
metabolomics features were present within each of the groups on the relation between pre-
and post-training states (horizontal lines; Figure 55) as the significant differences persisted
in relation to pretrained vs. post-untrained and pre-untrained vs. post-trained (diagonal
lines; Figure 55). The results of this study suggest that exercise introduced changes in
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trained and untrained groups, making their endpoints not significantly different, and was
accompanied by the concomitant decrease in the VOzmax values (—3.2%) in trained and
increase (+9.2%) in untrained groups [12,15,16,18].

When all eight groups of metabolomes (Figure 1B) were analyzed, it became apparent
that the first introduction of controlled exercise at pre-exercise tests generated rather similar
resting morning metabolomic urine makeup (i.e., short-term multivariate phenotype) in
the two physiologically significantly different groups, while measurable changes within the
exercise parameters (long-term multivariate phenotype (Figures 2 and 52) were detected
much later. Consequently, the frequency of these training bouts (i.e., life-long exercise) is in
fact a crucial parameter for maintaining a healthy metabolomic phenotype and VO;max
next to other exercise-related parameters. In contrast to WHO's proposed 75 min to 150 min
of vigorous- to moderate-intensity training, respectively, for adults per week [1,2], our
study showed that a 5 times larger exercise input was effective at bringing the urine
metabolomics makeup and VO,max values closer to the trained group, while obviously for
the maintenance of an active lifestyle pursued by the trained group, much higher efforts
would need to be invested. This finding is also in-line with the past observations on the
difficulties in observing differences between training regimes [74], the effects of which
subsided within 3 h after exercise, even in clinical populations [19]. Putting it simply, long-
term exercise makes us rather similar in health, but a lack of it makes us different in disease.
X-Adapt findings presented in this study on homogenizing effects of exercise are mirroring
our past results from the PlanHab project on negative effects of inactivity [4,5,33,34].

To conclude, morning urine, especially as utilized in the form of 3-day sessions, has
been shown to represent a good candidate biological matrix for delineation of active and
inactive lifestyles in this study, detecting differences unobservable by single-day sampling.
Resting morning urine metabolomes as a result of 1 h 50% Wp..y daily activity provided a
good basis for planning future recommendations for the maintenance of health in adults,
irrespective of the starting fitness value. The maintenance of systemic homeostasis and the
response to nutritional and environmental challenges require the coordination of multiple
organs and tissues. To respond to various metabolic demands, the human body integrates
and builds upon a system of interorgan communication through which one tissue can affect
metabolic pathways in a distant tissue. Dysregulation of these lines of communication
through lack of exercise (sedentary lifestyle) and of highly energetic diets contribute to
human pathologies, including obesity, diabetes, liver disease and atherosclerosis. Increasing
exercise levels in the untrained apparently has the capacity to significantly reconstitute
the interorgan communication towards the levels observed in the healthy trained cohort.
In addition, recent technical advances such as data-driven bioinformatics on layers of
information (microbiome, proteome, metabolome) expanded our understanding of the
complexity of systemic metabolic crosstalk and its underlying mechanisms [75].

3. Materials and Methods
3.1. Project Description

In this study, the fourth campaign of the X-Adapt Cross-adaptation between heat
and hypoxia—novel strategy for performance and work-ability enhancement in various
environments project (ARRS research project ]5-9350) was utilized as source of exercise
data and urine samples for TH-NMR metabolomics analyses (Figure 51).

The main objective of the X-Adapt project was to determine the metabolic differ-
ences between trained and untrained individuals and the effects of 10 days of training on
metabolism utilizing urinary metabolomics.

During the prescreening procedure, participants completed a graded exercise test ona
cycle ergometer to determine their normoxic (environment with normal O; concentrations
(e.g., 21%)) maximal-rate oxygen consumption (VOzmax) and maximal power output
(Woeak): Wpeay is defined as the highest workload sustained by incremental exercise until
exhaustion. Aerobic fitness was defined using VO,max values. A VOomax of less than
45 mL-kg 1-min ! or greater than 55 mL-kg ! -min~! was considered a requirement for
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participation in the lower-fitness (untrained) or higher-fitness (trained) group, respectively,
consistent with values reported in previous studies [13,14]. To further ensure that VOzmax
reflected participants’ true cardiorespiratory fitness levels, untrained participants were also
required to not participate in organized sports. Cycling and walking for commuting to
work were allowed. Accordingly, trained participants performed endurance-type activities
(running, cycling, swimming) several times per week. Participants were informed that
the aim of the study was to investigate the effects of a 10-day exercise protocol on aerobic
performance in young males [12,15-17].

Twenty healthy young male volunteers were recruited to participate in the study.
Inclusion criteria included males between the ages of 18 and 30, nonsmokers, and unmedi-
cated. All participants lived near the sea and had not been exposed to altitudes > 1500 m or
temperatures > 30 °C for at least 1 month before the start of the study, which took place in
November and December 2018. None of the participants had a history of cardiorespiratory
or hematologic disease. Participants were instructed to abstain from caffeine and alcohol
consumption throughout the study. They were given detailed information about the study
protocol and potential risks.

The study consisted of three parts: pretraining exercise testing, a 10-day exercise
training program, followed by the post-training exercise testing (Figure 1).

During the pre-exercise tests, participants completed the same maximal exercise
performance test on three consecutive but separate days under thermoneutral normoxic,
thermoneutral hypoxic and hot normoxic conditions as described before [12,15-17]. The
order of exercise tests was randomized and counterbalanced between participants. All tests
were performed at the same time of day for a given participant (1 h). Exercise training
sessions took place in the morning hours (9:00-12:00). Participants were given a 24 h rest
period before and after the 10-day training to minimize the contribution of fatigue during
the exercise tests [12,15-17].

During the 10-day training session, all participants completed 60 min supervised
cycling sessions daily for 10 days. Exercise was performed on a cycle ergometer (Daum,
Electronic, Furth, Germany). During training, each participant pedalled at a preferred
cadence (between 60 and 90 rpm), which they maintained throughout the experiment via
visual and verbal feedback. Exercise intensity was relatively similar for all participants
and was set at 50% of the W,y calculated from the individual Wp,. achieved during
the preparatory graded normoxic exercise test. Participants were only informed of the
time remaining until the end of the exercise session and were allowed to drink ad libitum
during each exercise session. Heart rate and 5p0, were measured with a finger pulse
oximeter (Wristox 3100 Nonin, Plymouth, MN, USA) at 5 min intervals. Raﬁ.ngs of per-
ceived exertion (RPE; 6-20) was also recorded at 5 min intervals. Ambient temperature
was maintained at 24 °C. The training room was well-ventilated so that normoxic and nor-
mocapnic (normal arterial carbon dioxide pressure) conditions prevailed during training.
Participants completed all exercise sessions at the same time of day. No other exercise
training was allowed during the study. Sessions were supervised by at least two researchers
to record exercise data and ensure that all participants maintained the desired workload at
all times [12,15-17].

After the completion of 10-day training session, postexercise tests were performed. All
pre- and postexercise tests were performed in a laboratory 300 m above sea level (Ljubljana,
Slovenia). Trials were performed on a cycle ergometer (Daum, Electronic, Furth, Germany)
and included two phases: a 30 min steady-state workout immediately followed by incre-
mental training to exhaustion. Before (pre) and after (post) the 10-day training protocol,
participants performed three trials on three consecutive days. At normal temperature
and normoxic conditions (NOR), participants breathed room air (pre: partial pressure of
oxygen in the inspired air (PiO;) = 143.7 &+ 0.8 mmHg, post: Pi0; = 143.4 & 0.7 mmHg)
and exercised under thermoneutral conditions (pre: Ta = 23.2 4+ 0.7 °C and relative humid-
ity (RH) =47.2 & 2.2%, post: Ta = 23.2 £ 0.5 °C and RH =46.6 £ 5.9%). In the hypoxic
condition (HYF), they inspined a hypoxic gas mixture (pre: Pi0,=9224+15 mmHg, post:
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Pi0Oy = 93.2 £ 1.2 mmHg) and exercised in thermoneutral conditions (pre: Ta =22.8 £ 0.5 “C
and RH = 51.2 &+ 1.2%, post: Ta = 22.5 £ 0.6 °C and RH = 51.5 £ 1.3%). In the hot
condition (HE), the participants inspired room air (pre: Pi0O; = 142.6 &+ 1.7 mmHg, post:
Pi0; = 142.7 £+ 1.8 mmHg), but exercised in a hot environment (pre: Ta = 341 £ 0.9 °C,
RH =481+ 4.2%, post: Ta= 341+ 1.1 °Cand RH =49.8 £ 3.0%) [12,15-17].

3.2. Sample Collection

Urine samples were collected in four sessions for 3 consecutive days to form 3-day
series of urine samples for all participants (Figures 1 and 51): (i) 3-day baseline data of
participants before the start of X-Adapt campaign, (ii) 3-day pre-exercise testing before
10-day 50% W eak training, (iii) 3-day sampling of the last days of 10-day exercise; and
(iv) 3-day postexercise testing after the 10-day 50% W, training. All obtained samples
were frozen at —20 °C for further analysis as described before [4,5,76]. For simplicity, the
X-Adapt urine-sample collection was used to denote samples collected during the X-Adapt
pre-exercise and postexercise testing periods. The extended sample collection encompasses
the urine samples collected before the actual onset of the campaign (baseline) and during
the last three days of the 10-day 50% Wy training.

3.3. NMR Metabolomics

All collected samples were centrifuged (1.5 mL) at 10,000 ¢ for 30 min to remove fine
particles. Then, 600 uL of supernatant was mixed with 300 uL. TH-NMR buffer as described
before [77] and stored at —25 “C until analysis. Before analysis, samples were thawed at
room temperature and transferred into a 5 mm NMR tube. TSP was used as an internal
standard for quantification, as described before [77].

A Bruker Avance NEO 600 MHz spectrometer equipped with a 24-sample SampleCase
autosampler and a 5 mm HCN Cold probe was used for the acquisition of NMR spectra at
25 °C. The TH NMR spectra of the samples were recorded with a spectral width of 9.0 kHz,
relaxation delay of 2.0 s, 32 scans and 32 K data points. A double-pulsed field gradient
spin echo (DPFGSE) pulse sequence was used for water suppression. Total correlated
spectrum (TOCSY) was measured with 1H spectral widths of 7.0 kHz, 4096 complex points,
arelaxation delay of 1.5 s, 32 transients and 144 time increments. An exponential and cosine-
squared function were used for apodization. Zeros were filled before Fourier transform.
TopSpin v. 4.0.9 software (Bruker, Billerica, MA, USA) was used for processing urine
NMR spectra [4,5,76,78]. AlpsNMR R package was used for the visualization of example
spectra [79].

3.4. Physicochemical Parameters of Urine Samples

Urine Samples were thawed at room temperature, hOmogenized. Additional ph}":‘.ical
chemical parameters were recorded such as pH, conductivity, total dissolved solids and
salinity using Pocket pro” Multimeter 2 (Hach Company, Loveland, CO, USA).

3.5. Statistical Analysis and Machine Learning

The resulting spectra were consequently analyzed using targeted quantitative
metabolomics using Chenomx NMR Suite version 8.6 (Chenomx, Inc., Edmonton, AB,
Canada). For the latter, all spectra were randomly ordered for spectral fitting using the
ChenomX pmﬁler and the Human Metabolome Database (https:/ /hmdb.ca/ (accessed
on 24 April 2022)) compound names were used [80]. In this study, spectral deconvolution
utilizing Chenomx and HMDB was used instead of the binning approaches with extensive
normalization as described before [81,52]. An ensemble approach to data analysis was
utilized, employing three different approaches to asymmetric sparse matrix data analy-
sis, establishing significant differences between tested groups as follows: nonparametric
MANOVA (PERMANOVA) [83], MetaboAnalyst [20-22], and JADBIO [23]. Heatmap of
measured physiological parameters was generated using gplots R package. Data were
normalized with scale function.
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First, for PERMANOVA, each compound concentration obtained was analyzed as
described before [4,11]. Box—Cox transformation was used. The significance of metabolic
differences between various groups of samples was tested using 1-way and 2-way PER-
MANOVA, and expressed as an overlap in nonmetric multidimensional scaling (nm-MDS)
trait space (using Euclidean distance measures). The stress function was used to select the
dimensionality reduction, whereas Shepan:l’s plots were used to describe the COTTESpON-
dence between the target and obtained ranks. Benjamini-Hochberg significance correction
for multiple comparisons was used as described before [4,5].

Second, for MetaboAnalyst, log- or cube-root transformation in connection to Mean
or Pareto scaling was utilized as implemented in MetaboAnalyst, followed by supervised
classification using partial least-squares-discriminant analysis (PLSDA) method and ran-
dom forest (RF). Statistical power for the identification of significant differences before and
after treatment was also calculated using MetaboAnalyst Statistical Power module.

Metabolite Set Enrichment (MSEA) was used to identify biologically significant pat-
terns between quantitative metabolome data from different groups. HMDB compound
names were used to link to the KEGG database. Enrichment analysis was performed
using the globaltest package implemented in MetaboAnalyst. The enrichment ratio was
calculated by dividing observed hits and expected hits.

Finally, Just Add Data Bio (JADBIO), a web-based auto-machine-learning platform for
analyzing potential biomarkers [23], was used. JADBIO 1.4.0 with extensive tuning effort
and 6 CPU was used to model various dataset selections next to the overall 336 metabolites
observed in urine samples in all groups (trained vs. untrained) by splitting the total urine
metabolite data into a training set and a test set in a 70:30 ratio. The training set was used
for model training and the test set was used for model evaluation.

The resulting model can be obtained as part of Supplementary Material (File 52) and
run with Java executor for the classification of novel urine samples based on TH-NMR in
further explorations.

Supplementary Materials: The following Electronic Supplementary Materials are available on-
line at https: / /www.mdpi.com/article /10.3390 /metabo12060473/ 51, File 51: Figure 51: Schematic
overview of the X-Adapt project campaigns as described before; Figure 52: Physical characteristics
of trained (T) and untrained (UT) participants involved in X-Adapt project pretesting (pre) and
post-testing (post); Figure 53: X-Adapt nmMDS ordination; Figure 54: Predictive performance of
the highest-scoring models generated in this study; Figure 55: Schematic representation of PER-
MANOVA; Table 51: Sum of concentrations and numbers of metabolites observed in all groups;
Table 52: The most important features for discriminating trained from untrained group; Table 53:
Group characteristics of individuals, Instructions for running a model on a local machine. File 52: The
resulting classification model can be run with Java executor for classification of novel urine samples
based on 'H-NMR. File S3: Example ' H-NMR spectra characteristic of the trained and untrained
groups. File 54: Data table containing metabolite information in micromolar concentration.
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2.1.7 Urine and fecal 'TH-NMR metabolomes differ significantly between pre-term and full-
term born physically fit healthy adult males

Deutsch L., Debevec T., Millet G.P.., Osredkar D., Opara S., Sket R., Murovec B., Mramor M.,
Plavec J. Stres B. 2022. Urine and fecal 'H-NMR metabolomes differ significantly between pre-term

and full-term born physically fit healthy adult males. Metabolites, 12: X, doi.
https://doi.org/10.3390/metabo 12060536, 23 p.

Abstract

Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and remains one of
the leading causes of death in children under 5 years of age. Preterm born adults have been
consistently shown to be at an increased risk for chronic disorders including cardiovascular, en-
docrine/metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased
death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic
syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease,
respiratory infections, and sleep disturbances). The aim of this study was to explore the dif-ferences
between preterm and full-term male participants’ levels of urine and fecal proton nuclear magnetic
resonance ('H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess
general differences in human gut-microbiomes through metagenomics at the level of taxonomy,
diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites.
Significant differences existed between the two groups based on the analysis of 'H-NMR urine and
fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex
set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome
interactions between the two groups and enabling the efficient classification of samples; however,
this could not be directed to specific taxonomic characteristics.

OMON

This work was published as an Open Access article distributed under the terms of the Creative
Commons Attribution License (CC-BY 4.0).

For my personal contributions as a doctoral student and author of this thesis, please refer to Table 2
(page 142). The hypothesis from section 1.4.1 from this work were discussed in this paper.

110



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

metabolites

()

Article
Urine and Fecal 'TH-NMR Metabolomes Differ Significantly

between Pre-Term and Full-Term Born Physically Fit Healthy
Adult Males

Leon Deutsch 107, Tadej Debevec 2,300, Gregoire P Millet 40, Damjan Osredkar 560 Simona Opara 1

Robert Sket 7, Bostjan Murovec 8

check for
updates

Citation: Deutsch, L.; Debevec, T;
Millet, G.P; Osredkar, D.; Opara, 5;
Sket, B.; Murovec, B.; Mramor, M.;
Plavec, ].; Stres, B. Urine and Fecal
'H-NMR Metabolomes Differ
Significantly between Pre-Term and
Full-Term Born Physically Fit Healthy
Adult Males. Metaholites 2022, 12, 536.
https:/ /doi.org/ 10.3390/
metabol2060536

Academic Editors: Siby lle Krane and
Micole Gilbertson

Received: 2% April 2022
Accepted: 2 June 2022
Published: 10 June 2022

Publisher's Note: MDP[ stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations,

Copyright @ 2022 by the authors.
Licensee MDPI, Basel Switzerland.
This article is an open access articke
distributed under the terms and
conditions of the Creative Commons
Attribution {CC BY) license (https://
creativecommons.org/ licenses /by /

10/).

, Minca Mramor ?, Janez Plavec 1003 and Blaz Stres 1311+

Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;

leon. deutsch@bf. uni-1j.si (L.D.); simona.konda@gmail.com (5.0.)

Faculty of Sports, University of Ljubljana, SI-1000 Ljubljana, Slovenia; tadej.debevec@fsp. uni-lj.si

Department of Automation, Biocybernetics and Robotics, JoZef Stefan Institute, SI-1000 Ljubljana, Slovenia

Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; gregoire. millet@unil.ch

Department of Pediatric Neurology, University Children’s Hospital, University Medical Centre Ljubljana,

SEF1000 Ljubljana, Slovenia; damjan.osredkar@kclj.si

Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia

Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre

Ljubljana, SI-1000 Ljubljana, Slovenia; robert. sket@kclj. si

Faculty of Electrical Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia;

bostjan. murovec@fe. uni-lj.si

*  Department of Infectious Diseases, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
minca. mramor@kclj.si

10 National Institute of Chemistry, NMR Center, 5I-1000 Ljubljana, Slovenia; janez. plavec@ki.si

Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana,

SI-1000 Ljubljana, Slovenia

*  Correspondence: blaz stres@bf.uni-lj.si; Tel.: +386-4156-7633

W W k2

@

Abstract: Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and
remains one of the leading causes of death in children under 5 years of age. Preterm born adults have
been consistently shown to be at an increased risk for chronic disorders including cardiovascular,
endocrine/ metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased
death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic
syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease,
respiratory infections, and sleep disturbances). The aim of this study was to explore the differences
between preterm and full-term male participants’ levels of urine and fecal proton nuclear magnetic
resonance (!H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess
general differences in human gut-microbiomes through metagenomics at the level of taxonomy,
diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites.
Significant differences existed between the two groups based on the analysis of "H-NMR urine and
fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex
set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome
interactions between the two groups and enabling the efficient classification of samples; however,
this could not be directed to specific taxonomic characteristics.

Keywords: premature birth; TH-NMR metabolomics; hypoxia; fecal metagenomics; biomarkers;
activity; hypoxia

1. Introduction

Preterm birth, defined as a birth before 37 weeks gestation, accounts for approximately
10% of births worldwide. Four degrees of preterm birth are known: extreme preterm
(before 28 weeks), very preterm (28-31 weeks), mild preterm (32-33 weeks) and moderate
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preterm (34-36 weeks) [1]. While the mechanisms underlying preterm birth are complex,
with risk factors comprising infection, cervical disease, uterine over-distention, stress and
placental disorders [2,3] it remains one of the leading causes of death in children under 5
years of age [4,5]. Improved neonatology care has led to significantly increased pre-term
born survival rates over the last 50 years [6]. Importantly, preterm born adults have been
consistently shown to be at an increased risk for chronic disorders involving various organ
systems, including cardiovascular, endocrine /metabolic, respiratory, renal, neurologic,
and psychiatric disorders. These disorders either persist from infancy into adulthood or
sometimes even appear in adulthood and result in a moderately (30% to 50%) increased
risk of death in early to mid-adulthood in preterm compared to full-term, and even higher
risks among those born at the earliest gestational ages [3]. Preterm infants were also shown
to experience an imbalance between oxidants and antioxidant capacity [7]. Oxidative stress
was shown to be an important risk factor for hypertension, metabolic syndrome (diabetes
mellitus, dyslipidemia), lung disease (reduced pulmonary function, long-term obstructive
pulmonary disease, respiratory infections, and sleep disturbances) [3].

In addition to the population level disease metrics, preterm born individuals have
increased body fat mass, arterial blood pressure, and higher fasting glucose, insulin, and
cholesterol levels [3,8,9]. Elevated levels of low-density lipoprotein in preterm individuals
pose a greater risk of developing atherosclerosis or cardiovascular disease [10]. Preterm
born individuals also experience problems with renal function due to altered nephron
development [11]. Imbalance in the ratio between reactive oxygen species (ROS) and
antioxidants was identified as conductive to oxidative stress [12], which was associated
with increased molecular damage [13]. ROS overproduction was reported to be induced in
hypoxia by the xanthine oxidase pathway, catecholamine production and increased rate of
electron leakage within the mitochondria [14-18]. Taken together, past research showed
that significant differences existed between preterm and full-term born adults with respect
to oxidative stress induced by hypoxia, activity, or exercise [7,13,14,19,20].

Preterm birth was also shown to induce life-long pulmonary system effects and
compromise ventilator control resulting in blunted hypoxic ventilatory response (HVR) in
preterm infants. The PreTerm project (Slovenian Research agency (ARRS) project # [3-7536
(D), Figures 51-53) was devised to explore whether the differences and impairments in
HVR persisted with aging in physically fit young men. The differences in HVR responses
between preterm born adults and their age matched full-term controls were explored
during rest and exercise, in normoxia and hypoxia [21]. Hypoxia was shown to provoke a
similar relative reduction in maximal aerobic power and submaximal ventilatory threshold
in healthy preterm and full-term born matched controls with comparable peak oxygen
consumption levels. These data suggested that exercising in normobaric hypoxia does not
exert a higher ventilator and metabolic load in otherwise healthy physically fit individuals
born prematurely [21]. Only recently was the post-exercise accumulation of interstitial
lung water shown to be higher in adults born prematurely in hypobaric hypoxia, than in
normobaric hypoxia [22].

Given the complexity of the human body and its responses to chronically elevated
oxidative stress levels that may persist into adulthood and consequently contribute to the
development of numerous noncommunicable diseases observed in the preterm popula-
tion (diabetes, hypertension or lung disorders) [7], the systemic bodily matrices, such as
urine and feces remain surprisingly unexplored by powerful high-throughput top-down
analytical approaches [23]. To fill this gap, the aim of this study was to explore differences
between preterm and full-term participants’ urine and fecal TH-NMR metabolomes and
respective enzymatic reactions, during rest and exercise, in normoxia and hypoxia. In
addition, metagenomic analysis of human gut-microbiomes was conducted to assess the
differences in the human gut microbiome taxonomy, diversity, functional genes, enzymatic
reactions, metabolic pathways and predicted gut metabolites. In this work we hypothesized
that significant differences exist between the preterm and full-term groups at the levels of
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multivariate physiological initial states and their respective responses to the tests conducted
(rest or exercise; normoxia or hypoxia) [24].

The analyses of large metabolomic and metagenomic datasets were hypothesized to
enable the detection of the characteristic differences between the two groups at information
levels not utilized before in preterm research, in addition to the efficient selection of more
complex sets of biomarkers by utilizing machine learning and the exploration of vast
algorithm spaces.

2. Results and Discussion
2.1. Group Characteristics in Relation to Gut Physiological Data

Thirty-seven men volunteered for this study and were divided into two groups based
on the mode of delivery. Fifteen participants were born at term (full-term control) and 22
were born prematurely (preterm). Control participants were 22 £ 2 years old, weighed
76 + 6 kg, were 180 + 5 cm tall, had a VO, max of 52 + 5 mL kg~! min~?, and were born
at 39 &+ 2 weeks. Preterm participants were 21 £ 2 years old, weighed 69 £ 7 kg, were
175 £ 7 em tall, had a VO, max 0f 48 +£ 6 mL kg~ ! min !, and were born at 29 + 3 weeks.
Table 51 shows their baseline data [24]. Gestational age was statistically different between
the two groups [24]. Twenty-one preterm and 13 full-term participants were included in the
metabolomic and metagenomic part of the PreTerm study. Two full-term and one preterm
participant did not collect urine and fecal samples and were excluded from this part of the
PreTerm study.

Physiological exercise tests from the preterm project were already published before
and showed that incremental cycling in normoxia and hypoxia resulted in increased levels
of advanced oxidation protein levels (AOFPT), catalase (CAT), superoxide dismutase (SOD),
and nitrosative stress markers in both groups (preterm and full-term) immediately after
exercise [24]. No differences were observed between normoxic and hypoxic environments.
However, hypoxic exposure itself resulted in a significant increase in AOPF, and CAT and
showed a trend toward an increase in the nitrosative markers control group only, but not in
the preterm group. Further, in line with the above observations, the metabolic response to
hypoxia may be blunted in adult preterm born adults [24]. Periodic breathing (repeated
oscillations of hyperventilation followed by an apneic phase) was also different in the
preterm group than in full-born adults, suggesting a possible physiological mechanism [25].
The hypoxic ventilatory response at rest was lower in preterm, but no differences in exercise
were observed between the two groups [21]. Preterm born adults experienced reduced
physical capacity in normoxia compared to those full-term born and have a lower hypoxic
ventilatory response (HVR, ability to change ventilation in the function of blood oxygen
saturation), while no such difference was observed under hypoxic conditions [21,26-31].
These reports show that preterm individuals nevertheless exhibited increased oxidative
stress, antioxidant activity, and NO metabolism in acute exercise. However, under h}'p-:)xic
conditions, the preterm group did not exhibit increased levels of plaS-ma. advance oxidation
protein products (AOPP), catalase, and nitrosative stress markers (NOx) levels, indicat-
ing a possibly greater activation of responses resisting oxidative stress under hypoxic
conditions [24,32,33].

Based on the integration of past findings obtained utilizing the same cohorts within
the PreTerm project, we speculated that measurable differences existed also in the makeup
of the intestinal tract characteristics. Various physiological characteristics of the gut en-
vironment were previously associated with numerous non-communicable diseases [34].
To assess these differences in the intestinal environment between preterm and full-term
control, 25 additional variables were measured in human feces (Figure 1). The obtained
results, surprisingly suggest that no significant differences existed in the measured intesti-
nal parameters between the preterm and full-term participants (Permutational analysis
of variance (PERMANOVA); p > 0.05; n permutations = 5000). In addition, no difference
existed between the gut environmental characteristics before and after normoxic and hy-
poxic test periods (PERMANOVA; p < 0.05; n permutations = 5000). The use of a 3-day
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Color Key

sampling series enabled us to conclude that the set of 25 measured parameters reported
in this study was either insufficient or not measured at an appropriate scale to detect
significant differences between the intestinal tracts of the participants from the two groups.
As many of the measured parameters were previously effective for detection of differences
in the intestinal environment of the participants involved in the three-week bed-rest cam-
paigns of our previous Planetary Habitat Simulation Project (PlanHab) [35-37], the results
suggest a lack of long-term differences between physically fit preterm and full-term young
male participants at the level of the measured intestinal parameters. The role of matching
physical fitness between preterm and full-term groups for health maintenance shows that
the differences in the status of intestinal tract environments were notably smaller between
the active young males irrespective of the preterm birth and oxidative stress markers de-
tected. From this, a different set of additional parameters arise (e.g., zonulin, ccl-antitry psin,
eosinophile-derived neurotoxin, bile acid and derivatives, ionic strength, redox potential,
mucus characteristics) focusing more intensively on the gut-feces interface and its inter-
action with the host. This should be used in future studies focusing on immunological,
ion-selective and electrochemical characteristics next to spectral and excitation-emission
analyses of dissolved organic compounds in the intestinal tract [35-39]. In contrast to our
past work utilizing participants exposed to a tightly controlled environment, diet, water
intake, circadian rhythm and level of exercise (in the PlanHab project [35-38]) the PreTerm
project interpersonal variability in the same types of variables might have obscured differ-
ences in the intestinal parameters associated with individual lifestyle and food preferences
in relation to exercise. The significant differences in physiological parameters measured in
the PreTerm project were not reproduced in the measurements of the intestinal parameters
in the same participants as described above.
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Figure 1. A heatmap summarizing the differences in the 25 measured parameters (COD—chemical
oxygen demand, DM—dry matter, m—mass (g), BS5—Bristol stool scale, IMM—molecular mass
index, C—carbon, RS—reduction sugars, Gle—glucose) describing the intestinal environment of the
preterm and full-term groups exposed to distinct training regimes of the PreTerm project (Figures
51-53). No significant difference was observed (PERMANOVA; p > 0.05; n permutations = 5000).
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2.2. Multivariate Relationships in Urinary and Fecal ' H-NMR Metabolomes Supported Significant
Differences between Preterm and Full-Term Groups

Urine and fecal samples from the preterm and full-term groups were collected on
three consecutive days before and three consecutive days after the hypoxic and normaoxic
tests (Figures 52-54). In total, each participant was characterized by 12 samples (three
daily consecutive samples before and after normoxic and hypoxic tests). Nonparametric
analyses utilizing one-way and two-way PERMANOVA on either urine or fecal identified
metabolites showed that preterm and full-term groups differed significantly (p < 0.001) at
both metabolomic levels. In two-way PERMANOVA the training condition (hypoxic vs.
normoxic) was marginally significant for urinary metabolomes (p = 0.05), but not for fecal
metabolomes. This shows that rapid changes in human physiology take place upon the
introduction of exercise, while longer bouts of exercise (weeks) would be needed to detect
larger differences between physically fit preterm and full-term participants at both levels,
similar to the PlanHab project [35-38]. Differences in the numbers of detected metabolites
per group, test and time of Sample collection, and the sum of their concentrations in
all studied groups were not significantly different (Table 52). In summary, significant
differences were identified in the overall makeup of urinary and fecal metabolomes between
the preterm and full-term groups.

2.3. Urine 'H-NMR Metabolomics

The identified differences between the preterm and full-term groups at the level of
urinary 'H-NMR metabolomes were explored in more detail. When comparing the urine
metabolomes (ESM 2) of preterm and control participants using the PLSDA method in-
tegrated into MetaboAnalyst [40] and based on cross-validation, three components were
recommended to distinguish between the two groups explaining 24% of the variation
(Figure Za,b). Acetone, tartrate, and trans-aconitate [41] were the first three of the most
differentiating metabolites in urine, and all three were elevated in the control group based
on VIP scores. Acetone metabolism is part of two pathways, the decarboxylation of acetoac-
etate that is generated during dextrose metabolism and lipolysis, or the dehydrogenation
of 2-propanol. Its concentrations in exhaled breath have previously been shown to correlate
strongly with acetone concentrations in the blood, as well as with other ketones and were
affected by fasting, exercise, and/ or disease (e.g.,) diabetes mellitus [42]. Tartrate is part
of glyoxylate and dicarboxylate metabolism (Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway: ko00630 (accessed on 20 May 2022) while trans-aconitate (accompanied
by creatinine) as the metabolite related to the tricarboxylic acid cycle was indicative of
differences in exercise capacity [43].

D-arginine and D-ornithine metabolism, synthesis and degradation of ketone bodies
(acetone), and the Warburg effect were the most enriched metabolic pathways (mostly asso-
ciated with the preterm group) in the urine metabolome (Table 53, Figure 2¢,d, Figures 55
and 56). Our results from the metabolome analysis were compared with the metabolomes of
specific urinary disease pathways within MetaboAnalyst. Tentatively, the most interesting
enriched pathways identified in the preterm group were described before in relation to
systemic or tissue hypoxia (Table 54) [44,45].

The MetaboAnalyst PLSDA analysis reported decreased levels of acetone, trans-
aconitate and tartrate in the preterm group, irreSpecl'ive of their matchi.ng physical fit-
ness [21,24]. To the best of our knowledge our results could be compared to a single
existing study reporting significantly different sets of markers, such as citrate, hippurate,
creatinine, and fumarate as crucial metabolites responsible for the differentiation of preterm
adults from full-term adults [46]; however, in that study participants of matching fitness
and exercise tests were not included.
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Figure 2. (a) Urine metabolomes comparing preterm and full-term born adults and the most differ-
entiating metabolites based on PLSDA method (b). The most enriched pathways associated with
metabolism (¢) and diseases (d) based on urinary metabolomes. Enlarged (¢, d) figures were added to
supplementary (Figures 55 and 56).

In the present study, physically fit preterm and full-term participants were enrolled in
physical exercise tests and exhibited physical performance indistinguishable between the
two groups, ie., preterm born participants” physical capacity (expressed as peak oxygen
consumption) was not impaired in comparison to normal-born participants [7,21]. In
contrast, other studies reported that the physical performance of preterm individuals
was lower in normoxia and hypoxia [19] referring to a cohort sampled from the general
population. Our study observed a lack of difference in the physical capacity related to the
physical fitness of the participants in both groups, further emphasizing the importance
of exercise for the maintenance of physical health, while at the same time noticing the
differences in metabolic makeup of the two groups at the level of urine. These differences
apparently stem from impaired autonomic function as heart rate recovery seems slower
in preterm adults and could give rise to anoxia and increase their cardiovascular risk as
suggested before [47,45].

2.4. 'TH-NMR Metabolomics of Fecal Content

To match urine sample collection, fecal samples were collected in four 3-day series
as described below (Figures 52 and 53, ESM 3). In total, 12 samples were collected per
person for the fecal matrix. In contrast to urine metabolomes, two components were
sufficient to differentiate preterm and full-term groups in fecal metabolomes by the PLSDA
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method using MetaboAnalyst [40] (Figure 3a,b). Fecal biomarkers lactate, tyrosine, and
serotonin were identified as the three most efficient for differentiation between the two
groups. Lactate and serotonin were significantly elevated in the preterm group while
tyrosine was decreased. Metabolite set enrichment analysis (M5S5EA) coupled with the
PLSDA reported increased lactate concentrations in the preterm group and reported that
pyruvate metabolism and the Warburg effect were enriched in the preterm group. The
Warburg effect was also previously associated with mitochondrial dysfunction, which also
occurs in preterm infants (Table S5) [49,50]. Thyroid hormone synthesis and catecholamine
biosynthesis were the first two most enriched metabolic pathways according to MSEA.
In addition, an extended list of fecal metabolites analyzed with MSEA was previously
correlated with fecal diseases, such as ileal Crohn's disease, and irritable bowel disease [51]
as the most enriched metabolic pathways (Figure 3¢c,d, Figures 57 and 58, Table S6).
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Figure 3. (a) Fecal metabolomes comparing preterm and full-term born adults and the most differen-
tiating metabolites based on the PLSDA method (b). The most enriched pathways associated with
metabolism (c) and diseases (d) based on fecal metabolomes. Enlarged (¢.d) figures were added to
supplementary (Figures 57 and 58).

These results constitute the first report on the significant differences in the metabolomics
makeup of fecal samples between the preterm and full-term control groups, irrespective
of the observed lack of differences in the 25 measured parameters of the intestinal tract
(Figure 1). These results represent possibly the first evidence that systemic differences due
to life-long exposure to oxidative stress actually exist and raise the question of whether
these differences are linked to minute differences produced from the side of the preterm
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host or from the side of the microbiome responding to these environmental signals or their
mutual interaction in the form of a complex biochemical network steady state.

The rather small extent of variation (7% and 25%) between the two groups could be
explained by this approach utilizing feces and urine, respectively, suggesting further and
multiple sources of variation exist beyond those described in this study. We extended
our interrogation of the data to provide an estimate of the cohort size that would need
to be utilized in future experiments. Based on the power analysis module in Metabo-
Analyst [40] at least two orders of magnitude larger cohorts amounting to a couple of
thousand participants would be required in order to better discern differences at the level
of fecal metabolomes. These results point to a conclusion that although fecal metabolomics
makeup in physically fit young male participants was significantly different from their
matched controls, these differences were independent of the normoxic or hypoxic nature
of the tests (PERMANOVA; p > 0.05; n permutations = 5000). Apparently, characteristic
long-term differences exist between the two groups at the level of fecal metabolomes,
most probably linked to the fact that preterm individuals experienced increased oxidative
stress, and responded with elevated antioxidant activity, and NO metabolism in the acute
exercise studies reported before [24], resulting in the characteristic differences in their fecal
metabolomes observed in this study.

2.5. Fecal Metagenomics: From Taxonomy, Functional Genes to Predicted Metabolomes

Significant differences in urine and fecal TH-NMR metabolomes between the preterm
and full-term groups prompted us to explore whether significant differences exist at the
level of the human gut microbiome. Fecal samples collected during the PreTerm project
were used for shotgun sequencing. The in-house analytical pipeline utilizing bioBakery [52]
was used to preprocess sequence data (Kneaddata (https://huttenhower.sph.harvard.edu/
kneaddata/, accessed on 7 April 2022) and analyze the sequences at the strain level of
taxonomy (MetaPhlAn3 [53]), diversity (mothur [54]), functional genes, enzymatic reactions
and metabolic pathways (HUMAnNN3 [53]) next to predicted metabolites (MelonnPan [55]).
In total, 853 taxonomic units (kingdoms, phyla, clades, orders, families, genera, and species),
30 diversity calculators, 198,305 gene families, 183,200 enzymatic reactions, 10,974 metabolic
pathways, and 80 metabolites present in the human gut microbiota were identified and
analyzed. In total, 393,442 variables were considered in this search for differences between
the preterm and full-term groups. Each dataset corresponding to a layer of information
was analyzed separately using JADBio extensive machine learning modeling as described
before [39,56,57].

2.5.1. Taxonomy and Microbial Diversity of Intestinal Tract

In contrast to the observed differences at the urine and fecal metabolomics levels
described above, the taxonomic level of information did not result in significant differences
between groups (PERMANOVA; p > 0.05; n permutations > 5000). In addition, based on
the taxonomic data 181,020 JADBio models were trained using an extensive tuning effort,
but no reliable biomarker or trained model could be obtained. In general, three different
kingdoms were detected in all samples (archaea, bacteria, and DNA viruses). The average
relative abundance of bacteria was lower in the preterm than in the full-term group (92.3%
vs. 77.5%). The abundance of DNA viruses was higher in the preterm group (7.2% vs. 20%)
(Figure 59a). The archaeal kingdom was least prevalent in both groups (0.5% in the control
group vs. 2.5% in the preterm group). This lack of significant differences at taxonomic levels
was previously attributed to large interpersonal differences between participants [58,59];
however, in this study variance within the full-term control group was at least two times
larger than that observed in the preterm group and hence significantly higher (p < 0.05)
based on the analysis of 3D coordinates after nmMDS and PCoA analysis. This points to
the existence of an overarching effect shared by all preterm participants absent from the
matching control full-term group.
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We further point out that both groups contained matching groups of young healthy
physically fit participants, in contrast to past studies exploring the differences between the
preterm and general population [60]. Our results point to the fact that some microbiome-
related characteristics within the preterm group were apparently shared to a larger extent
within the preterm group in comparison to the full-term control group, signifying the
existence of differences in the microbial makeup due to differences in the physiology
of the host. The existence of an overarching effect shared by all preterm participants
absent in the control group was evident from the significantly higher Shannon diversity
(p < 0.05) (Figure 59b) in the preterm group including other diversity estimates that differed
significantly between the two groups (Table 57). These two observations suggest the
existence of an interplay between the increased similarity of the major preterm taxonomic
categories and the diversity of a smaller highly variable list of taxa not well shared between
the preterm participants in this study. It is easily envisioned that additional environmental
factors Shape the gut microbiome within the preterm group, makjng the preterm group a
narrower subset of the otherwise healthy human gut.

2.5.2. Functional Genes of Human Gut Microbiome

Based on the 198,306 categories describing gene family data, in the preterm and control
groups, 90,510 models were trained using an extensive mnjng effort in search of biulagica]ly
meaningful discriminative variables between the preterm and full-term control groups.
The entire list of features was used to build and validate a trained model that achieved
insignificant validation performance with an AUC and other metrics. Consequently, no
significant differences could be identified between the two datasets at the level of functional
gene lists.

2.5.3. Enzymatic Reactions Taking Place in Human Gut

For the aggregation of functional gene information into enzymatic reactions (Figure 4a),
again 90,510 models were explored using an extensive tuning effort. The best model was
ridge logistic regression with the penalty hyperparameter lambda = 1.0, with an area
under the curve (AUC) value of 0,992, In addition to AUC, all other thresholds were
also statistically significantly different from the baseline. Features were selected based on
the Test-Budgeted Statistically Equivalent Signature (SES) algorithm with the following
hyperparameters: maxK = 3, alpha = 0.1, and budget = 3 *ny ;... RXN-15378, RXN-14971,
RXN-21393, and RXN-21394 were equally selected as the most important for discriminat-
ing between the preterm and control groups and were increased in the preterm group
{Figure 510) (p < 0.05). All of the above reactions represent the enzymatic reaction succinate
dehydrogenase based on the BioCyc website ([61], accessed on 23 January 2022). We used
RXN-15378 to validate the trained model and obtained a validation performance with an
AUC of 0.931. Succinate is a metabolite produced by both host and microbial cells and
accumulates under conditions of inflammation and microbial imbalances in the intestinal
tract [62]. Succinate was shown to accumulate in areas of inflammation and metabolic
stress [63] and can have tissue specific but also systemic effects as a proinflammatory
signaling molecule [62,64-66]. Although gut microbes represent the predominant source
of succinate, it is typically rapidly consumed in the production of propionate, one of the
major short chain fatty acids, by Bacteroides spp., Prevofella spp. and some members of
Firmicutes [62,67]. Although the mucosal uptake of succinate as a charged molecule over
the mucosal epithelia is significantly higher in the small intestine, it takes place to various
extents throughout the length of the intestinal tract and requires sodium dependent trans-
port proteins [62]. In addition to the internalized succinate provided by the microbiome,
succinate also accumulates within cells under conditions of low oxygen as a metabolic
signature of hypoxia, generating HIF-1a to regulate cellular responses and adapt to a low
oxygen environment. At normoxia, HIF-1ec is regulated by posttranslational hy droxylation
and degradation by prolyl-hydroxylase activity that converts alpha-keto-glutarate to CO,
and succinate while inactivating HIF-1a. Excess upl:ake of microbiome produced succinate
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(a) Enzymatic reactions

results in higher levels of intracellular succinate that can slow down prolyl-hydroxylase
activity through product inhibition and result in an additional activation and stabiliza-
tion of HIF-1a beyond its response to hypoxia itself, which can significantly augment the
LPS-induced expression of proinflammatory cytokines [62,68].

(b) Metabolic pathways (c) Predicted metabolites
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Figure 4. ROC curves of obtained models (JADBio [57]) based on the enzymatic reactions (a),
metabolic pathways (b) and relaxation network predicted metabolites (¢) produced by our in-house
implementation of bioBakery3.

2.5.4. Metabolic Pathways Observed in Human Gut

Based on the metabolic pathway data (Figure 4b), 60,310 models were trained, with
extensive tuning effort. The best model was ridge logistic regression with a penalty
hyperparameter of 100 and an area under the curve (AUC) of 0.981. In addition to AUC,
all other thresholds were also statistically significantly different from baseline. Features
were selected on the basis of Lasso feature selection with a penalty = 1.5. On the basis of
the MetaCyc website ([69-71]; accessed on 23 January 2022}, the most important metabolic
pathways were PWY-7456 ( -(1,4)-mannan degradation), PWY-7323 (superpathway of GDP-
mannose-derived O-antigen building blocks biosynthesis), GLYCOLYSIS-TCA-GLYOX-
BYPASS (a superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate
bypass), P221-PWY (octane oxidation), and PWY-5173 (unclassified). These pathways were
the most important for distinguishing the preterm group from the control group and were
all increased in the preterm group (Figure 511). The entire set of selected features was used
to validate the trained model and achieved a validation performance with an AUC of 1.00.
The relative frequency of this response was significantly increased in the preterm group,
which was also confirmed by the t-statistic (p < 0.05). A set of selected features was used to
validate the trained model and achieved validation performance with an AUC of 1.00.

The (-(1,4)-mannan degradation (PWY-7456) belongs to Bacteroides fragilis in the
human intestinal tract and is essential for mucosal integrity and host nutrition [72,73].
Degradation of mannan by either Bacteroides dorei or Fecalibacterium prausnitzii and Roseburia
intestinalis promotes the growth of Lactobacillus helveticus and Bifidobacterium adolescentis,
which have probiotic properties and promote the synthesis of short chain fatty acids [74] or
promote the growth of commensal microbes [75,76].

The superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis
(PWY-7323) is involved in lipopolysaccharide (LPS) biosynthesis. Only gram-negative
bacteria have LP5, and O-antigen is the part that extends the polysaccharide away from
the cell surface and triggers the host cell immune response [77,78]. Gram-negative bacteria
observed in preterm infants cause serious infections, such as sepsis [79] coupled with the
absence of MD -2 (a protein responsible for the recognition of LPS), which leads to a higher
risk of developing intestinal diseases in adults born preterm due to the impaired recognition
of LPS in the past [78]. Elevated LP5 levels may also contribute to inflammaging (chronic,
low-grade inflammation that develops with age) [80]. This also fits our observation that
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microbially produced succinate coupled with hypoxia can significantly augment LPS-
induced expression of the proinflammatory cytokines [68].

GLYCOLYSIS-TCA-GLYOX-BYPASS (a superpathway of glycolysis, pyruvate dehy-
drogenase, TCA, and glyoxylate bypass), is a superpathway that was significantly overrep-
resented in the preterm group. It integrates some of the fundamental components of energy
metabolism, starting with a hexose sugar and ending with CO; and several forms of highly
reducing metabolites that can be used for adenosine triphosphate (ATP) generation. Even
though acetyl-CoA is shown in this superpathway as a product of the glycolysis pathway,
itis also generated by the degradation of fats and proteins and by the fermentation of many
metabolites. This superpathway includes the glyoxylate cycle, which bypasses those steps
in the TCA cycle that lead to a loss of CO,, and operates in bacteria. The increased energy
production in the preterm microbiome apparently coincided with the general characteristics
of the preterm individuals, such as increased oxidative stress, elevated antioxidant activity,
and NO metabolism in acute exercise as described above [7]. It is possible to suggest that
the intestinal conditions experienced by the gut microbiome exerted additional stress on
the microbial functioning as well. Further research is needed to corroborate this notion.

In line with our observation of differences in microbiome functioning, P221-PWY
{octane oxidation) was shown to increase with the Westernization of the human gut and
lifestyle [81,582] as volatile organic compounds, including octane, were found either in the
exhaled air or feces of human subjects with diverse medical conditions associated with
oxidative stress and chronic inflammation, including lung cancer [82,83] obstructive sleep
apnea [84], gastrointestinal diseases [85] and NAFLD [86]. Previous studies demonstrated
that several alkane-degrading bacteria were capable of using diverse compounds as a
carbon source in addition to alkanes [87], which are further oxidized to fatty acids via the
bacterial f-oxidation pathway (BioCyc ID: P221-PWY). The key process in octane oxidation
is the alkane hydroxylase system that introduces molecular oxygen in the C1 atom of the
hydrocarbons at the expense of NADH to yield primary alcohols [38] that were further
linked to liver associated diseases.

The acetyl-CoA biosynthesis (PWY-5173) pathway involved in carbohydrate metabolism
was also significantly increased in the preterm group. The resulting acetyl-CoA acts as
a precursor in the synthesis of intestinal short chain fatty acids including butyrate and
acetate [89], that are important in maintaining gut health [90]. The increased levels of
acetyl-CoA biosynthesis fit nicely with the other pathways observed in this study that
either contribute or consume mass flow related to this reaction. Asboth preterm and full-
term groups were composed of healthy young physically fit males differing significantly in
acetyl-CoA biosynthesis, our findings support a recent report on this pathway being one of
the most variable pathways in a survey of subgroups of elite Irish athletes [91].

These overall results of the metabolic pathway analysis point to the fact that (irre-
spective of the heterogeneous makeup of the underlying microbiome taxonomy within
the individual participant) the complex coordinated adjustments to the metabolism of the
microbiome nevertheless take place and can be robustly reproduced from the integration
of the sequencing information as described in this study [91-94] and can be linked to
physiologically meaningful differences between groups reported before [24].

2.5.5. Predicted Water- and Lipid-Soluble Intestinal Metabolites

Our last layer of information dealt with the extended analysis of sequencing data to-
wards water- and lipid- soluble predicted metabolites utilizing relaxation-network analysis,
which has been extensively trained and validated before [52,55]. In summary, 17 metabo-
lites (out of 81) (Table S8) predicted with MelonnPan were detected also by TH-NMR in
fecal samples, showing possible interaction between two systemic metabolisms (human
and microbial). None of these metabolites were chosen by machine learning. Metabolites
associated with the human gut microbiota (Figure 4c) were explored utilizing JADBio and
181,020 models were trained using extensive tuning efforts. The best model was a Sup-
port Vector Machine type C-5VC with a radial basis function kernel and hyper-parameter
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(cost = 10, gamma = 1.0), with an area under the curve (AUC) value of 0.976. In addi-
tion to AUC, all other thresholds were also statistically significantly different from the
baseline. Feature selection was based on LASS0 feature selection with a penalty = 0.25.
Alpha-muricholate, putrescine, dimethyllysine, diacetylspermine, and C16 carnitine were
significantly increased in the preterm group. In contrast, hydrocinnamic acid, fructose, glu-
cose and galactose, chenodeoxycholate and deoxycholate were lower in the preterm group
{(Figure 512). When the trained model was applied to the test portion (30% of our total data
set) validation performance with an AUC of 0.957 was obtained. In the following sections
let us first review the predicted metabolites significantly increased in the preterm group.

Carnitine was increased in the preterm group and is associated with trimethylamine
N-oxide (TMAQ) production (Figure 512). TMAO is synthesized by the microbiota from
trimethylamine (TMA), which in tumn is formed from carnitine or choline. Increased
choline content in the preterm group was also observed in urine metabolomics. These two
molecules together (carnitine and choline), in conjunction with the microbiota, may be the
most important cause of the increased likelihood of cardiovascular disease in the preterm
group [8,95-100].

Putrescine and diacetylspermine are polyamines and important metabolites for the
gut microbiota (Figure 512). Putrescine is synthesized by interspecies cooperation between
Escherichia coli and Enterococcus faeacalis and is formed from arginine [101,102]. Elevated
putrescine levels have been associated with an older gut microbiota [103], increased gut
permeability, and elevated levels of inflammatory cytokines in mouse colon tissue [104].
Elevated putr@schne levels led to activation of genes that regulate oxidative stress, which
may lead to a parallel increased risk of developing metabolic syndrome [35-38] and irritable
bowel syndrome [105].

Diacetylspermine as a polyamine metabolite was linked to cancer growth and its
association with microbial biofilm formation. It is synthesized by bacterial acetylation
and has been significantly upregulated in tissues with biofilms in animal models [106].
This suggests that microbial organization and biofilm formation capacity at the interface
between the mucus layer and lumen might differ significantly between the preterm and
full-term participants, an observation worth further exploration.

Dimethyllysine can be the end product of either host or microbial metabolism but
currently little is known about its physiological roles for the host and microbiome in the Hu-
man Metabolome Database [107], ChemSpicler (https:/ / www.chemspider.com/ (accessed
on 15 April 2022)) or FooDB (www.foodb.ca (accessed on 15 April 2022)) (Figure 512). A
recent review of macronutrient metabolism by the human gut microbiome focusing on
major fermentation byproducts and their impact on host health [108] reported that the
major products of lysin were acetate, butyrate and cadaverine, hence linking this compound
to the short- and long-chain fatty acid cycles associated with ulcerative colitis [109].

Alpha-muricholic acid was identified by the MelonnPan [55] relaxation network
since its first use in the analyses of human samples analyzed using MelonnPan [110,111],
suggesting a misclassification of rodent muricholic acid for cholic acid in humans in this
approach. Nevertheless, irrespective of its MelonnPan supported assignment, it is evident
that this secondary bile acid was identified at elevated levels in the preterm group, fitting
into the framework of the distinct chemical makeup of the preterm gut in relation to fat
metabolism and the metabolites reported in this study.

In addition to elevated metabolites identified by MelonnPan in the preterm group,
the following metabolites were identified in significantly lower concentrations in the
preterm group.

Deoxycholate (decreased in the preterm group) is another metabolite that interacts
with microbes (Figure 512). Deoxycholate is a secondary bile acid. The human intestinal
microbiota (Bacteroides intestinalis, Bacteroides fragilis, Escherichia coli) are involved in the
production of secondary bile acids from primary bile acids, such as choline. Deoxycholate is
also known to promote colon cancer. Because of the increased cholate levels in the preterm
group, we would expect a greater likelihood of microbial metabolites associated with
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primary bile acids, as well as increased levels of the expected metabolites in the preterm
group. In contrast, deoxycholate levels were decreased in the preterm group. This could
also be due to the greater urinary excretion of cholate (cholate was increased in the urine of
preterm infants). Bile acids also generally induce mitochondria ROS production. Preterm
infants are challenged by ROS in the first few months of life, possibly implying that the
systemic response is to increased urinary excretion of bile acids in preterm infants [112-115].

Hydrocinnamic acids are a major class of phenolic acids from dietary fiber with the
characteristic phenylpropanoid C6-C3 backbone that were significantly decreased in the
preterm group (Figure S12). Although the polyphenol-gut microbiota interactions and
their impact on human health have been known for decades, there is great inter-individual
variation caused by the different individual capabilities of processing, absorbing and using
these compounds effectively [116]. In light of the physiological differences between the
two groups analyzed in this study, it seems plausible that differences exist also in the extent
of the utilization of these polyphenols in the preterm group. In addition, lower levels of
hy drocinnamic acid were observed in patients with Crohn's disease and ulcerative colitis
compared to the healthy cohort. Lower levels of hydrocinnamic acid in the preterm group
may lead to increased levels of circulating BCAAs, which in turn predisposes preterm born
individuals to metabolic syndrome and cardiovascular disease [117-120].

The lower levels of reducing sugars fructose, glucose and galactose, in the preterm
group corresponded with a greater capacity to produce short chain fatty acids (Figure 512).
The metabolic reactions and predicted metabolites jointly suggest the existence of a larger
metabolic flow-through of the preterm microbiome in comparison to the full-term group,
pointing to significant differences in the environmental setup in the preterm gut.

In conclusion, the results presented here constitute the first report on the differences
in the urine and fecal metabolomes between preterm and full-term groups of physically fit
healthy young males. Clear differences were identified in the urine and fecal metabolomes
next to the metabolic pathways, suggesting that systemic differences between the two
groups affect the metabolism of the host as well as infestinal tract parameters and that
of the underlying microbiome (Figure 513). One has to realize that studies with female
participants are lacking and not many studies with sufficient statistical power were reported
so far to close the gap. With the concomitant methodological developments presented
in this study, the exploration of the more complex female metabolome and responses to
inactivity and hypoxia can be commenced in a comparable way [35].

3. Materials and Methods
3.1. PreTerm Project: Cardio-Respiratory Responses during Hypoxic Exercise in Individuals
Born Prematurely

The PreTerm project aimed to investigate the acute cardio-respiratory responses during
rest and exercise in tw 0 groups of prematurely born, but otherwise healthy male adolescents
and adults. In addition, this project aimed to elucidate the underlying mechanisms of
the altered resting and exercise cardio-respiratory responses in prematurely born, but
otherwise healthy individuals. The results from this cohort were compared to the data
from control groups consisting of healthy, age and aerobic capacity-matched individuals
born at full-term resulting in a unique dataset. The obtained results provide extensive
basic physiological data on the development of cardiorespiratory control in individuals
born prematurely, hypoxia exercise capacity and cardiorespiratory demand during hypoxic
exercise in non-acclimatized individuals born prematurely [24].

Thirty-seven healthy men volunteered and gave written informed consent to partici-
pate in this study (Cardio-respiratory responses during hypoxic exercise in individuals born
prematurely—ARRS research project ]3-7536). All participants were free of cardiorespira-
tory and hematologic disease and had not been exposed to altitudes above 1500 m during
the one-month period prior to the study. Twenty-two participants were born premature
(gestational age < 32 weeks; gestational weight < 1500 g) and 15 were born full-term. The
experimental protocol was approved by the National Medical Ethics Committee of Slovenia
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(No. 0120-101 /2016-2) and conducted in accordance with the principles of the Declaration
of Helsinki. The study was also pre-registered at ClinicalTrials.gov (NCT02780908) [24].

The experimental protocol included two testing sessions in each group. On both
occasions, no more than seven days apart, participants performed a graded exercise test
for voluntary exhaustion. Dun‘_ng the exercise tests, parﬁcipants breathed either normoxic
ambient air (fraction of inspired oxygen (FiOz = 0.209) or a humidified hypoxic air mixture
(FiO; = 0.130 corresponding to a terrestrial altitude of approximately 3800 m) in a random-
ized, placebo-controlled manner. Indirect calorimetry, near-infrared spectroscopy and ECG
measurements were perfarmed duri_ng all tests. During both tests, participants performed
a hypoxia sensitivity test to assess the hypoxic ventilatory response at rest and during
exercise. In addition, selected hematological and oxidative stress markers were determined
from blood samples collected before and after each hypoxia sensitivity test [24].

The two graded exercise tests were performed on an electromagnetically braked
cycle ergometer (Ergo Bike Premium, Daum electronics, Fiirth, Germany) under normoxic
(FiO, = 0.21; PiO; = 147 mmHg) and normobaric hypoxic (FiO; = 0.13; FiO; = 91 mmHg)
conditions in a randomized manner. They were blinded as to the FiO; of the gas mixture
they inhaled on both occasions. Both tests were performed at the same time of day for each
participant. The test protocol started at 60 W and was increased by 40 W every 2 min until
exhaustion. The normoxic and hypoxic tests were performed exactly 7 days apart. During
the tests, participants breathed through a face mask (V mask, 7500 series, Hans Rudolph
Inc., Shawnee, K5, USA) and oxygen uptake (VO:2) and ventilation (VE) were measured
using a metabolic cart (Quark CPET, Cosmed, Rome, Italy). Capillary oxygen saturation
(5p07) was measured using a transcutaneous finger pulse oximetry device (Nellcor, BCI
3301, Boulder, CO, USA). Fecal and urine samples were collected three consecutive days
before and three consecutive days after the test under normoxic and hypoxic conditions
(Figure 51) [24].

3.2. Sample Collection

Fecal and urine samples were collected three consecutive days before and three con-
secutive days after the test under normoxic and hypoxic conditions at the home of the
participants (Figures 52 and 53). Collected samples were frozen at —20 “C immediately
after collection. All participants collected 12 urine and 12 fecal samples in total. Three
urine and three fecal samples were collected before and after normoxic tests, giving rise
to six urine and six fecal samples per participant. The same approach was utilized for
hypoxic tests, giving rise to another six urine and six fecal samples per participant. Two
full-term and one preterm participant did not collect fecal and urine samples before and
after the exercise test and were excluded from the metagenomic and metabolomic part of
the PreTerm study.

3.3. ITH-.NMR Metabolomics

Samples were thawed at room temperature before preparation for NMR measurements.
All collected samples were centrifuged (1.5 mL) at 10,000 g for 30 min to remove fine
particles. Subsequently, 400 uL of the supernatant was mixed with 200 uL of TH-NMR
buffer as previously described [121] and stored at —25 °C until analysis.

Prior to analysis, samples were thawed at room temperature and transferred to a
5 mm NMR tube. TSP was used as an internal standard for quantification, as described
previously [121].

A 600 MHz Bruker Neo NMR spectrometer equipped with a 5 mm HCN Cold probe
was used to record NMR spectra at 25 °C. The '"H NMR spectra of the samples were
recorded with a spectral width of 9.0 kHz, a relaxation delay of 2.0 s, 32 scans and 32 K
data points. A double pulsed field gradient spin echo (DPFGSE) pulse sequence was used
to suppress water. The total correlated spectrum (TOCSY) was measured with 1H spectral
widths of 7.0 kHz, 4096 complex poinfs, a relaxation delay of 1.5 s, 32 transients, and 144
time increments. An exponential function and a cosine squared function were used for
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apodization. Zeros were filled before the Fourier transform. TopSpin (version 4.1) was
used to process the NMR spectra [37-39,56,122].

Spectra Processing

NMR spectra were preprocessed with an internal script and prepared for identi-
fication with the Chenomx Compound Library, extended to the Human Metabolome
Database [41,107], giving access to the chemical shift profiles of 674 compounds used in the
analyses. Chemical shifts of 647 compounds were used for the identification of metabolites
observed in our study. The resulting spectra were then analyzed with targeted quantitative
metabolomics using Chenomx NMR Suite version 8.6 (Chenomx, Inc., Edmonton, AB,
Canada). ChenomX profiler was used for randomized spectral fitting. All spectra were
processed in the same way by spectral deconvolution and once metabolites were identified,
urine and fecal data matrices were established, assigning 0 to a particular metabolite not
detected in all samples.

3.4. Fecal Metagenomics

Fecal samples collected three days before and 1 day after normoxic and hypoxic
testing were used for shotgun sequencing; 200 mg of feces were used for DNA extraction
using the MagicPure Stool and Soil Genomic DNA Kit (Beijing, China) according to the
manufacturer’s protocol. Shotgun sequencing was performed using TruSeq Nano DNA
(350) (Macrogen, Seoul, Korea).

Sequence Processing

Paired reads obtained from Macrogen were analyzed using our in-house pipeline for
metagenomics sequence processing—NMetabakery (in preparation). Metabakery is a re-
implementation of the BioBakery [52] workflow using (https:/ /huttenhower.sph.harvard.
edu/kneaddata/, accessed on 7 April 2022) for qualil‘y control, MetaPhlAn [52] for tax-
onomy analysis (bacteria, archaea, fungi, protozoa, and viruses), and HUMAnR3 [53] for
functional genes, enzymatic reactions, and metabolic pafhwa‘y‘s determination. Addition-
ally, the MelonnPan was used for the prediction of metabolites. Metabakery is implanted as
a singularity image and prepared on high computing performance clusters. The analyses
running MetaBakery were performed on a dual Xeon system with 32 CPU cores (64 hyper-
threads), 512 GB RAM and 6 TB SATA hard disc at the Faculty of Electrical Engineering,
University of Ljubljana.

3.5. Characterization of Fecal Samples: Bristol Stool Scale, Metabolites, pH, MWI

Fecal samples were analyzed for a number of parameters as previously described and
as follows [35]: Bristol stool scale (BSS) [123], water content, pH [124], total soluble organic
carbon (TSOC), short-chain fatty acids (SCFA) [125], reducing sugars (Carbohydrate deter-
mination with 4hydroxybenzoic acid hydrazide (PAHBAH)) [126], molecular weight, and
dissolved organic carbon complexity using molecular weight indices [127,128]. In addition,
fecal piercing strengths, as described before, were used as previously described [39].

3.6. Statictics and Machine Learning
3.6.1. Statistics

First, the software PAST [129] was used for PERMANOVA, All obtained data matrices
(NMR metabolomes—identified fecal and urinary metabolites at micromolar concentrations,
microbial taxonomy, gene families, enzymatic reactions, metabolic pathways and predicted
microbial metabolites) were analyzed in the same way. Each determined parameter was
analyzed in three different ways as previously described [35-38,56]: (i) by dividing the
measured concentration by the concentration of all metabolites in that sample; (ii) Box-
Cox; or (iii) log(x + 1) transformed. The significance of the metabolic differences and
microbial entities between the different sample groups were tested using ANOSIM, and
NP-MANOVA, and expx@ssed as the overlap in the non-metric multidimensional sa:al.i.ng
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(nm-MDS) trait space (using Euclidean distance measures). The stress function was used
to select the dimensionality reduction, while Shepard’s plots were used to describe the
corre5p0ndenoe between the target values and the obtained ranks. In addition, PCoA and
PCA were performed on metagenomic data. Benjamini-Hochberg significance correction
for multiple comparisons was used as previously described [130].

Second, for MetaboAnalyst [40], a log or cube root transformation was used in conjunc-
tion with mean or Pareto scaling as implemented in MetaboAnalyst, followed by supervised
classification using the partial least squares discriminant analysis (PLSDA) method, random
forest (RF), and pathway enrichment analysis. The PLSDA results were cross-validated
with a caret package implemented in MeatboAnalyst. The major metabolites identified
by PLSDA were determined according to the variable importance in projection (VIP). The
randomForest package implemented in MetaboAnalyst was used for supervised classifica-
tion between different groups of interest. The main features defined by RF were ordered
according to the mean decrease in classification accuracy. Hierarchical clustering was
performed according to the VIP scores to obtain a heat map representing the differences in
metabolic profiles between samples and groups. Euclidean distance, Pearson’s correlation
and Spearman’s correlation were used as similarity measures and Ward's linkage was used
as a clustering algorithm. MetaboAnalyst and gplot were used to generate graphs.

KEGG libraries for human metabolic pathways were used for metabolic pathway and
enrichment analysis. For topological analysis, the globaltest analysis method and relative
Betweenness centrality were used. Significant pathways were determined using the raw
p-value, Holm-Bonferroni p-adjusted value, and adjusted p-value using the false discovery
rate. The effect of pathways was calculated using the pathway topology analysis.

Metabolite Set Enrichment (MSEA) was used to identify biologically significant pat-
terns between quantitative metabolome data from different groups. The names of com-
pounds in Human Metabolome Database (HMDB) were used for linkage to the KEGG
database. Enrichment analysis was performed using the globaltest package implemented
in MetaboAnalyst. The enrichment ratio was calculated by dividing observed hits and
expected hits.

3.6.2. JADBIO Auto Machine Learning

Just Add Data Bio (JADBIO), a web-based machine learning platform for analyzing
potential biomarkers [57], was used to search for biomarkers. The JADBIO platform
was developed for predictive modeling and providing high-quality predictive models
for diagnostics using state-of-the-art statistical and machine learning methods. Personal
analytic biases and methodological statistical errors were eliminated from the analysis
by autonomously exploring different settings in the modeling steps, resulting in more
convincing discovered features to distinguish between different groups. JADBIO with
extensive tuning effort and six CPUs was used to model different dataset choices in addition
to the features observed in samples of all groups from different projects by splitting the
total data into a training set and a test set in a 70:30 ratio. The training set was used to train
the model and the test set was used to evaluate the model [39,56].

To assess the classification of the model, a receiver-operating characteristic curve (ROC
curve) was constructed for all studied groups, plotting the true-positive rate (sensitivity)
against the false-positive rate (1-specificity). Individual conditional expectation plots (ICE)
showed the nature of the contribution of each feature characteristic to the model. All
obtained models can be run locally using a Java executor.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/ article/ 10.3390/metabol12060536,/s1, ESM1: ESM 1; ESM 2: Metabolites identified
in urinary samples; ESM 3: Metabolites identified in fecal samples; ESM 4: Models with instructions
for local running,.
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2.2 ADDITIONAL SCIENTIFIC WORK
2.2.1 Metagenomes assembled genomes from the PreTerm project

2.2.1.1 Introduction

In the context of taxonomic and functional analysis of the microbiome community, the third option
is to assemble short-read sequences obtained with modern sequencing technologies into fully
recovered genomes from the microbiome using available tools. This process is used to assemble new
metagenome-assembled genomes. There are many genome assemblers specifically designed for
metagenomic data, but none of them are perfect. A whole range of specialised tools have been
developed to solve the problems of metagenomic assembly caused by the properties of the collected
data. Depending on the length of the generated reads, assemblers are based on different approaches,
from overlap-layout-consensus tools based on overlap strategies to those using de Bruijn graphs to
work with data. It is important to note that it is not only the efficiency and quality of work that
influence the popularity of assemblers, but also the ease of use of the tool, the existence of a simple,
detailed and easy-to-understand manual, the continuous development of the tool, and the speed and
quality of feedback form the tool’s support team (Lapidus and Korobeynikov, 2021). For this reason,
we have combined the multitude of different tools needed for metagenome assembly into the MAGO
pipeline (Section 2.1.1). This approach can lead to the discovery of new species that cannot be
cultured and that have become increasingly important in recent years (Fricker et al., 2019; Nayfach
et al., 2019; Murovec et al., 2020; Lapidus and Korobeynikov, 2021). Sequence assembly can be
divided into two necessary steps, all of which are already included in the MAGO pipeline:

1. metagenomic assembly (assembly of short read sequences (250 base pairs) into longer contigs).
2. binning (grouping of contigs with the same sequences into their taxon ID (e.g., closely related
organisms)).

This process can also produce some artefacts in de novo assembled sequences, such as “bulges” or
“tips”, which are often artefacts due to sequencing errors (Zerbino and Birney, 2008). For this reason,
MAGs need to be validated. For this purpose, the CheckM tool (Parks et al., 2015) is used to check
the completeness and contamination of the assembled genomes. MAGs can be divided into high- and
medium-quality groups according to the standards for minimum information about a metagenome-
assembled genome (MIMAG). MAGs in the high-quality group contain < 5% contamination and are
> 90% complete. Medium-quality MAGs contain < 10% contamination and are > 50% complete
(Parks et al., 2015; Bowers et al., 2017).

The hypothesis from section 1.4.1 were partly discussed in this chapter (table 2).
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2.2.1.2 Materials and methods

For this work, we used sequences from the PreTerm project and assembled the MAGs from the
preterm and full-term groups individually. The main purpose was to obtain some characteristic
species belonging to preterm group’s adolescents involved in the PreTerm project.

Sequences from the Preterm Project (Deutsch et al., 2022b) were used to compile characteristic
MAG:s for the preterm and full-term groups of participants. Sequences from the preterm and control
groups were assembled separately using the MAGO Singularity Image on the Leo4 HPC cluster
(University of Innsbruck, Austria). Fastp (Chen et al, 2018) and FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) were used for quality control and pre-
processing. Three different assemblers were used for assembly: metaSPAdes (Nurk et al., 2017),
MEGAHIT (Li et al., 2015) and IDBA-UD (Peng et al., 2012). Contigs were binned and bins were
improved using the tools BinSanity (Graham, Heidelberg and Tully, 2017), CONCOCT (Alneberg et
al., 2014), MetaBAT (Kang et al., 2015) and MaxBin (Wu et al., 2016). In the end, DAStool (Sieber
et al., 2018) was used to refine and dereplicate the resulting bins to obtain near-complete MAGs,
which were then checked for completeness and contamination level using the ChekM (Parks et al.,
2015) tool. High-quality MAGs from both groups were used for average amino acid identity
calculation with ezTree (Wu, 2018), genome annotation with Prokka (Seeman, 2014), pan- and core-
genome analysis with Roary (Page et al., 2015), and high-throughput average nucleotide identity
calculation with FastANI (Jain et al., 2018), all of which were integrated into the MAGO tool
(Murovec et al., 2020). JSpeciesWS Online Service (Richter et al., 2016) was used to determine
taxonomic thresholds with tetra-correlation search (Teeling et al., 2004) by comparing our high-
quality MAGs with the reference genome database (GenomesDB). A mosaic plot was generated using
Past software (Hammer et al., 2001).

2.2.1.3 Results

The total number of sequencing reads was lower in the preterm group (491 million total reads
compared to 531 million reads in the control group). After filtering with fastp, 494.6 million reads
were obtained in the control group and 486 million reads in the preterm group. Other reads were
removed because they were of poor quality or contained too many Ns (it was not possible to basecall
for these bases). The remainder of the sequences were used for metagenome assembly; 320 MAGs
were assembled in the preterm group, and 27 of these MAGs belonged to the MAGs in the high-
quality group (average completeness was 93.93+2.9% and contamination was 2.9+1.43%). In the
control group, 124 MAGs were assembled, 24 of which belonged to the high-quality group (average
completeness was 95.4+2.8% and contamination was 2.5+1.4%). MAGs from the preterm groups
were approximately 1 Mb larger and counted almost twice as many contigs. Preterm MAGs also had
a higher percentage of GC base pairs (5% higher on average). All high-quality MAGs were submitted
to the online service JSpeciesWS for a tetra-correlation search with the genome reference database
GenomesDB, which contains more than 55,000 genomes. No significant differences were observed
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between preterm and control group (Figure 10, Figure 11). Approximately the same number of high-
, medium-, and low-quality MAGs were assembled in both groups.

100

N A N X
[T

Contamination (%)

<
<

20 40 60 80 100
Completeness (%)

e Control » preterm

Figure 10: Relationship between completeness and contamination of MAGs in control and preterm group.

Slika 10: Odnos med popolnostjo in kontaminacijami na novo sestavljenih metagenomov v kontrolni in preterm
skupini.
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Figure 11: Number of MAGs per both groups and their quality.
Number of high (completeness>95%, contamination<5%), medium (completeness>75%, contamination<10%) and low
(completeness>50%, contamination<25%) quality MAGS in the preterm and control groups.

High

Medium

Slika 11: Stevilo na novo sestavljenih metagenomov med skupinami in njihova kvaliteta.
Stevilo na novo sestavljenih metagenomov visoke (popolnost>95 %, kontaminacija<5 %), srednje (popolnost>75 %,
kontaminacija<10 %) in nizke (popolnost>50 %, kontaminacija<25 %) v preterm in kontrolni skupini.

2.2.1.4 Discussion

Sequences from the preterm and full-term (control) groups were assembled separately in order to
search for group-specific MAGs that could lead to discovery of taxonomic differences that were not
observed in the previously published metaBakery analysis. Although a greater number of high-,
medium-, and-low quality MAGs were assembled in the preterm group according to the MIMAG
standard (Bowers et al., 2017), we did not observe MAGs specific to the preterm group. The quality
of the sequences was comparable and not significantly different in both groups. The higher number
of MAGs is consistent with higher diversity indices in the PreTerm group, as previously observed
(Deutsch et al., 2022). One of the most important parts of the de novo MAGs assembly is the ability
to detect the “uncultured majority”, which is also what we hoped to detect, especially in the preterm
group. Based on these results, we can conclude that preterm and adult full-term born adults are not
different in terms of microbial taxonomy, albeit due to the unequal variance within the groups. In
contrast, we have shown that the functionality of the microbial worlds differs between adult preterm
compared to adult full-term groups in terms of enzymatic reactions, metabolic pathways, and
predicted metabolites (Deutsch et al., 2022b). This once again shows the higher relevance and
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importance of microbial functionality relative to microbial taxonomic composition for the inference
of relationships with human phenotypic characteristics through the production of various metabolites.

2.2.2 Data integration

2.2.2.1 Introduction

To properly understand the complexity of biological systems, well-being, and diseases, various
‘omics high-throughput technologies (e.g., sequencing, various types of spectrometry, etc.) have been
used and are becoming more affordable for scientists (Zitnik et al., 2019). It soon became clear very
that we cannot capture the whole understanding of the system based on only one level of datasets.
“Top-down” approach is the term that was evaluated in the context of systems biology research. In
general, this means that we measure a set of parameters at the system level and then make inferences
about the overall functionality of the system (Kohl et al., 2010; Price et al., 2017). Without ‘omics
methods, all domains relied strictly on single types of data that could not explain the entire system.
‘Omics methods enabled the development of modern statistical approaches (data reduction methods)
and data integration. With these methods, it became easier to draw conclusions based on thousands
of parameters that could be measured with these methods (Zitnik et al., 2019). These approaches,
along with machine learning, are converging into precision medicine, which is composed of four
words (also referred to as P4 for short): predictive, preventive, personalized, and participatory
precision medicine. The combination of all four terms leads us to maintain our health longer and
prevent noncommunicable diseases (Hood and Friend, 2011; Hood and Flores, 2012; Price et al.,
2017). With the combination of ‘omics methods, developed models, and evaluation of these methods
in practical medicine, future health policies will also change and the chances of detecting diseases as
early as possible and before it is too late for effective treatment will also increase. However, there is
also a need for caution in introducing this approach into daily use, especially in data protection and
better and more secure computing infrastructure (Thapa and Camtepe, 2021).

The hypothesis from section 1.4.3 were assessed in this chapter (table 2).

2.2.2.2 Materials and methods

Total urinary NMR metabolomes collected from five different projects-Slovenian NMR database
(PlanHab (Debevec et al., 2014; Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018; Sket et al.,
2020), X-Adapt (Deutsch et al., 2022a), healthy women and men, SMA (Deutsch et al., 2020),
PreTerm (Deutsch et al., 2022b)) were integrated with the aim to build up Slovenian NMR database
(manuscript in preparation). We used the DIABLO (Singh et al., 2019) and PLSDA (Wang and Lé
Cao, 2020) methods, which are integrated into the miXomics R package (Rohart et al., 2017).
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2.2.2.3 Results

All urinary metabolites collected in five different projects were utilized: PlanHab (522 samples),
PreTerm (183 samples), Spinal Muscular Atrophy (48 samples), X-Adapt (239 samples), Healthy
Women and their daughters (94 samples), and Healthy Men and their sons (133 samples); 185
samples were included in the low physical activity group (bedrest part of the form the PlanHab study
and spinal muscular atrophy participants), 919 samples were included into medium physical activity
group (healthy women and men, start of the PlanHab and Hamb end from the PlanHab study, preterm
and full-term born participants from the PreTerm project, untrained participants of the X-Adapt
study), and 115 samples were included in the high physical activity group (trained X-Adapt study
participants) (Figure 12). The largest area under the curve was observed when comparing the low
activity group (AUC=0.91) with the others and the lowest when comparing the moderate activity
group with the others (AUC=0.75) (Figure 13).

sPLS-DA NMR data - activity

Legend
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o
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Figure 12: PSLDA of all metabolomes stratified by activity.
The sample plot representing PLSDA centroids of all 1200 metabolomes obtained in five different dataset and
corresponding to their level of physical activity.

Slika 12: Rezultati analize PLSDA vse metabolomov glede na aktivnost.

Graf prikazuje centroide PLSDA vseh 1200 zbranih metabolomov v petih razli¢nih Studijah in razdeljenih glede na nivo
njihove fizi¢ne aktivnosti preiskovancev.

138



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

ROC Curve Using Comp(s): 1, 2

100 -
a0 -
80-
70- Outcome

60 - High vs Other(s). 0.8405

— | gw ys Other(s): 0.9118

Sensitivity (%)

Medium vs Other(s). 0.7549

UI ﬂb Zb 36 46 EIEI Iib T‘EI S‘U EIIEI 1EIIEI
100 - Specfficity (%)

Figure 13: The success of classification with PLSDA.
ROC curves and with the accompanying AUC values representing the success of classification of metabolomes between
three different levels of activity.

Slika 13: Uspeh klasifikacije z metodo PLSDA.
Krivulje ROC s pripadajo¢imi vrednostmi AUC, ki prikazujejo uspesnost klasifikacije metabolom glede na nivo fizicne
aktivnosti.

2.2.2.4 Discussion

We combined more than 1200 collected samples of urine 'H-NMR metabolomes into the Slovenian
urine NMR database. Information from all our previous projects (PlanHab, spinal muscular atrophy,
X-Adapt, PreTerm, healthy women and men) were integrated. All measured spectra were analysed
with the same procedure of spectral deconvolution to obtain metabolites in all projects. We have
shown that we can distinguish between the different levels of physical activity based on the
metabolites in urine. Future integration of additional data on various diseases with medical diagnoses
could provide basis for the development of a pre-screening tool amenable for routine information
gathering at clinical setting.

Such a large integrations of metabolomics data into a single database are also susceptible to several
sources of systematic error that can lead to lack of reproducibility and poor data quality. To minimize
this, all samples were processed in the same way using our in-house processing pipeline (Sket et al.,
2017a; Sket et al., 2017b; Sket et al., 2018; Sket et al., 2020; Deutsch et al., 2021a; Deutsch et al.,
2021b, Deutsch et al., 2022a; Deutsch et al., 2022b), alongside commercially available software for
targeted spectral deconvolution analysis utilizing the same version of the Human Metabolome
Database 4.0. Our pipeline is therefore generic and accessible to other interested researchers making
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repeated exploration of the same data a reality. In addition, significant extensions with novel data can
be made every year with reasonable effort. This should lead to database updates as the Human
Metabolome Database has grown from a few thousand metabolites in the first edition (Wishart et al.,
2007) to 217,000 metabolites in the latest edition, published in 2021 (Wishart et al., 2021). The data
recorded in the past can be effectively reanalysed for novel insight and increased percent of explained
spectral information.

Second, standardized analytical protocols in our laboratory allowed us to minimize the systematic
errors that normally occur due to batch effects. However, there is still room for improvement. Batch
effects need to be eliminated in the integration and construction of databases (Ding et al., 2022).
There are already approaches to eliminate batch effects, usually developed in other ‘omics domains.
These approaches include Dirichlet-multinomial regression (Dai et al., 2019), percentile-
normalization methods (Gibbons et al., 2018), quantile regression methods (Ling et al., 2021), the
ComBat Bayesian approach (Johnson et al., 2007), Norm ISWSVR (Ding et al., 2022), and the
sPLSDA (Wang and Lé Cao, 2020), which was implemented in miXomics. Batch effects can occur
when comparing different studies for biological reasons (uniqueness of each biological system due to
health status, diet, or lifestyle in general), technical reasons (different batches of the same buffers,
different vendors, protocols, NMR devices), or computational reasons (use of different parameters
and different software) (Wang and Lé Cao, 2020). Another question is which normalization method
is the best for the data being analysed. In the field of metabolomics, the NOREVA software was
developed to overcome this challenge. The only limitation is that it is not suitable for NMR
metabolomics and was developed for MS metabolomics (Yang et al., 2020). In our case, Box-Cox
normalization and sSPLSDA approach were used to integrate all metabolomes. This method showed
competitive performance in removing batch effects on one side, but still preserves variations due to
lifestyle or other biological metadata categories (Wang and L& Cao, 2020).

We have shown that urinary metabolic fingerprinting has the potential to reveal an individual’s
metabolic status and provide a snapshot of health and disease (Azad and Shulaev, 2019; Mussap et
al., 2021). Metabolomics in general involves the systematic identification of metabolites in the human
body. To increase its use in daily medical practise, all levels of metabolomics research should be
standardised (sampling, wet lab analysis, and also analytical approaches at the level of algorithms)
(Ashrafian et al., 2021). Building a national database will improve the understanding of the Slovenian
metabolome and the identification of metabolites specific to particular disease or physical condition.
This approach was demonstrated in the Netherlands based on 26,000 collected blood metabolomes in
the Dutch Biobanking and BioMolecular Resources and Research Infrastructure (Bizzarri et al.,
2022). They showed that 'TH-NMR metabolomics can capture a wide range of conventional clinical
variables in epidemiological studies and that it is possible to generate predictors for discriminating
between different diseases such as diabetes, metabolic syndrome, insulin resistance, inflammation
(Crohn disease, ulcerative colitis) based on machine learning. Top-down interpretation of
metabolomic datasets consisting of different studies is impossible using simple approaches due to the
enormous amount of data (Lakrisenko and Weindl, 2021. In addition, and in line with the above,
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metabolomics accounted for the majority of funding and potential research between all ‘omics fields.
However, it was also noted that the main problem is the lack of standardisation for integrating
different metabolomics datasets and that this could be important in the future to increase the
confidence of metabolite identification in large datasets but also to address the variability within and
between different ‘omics fields (Yu et al., 2022). For this reason, newly developed methods that were
tailored to specifically address these problems in statistically sound way should be used.

Due to the complexity of the data linked to metadata of patients and/or participants, computational
models are needed to understand these data in different ways, such as machine-learning methods
(Bizzarri et al., 2022), metabolic networks (Topfer et al., 2015), constraint-based and kinetic models
(Volkova et al., 2020; Lakrisenko and Weindl, 2021). Our database already provides one
implementation of the above considerations into sound and effective approach transforming the 'H-
NMR urine data into a form amenable for building machine-learning models in the very near future
for their use in medical diagnostics. Unknown urine samples could easily be classified as members
of either healthy or various disease groups. With this work, we aim to stimulate the interest of other
researchers in the field of biomedicine to include NMR metabolomics in their research process in
order to complement our newly established database with their concise descriptions of medical
conditions in order to reach some 10,000 samples at national scale. This is of relevance due to the
central European geographic location of the Republic of Slovenia and its local genetic characteristics
coupled to lifestyle habits, dietary characteristics, and environmental conditions.

To summarize, the assembly and modelling of these data to create ML models is a viable approach
that can be used in medical practise to distinguish between various disease phenotypes and healthy
groups. Taking this approach is one step closer to precision data-driven medicine that would improve
health care approach on a national scale. A Slovenian urine NMR database paper is currently in
preparation.
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3 DISCUSSION AND CONCLUSIONS

3.1 DISCUSSION

In this chapter, we summarise the developments presented within this doctoral thesis in a more
comprehensive interrelated manner. First, we focus on “3.1 Developed tools for data integration” then
“3.2 Physico-chemical characteristics of microbial world in the gut” and continue with the most
important review of the data and findings produced within the four projects “3.3 Metabolomics in the
PlanHab study”, “3.4 Spinal muscular atrophy”, “3.5 X-Adapt project — the influence of short term
training on inactive individuals” and “3.6 metabolomes and microbial metagenomes can distinguish
pre-term and full-term born adults”. Finally, we focus on the most informative part of “3.7 data
integration” with concluding remarks “3.8 What about the future?”” and extensions of the presented

work.
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Table 2 (continued)
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Table 2 (continued)
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3.1.1 Developed tools for data integration

Microbial species play important roles in diverse environments characterised by a wide range of
organismal complexity (Murovec et al., 2020). Microbes living in the gut are in constant not only
bidirectional interactions with the host but also multidirectional interaction with their microbial
counterparts through the production of various molecules that can improve the health status of the
host or, in contrast, lead to the development of a noncommunicable disease or its progression
(Murovec et al., 2020). Disease progression can manifest as mild gastrointestinal symptoms or as
serious diseases such as inflammatory bowel disease, colon cancer, or liver cancer.

It has to be kept in mind that specific proteins and peptides next to metabolites from metabolic
reactions mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to
maintain energy homeostasis. The multidirectional interactions between metabolic organs and the
central nervous system have evolved in parallel with the multicellularity of organisms to maintain
whole-body energy homeostasis and ensure the organism’s adaptation to external environmental
parameters. These interactions become severely affected in pathological conditions of
noncommunicable diseases, such as obesity, insulin resistance, metabolic syndrome or type2
diabetes. Bioactive peptides and proteins next to hormones and cytokines, produced by both
peripheral organs and the central nervous system, plus molecules from muscle wear and tear including
metabolites from microbiome and energy production/consumption are key messengers in this inter-
organ communication (Castillo-Armengol et al., 2019).

A number of diseases were linked to metabolic imbalances that are partially or completely related to
the gut microbiome (from metabolic syndrome and obesity to autoimmune diseases, infections, and
mental disorders (Murovec et al., 2021). The discovery of sequencing technologies enabled the study
of microbes that cannot be cultured. It quickly became clear that most microbes (i.e., 99%) cannot be
cultured in the laboratory environment, but we can sequence their genetic material and see which
microbes are present in the sample. Based on amplicon sequencing (e.g., 16S rRNA) or whole
metagenome sequencing, we can determine which microbes are present in the samples (microbiota)
and if coupled to their genetic potential through inference (based on 16S rRNA coupled to nearest
genome sequences) or analyse all the genes (based on whole metagenome) that are present in the
sample. Based on their genetic potential, we can infer the microbial functionality of the sample (what
these microbes most likely can do), enzymatic reactions that they support, next to the metabolic
pathways that result from enzymatic reactions and metabolites that are most likely the result of all
these numerous transformations (Berg et al., 2020).

A number of different methods were developed for the analysis of sequences in the context of
microbiome research. Based on 16S rRNA, Mothur (Schloss et al., 2009) can be used to analyse
amplicon sequence material at three different levels: (i) genus (Riithlemann et al., 2021), (i1) 97% 16S
rRNA identity operational taxonomic units (Mysara et al., 2017), or (ii1) amplicon sequence variants
(Callahan et al., 2017; Schloss, 2021). In addition, another set of tools was developed for predicting
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microbial functionality based on amplicon sequences: PICRUSt (Langille et al. 2013a), PICRUSt2
(Douglas et al., 2020), Tax4Fun (ABhauser et al., 2015), Tax4Fun2 (Wemheuer et al., 2020), and
Piphillin (Narayan et al., 2020). These tools link 16S rRNA sequence information to reference
genome sequences and predict microbial potential based on metagenomic functional gene content
(Sun et al., 2020). We have developed GUMPP for large-scale, streamlined, and reproducible analysis
of bacterial amplicon data and prediction of their functional potential (Murovec et al., 2021),
consisting of Mothur (Schloss et al., 2009), PICRUSt2 (Douglas et al., 2020), and piphillin (Narayan
et al., 2020) in order to support large scale data analyses. Thus far, more than 600 samples from 32
studies amounting to 120 million reads were analysed in meta-analysis project (Klammsteiner,
University of Innsbruck, in preparation).

The more objective analysis of functionality of microbes cannot be studied without sequencing the
entire metagenome directly. Whole metagenome sequencing involves the untargeted sequencing of a
random subset of all sequences to certain read depth, not like in targeted (amplicon) sequencing in
which only a small portion of a specific gene is sequenced. BioBakery (Mclver et al., 2018; Beghini
et al., 2021) is the workflow for whole metagenome sequence analysis that combines different tools
for quality analysis, taxonomic analysis (MetaPhlAn), functional genes, enzymatic reactions, and
metabolic pathways of interest in the microbial community (HUMAn3). In addition, the extension of
this method by utilizing training on actual metagenomes coupled to lipid-soluble and water-soluble
metabolomes determined through mass spectrometry allows prediction of microbial metabolites on
metagenome information alone and hence describing the metabolomes that might be produced in this
community (MelonnPan). Another positive aspect of whole-genome sequencing is that information
on genetic material can be obtained from different taxonomic groups (archaea, bacteria, protozoa,
fungi, DNA viruses, (also human DNA)), which can improve the understanding of the complexity
and interactions between different taxonomic layers. We are in the process of publishing the
developed metaBakery workflow (manuscript in preparation), which is a re-implementation of the
BioBakery workflow, with the addition of the sequence QC steps, extended with diversity calculators
implemented within Mothur, guided by our in-house skeleton application, and implemented as
Singularity container for large-scale, streamlined, and reproducible analyses at HPC setting.

The next step in whole metagenome sequencing is the possibility of de-novo metagenome assembly.
This is a process in which reads are screened for quality, assembled, and binned together to yield
assembled metagenomes. This process can lead to the discovery of entirely new species. However,
care must be taken in this process regarding the completeness and contamination of the newly
assembled genomes. According to the MIMAG standard (Bowers et al., 2019), we should all strive
to assemble the most complete (> 95%) and least contaminated (< 5%) MAGs. These will enable the
next stage of evolutionary analysis and hopefully provide new ideas on how microbes interact with
human beings as their host. We have developed the Metagenome-Assembled Genomes Orchestra
(MAGO (Murovec et al., 2020)) from highly successful tools for quality analysis (FastQC, fastp
(Chen et al., 2018)), assembly (IDBA-UD (Peng et al, 2012), metaSPAdes (Nurk et al, 2017) and
megaHIT (Li et al., 2015)) and binning (maxBin (Wu et al., 2016), MetaBAT (Kang et al., 2015),
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CONCOT (Alneberg et al., 2014), BinSanity (Graham et al., 2017), and DAStool (Sieber et al.,
2018)). In conjunction, the CheckM tool (Parks et al., 2015) is used to filter out which MAGs are of
high quality according to the MIMAG standards (Bowers et al., 2019). The MAGO tool also allows
the user to analyse the evolution of the MAGs obtained using ezTree (Wu, 2018), average amino acid
identity (AAI) enables insight into species cut-off values, Prokka (Seemann, 2014) serves for genome
annotation while Roary (Page et al., 2015) provides pan- and core-genome analysis, and FastANI
enables nucleotide identity analysis of genomes. The resulting bins are then selected based on their
completeness and contamination according to MIMAG standard and analysed subsequently using
other tools (Castro et al., 2018; Rodriguez-R et al., 2018; Ruiz-Perez et al., 2021).

The three tools for large scale data analyses presented in our work (MAGO, GUMPP, metaBakery
(manuscript in preparation)) were prepared as a skeleton framework consisting of more than 10,000
lines of code written in Python, which orchestrates the execution of each part and takes care of the
execution of programs and the creation of their command lines (Murovec et al., 2020; Murovec et al.,
2021). The parameters for the execution of the workflow are entirely in the hands of the user. All
tools were developed as Singularity images (Kurtzer et al., 2017) prepared for straightforward
deployment on HPC for large-scale, straightforward analysis of 10,000 samples as well as for
educational purposes. Both, metaBakery and MAGO tools were used for metagenomic sequence
analysis in the PreTerm project (Deutsch et al., 2022b). Both tools are under the CC-BY 4.0 open-
source license and are open to any extensions, thus providing the opportunity to develop further and
become standardized workflows for microbial analysis on a global scale. metaBakery (in preparation)
will be used in the future project that is part of the Million Microbiomes from Human Project (MMHP,
(Fang et al., 2018; Han et al., 2018; Patterson et al., 2019)) and will provide insight into the Slovenian
gut microbiome. Currently, 5000 deep sequencing samples (10 mio reads/sample) encompassing 13
gastrointestinal diseases including depression next to healthy state (14 conditions) from 22 states were
processed utilizing 1.2 million CPUh on a VEGA supercomputer (in preparation), providing thus
another well represented dataset amenable for ML exploration.

3.1.2 Physicochemical characteristics of microbial world in the gut

The peristaltic waves that create the contractile patterns of the small intestine create an environment
that is constantly changing. The constant mixing of faecal material results in changes in
environmental conditions for the microbes living in the gut, such as pH, which can affect microbial
growth (Ehrlein and Schemann, 2005; Johnson et al., 2012; Cremer et al., 2016; Glover et al., 2016;
Cremer et al., 2017; Sket et al., 2017a). A number of studies have linked stool consistency, the
microbial living environment, to the richness of the gut microbiota, its composition, enterotypes,
elevated inflammatory levels, lipopolysaccharides, and bacterial growth rates (Tigchelaar et al., 2016;
Vandeputte et al., 2016). Stool consistency was mostly assessed with BSS method (Heaton et al.,
1992; Lewis and Heaton, 1997). Lower BSS scores were associated with longer colonic transit time,
higher microbial richness, and protein catabolism (Roager et al., 2016). Alteration of the microbiota
and the occurrence of local inflammation was previously found to be correlated with BSS. High intra-
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and inter-rater variance was observed in the assessment of the BSS (Derrien et al., 2010; Chumpitazi
etal., 2016). The assessment of the BSS is based on self-assessment, which may be biased. Therefore,
only a well-trained expert can draw medically important conclusions based on the BSS alone
(Matsuda et al., 2021).

Faecal materials are semisolid materials (i.e., pastes) in terms of material physics (Grillet et al., 2012),
which places them between viscoelastic materials (semipermanent deformation in response to
external forces) and plastic materials (permanent deformation). This way of thinking led us to the
evaluation of the minimal pressure approach for the less biased and high-throughput evaluation of the
consistency of faecal material (Deutsch and Stres, 2021). Minimal pressure, expressed as force per
unit area, is the pressure required to cause permanent deformation of faeccal material. We have shown
that MP increases exponentially compared to decreasing values of BSS, regardless of the sex of the
individuals (Deutsch and Stres, 2021). We demonstrated that there is a nonlinear (asymptomatic) and
complex relationship between dry matter and MP. Longitudinal mapping of the surface MP over the
entire length of a single stool sample revealed that various fine-grained internal, local differences
existed. In addition, despite the BSS uniform scoring of lower BSS values, our analysis showed that
a more resistant stool surface layer was followed by softer internal structures, resulting in lower MP
values associated with approximately healthy stool consistency (Deutsch and Stres, 2021).

We found a boundary that may distinguish between healthy state (MP < 75) or constipation (MP >
75) (Blake et al., 2016; Sket et al., 2017b; Sket et al., 2018). MP < 30 corresponded to aqueous stool
samples. MP approach introduced the continuous scale, which can be measured to overcome the
problems of BSS assessment errors in BSS around 3 and 4, which are difficult to determine based on
visual inspection, despite the training and visual support in classification (Deutsch and Stres, 2021).

MP was measured on the samples collected within the PlanHab (Sket et al., 2020) and the PreTerm
study (Deutsch et al., 2022b). Notably, the past studies demonstrated that blockage of faecal surface
pores and mucus retention were associated with selective pressure on the gut microbiome, its gene
expression, and metabolic activity, leading to local inflammation (Vandeputte et al., 2016; Sket et al.,
2017a; Sket et al., 2017b; Sket et al., 2018; Aron-Wisnewsky et al., 2019). Thus, we showed that the
MP approach can accurately describe the clinical significance of stool consistency (Deutsch and Stres,
2021). In addition, the MP approach does not require the pre-treatment of samples and allows for ease
of measurement without expensive equipment, as well as reproducibility of these measurements with
different samples (fresh vs. frozen; male vs. female), with simple correction for the temperature of
measurement. We also found that MP correlates with faecal methionine and acetate based on 'H-
NMR measurements. Based on these two metabolites, we can distinguish three different groups of
faecal consistency (MP < 30, 30<MP<75, MP>75). Methionine was previously associated with
oxidative stress and was elevated in inactive individuals, while acetate correlated negatively with
insulin sensitivity, indicating that different stool consistencies may have an impact on the biological
system of the host. The observed differences in methionine and acetate associated with MP, were thus
apparently consequence of inactivity coupled with Western diet as based on the samples collected
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within the PlanHab project. The MP approach enabled us to show that with the measurement of some
physicochemical parameters and ‘omics methods, a completely new level of understanding of
complex biological systems can be commenced and explored (Deutsch and Stres, 2021).

3.1.3 Metabolomics in the PlanHab study

The PlanHab study was the first study by our group to examine the metabolomics of human urine
(Sket et al., 2020). The run-in and the following three 21-day interventions (NBR, HBR, and HAmb)
in a crossover manner) were performed. Morning urine samples were collected throughout the
experimental setup (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018). The unique crossover
design allowed us to consider the responses of the same participants to all three experimental variants
under controlled dietary, environmental, and experimental conditions. A total of 523 urine samples
were collected and prepared for '"H-NMR measurements. Participants in the bed rest group (NBR and
HBR) had specific metabolic compositions compared with the HAmb group. We concluded that the
decision of the host to minimize physical activity under hypoxic conditions can be detected within a
few days at the level of the urine metabolome measured by NMR. Under normoxic bed rest
conditions, these metabolic changes became detectable within the first ten days. The metabolites
identified in this study were associated with a number of different diseases: (i) chronic obstructive
pulmonary disease (Adamko et al., 2015; Zabek et al., 2015) and (ii) cardiovascular disease associated
with tissue hypoxia, which can also lead to type 2 diabetes, depression, and osteoporosis (Wang et
al., 2011a; Senn et al., 2012; Adamko et al., 2015; Zabek et al., 2015). The PlanHab study utilizing
urine 'H-NMR metabolomes led us to conclude that there is no simple metabolic biomarker that could
distinguish between different states (healthy vs. sick, active vs. inactive; active vs. sedentary).
Complex multivariate descriptions of metabolism were needed to capture commonalities in human
physiology, interpersonal variability, and temporal variability. This concept was utilized in all other
subsequent studies. For instance, a metabolite could be up- or down-regulated depending on the
metabolic pathway. Overall, inactivity alone or in combination with hypoxia resulted in decreased
systemic metabolic diversity, increased number of metabolic pathways affected, and more rapid
metabolic deconditioning leading to the development of negative physiological symptoms such as
insulin resistance, low-level systemic inflammation, constipation, depression, and metabolic
syndrome (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018). The results of the PlanHab study
encouraged us to continue our research utilizing samples from other studies involving different levels
of inactivity, such as X-Adapt (differences between trained and untrained individuals), spinal
muscular atrophy, and the PreTerm project (Figure 14), which compares different times of exposure
to hypoxia, physical activity, and time of exposure to different conditions (Sket et al., 2020).
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Figure 14: Representation of studies involved in this work
Representation of studies involved in this work with the relation to physical activity and hypoxia exposure.

Slika 14: Prikaz Studij udelezenih v tem delu
Prikaz $tudij udelezenih v tem delu glede na stopnjo fizikalne aktivnosti na eni strani in izpostavitve hipoksiji na drugi.

3.1.4 Spinal muscular atrophy

Spinal muscular atrophy is a neuromuscular disease that manifests as progressive atrophy and
weakening of skeletal muscle due to progressive loss of motor neurons and also affects a number of
other organ systems (Melki, 2017; Yeo and Darras, 2020). With an incidence of 1 per 11,000 births,
it is still considered the most common genetic cause of child deaths (Sugarman et al., 2012). In SMA
patients, mutations in the centromeric SMN2 gene lead to the formation of unstable proteins and, at
the same time, the expression of the telomeric SMNT1 gene is also impaired due to deletion (Lefebvre
et al., 1995; Lorson and Androphy, 2000; Lunn and Wang, 2008; Smeriglio et al., 2020). In recent
years, new therapies have been developed for the treatment of SMA. These therapies alter the natural
course of the disease by changing the expression of or replacing mutated genes involved in the
development of SMA (Chiriboga et al., 2016). Nusinersen was the first drug approved by the Food
and Drug Administration in the United States and by the European Medicines Agency for SMA.
Nusinersen is an antisense oligonucleotide that modifies mRNA splicing, resulting in an active SMN
2 protein and thus better SMA outcomes (Chiriboga et al., 2016; Corey, 2017; Ramdas and Servais,
2020). It must be administered intrathecally because it cannot cross the blood-brain barrier (Faber et
al., 2007; Rigo et al., 2012).
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Urine, liquor, and serum samples from SMA patients were collected before treatment and after the
4th application of nusinersen. Medical examination at the 4th application showed improvement in
mobility. The application of nusinersen resulted in better movement, easier writing and sitting or
standing, and increase in strength, all as measured by the Children’s Hospital of Philadelphia Infant
Test of Neuromuscular Disorders (CHOP INTEND (Glanzman et al., 2010), the Hammersmith
Functional Motor Scale (HMFS (Pera et al., 2017)), the Expanded Hammersmith Functional Motor
Scale (HMFSE (Pera et al., 2017)), or the Motor Function Measurement (MFM (Bérard et al., 2005))
tests. Patients showed improvement in wheelchair control, ambulation, fatigue, hygiene, speech, and
sleep after the 4th application of nusinersen (Osredkar et al., 2021).

In contrast to the physical examinations, we could not establish that based on the npMANOVA test
on all metabolic matrices (urine, liquor, serum) regardless of gender or data transformation (Deutsch
et al., 2021a). In this context, we could not reject the null hypothesis from section 1.3.2 and table 2,
which states that there are no significant differences before and after treatment. Perhaps these
differences could be confirmed after 10 applications of nusinersen, but this would take too much
additional time to collect the samples and to complete within the timeframe of this doctoral thesis.
These results show that the efficacy of nusinersen can be seen with the medical examinations and the
assessment test. Perhaps the use of other metabolomics methods such as mass spectrometry, which is
more sensitive to nanomolar concentrations compared with NMR, would lead to the detection of
biomarkers that could be used as biomarkers for monitoring nusinersen treatment (Emwas et al.,
2019).

In addition, a series of urine samples were collected from the matched healthy cohort to compare the
metabolomes of SMA patients with the metabolomes of healthy individuals. This comparison led to
the observation of a significant metabolic difference between females and males (p=0.0001), as well
as the healthy cohort and the SMA patients. The npMANOVA showed the importance of gender
(F=54.9; p=0.0001) and SMA status before and after treatment (F=20.7; p=0.0001) to be significant.
Both methods, PLSDA and Random Forest, showed significant differences between female and male
metabolomes, and we also detected different metabolic diversity when comparing SMA patients to a
comparable healthy cohort. A significant reduction in the cumulative concentration of metabolites
was observed in SMA patients (p < 0.05). The reduction in the number of metabolites was also
observed in healthy females compared to healthy males. This was the first report describing the
existence of differences between males and females. Because of these differences, it is important for
future studies to include a larger number of females in studies such as this one to determine the
important differences between female and male metabolic makeups and pathways. There are some
preliminary parallels with studies of exercise showing that metabolite counts may increase after
exercise (Nieman et al., 2013; Schranner et al., 2020) or studies of bed rest (e.g., PlanHab), which
also showed a 30% reduction in metabolite counts after three weeks of bed rest (Sket et al., 2017a;
Sket et al., 2017b; Sket et al., 2018). Symptoms such as insulin resistance, bone and muscle loss,
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changes in lipid metabolism were all detected in bedrest studies, and all of these symptoms can be
observed also on the list of conditions associated with SMA.

We used urine metabolomes from SMA patients and healthy individuals to create a classification
model to distinguish between these two conditions. For this purpose, the JADBIO machine learning
was used (Tsamardinos et al., 2022), and logistic ridge regression was selected with an AUC value
of 0.958 as the best model to distinguish SMA patients and healthy controls. Creatinine was the key
metabolite separating healthy from SMA-affected participants as was also reported a few months
before our publication in another study that monitored the SMA progression of denervation with
elevated levels of creatinine in more severe forms of SMA disease (Alves et al., 2020). Creatinine
concentrations did not change significantly in SMA patients before and after the 4th application of
nusinersen. The increased creatinine levels were also observed in urine samples from our bed rest
studies (PlanHab (Sket et al., 2020)). The reintroduction of exercise completely reversed the adverse
effects in these studies (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018; Sket et al., 2020).
Immobilized patients receiving vibration therapies benefited compared with controls and may
represent a potential step in the physical activation of SMA patients after nusinersen therapy (Hoff et
al., 2015) in the future due to involuntary contractions of muscles during balancing (Figure 15).

152



Deutsch L. Bioinformatics integration of microbiome and metabolomics data in the translational context.
Doct. dissertation. Ljubljana, University of Ljubljana, Biotechnical Faculty, 2022

Normal

development Inactivity |

Bed-rest inactivity phenotype:
+ exercise= reversible

SMA development
SMA phenotypes: Insulin resistance Long-term inactivity phenotype:
+nusinersen therapy Bone resorption  + exercise
+exercise Muscle atrophy = reversible ?
=reversible? Constipation

Inflammation
Depression
Modified fat metabolism

Figure 15: Model representing results of inactivity.

Model representing the general results of long-term inactivity due to illness or bed-rest studies. All levels of inactivity
can result in systemic symptoms leading to noncommunicable diseases. Resuming or reintroducing physical activity can
reduce these symptoms and lead to better treatment and health outcomes.

Slika 15: Model predstavlja rezultate neaktivnosti.

Model predstavlja rezultate dolgocasne neaktivnosti nastale zaradi bolezni ali §tudij leZanja. Ne glede na razlog, vse vrste
neaktivnosti, vodijo v pojav sistemskih simptomov, ki se kazejo kot kroni¢ne bolezni. Povecana fizikalna aktivnost, lahko
izboljSa zdravje ali zdravljenje takih bolezni.

3.1.5 X-Adapt project — the influence of short-term training on inactive individuals

We investigated complete inactivity within the context of the SMA project. However, in the 21st
century, it is becoming increasingly clear that physical inactivity, which is the consequence of a
sedentary lifestyle and physically less challenging working conditions, is also a global problem that
poses arisk for the development of chronic noncommunicable diseases and increased global mortality
(Kelly et al., 2020b). It was showed that minimizing sedentary time can reduce the risk of chronic
diseases such as coronary heart disease, type 2 diabetes, metabolic syndrome, etc. (Sallis et al., 2016).
The goal of the X-Adapt project was to examine the differences between physically active (trained
participants) and inactive individuals (Sotiridis et al., 2018; Sotiridis, 2019b; Sotiridis et al., 2019;
Sotiridis et al., 2020). The project pre-screened the participants and enrolled 10 active and matching
10 inactive male participants in the 10-day training protocol, which consisted of daily training on a
cycle ergometer at 50% of maximal pedalling power under normoxic and normobaric (~1000 hPA)
conditions at 24°C ambient temperature. Before participating in the 10 days of training, all
participants (active and inactive) underwent the three-day testing under thermoneutral normoxic and
hypoxic conditions next to hot normoxic conditions. Study participants were classified as trained or
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untrained based on their maximal oxygen output (untrained VO2max < 45 mL-kg-1-min-1, trained
VO2max > 55 mL-kg-1-min-1) (Jay et al., 2011; Montero and Lundby, 2017). The trained participants
practiced their activities several times per week (running, swimming, cycling) and the untrained
participants were asked not to participate in organized sports but were allowed to be active because
of commuting (cycling to work). Urine was collected from all participants before the start of the
study, at pre-testing, after 10 days of training and after the study (Armstrong and Barker, 2011;
Sotiridis et al., 2018; Sotiridis, 2019a; Sotiridis et al., 2019; Sotiridis et al., 2020; Deutsch et al.,
2022a).

The measurements directed at human physiology showed that there were some nearly significant and
statistically significant differences between trained and untrained subjects at pretesting, and that there
were nearly significant (but still insignificant) differences even after only 10 days of training when
comparing pre- and post-training, suggesting that some characteristics may be observed in subjects
leading an active lifestyle. The differences between the condition before and after training were larger
in the untrained groups and based on the measurements of VO2max before training and its change
during the 10 days of training the rate of adaptation to training is greater in untrained individuals.
Based on physiological measurements, we observed that the untrained and trained groups became
synchronized in terms of the measured training parameters (Sotiridis et al., 2018; Sotiridis, 2019a;
Sotiridis et al., 2019; Sotiridis et al., 2020; Deutsch et al., 2022a).

Based on urine metabolomics, no significant difference could be detected between urine samples
before and after 10 days of training. However, differences were observed between trained and
untrained urine 'H-NMR metabolomes. In addition, urine physicochemical properties (pH, total
dissolved solids, salinity and conductivity) also differed significantly between these two groups. For
example, pH was decreased in untrained individuals, a condition previously associated with metabolic
syndrome and chronic heart failure (Maalouf et al., 2007; Otaki et al., 2013; Kraut and Madias, 2016;
Shimodaira et al., 2017).

Metabolites (cholate, tartrate, cadaverine, lysine, N6-acetilysine, methanol, N-acetylglucosamine,
butanone, and caprate) were identified as metabolites responsible for differentiation between trained
and untrained group using multivariate statistics and machine learning. All metabolites were
previously observed in studies related to muscle damage, hormone receptor levels, recovery after
resistance training, lower cardiovascular risk (tartrate) (Abramowicz and Galloway, 2005; Spiering
et al., 2008) or atrophic state in myotubes, and obesity (cholate) (Li et al., 2020; Abrigo et al., 2021;
Alamoudi et al., 2021; Mercer et al., 2021; Pushpass et al., 2021; Zheng et al., 2021). Cholate is a
primary bile acid that was enriched in the untrained group, which was previously associated with the
development of cancer. Incidentally, increased concentrations of primary bile acids in the
bloodstream were observed in less fit women, and a single training run may decrease the amount of
these compounds (Danese et al., 2017; Maurer et al., 2020).
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Lysine and cadaverine are polyamines previously associated with metabolic syndrome and colon or
liver cancer (cadaverine was elevated in the untrained group). Lysine is involved in aminoacyl-tRNA
biosynthesis, a metabolic pathway enriched in the trained group and previously correlated with higher
physical activity, which may be due to changes in protein synthesis in active subjects (Robinson et
al., 2017; Castro et al., 2019; Tabone et al., 2021; Tian et al., 2021). 2-hydroxy-3-methyl valerate was
increased in untrained participants, which may affect energy metabolism via PPAR-a, as previously
shown in older, functionally impaired adults (Coen et al., 2013; Lustgarten et al., 2014).

Using this approach, we showed that the entire system in active subjects was significantly different
from that of inactive subjects (p=0.003). After 10 days of training, the significance of difference
disappeared at the end of the campaign (p=0.226) (Figure 16). It became clear that minor metabolomic
differences existed between the metabolomes of trained and untrained subjects, which remained
physiologically completely different with respect to their physical capabilities. Therefore, lifelong
training would be required to maintain a healthy metabolome phenotype. Our study showed that an
exercise load 5 times higher than the 75—-150 minutes per week recommended by WHO is effective
(Sallis et al., 2016; Kelly et al., 2020b). In addition, this experiment has shown that 3-day morning
urine samples provide a good biological matrix for discriminating active from inactive individuals,
which cannot be observed in a 1-day sampling because of diurnal variability. Systemic homeostasis
depends on a number of different parameters and involves communication between different organs
through which metabolic pathways affected by a metabolite in one organ can affect other metabolic
pathways in another organ. A sedentary lifestyle can disrupt this communication between organs,
leading to the manifestation of various diseases. Higher levels of exercise can restore interorgan
communication in physically inactive individuals towards that of healthy and active individuals (Di
Liegro et al., 2019; Deutsch et al., 2022a).
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Figure 16: Change between trained (T) and untrained (UT) participants of X-Adapt study.
The entire system in active subjects was significantly different from that of inactive subjects (p=0.003) before the X-
Adapt study. After 10 days of training, the significance of difference disappeared at the end of the campaign (p=0.226).

Slika 16: Sprememba med treniranimi (T) in netreniranimi (UT) udelezenci studije X-Adapt.
Na zacetku kampanje je bil celoten sistem treniranih udelezencev Studije X-Adapt drugacen od netreniranih udelezencev
(p=0.003). Po 10-dnevnem treniranju je ta razlika na nivoju celotnega Sistema izginila (p=0.226).

3.1.6 Metabolomes and microbial metagenomes can distinguish preterm and full-term born
adults

Preterm birth is defined as a birth before 37 weeks gestation; approximately 10% of births are preterm
worldwide, and it is still one of the leading causes of death in children under 5 years of age. Preterm
birth increases the risk of developing various chronic diseases such as cardiovascular,
endocrine/metabolic, renal, neurological, and psychiatric disorders. One of the main causes of these
disorders is increased oxidative stress in the first weeks of life (Moutquin, 2003; Magalhaes et al.,
2004; Pialoux et al., 2009; Blencowe et al., 2012; Lushchak, 2014; Liu et al., 2015; Manley et al.,
2015; Debevec et al., 2017; Crump, 2020; Tingleff et al., 2021). There is a high probability that some
clinical parameters such as body fat mass, arterial blood pressure, fasting glucose and cholesterol may
be elevated (Kerkhof et al., 2012; Markopoulou et al., 2019; Crump, 2020). All of these characteristics
were shown in various studies to be different between preterm and full-term born adults and that these
differences are particularly related to the production of reactive oxygen species, and can be observed
in association of different levels of exercise or physical activity (Magalhaes et al., 2004; Powers et
al., 2011; Filippone et al., 2012; Debevec et al., 2017; Martin et al., 2018).

The aim of the PreTerm project was to investigate whether differences of blunted ventilatory response
(HVR) exist in physically fit young men (born preterm and full-term) under hypoxic and normoxic
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environmental conditions at rest and during physical activity (Debevec et al., 2019; Debevec et al.,
2022). In addition, a high-throughput analytical approach consisting of urine and faecal metabolomics
and faecal metagenomics was used to describe the complexity of the human body and gut microbiome
in its response to increased oxidative stress levels at rest and during exercise in normoxia and hypoxia
(Martin et al., 2020).

A total of 37 men were enrolled in this study (15 born full- term and 22 born preterm). Incremental
cycling in normoxia and hypoxia were shown to increase levels of oxidative proteins, catalase,
superoxide dismutase, and nitrosative markers in both groups immediately after exercise (Martin et
al., 2020). Participants in the preterm group showed lower exercise capacity in normoxia compared
with the full-term group and had lower HVR, whereas no such difference was observed in hypoxia
(Vrijlandt et al., 2006; Lovering et al., 2013; Svedenkrans et al., 2013; Bates et al., 2014; Clemm et
al., 2014; Farrell et al., 2015; Debevec et al., 2019). These results indicate that preterm infants may
have increased oxidative stress during acute exercise in normoxia, whereas such a response was not
observed in hypoxia (Martin et al., 2020).

We measured 25 physicochemical variables in the stool samples (including the MP approach
described above), and no significant differences were found between the preterm and full-term
groups. These results indicate that there were no differences in gut environment parameters between
preterm and full-term infants, regardless of environment (hypoxia vs. normoxia). Faecal and urine
samples were collected three days before and three days after the hypoxic and normoxic tests.
Multivariate statistics based on 1- and 2-way PERMANOVA showed that there were significant
differences between preterm and full-term participants based on faecal and urine metabolome, but
not between pre-test and post-test in normoxia and hypoxia (Deutsch et al., 2022b).

Acetone, tartrate, and trans-aconitate were metabolites that were decreased in the preterm group
according to the MetaboAnalyst’s results. These metabolites are associated with exercise, fasting, or
diabetes mellitus (Paradis et al., 2015; Crump et al., 2019; Perrone et al., 2021). Based on the urinary
metabolome, the most interesting enriched metabolic pathway (D-arginine and D-ornithine
metabolism) was described previously in association with systemic or tissue hypoxia (Qiu et al., 2017;
Haraldsdottir et al., 2019). The differences appear to be due to impaired autonomic function because
heart rate recovers more slowly in preterm adults, which could lead to anoxia and increase their
cardiovascular risk, as previously suggested (Sonntag et al., 2007; Ten, 2017).

Faecal metabolomes also differed between preterm and full-term participants. Lactate, serotonin, and
tyrosine were the major metabolites that accounted for the difference between the preterm and full-
term groups. The first two were increased in the preterm group, which, together with the enriched
metabolic pathway (Warburg effect), shows that some metabolic changes can be observed in preterm
infants. The Warburg effect was described previously in preterm infants and associated with
mitochondrial dysfunction (Mclver et al., 2018). These findings may represent the first evidence that
systemic differences due to lifelong exposure to oxidative stress do indeed exist and raise the question
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of whether these differences are associated with minute differences generated on the part of the
preterm host or on the part of the microbiome responding to these environmental signals or with their
mutual interaction in the form of a complex biochemical network in the steady state (Deutsch et al.,
2022b).

The collected faecal samples were used for shotgun sequencing to investigate whether the observed
differences in faecal metabolomes exist at the microbial level. No significant differences were
observed at the taxonomic level, but the relative abundances of archaea and viruses were higher in
the preterm group and would deserve further, more detailed inspection using larger sample
collections. The calculation of Shannon and other diversity indices showed that microbial diversity
was higher in preterm group. In the previous decade, it became clear that the more important question
in the study of the microbiome is what the microbes in our gut are doing. For this reason, HUMAnN3
and metaPHLAnN3 were used to determine which gene families, enzymatic reactions, metabolic
pathways, and predicted metabolites can be used to distinguish between preterm and full-term born
adults. Machine learning was used to build classification models for this purpose utilizing JADBio
(Deutsch et al., 2022b).

No significant differences were detected based on gene families, but we did detect some differences
based on enzymatic reactions, metabolic pathways, and predicted metabolites. The previously
described RXN-15378 enzymatic reaction of succinate dehydrogenase was increased in the preterm
group. Succinate itself is a microbial metabolite and can accumulate in the intestinal tract during
inflammation or microbial imbalances. It has tissue-specific but also pro-inflammatory properties and
is also a source of propionate production by Bacteroides spp. and Prevotella sp. Succinate was shown
to accumulate in cells under low-oxygen conditions and represents the metabolic signature of
hypoxia. Excessive uptake of microbially produced succinate was shown to lead to higher levels of
intracellular succinate, which slowed down prolyl- hydroxylase activity through product inhibition
and lead to additional activation and stabilization of HIF-1a beyond the response to hypoxia itself,
which significantly enhanced LPS-induced expression of proinflammatory cytokines in human cells
(Rubic et al., 2008; Ariza et al., 2012; Tannahill et al., 2013; Akram, 2014; Littlewood-Evans et al.,
2016; Connors et al., 2018).

PWY-7456 (B-(1,4)-mannan degradation), PWY-7323 (superpathway of GDP-mannose-derived O-
antigen building blocks biosynthesis) and GLYCOLY-SIS-TCA-GLYOX-BYPASS (superpathway
of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass), P221-PWY (octane oxidation),
PWY-5173 (unclassified) were pathways that were increased in the preterm group. Some of them
may be beneficial and strive for mucosal integrity and host nutrition (B-(1,4)-mannan degradation) or
significantly increase energy production, which would be important in the case of oxidative stress as
in preterm individuals (super-pathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate
bypass). Acetyl-CoA biosynthesis may also lead to increased production of butyrate via the
production of acetyl-CoA. In contrast, some pathways have a more negative effect and were also
increased in the preterm group. These pathways were shown to be involved in lipopolysaccharide
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LPS production (GDP-mannose-derived O-antigen building blocks biosynthesis) associated with
Gram-negative bacteria and causative agent of different degrees of inflammation (Samuel and
Reeves, 2003; Wolfs et al., 2010; Shah et al., 2015; Kim et al., 2016; La Rosa et al., 2019; Lindstad
et al., 2021). However, octane oxidation, previously described in the context of westernization of the
human gut and associated with liver disease, was also observed (Deutsch et al., 2022b). All these
differences can be associated with the physiologically significant deficits observed between both
groups (Martin et al., 2018; Martin et al., 2020).

Seventeen predicted metabolites were also detected by the 'H-NMR approach, none of which were
considered important for differentiation in the machine learning. Significant differences were
detected in the urine and faecal metabolomes in addition to predicted metabolites, suggesting that
systemic differences between the two groups exist. Elevated metabolites were previously associated
with cardiovascular disease (carnitine), increased intestinal permeability, elevated levels of
inflammatory cytokines, metabolic syndrome, or cancer growth (putrescine and diacetylspermine).
In contrast, some predicted metabolites were decreased in the preterm group. Deoxycholate is a
secondary bile acid and a known promoter of colon cancer. The decreased levels of this molecule
were generally observed due to the increased urinary excretion of cholate observed in urine
metabolomics. Given the physiological differences between the two groups examined in this study,
it seems plausible that there were also differences in the extent of utilization of these polyphenols in
the preterm group. Hydrocinnamic acid was observed to a lesser extent in the preterm group. The
lower content of reducing sugars (fructose, glucose, and galactose) in the preterm group corresponded
with a greater capacity to form short-chain fatty acids (Fukiya et al., 2009; Wang et al., 2011b; Koeth
et al., 2013; Tang et al., 2013; Ussher et al., 2013; Staley et al., 2017; Heinken et al., 2019; Wirbel et
al., 2019).

In addition, de novo MAGs were assembled from the same sequences using our MAGO tool (see
above). No significant differences were found at the level of MAGs, which corresponds to the same
result at the level of taxonomic data obtained with Metaphlan. This is consistent with our observation
that there are no significant taxonomic differences between the microbiota of the preterm and the
control groups. By introducing a controlled diet, a controlled water intake, and a controlled circadian
rhythm as previously described (Sket et al., 2017a; Sket et al., 2017b; Sket et al., 2018; Sket et al.,
2020), it should be possible in future experiments with sufficient sample size to first establish the
existence of significant differences in the microbiome (or the lack thereof) and then focus on the
assembly of MAGs. The metabolic responses and predicted metabolites indicated that the microbiome
of preterm group has greater metabolic flux compared with the full-term group, suggesting the
existence of minor, yet unmeasured, but apparently significant environmental differences in the
preterm gut relative to controls.

With the results described above (Figure 17), we can confirm two alternative hypotheses from section

1.4.1 and table 2. The first confirmed hypothesis states that there are significant differences between
the preterm and full-term groups of participants in faecal and urine metabolomes that can be linked
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to their physical performance in experiments and physiological data at exercise and rest. The second
hypothesis states that there are significant differences at the level of metagenomics makeup of both
groups, giving rise to identification of specific metabolic pathways differing between two groups and
their gut environment characteristics. In the frame of taxonomic descriptions, we could not reject the
null hypothesis of no difference between the groups as no significant differences were observed.

Control | Preterm Observed changes
Physiology Exercise/Rest . A Pt significantly different from T and different
responses to rest and some to exercise
Urine . A Pt significantly different from T at the level of urine
DE: metabolomes
= Feces . A Pt significantly different from T at the level of fecal
metabolomes
Taxonomy . A No characteristic change in microbiome taxonomy
Functional genes No characteristic change in microbiome functional
. A genes
o Enzymatic . A Distinct use of enzymatic reactions
£ reactions
]
a Metabolic . A Distinct use of metabolic pathways
o pathways
]
= Pl'edicte.(l Distinct use of predicted metabolites
metabolites . A
MAGs No characteristic change in de novo assembled
. A metagenomes

Figure 17: A summary of observed changes in PreTerm study.

A summary of observed changes at various information levels showing that significant differences exist between the
preterm and full-term adult urine metabolomes, faeccal metabolomes, and microbial metabolic reactions and pathways.
Taken together, these results show that host and its microbiome behave measurably different in healthy physically fit
young males in comparison to matched full-term controls.

Slika 17: Povzetek opazenih razlik v §tudiji PreTerm.

Povzetek opazenih razlik na razli¢nih nivojih informacij, ki kazejo na signifikantne razlike med predcasno in pravocasno
rojenimi odraslimi na podlagi metabolomov urina in fekalnih vzorcev ter mikrobnih metabolnih reakcij in poti. Ce
povzamemo, ti rezultati nakazujejo, da se gostitelj in mikrobiom razli¢no odzivata med pred¢asno in pravo¢asno rojenimi
odraslimi.

3.1.7 Data integration

We summarized more than 1200 collected samples in the creation of the Slovenian urine '"H-NMR
database. Metabolomics data from all projects (PlanHab, spinal muscular atrophy, X-Adapt, PreTerm,
healthy women and men) were integrated. All measured spectra were analysed with the same
procedure to obtain the same metabolites in all projects. We showed that at this level of physiological
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data characteristics distinction is possible between the different activity levels based on the
metabolites in urine. All samples were processed in the same way and can be reprocessed again
utilizing future database updates using our in-house processing pipeline (Sket et al., 2017a; Sket et
al., 2017b; Sket et al., 2018; Sket et al., 2020; Deutsch et al. 2021a; Deutsch et al., 2021b; Deutsch et
al., 2022a; Deutsch et al., 2022b) alongside commercially available software for targeted 'H-NMR
spectral deconvolution. For instance, the same spectra can be rerun with future database updates of
the Human Metabolome Database (HMDB) as it grew from a few thousand metabolites in the first
edition (Wishart et al., 2007) to 217,000 metabolites in the latest edition in 2021 (Wishart et al., 2021).
The standardized analytical protocols established in our laboratory enabled minimizing systematic
errors that usually occur due to batch effects or contributions by various NMR experts. The Box-Cox
normalization and the SPLSDA approach utilized to integrate all metabolomes in our study showed
competitive performance in removing batch effects, but still preserved variations due to lifestyle or
other biological reasons (Wang and Lé Cao, 2020). This approach also allowed us to partly confirm
the alternative hypothesis from section 1.4.3 and table 2 confirming significant differences in urinary
metabolomes that allow the identification of biomarker pools and metabolic pathways that delineate
different groups under study. The identification of biomarker pools should be confirmed on larger
dataset.

We showed that urinary metabolic fingerprinting has the potential provide a snapshot of metabolic
status relevant and related to health and activity status (Azad and Shulaev, 2019; Mussap et al., 2021).
In general, metabolomics involves the systematic identification of metabolites in the human body
(Ashrafian et al., 2021). The development of a national database should improve the understanding
of the Slovenian metabolome in comparison to studies from other European countries and the
identification of metabolites specific to various diseases or physical conditions. With an enlarged
database, we avoid problems with small sample sizes as observed in individual studies described
above. We would need cohorts at least two orders of magnitude larger to confirm the final results of
these studies. "H-NMR metabolomics has the potential to capture a wide range of conventional
clinical variables in epidemiological studies, including missing variables for patient metadata, and
makes it possible to generate predictors of discrimination between different diseases based on
machine learning. Top-down interpretation of metabolomic datasets, particularly urine that can be
collected noninvasively, can provide sufficient data to draw conclusions about how samples should
be classified into different groups. We hope to generate interest from other researchers to incorporate
NMR metabolomics into their research to expand our established database to approximately 10,000
samples on a national scale. The modelling of such data collection represents unique avenue to create
ML models that can be used in medical practice at least tentatively to distinguish between healthy
and unhealthy metabolic states next to between different diseases. Thus, this approach represents a
step closer to data-driven precision medicine that has the potential to inform health on a national
scale. The publication of the Slovenian urine NMR database is in preparation.
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3.1.8 What about the future?

The beauty of ‘omics research is that it generates thousands of different variables in different data
matrices. All of the datasets obtained in this work were analysed in different ways, but there is always
room for improvement of the use of different methods on the wet lab side or on the computational
side. For instance, efforts are being directed towards inclusion of ongoing projects focusing on urine
metabolomics as part of Slovenian urine 'H-NMR database. In line with these, (i) a total of 320
samples from the PreAlti project (extension of the PreTerm project) were collected and measured,
(i1) extension of SMA is currently in the phase of ongoing sample collection, (iii) samples are also
being collected from two clinical cohorts from the University Clinical Centre of Ljubljana including
the Children’s Hospital (tics, anorexia), while (iv) clinical cohorts associated with Million
Microbiomes from Humans Project are aiming at collecting more than 1000 faecal and urine samples
for metagenomics and metabolomics analyses. All these projects are on the way to generate thousands
of gigabytes of molecular data accompanied by participants metadata in accordance with GDPR and
ethical considerations as governed by the Ethics Commission of the Republic of Slovenia in ongoing
efforts to improve the understanding of the Slovenian microbiome, metabolome, and physiology by
creating better and more appropriate models and networks that will be characteristic of different
diseases and/or physical conditions. Maintaining systemic homeostasis and responding to nutritional
and environmental challenges requires the coordination of a variety of organs and tissues. To respond
to diverse metabolic demands, the human body integrates a system of interorgan communication
through which one tissue can influence metabolic pathways in a distant tissue. Dysregulation of these
communication pathways through lack of exercise (sedentary lifestyle) and high-energy diets
contributes to diseases such as obesity, diabetes, liver disease, and atherosclerosis. For timely
interventions, we should think about using body fluids (such as urine) that allow for non-invasive
sampling but are sensitive enough to differentiate between a range of biomarkers (Figure 18).

The ability to effectively conduct quality control of incoming datasets, the pre-processing of
sequencing or metabolomics raw data files to organized data matrices, the pre-processing of missing
values, standardization and normalization procedures, in addition to the batch corrections established
in this study coupled with data integration approaches enable the syncing of metagenomics,
metabolomics and metadata for the same participants in the future, integrating the information about
different states in the complexity of human body. This enables a better understanding of inter-organ
communication, which acts as a gatekeeper for metabolic health, as multidirectional interactions
between metabolic organs and the central nervous system mediate crosstalk between the gut, brain,
and other peripheral metabolic organs to maintain energy homeostasis. This enables the search for
new therapeutic strategies and promotes a healthy lifestyle to counteract metabolic disorders and other
diseases.
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escribed in this work.

Slika 18: Nadaljevanje projektov, opisanih v tem delu.
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3.9 CONCLUSIONS

e The GUMPP and MAGO tools were developed, and the metaBakery tool is under development
for high-throughput amplicon and shotgun sequencing analysis. All tools are available as
Singularity image containers prepared for deployment on the HPC cluster and can be further
developed by all users. All tools were developed under the open-source license CC-BY 4.0.

e By utilizing the newly developed MP approach on faecal samples, we showed that measuring
some physicochemical parameters and using ‘omics methods can lead to a completely new
understanding of complex biological systems. The MP approach was a less-biased and fine-scale
approach to measure faecal hardness compared to the previously used BSS approach, including
the interior of samples.

e Participants of the bed rest group (NBR and HBR) from the PlanHab study had a specific
metabolic composition compared with the HAmb group. We concluded that the host decision to
minimize physical activity under hypoxic conditions can be detected within a few days at the level
of the urine metabolome measured by NMR.

e  When urine, serum, and liquor samples from SMA patients were compared before and after the
4th application of drug nusinersen, no differences were observed. However, urine creatinine was
observed as a possible biomarker to distinguish healthy individuals from SMA patients.

e SMA study allowed us to observe some differences between healthy male and female urine
metabolomes, which shows the importance of including women in biomedical and physiological
studies.

e Urinary metabolomes of untrained individuals differed from metabolomes collected from trained
participants in the X-Adapt study. After 10 days of training, these differences disappeared,
demonstrating the importance of physical activity for humans.

e It was shown that consecutive 3-day urine collection can enable better understanding of morning
metabolomes representing a systemic description of the state of human body.

e Urinary and faecal metabolomes of preterm and full-term born individuals of the PreTerm study
were different. Microbial functionality observed on shotgun sequencing of stool samples was also
different in the two groups. However, no significant taxonomic differences could be observed due
to unequal variance at this information level.

e The integration of urine metabolomes from five different projects enabled creating a Slovenian
NMR database that has the potential for the future to include more samples from different
specimens and to create classification models to discriminate between different diseases or
activity levels.
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4 SUMMARY (POVZETEK)

4.1 SUMMARY

Modern human are increasingly threatened by the daily sedentary lifestyle and by serious diseases.
The effects of short-term inactivity lead to maladaptations in body physiology, gut microbiota, and
metabolic profiles, resulting in increased inflammation, depression, insulin resistance similar to
metabolic syndrome, and type 2 diabetes symptoms. However, the effects of long-term physical
inactivity, lack of oxygenation, and large muscle signalling are not well understood, although they
have direct and widespread biomedical significance for preterm birth and/or genetic disorders, such
as SMA, obesity, cardiovascular deconditioning, and chronic obstructive pulmonary disease. To
address these issues, three projects analysed a variety of samples: 1) physiological responses in
adulthood as a consequence of preterm birth (PreTerm project; ARRS J3-7536; EU project
https://recap-preterm.eu/); ii) spinal muscular atrophy (project within the University Clinical Centre
of Ljubljana) as an extreme case of physical inactivity; and iii) cross-adaptation between heat and
hypoxia: a novel strategy for performance and work-ability enhancement in various environments
(X-Adapt; research project ARRS J5-9350). The SMA and PreTerm projects addressed lifelong
exposure to systemic effects of reduced physical activity: 1) intermittent episodes of systemic hypoxia
at rest/sleep (PreTerm) and i1) continuous systemic hypoxia due to reduced host physical activity and
relief of hypoxia after therapy. The X-Adapt project addressed the impact of regular 10-day training
on the physiology of healthy trained and untrained individuals. In addition, little is known about the
existence of differences in the human-gut microbiome relationship due to lifelong exposure to
hypoxic episodes in preterm versus full-term born adolescents (The PreTerm project), which could
impact the functionalities and metabolism of the microbiome in these hosts.

For a better understanding, especially of the microbiome, the appropriate tools for high-throughput
big data analysis were developed on our side. The GUMPP workflow was developed for amplicon
sequencing at three different levels (i) genus, (i1) OTU, or (ii1) ASV. The GUMPP workflow consists
of the most commonly cited tools for amplicon sequence analysis (Mothur) and microbial
functionality prediction (PICRUSt2 and piphilin). The metaBakery workflow is prepared for shotgun
sequence analysis and also consists of BioBakery tools (MetaPhlaAn (taxonomic analysis),
HUMANN3 (analysis of functional genes, enzymatic reactions, and metabolic pathways) and
MelonnPan (prediction of microbial metabolites). The manuscript of the metaBakery tool is currently
in the preparation phase. The third tool developed is a MAGO tool that uses the most advanced
methods for microbiome analysis and consists of the main quality control tools (FastQC, fastp),
assemblers (IDBA-UD, metaSPAdes, megahit) and binners (maxBin, MetaBAT, CONCOT,
BinSanity and DAStool). CheckM tools were integrated throughout the pipeline to select assembled
MAGs based on completeness and contamination according to the MIMAG standard. All tools were
prepared as a skeleton framework consisting of 10,000 lines of code written in Python and packaged
as a singularity image ready for use on HPC clusters. All tools were developed under the CC-BY 4.0
license and are released for development by other researchers.
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In the context of the microbial world in the human gut, physicochemical parameters are important for
both microbial homeostasis and human homeostasis. The BSS was previously used to assess gut
health based on a visual assessment. One problem with this assessment was personal bias. In this
work, we developed a new method for high-throughput assessment of faecal consistency, which we
called minimal pressure (MP), which is expressed as the force per unit area required to cause
permanent deformation of faeces. MP showed correlation with BSS, but provides the true assessment
on a continuous scale. The correlation between MP and faecal methionine and acetate showed with
different MP values. Both metabolites were previously associated with Western diet and inactivity,
such as the sedentary lifestyle. With MP, a new approach for measuring physicochemical parameters
was introduced, which, together with the ‘omics method, provides another level of understanding of
the microbial world in the human gut.

The PlanHab study was the first study by our group to investigate the problems of inactivity and
hypoxia from the perspective of "TH-NMR metabolomics. It was a crossover study with three different
21-day experiments (i) hypoxic bed rest, (i1) normoxic bed rest, and (iii) hypoxic ambulation. In both
bed rest studies, detectable metabolic changes were observed based on morning urine. The identified
metabolites were previously associated with various chronic diseases (chronic obstructive pulmonary
disease, cardiovascular disease, etc.). Overall, inactivity alone or in combination with hypoxia
resulted in decreased systemic metabolic diversity, increased the number of metabolic pathways
affected, and accelerated metabolic deconditioning, leading to the development of negative
physiological symptoms associated with these chronic diseases.

The results of the PlanHab project allowed us to join the spinal muscular atrophy project. In this
project, we were able to analyse the metabolomes of atrophic patients in three different samples
(serum, liquor, and urine) before treatment and after the 4th application of nusinersen, the first
treatment approved by the EMA and FDA for the treatment of SMA. We found no significant
differences between metabolomes. In parallel, we also collected urine samples from healthy
Slovenian patients who matched the SMA patients in age and sex. Using machine-learning methods,
we were able to determine urine creatinine to be a potential biomarker for the diagnosis of SMA.

The SMA project studied complete disease-related inactivity. The X-Adapt project allowed us to
understand the impact of a 10-day exercise regimen on the metabolome of trained and untrained
participants in the study. It was showed before that minimal activity can reduce the likelihood of
metabolic syndrome due to a sedentary lifestyle. Participants were tested before and after the 10 days
of training. Urine samples were collected at four different time points. Urine samples were collected
over three days to reduce day-to-day variation. Briefly, some metabolites were found to be important
in discriminating between trained and untrained subjects, but the significant differences disappeared
after 10 days of training when trained and untrained subjects became more metabolically
synchronised. In general, we showed that there is little difference between the two groups and that a
lifelong active lifestyle is necessary to maintain a healthy metabolome.
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In the PreTerm project, adult preterm and full-term adults participated to observe differences in
metabolome (faecal and urine) and microbial metagenome when exposed to hypoxic or normoxic
conditions (cycling on an ergometer). No significant differences were observed based on 25 measured
physicochemical parameters in faeces (including the MP approach). In addition, some metabolic
differences were observed in faecal and urine samples, some of which were previously associated
with the development of noncommunicable diseases, particularly in preterm born adults. In addition,
shotgun sequencing of the faecal samples was performed. We demonstrated that the taxonomic
composition of preterm and full-term groups was the same, based on analysis of sequences and de
novo MAGs, but microbial functions were different, once again demonstrating the importance of
studying microbial functionality. Metabolic responses and predicted metabolites indicated that the
microbiome of the preterm group had greater metabolic flux than that of the full-term group,
suggesting minor, previously unmeasured, but apparently significant environmental differences in the
preterm gut compared with controls.

The final step was completed with data integration. More than 1200 metabolomes from all projects
(PlanHab, X-Adapt, SMA, PreTerm and healthy comparison group) were integrated with the
miXomics package. We have shown that there is a possibility that we can use urine NMR
metabolomes to differentiate between different groups (diseased vs healthy, active vs inactive) in the
future. Top-down interpretation of metabolomic datasets, especially urine that can be collected
noninvasively, may provide sufficient data to draw conclusions about how samples should be
classified into different groups. We hope to stimulate the interest of other researchers to incorporate
NMR metabolomics into their research in order to expand our established database to approximately
10,000 samples on a national scale. The manuscript of the Slovenian NMR database is currently under
preparation.

In addition, the expansion of our NMR database continues: 320 samples from the Prealti project
(continuation of the PreTerm project) were already collected and measured, the SMA project was
extended and sample collection continues, two additional clinical cohorts are being collected (tics,
anorexia), and more than 1000 faecal and urine samples will be collected as part of the Million
Microbiomes from Humans project. All of these projects are on track to generate thousands of
gigabytes of molecular data accompanied by participant metadata. This is being done in compliance
with the General Data Protection Regulation (GDPR) and ethical considerations as defined by the
Ethics Committee of the Republic of Slovenia to improve the understanding of the Slovenian
microbiome, metabolome, and human physiological states. To respond to diverse metabolic demands,
the human body integrates a system of interorgan communication through which one tissue can
influence metabolic pathways in a distant tissue. Dysregulation of these communication pathways
through lack of exercise (sedentary lifestyle) and high-energy diets contributes to human diseases
such as obesity, diabetes, liver disease, and atherosclerosis. For timely interventions, body fluids
(such as urine) represent logical choice and allow for non-invasive sampling but are sensitive enough
to differentiate between a range of biomarkers.
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4.2 POVZETEK

V ¢&loveskem prebavnem traktu Zivi 10! mikrobni celic, ki proizvajajo, spreminjajo in porabljajo na
tisoc¢e kemijskih spojin, ki vplivajo na mikrobno sestavo in zdravje ljudi. Tehnologije sekvenciranja
(metagenomika) in druge ‘omske metode (metabolomika, proteomika, lipomika) so nam poleg
sodobnih biostatisti¢nih in strojnih metod ucenja omogocile globlje razumevanje in nova spoznanja
o kompleksnosti in vzro¢nosti med mikrobioto in njenim gostiteljem pri raziskavah bolnih in zdravih
kohort preiskovancev skozi ¢as. Pomembna povezava med tema dvema skupinama je stanje
metabolnega okolja, ki odraza medsebojni vpliv fiziologije gostitelja in mikrobioma (Schmidt, 2021).

V prej$njih Studijah smo v okviru projekta PlanHab raziskovali posledice zmanjSane fizicne
aktivnosti in zmanjSane vadbe pri gostitelju (¢loveku) (Debevec in sod., 2014; Sket in sod., 2017a;
Sket in sod., 2017b; Sket, 2018; Sket in sod., 2018). Posledice kratkotrajne neaktivnosti so povzrocile
nepravilnosti v telesni fiziologiji, ¢revesni mikrobioti in metabolomskih profilih, kar je povzrocilo
povecano sistemsko vnetje, depresijo, inzulinsko rezistenco, pojave, ki so podobni zacetkom pri
metabolnem sindromu in diabetesu tipa 2. Po drugi strani pa ucinki dolgotrajne telesne neaktivnosti,
pomanjkanja kisika in signalov velikih miSic v primeru posledic prezgodnjega poroda in/ali genetskih
motenj, kot so spinalna miSi¢na atrofija (SMA), debelost, sr¢no popuS€anje in kroni¢na obstruktivna
pljucna bolezen, kljub neposrednemu in velikemu biomedicinskem pomenu niso dobro razumljeni.

Da bi raziskali ta problem, smo zbrali raznovrstno paleto vzorcev v okviru treh kontroliranih in
natan¢no vodenih projektov: i) fizioloSki odzivi v odraslosti kot posledica prezgodnjih porodov
(projekt PreTerm; ARRS J3-7536; projekt EU https: //recap-preterm.eu/); ii) spinalna miSi¢na atrofija
(SMA KCLJ) in iii) navzkrizna adaptacija na vrocino in hipoksijo — nova strategija za pripravljenost
in povecanje netreniranosti v razli¢nih okoljih (X-Adapt; projekt ARRS projekt J5-9350). Vsi projekti
obravnavajo vsezivljenjsko izpostavljenost sistemskim ucinkom zmanjSane telesne aktivnosti: 1)
prekinjajoce epizode sistemske hipoksije v mirovanju / spanju (PreTerm), i1) kontinuirano sistemsko
hipoksijo zaradi zmanjSane telesne aktivnosti gostitelja zaradi genetskega defekta in lajSanje
hipoksije po genetski terapiji, ali iii) primerjavo treniranih in netreniranih zdravih, mladih moskih.
Opravili smo biokemijsko karakterizacijo telesnih tekocin, zbranih v okviru vseh projektov in jih
uporabili za raziskovanje biokemijske sestave (metaboliti) in njihovih interakcij (metabolne poti).

Mikrobne vrste igrajo pomembno vlogo v raznolikih okoljih, za katera je znacilen Sirok spekter
kompleksnosti organizmov (Murovec in sod., 2019). Mikrobi, ki zZivijo v Crevesju, so v stalni
interakciji z gostiteljem in ve€smerni interakciji s svojimi mikrobnimi sorodniki s proizvodnjo
razli¢nih molekul, ki lahko izboljSajo zdravstveno stanje gostitelja ali po drugi strani vodijo v razvoj
nenalezljive (kroni¢ne) bolezni ali njeno napredovanje (Murovec in sod., 2020). Napredovanje
bolezni se lahko kaze kot blagi gastrointestinalni simptomi na eni strani ali resne bolezni, kot so
vnetna &revesna bolezen, rak debelega &revesa ali rak jeter na drugi strani. Stevilne bolezni so bile
povezane s presnovnimi neravnovesji, ki so delno ali v celoti povezana s ¢revesnim mikrobiomom
(od metabolnega sindroma in debelosti do avtoimunskih bolezni, okuzb in dusevnih motenj (Murovec
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in sod., 2021)). Po razvoju in izboljsavah tehnologij sekvenciranja je hitro postalo jasno, da vecine
mikrobov (npr. 99 %) ni mogoce gojiti v laboratorijskem okolju, da locevanje sevov na podlagi
bioloSko relevantnih lastnosti ni enostavno izvedljivo, vseeno pa lahko na podlagi njihovega
genetskega materiala vidimo, kateri mikrobi so prisotni v vzorcu. Na podlagi njihovega genetskega
materiala lahko tudi sklepamo o mikrobni funkcionalnosti vzorca (kaj lahko ti mikrobi naredijo
(funkcionalni geni, encimske reakcije, ali metabolne poti (Murovec in sod., 2020))).

Za zanesljivo in ponovljivo analizo obseZznih mikrobnih podatkov smo razvili tri orodja. Prvo je
orodje General Unified Microbiome Profiling Pipeline (GUMPP), ki je namenjeno obsezni,
poenostavljeni in ponovljivi analizi bakterijskih amplikonskih podatkov (na nivoju rodu, operacijskih
taksonomskih enot in razlik v sekvencni variantah) in napovedovanje njihovega funkcionalnega
potenciala (Murovec in sod., 2021), ki ga sestavljajo Mothur (Schloss in sod., 2009), PICRUSt2
(Douglas in sod., 2020) in piphillin (Narayan in sod., 2020).

Sekvenciranje celotnega zaporedja genomov vkljucuje netaréno sekvenciranje naklju¢ne podmnozice
vseh zaporedij do dolocene globine sekvenciranja, ne kot pri tarénem (amplikonskem) sekevnciranju,
kjer je posekvenciran le majhen del specificnega gena. BioBakery je orodje za analizo zaporedja
celotnega metagenoma, ki zdruzuje razli¢na orodja za analizo kakovosti, taksonomsko analizo
(MetaPhlAn), funkcionalne gene, encimske reakcije in presnovne poti, ki so prisotne v mikrobni
zdruzbi (HUMAnN3 (Beghini et al., 2021)). Poleg tega omogoca napovedovanje mikrobnih
metabolitov samo na podlagi metagenomskih informacij in s tem vpogled v potencialno sestavo
mikrobnih metabolomov, ki bi lahko bili prisotni v tej zdruzbi (MelonnPan (Mallick in sod., 2019)).
Pozitiven vidik sekvenciranja celotnega genoma je tudi ta, da lahko pridobimo informacije o genskem
materialu iz razli¢nih taksonomskih skupin (arheje, bakterije, protozoji, glive, virusi, tudi ¢loveska
DNA), kar lahko izboljSa razumevanje kompleksnosti in interakcij med razlicnimi taksonomskimi
nivoji. To nas pripelje do drugega orodja, ki je bilo razvito iz naSe strani (metaBakery - v pripravi),
ki je reimplementacija orodja BioBakery, z dodatkom, ki omogocajo kvalitativne analize in
razsirjeno z algoritmi za izracun mikrobne pestrosti.

Naslednji korak pri analizi celotnega metagenoma je moznost de-novo sestavljanja metagenoma
(MAG). To je postopek, pri katerem se sekven¢ni od€itki pregledajo glede kakovosti, sestavijo in
zdruzijo skupaj, da dobimo sestavljene metagenome. To je proces, ki lahko vodi do odkritja
popolnoma novih mikrobnih vrst, saj 99 % mikrobnih vrst ne moremo gojiti v laboratorijskih pogojih.
Za namene obseznih, poenostavljenih in ponovljivih analiz smo razvili orodje MAGO (Murovec in
sod., 2020). To sestoji iz zelo uspesnih orodij za analizo kakovosti (FastQC, fastp (Chen in sod.,
2018)), orodij za sestavljanje (IDBA-UD (Peng in sod., 2012), metaSPAdes (Nurk in sod., 2017) in
megaHIT (Li in sod., 2015) in zdruZevanje (maxBin (Wu in sod., 2016), MetaBAT (Kang in sod.,
2015), CONCOT (Alneberg in sod., 2016), BinSanity (Graham in sod., 2017) in DAStool (Sieber in
sod., 2018)). V nadaljevanju se uporablja orodje CheckM (Parks in sod., 2015) za filtriranje, kateri
MAG so visokokakovostni v skladu s standardi MIMAG (Bowers in sod., 2019) (glede na popolnost
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in kontaminacijo). Orodje MAGO uporabniku omogoca tudi evolucijsko analizo z orodji ezTree (Wu,
2018), Prokka (Seeman, 2014), Roary (Page in sod., 2015) in FastANI (Jain in sod., 2018).

Vsa razvita orodja so bila pripravljena v programskem jeziku Python in sestavljena iz ve¢ kot 10.000
vrstic kode. Parametri za izvedbo poteka analiz so v celoti v rokah uporabnika. Vsa orodja so bila
razvita kot slike Singularity (Kurtzer in sod., 2017), pripravljene za preprosto uporabo na visoko
zmogljivih ra¢unalniskih grozdih (HPC) za obsezne in preproste analize 10.000 vzorcev na eni strani
in za izobraZevalne namene na drugi strani (Murovec in sod., 2020; Murovec in sod., 2021). Obe
orodji sta pod odprtokodno licenco CC-BY 4.0 in sta odprti za vse razsiritve, s ¢imer nudita priloZznost
za nadaljnji razvoj in postaneta standardizirani za mikrobno analizo v svetovnem merilu.

Peristalti¢ni valovi, ki ustvarjajo kontraktilne vzorce tankega Crevesa, in s tem ustvarjajo nenehno se
spreminjajoce se okolje. Konstantno meSanje fekalnega materiala povzroca prostorske in kemijske
spremembe okoljskih pogojev skozi as za mikrobe, ki Zivijo v ¢revesju, kar lahko vpliva na njihovo
aktivnost, ekspresijo genov, rast in Stevil¢nost posameznih skupin mikrobov (Ehrlein and Schemann,
2005; Johnson in sod., 2012; Cremer in sod., 2016; Glover in sod., 2016; Cremer in sod., 2017; Sket
in sod., 2017a). Stevilne tudije v preteklosti so povezale konsistenco blata z bogastvom &revesne
mikrobiote, njeno sestavo, enterotipi, poviSanimi nivoji vnetja, lipopolisaharidi in hitrostjo rasti
bakterij (Tigchelaar in sod., 2016; Vandeputte in sod., 2016). Konsistenca blata je bila v preteklosti
ocenjena z bristolsko lestvico (ang. Bristol Stool Scale (BSS)) (Heaton in sod., 1992; Lewis and
Heaton, 1997). Ena od pomanjkljivosti metode BSS je, da prihaja do visokega odstopanja med
ocenjevalci zaradi pristranskosti in vizualne ocene (Derrien in sod., 2010; Chumpitazi in sod., 2016).
Zato lahko le dobro usposobljen strokovnjak pripravi medicinsko pomembne zakljucke na podlagi
ocene BSS (Matsuda in sod., 2021).

Fekalni materiali so po fiziki materialov poltrdni materiali (tj. paste) (Grillet in sod., 2012), ki jih
umescamo med viskoelasticne materiale (poltrajna deformacija kot odziv na zunanje sile) na eni strani
in plasti¢ne materiale (trajna deformacija) na drugi strani. Ta nacin razmisljanja nas je pripeljal do
vrednotenja s pomoc¢jo minimalnega tlaka (MP) kot metode za manj pristransko in visoko zmogljivo
ocenjevanje konsistence fekalnega materiala (Deutsch in Stres, 2021). Minimalni tlak, izrazen kot
sila na enoto povrsine, je tlak, ki je potreben, da povzroci trajno deformacijo fekalnega materiala.
Pokazali smo, da MP naras¢a eksponentno v primerjavi z linearno padajo¢imi vrednostmi BSS, ne
glede na spol (Deutsch in Stres, 2021). Pokazali smo tudi, da obstaja nelinearna (asimptomatska) in
kompleksna povezava med suho snovjo in MP. Vzdolzno kartiranje povrSinskega MP po celotni
dolzini posameznega vzorca blata je pokazalo, da obstajajo razlicne drobnozrnate notranje, lokalne
razlike. Poleg tega je kljub enotnemu tockovanju BSS pri nizjih vrednostih BSS nasa analiza
pokazala, da so bolj odpornim povrsinskim plastem blata sledile mehkejSe notranje strukture, kar ima
za posledico nizje vrednosti MP, povezane s priblizno zdravo konsistenco blata (Deutsch in Stres,
2021). Te lastnosti z uporabo BSS ne moremo ovrednotiti. Dolo¢ili smo mejo, ki lahko razlikuje med
zdravim stanjem (MP < 75) ali zaprtjem (MP > 75) (Blake in sod., 2016; Sket in sod., 2017b; Sket in
sod., 2018). MP < 30 je ustrezalo vzorcem tekocega blata (driska). MP smo izmerili na vzorcih,
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zbranih v okviru $tudij PlanHab (Sket in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018) in
PreTerm (Deutsch in sod., 2022b). Predvsem prva je pokazala, da sta bili blokada por na fekalni
povrsini in zadrzevanje sluzi povezana s selektivnim pritiskom na mikrobiom c¢revesja, njegovo
gensko ekspresijo in presnovno aktivnost, kar lahko vodi do lokalnega vnetja (Vandeputte in sod.,
2016; Sket in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018; Aron-Wisnewsky in sod., 2019).
S tem smo pokazali, da lahko pristop MP natan¢no opise klini¢ni pomen konsistence blata (Deutsch
in Stres, 2021). Poleg tega pristop MP ne zahteva predhodne obdelave vzorcev in omogoca enostavno
merjenje brez drage opreme, pa tudi ponovljivost teh meritev med razliénimi vzorci (sveZi proti
zamrznjeni; mosSki proti zenski). Ugotovili smo tudi, da MP korelira s fekalnim metioninom in
acetatom na podlagi meritev 'H-NMR. Na podlagi teh dveh metabolitov lahko lo¢imo tri razli¢ne
skupine fekalne konsistence (MP < 30, 30<MP<75, MP>75 ). Metionin je bil prej povezan z
oksidativnim stresom in je bil poviSan pri neaktivnih posameznikih, medtem ko je acetat negativno
koreliral z obcutljivostjo na inzulin (Martinez in sod., 2017; Miiller in sod., 2019), kar kaze, da lahko
razli¢na konsistenca blata vpliva na bioloski sistem gostitelja. OpaZene razlike v metioninu in acetatu,
povezanem z MP, so bile tako o€itno posledica neaktivnosti v okviru projekta PlanHab v kombinaciji
z zahodno prehrano. Pristop MP nam je omogocil, da smo z merjenjem nekaterih fizikalno-kemijskih
parametrov na eni strani in z omskimi metodami na drugi strani lahko zaceli in raziskali povsem novo
raven razumevanja kompleksnih bioloskih sistemov (Deutsch in Stres, 2021).

Studija PlanHab je bila prva $tudija nase skupine, ki je vkljutevala metabolomiko ¢loveskega urina.
Vzorce jutranjega urina smo zbirali skozi celoten eksperiment, ki je bil zami$ljen kot navzkrizno
oblikovan eksperiment (angl. Cross-over design). Vsi udelezenci Studije so Sli skozi vse tri oblike
poskusa (21-dnevno lezanje v hipoksiji ali normoksiji ali pa gibanje v hipoksiji (Sket in sod., 2017a;
Sket in sod., 2017b; Sket in sod., 2018, Sket in sod., 2020)). Edinstvena zasnova nam je omogogila,
da smo upoStevali odzive istih udelezencev v vseh treh eksperimentalnih razli¢icah pod
nadzorovanimi prehranskimi, okoljskimi in eksperimentalnimi pogoji. Zbrali smo 523 vzorcev urina
in jih pripravili za meritve "H-NMR. UdeleZenci, ki so lezali (NBR in HBR), so imeli specifi¢ne
metabolne znacilnosti v primerjavi s skupino HAmb. Pokazalo se je, da je odlocitev gostitelja, da
zmanjsa telesno aktivnost v hipoksi¢nih pogojih, mogoge zaznati v nekaj dneh na ravni urinskega 'H-
NMR metaboloma. V normoksi¢nih pogojih lezanja v postelji smo te metabolne spremembe zaznali
Sele v prvih desetih dneh. Metaboliti, opazeni v tej Studiji, so bili povezani s Stevilnimi razli¢nimi
boleznimi: (i) kroni¢no obstruktivno plju¢no boleznijo (Adamko, 2015; Zabek, 2015) in (ii) sréno-
zilno boleznijo, povezano s tkivno hipoksijo, ki lahko vodi tudi do sladkorne bolezni tipa 2, depresijo
in osteoporozo (Jones, 2014; Wang in sod., 2011; Senn in sod., 2012). Studija PlanHab z uporabo
metabolomov 'H-NMR v urinu nas je pripeljala do zakljutka, da ni enostavnega metabolnega
biomarkerja, ki bi lahko razlikoval med razlicnimi stanji (zdravo proti bolnemu, aktivno proti
neaktivnemu; aktivno proti sedeCemu). Za zajetje skupnih znacilnosti cloveske fiziologije,
medosebne in ¢asovne variabilnosti so bili potrebni kompleksni multivariatni opisi metaboloma. Ta
koncept je bil uporabljen v vseh drugih nadaljnjih Studijah. Na splosno je neaktivnost sama ali v
kombinaciji s hipoksijo povzrocila zmanj$ano sistemsko metabolno raznolikost in povecano Stevilo
prizadetih metabolnih poti, kar je povzrocilo razvoj negativnih fizioloSkih simptomov, kot so
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inzulinska rezistenca, nizka stopnja sistemskega vnetja, zaprtje, depresija in presnovni sindrom (Sket
in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018, Sket in sod., 2020). Rezultati Studije PlanHab
so nas spodbudili, da nadaljujemo z raziskavami v drugih Studijah, ki vkljuCujejo razlicne stopnje
neaktivnosti, kot so X-Adapt (razlike med treniranimi in netreniranimi posamezniki), spinalna
miSicna atrofija in projekt PreTerm, ki primerja razli¢ne ¢ase izpostavljenosti hipoksiji, telesno
aktivnost in Cas izpostavljenosti razlicnim pogojem. Poleg tega smo dodatno zbrali ve¢ kot 200
vzorcev zdravih moskih in Zensk ter njihovih sinov in h¢era (Schmidt, 2021).

Spinalna miSi¢na atrofija je Zivéno-miSi¢na bolezen, ki se kaZe kot progresivna atrofija in oslabitev
skeletnih miSic zaradi progresivne izgube motori¢nih nevronov in prizadene Stevilne druge organske
sisteme (Melki, 2017; Yeo in Darras, 2020). Z incidenco 1 na 11.000 rojstev Se vedno velja za
najpogostejsi genetski vzrok smrti otrok (Sugarman in sod., 2012). Pri bolnikih s SMA mutacije v
centromernem genu SMN2 vodijo do tvorbe nestabilnih proteinov, hkrati pa je zaradi delecije motena
tudi ekspresija telomernega gena SMNI (Lefebvre in sod., 1995; Lorson in Androphy, 2000; Lunn
in Wang, 2008; Smeriglio in sod., 2020). V zadnjih letih so se pojavile nove terapije za zdravljenje
SMA. Te terapije spremenijo naravni potek bolezni s spremembo izrazanja ali zamenjavo mutiranih
genov, ki sodelujejo pri razvoju SMA (Chiriboga in sod., 2016). Nusinersen je bilo prvo zdravilo za
zdravljenje SMA, ki sta ga odobrila Uprava za hrano in zdravila v ZdruZenih drzavah Amerike in
Evropska agencija za zdravila. Nusinersen je protismiselni oligonukleotid, ki vpliva na spajanje
mRNA, kar ima za posledico aktiven protein SMN 2 in s tem boljSe rezultate SMA (Chiriboga in
sod., 2016; Corey, 2017; Ramdas in Servais, 2020). Nusinersen zahteva intratekalno aplikacijo, ker
ne more preckati krvno-mozganske pregrade (Faber in sod., 2007; Rigo in sod., 2012).

Vzorci urina, likvorja in seruma bolnikov s SMA so bili zbrani pred zdravljenjem in po 4. aplikaciji
zdravila nusinersen. Zdravniski pregled ob Cetrti aplikaciji zdravila je pokazal izboljSanje gibljivosti.
Bolniki so pokazali izboljSanje nadzora nad invalidskim vozickom, premikanja, utrujenosti, higiene,
govora in spanja po 4. aplikaciji nusinersena (Deutsch in sod., 2021a, Osredkar in sod., 2021).

V nasprotju s fizi¢nimi pregledi, razlik nismo uspeli potrditi, na podlagi metabolomov urina, likvorja
in seruma pred in po aplikaciji zdravila. V tem kontekstu ne moremo ovreci nielne hipoteze iz
poglavja 1.4.2, ki pravi, da ni bistvenih razlik pred in po zdravljenju. Morda bi te razlike lahko potrdili
po 10 aplikacijah nusinersena, vendar bi to trajalo preve¢ dodatnega ¢asa za zbiranje vzorcev in
dokoncanje v ¢asovnem okviru tega doktorata. Ti rezultati kazejo, da je u€inkovitost nusinersena
mogoce ugotoviti z zdravniSkimi pregledi in testi gibljivosti. Morda bi uporaba drugih
metabolomskih metod, kot je masna spektrometrija, ki je bolj obcutljiva (nM) v primerjavi z NMR
(mM), privedla do odkrivanja biomarkerjev, ki bi jih lahko uporabili kot biomarkerje za spremljanje
zdravljenja z nusinersenom. Lahko pa, da so signali iz izboljSanega metabolizma na racun vecje
fizi€ne aktivnosti §e premalo vidni in se pokazejo Sele pri kasnejSih aplikacijah (Deutsch in sod.,
2020a).
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Poleg vzorcev iz projekta SMA smo zbrali vzorce urina iz ujemajoce se zdrave kohorte, da bi
primerjali metabolome bolnikov s SMA z metabolomi zdravih posameznikov. Ta primerjava je
privedla do opazovanja pomembnih metabolnih razlik med Zenskami in moskimi na eni strani
(p=0,0001) in zdravo kohorto in bolniki s SMA na drugi. Vpliv spola in prisotnost bolezni je v obeh
primerih bila statisticno signifikantna. Obe metodi, PLSDA in Random Forest, sta pokazali
pomembne razlike med Zenskimi in moSkimi metabolomi. Pri bolnikih s SMA smo opazili znatno
zmanjSanje kumulativne koncentracije metabolitov (p < 0,05). ZmanjSanje Stevila metabolitov smo
opazili tudi pri zdravih Zenskah v primerjavi z zdravimi moSkimi. Zaradi razlik med Zenskami in
moskimi je pomembno, da prihodnje Studije vkljucijo vecje Stevilo zensk v Studije, kot je ta, da bi
ugotovili pomembne razlike med Zenskimi in moskimi metaboliti in njihovimi biokemijskimi potmi.
Opazili smo nekaj vzporednic s predhodnimi Studijami vadbe, ki kazejo, da se lahko Stevilo
metabolitov poveca po vadbi (Nieman in sod., 2013; Schranner in sod., 2020) ali Studijah lezanja v
postelji (npr. PlanHab), ki so prav tako pokazale 30-odstotno zmanjSanje Stevila presnovkov po 3
tednih leZanja v postelji (Sket in sod., 2017a; Sket in sod., 2017b; Sket in sod., 2018). Simptomi, kot
so inzulinska rezistenca, izguba kosti in miSic, spremembe v presnovi lipidov, so bili odkriti v Studijah
lezanja in vse te simptome je mogoce opaziti tudi na seznamu stanj, povezanih s SMA (Osredkar in
sod., 2021).

Za namene sestavljanja klasifikacijskih modelov za razlikovanje med bolnimi in zdravimi, smo
uporabili metabolome urina pri bolnikih s SMA in zdravih posameznikih. S pomocjo avtomatskega
strojnega uc¢enja smo kreirali model, ki uspesno locuje med tema skupinama (AUC 0,958). Kreatinin
je bil klju¢ni metabolit, ki je lo€il zdrave od pacientov s SMA, kot so porocali tudi nekaj mesecev
pred naSo objavo v drugi studiji, ki je spremljala napredovanje denervacije SMA s povisanimi ravnmi
serumskega kreatinina pri hujsih oblikah bolezni SMA (Alves in sod., 2020). Koncentracije kreatinina
se pri bolnikih s SMA niso bistveno spremenile pred in po 4. aplikaciji nusinersena. Spremenjeno
raven kreatinina so opazili tudi v vzorcih urina iz nasih preteklih §tudij (PlanHab (Sket in sod., 2020)).
Ponovna uvedba vadbe je v teh Studijah popolnoma obrnila neZelene uc¢inke. Imobilizirani bolniki, ki
so v preteklosti prejemali vibracijsko terapijo pri drugih boleznih, so imeli koristi v primerjavi s
kontrolami in lahko predstavljajo potencialni korak pri fizi¢ni aktivaciji bolnikov s SMA po terapiji
z nusinersenom (Deutsch in sod., 2021a).

V okviru projekta SMA smo raziskali stanje popolne neaktivnosti. Vendar pa je v 21. stoletju vse bolj
jasno, da je telesna neaktivnost, ki je posledica sedeCega nacina zivljenja, tudi globalni problem, ki
predstavlja tveganje za razvoj kroni¢nih nenalezljivih bolezni in povecano globalno smrtnost (Kelly
in sod., 2020b). Pokazalo se je ze, da lahko minimiziranje Casa sedenja zmanjSa tveganje za kronicne
bolezni, kot so koronarna bolezen srca, sladkorna bolezen tipa 2, metabolni sindrom itd. (Sallis in
sod., 2016). Cilj projekta X-Adapt je bil preuciti razlike med fizicno aktivnimi (treniranimi
udelezenci) in neaktivnimi (netreniranimi) posamezniki (Sotiridis in sod., 2018; Sotiridis, 2019b;
Sotiridis in sod., 2019; Sotiridis in sod., 2020). Projekt je vkljuceval 10 treniranih in 10 netreniranih
moskih v 10-dnevnem protokolu vadbe, ki je obsegal vsakodnevno vadbo na kolesarskem ergometru
pri 50 % najvecje moci pedaliranja v normoksi¢nih in normobari¢nih (~1000 hPA) pogojih pri 24°C.
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Pred udelezbo in po 10 dneh vadbe so vsi udelezenci (aktivni in neaktivni) opravili tridnevno
testiranje v termonevtralnih normoksi¢nih in hipoksi¢nih pogojih ter vro¢ih normoksi¢nih pogojih.
Udelezenci Studije so bili razvrS€eni kot trenirani ali netrenirani glede na njihovo maksimalno
aerobno kapaciteto (netrenirani VO2max <45 mL-kg-1-min-1, trenirani VO2max > 55 mL-kg-1-min-
1) (Jay in sod., 2011;Montero in Lundby, 2017).

Meritve, usmerjene v ¢lovesko fiziologijo, so pokazale, da je obstajalo nekaj pomembnih razlik med
treniranimi in netreniranimi preiskovanci. Razlike med stanjem pred in po treningu so bile vecje v
netreniranih skupinah. Na podlagi meritev VO2max pred treningom in njegove spremembe v 10 dneh
treninga je stopnja prilagajanja na trening najvecja pri netreniranih posameznikih (Sotiridis in sod.,
2018; Sotiridis, 2019b; Sotiridis in sod., 2019; Sotiridis in sod., 2020).

Glede na metabolome urina ni bilo mogoce zaznati pomembnih razlik pred in po 10 dneh treninga.
Vendar pa so bile opazene razlike pri primerjavi med urinskimi metabolomi med treniranimi in
netreniranimi udelezenci. Poleg tega so se med tema dvema skupinama bistveno razlikovale tudi
fizikalno-kemijske lastnosti urina (pH, skupne raztopljene trdne snovi, slanost in prevodnost). Na
primer, pH se je znizal pri netreniranih posameznikih, kar je bilo prej povezano s presnovnim
sindromom in kroni¢nim srénim popuscanjem (Maalouf in sod., 2007; Otaki in sod., 2013; Kraut in
Madias, 2016; Shimodaira in sod., 2017).

Metaboliti (holat, tartrat, kadaverin, lizin, N6-acetilizin, metanol, N-acetilglukozamin, butanon in
kaprat) so bili identificirani s pomo¢jo multivariatne statistike in strojnega ucenja kot metaboliti, ki
so odgovorni za razlikovanje med trenirano in netrenirano skupino. Vse metabolite so predhodno
opazili v $tudijah, povezanih s poskodbami miSic, ravami hormonskih receptorjev, okrevanjem po
treningu z odpornostjo, nizjim kardiovaskularnim tveganjem (tartrat) (Abramowicz in Galloway,
2005; Spiering in sod., 2008) ali atroficnim stanjem, debelostjo, razvojem raka, metabolnim
sindromom (holat) (Li in sod., 2020; Abrigo in sod., 2021; Alamoudi in sod., 2021; Mercer in sod.,
2021; Pushpass in sod., 2021; Zheng in sod., 2021).

S tem pristopom smo pokazali, da se celoten sistem pri aktivnih osebah bistveno razlikuje od tistega
pri neaktivnih (p=0,003). Po 10 dneh treniranja so se celokupne razlike med treniranimi in
netreniranimi zmanj$ale (p=0,226). Nasa Studija je pokazala, da je vadba od 75-150 minut na teden,
ki jih priporoca Svetovna zdravstvena organizacij, premalo ucinkovita in da bi bila potrebna 5-krat
vecja vadba. Poleg tega je ta poskus pokazal, da 3-dnevni jutranji vzorci urina zagotavljajo dobro
biolosko matriko za razlikovanje aktivnih od neaktivnih posameznikov, ki jih ni mogoce opaziti pri
dnevnem vzorcenju zaradi dnevnih variabilnosti posameznika. Sistemska homeostaza je odvisna od
Stevilnih razli¢nih parametrov in vkljucuje komunikacijo med razlicnimi organi, prek katere lahko
metabolne poti, na katere vplivajo metaboliti v enem organu, vplivajo na druge metabolne poti v
drugem organu. Sedeci nacin zivljenja z odsotnostjo signalov velikih miSic in oksigenacije sistema
ter porabe hranil lahko moti to komunikacijo med organi, kar vodi v manifestacijo razli¢nih bolezni.
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Visje ravni vadbe lahko obnovijo medorgansko komunikacijo do zdravih in fizi¢éno aktivnih
posameznikov (Deutsch in sod., 2022a).

Prezgodnji porod je opredeljen kot rojstvo pred 37. tednom gestacije. Po vsem svetu je priblizno 10
% prezgodnjih porodov in je Se vedno eden vodilnih vzrokov smrti pri otrocih, mlajsih od 5 let.
Prezgodnji porod povecuje tveganje za razvoj razliénih kroni¢nih bolezni, kot so sréno-zilne,
endokrine/metaboli¢ne, ledvi¢ne, nevroloske in psihiatricne motnje. Eden glavnih vzrokov za te
motnje je povecan oksidativni stres v prvih tednih zZivljenja (Moutquin, 2003; Magalhaes in sod.,
2004; Pialoux in sod., 2009; Blencowe in sod., 2012; Lushchak, 2014; Liu in sod., 2015; Manley in
sod., 2015; Debevec in sod., 2017; Crump, 2020; Tingleff in sod., 2021). Obstaja velika verjetnost,
da so nekateri klini¢ni parametri, kot so telesna masa, arterijski krvni tlak, glukoza na tesce in
holesterol, lahko povisani pri prezgodaj rojenih odraslih (Kerkhof in sod., 2012; Markopoulou in sod.,
2019; Crump, 2020). Razli¢ne Studije so pokazale, da se vse te znacilnosti razlikujejo med prezgodaj
in pravocasno rojenimi odraslimi in da so te razlike, zlasti povezane s proizvodnjo reaktivnih
kisikovih vrst, in jih je mogoce opaziti v povezavi z razlicnimi stopnjami vadbe ali telesne dejavnosti
(Magalhaes in sod., 2004; Powers in sod., 2011; Filippone in sod., 2012; Debevec in sod., 2017;
Martin in sod., 2018).

Namen projekta PreTerm je bil raziskati, ali obstajajo razlike med prezgodaj in pravocasno rojenimi
mladimi moskimi v ventilacijskem odzivu (HVR) pri telesni aktivnosti ali mirovanju v hipoksi¢nih
in normoksi¢nih okoljskih pogojih (Debevec in sod., 2019; Debevec in sod., 2022). Poleg tega je bil
za opis kompleksnosti ¢loveskega telesa in revesnega mikrobioma pri njegovem odzivu na povecane
ravni oksidativnega stresa v mirovanju in med vadbo pri normoksiji in hipoksiji uporabljen analiti¢ni
pristop, ki je sestavljen iz metabolomike urina in fecesov ter fekalne metagenomike (Deutsch in sod.,
2022b).

Pokazalo se je, da kolesarjenje pri normoksiji in hipoksiji zviSa ravni oksidativnega stresa v obeh
skupinah takoj po vadbi (Martin in sod., 2020). Udelezenci v skupini prezgodaj rojenih so pokazali
nizjo vadbeno zmogljivost pri normoksiji v primerjavi s kontrolno skupino, in so imeli nizji HVR,
medtem ko takSne razlike niso opazili pri hipoksiji (Vrijlandt in sod., 2006; Lovering in sod., 2013;
Svedenkrans in sod., 2013; Bates in sod., 2014; Clemm in sod., 2014; Farrell in sod., 2015; Debevec
in sod., 2019). Ti rezultati kazejo, da imajo lahko prezgodaj rojeni povecan oksidativni stres med
akutno vadbo v normoksiji, medtem ko takSnega odziva pri hipoksiji niso opazili (Martin in sod.,
2020).

V vzorcih blata smo izmerili 25 fizikalno-kemijskih spremenljivk (vkljuéno z zgoraj opisanim
pristopom MP), pri ¢emer med obema skupinama nismo ugotovili bistvenih razlik. Vzorci blata in
urina so bili zbrani tri dni pred hipoksi¢nim in normoksi¢nim testom in tri dni po njem (Deutsch in
sod., 2022b).
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Aceton, tartrat in trans-akonitat so bili urinski metaboliti, ki so se glede na rezultate MetaboAnalyst
zmanjSali v skupini prezgodaj rojenih in korelirajo z vadbo, postom ali diabetes melitusom (Paradis
in sod., 2015; Crump in sod., 2019; Perrone in sod., 2021). Zdi se, da so razlike posledica oslabljene
avtonomne funkcije, ker se sréni utrip pri prezgodaj rojenih odraslih obnavlja pocasneje, kar bi lahko
povzrocilo anoksijo in povecalo sréno-zilno tveganje, kot je bilo ze objavljeno (Qiu in sod., 2017,
Haraldsdottir in sod., 2019).

Laktat, serotonin in tirozin so bili glavni fekalni metaboliti, ki so predstavljali razliko med prezgodaj
in pravocasno rojeno skupino. Prva dva metabolita sta bila povecana v skupini prezgodaj rojenih, kar
skupaj z obogateno metabolno potjo (Warburgov uc¢inek) kaze, da lahko pri njih opazimo nekatere
metabolne spremembe, ki ji lahko povezujemo z mitohondrijsko disfunkcijo (Sonntag in sod., 2007;
Ten, 2017). Te ugotovitve lahko predstavljajo prvi dokaz, da sistemske razlike zaradi vsezivljenjske
izpostavljenosti oksidativnemu stresu res obstajajo in postavljajo vprasanje, ali so te razlike povezane
z majhnimi razlikami, ki nastanejo na strani prezgodaj rojenega gostitelja ali na delu mikrobioma, ki
se odziva zaradi teh okoljskih signalov drugace kot pri pravocasno rojenih (Deutsch in sod., 2022b).

Zbrani fekalni vzorci so bili uporabljeni za sekvenciranje, da bi raziskali, ali opaZene razlike v
fekalnih metabolomih korelirajo z razlikami na mikrobni ravni. Na taksonomski ravni nismo opazili
bistvenih razlik, Ceprav je bila relativna Stevil¢nost arhej in virusov visja v skupini prezgodaj rojenih.
V zadnjem desetletju je postalo jasno, da je pri preucevanju mikrobioma pomembnejse vprasanje, kaj
mikrobi v nasem crevesju pocnejo. Zato smo naredil analizo funkcionalnosti preucevanega
mikrobioma z naSim orodjem metaBakery. Strojno ucenje je bilo uporabljeno za izdelavo
klasifikacijskih modelov in identifikacijo potencialnih biomarkerjev (Deutsch in sod., 2022b).

Na podlagi genskih druZin ni bilo odkritih bistvenih razlik, vendar smo zaznali nekaj razlik na podlagi
encimskih reakcij, metabolnih poti in predvidenih metabolitov. Predhodno opisana encimska reakcija
sukcinat dehidrogenaze (RXN-15378) je bila povecana v skupini prezgodaj rojenih. Sukcinat je sam
po sebi mikrobni metabolit in se lahko kopi¢i v ¢revesnem traktu med vnetjem ali mikrobnim
neravnovesjem. Ima tkivno specificne, a tudi protivnetne lastnosti in je tudi vir produkcije propionata
s strani Bacteroides spp. in Prevotella sp. Pokazalo se je, da se sukcinat kopici v celicah v pogojih z
nizko vsebnostjo kisika in predstavlja metabolni podpis hipoksije. Pokazalo se je, da prekomerni
privzem mikrobno proizvedenega sukcinata vodi do vi§jih ravni znotrajceli¢nega sukcinata, ki na
koncu poveca odziv na samo hipoksijo in hkrati povec¢a LPS- inducirano ekspresijo proinflamatornih
citokinov v Cloveskih celicah (Rubic in sod., 2008; Ariza in sod., 2012; Tannahill in sod., 2013;
Akram, 2014; Littlewood-Evans in sod., 2016; Connors in sod., 2018; Deutsch in sod., 2022b).

PWY-7456 (razgradnja B-(1,4)-manana), PWY-7323 (superpot biosinteze gradnikov O-antigena iz
GDP-manoze) in GLYCOLY-SIS-TCA-GLYOX-BYPASS (superpot glikolize, piruvat
dehidrogenaza, TCA in glioksilatni obvod), P221-PWY (oksidacija oktana), PWY-5173
(nerazvrscen) so bile poti, ki so bile povecane v skupini prezgodaj rojenih. Nekateri od njih so lahko
koristne in si prizadevajo za celovitost sluznice in prehranjevanje gostitelja (razgradnja B-(1,4)-
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manana) ali pa znatno povecajo proizvodnjo energije, kar bi bilo pomembno v primeru oksidativnega
stresa kot pri prezgodaj rojenih posameznikih (superpot glikolize, piruvat dehidrogenaza, TCA in
glioksilatni obvod). Biosinteza acetil-CoA lahko povzroci tudi povecano proizvodnjo butirata s
proizvodnjo acetil-CoA. Po drugi strani pa imajo nekatere poti bolj negativen ucinek in so bile
povecane tudi v skupini prezgodaj rojenih. Izkazalo se je, da so te poti vkljucene v proizvodnjo
lipopolisaharidov LPS (biosinteza gradnikov O-antigena iz GDP-manoze), povezane s po gramu
negativnimi bakterijami in povzrocitelji razli¢nih stopenj vnetja (Samuel and Reeves, 2003; Wolfs in
sod., 2010; Shah in sod., 2015; Kim in sod., 2016; La Rosa in sod., 2019; Lindstad in sod., 2021). Po
drugi strani pa je bila opazena tudi oktanska oksidacija, ki je bila prej opisana v kontekstu
zahodnjaskega naCina prehranjevanja in povezana z boleznijo jeter. Vse te razlike je mogoce povezati
s fiziolosko pomembnimi primanjkljaji, opazenimi med obema skupinama (Martin in sod., 2018;
Martin in sod., 2020; Schmidt, 2021).

S pristopom napovedovanja mikrobnih metabolitov je bilo odkritih tudi sedemnajst metabolitov, ki
lo¢ujejo med obema skupinama, vendar nobeden od njih ni bil zaznan v primeru fekalne
metabolomike (Deutsch in sod., 2022b) s pomocjo strojnega ucenja. Poleg metabolnih poti, ki
izhajajo iz metagenomsko predvidenih metabolitov, so bile odkrite pomembne razlike v metabolitih
v urinu in blatu, kar kaze, da obstajajo sistemske razlike med obema skupinama. PoviSani metaboliti
so bili prej povezani s sr¢no-zilnimi boleznimi (karnitin), povecano prepustnostjo ¢revesja, zviSanimi
ravnmi vnetnih citokinov, metabolnim sindromom ali razvojem raka (putrescin in diacetilspermin).
Po drugi strani so se nekateri predvideni presnovki zmanjSali v skupini prezgodaj rojenih. Deoksiholat
je sekundarna zol¢na kislina in znan promotor raka debelega ¢revesa. ZmanjSane ravni te molekule
so na splosno opazili zaradi povecanega izlo¢anja holata z urinom, opazenega pri metabolomiki urina.
Nizja vsebnost redukcijskih sladkorjev (fruktoze, glukoze in galaktoze) v skupini prezgodaj rojenih
je ustrezala vecji sposobnosti tvorbe kratkoveriznih mascobnih kislin (Fukiya in sod., 2009; Wang in
sod., 2011b; Koeth in sod., 2013; Tang in sod., 2013; Ussher in sod., 2013; Staley in sod., 2017;
Heinken in sod., 2019; Wirbel in sod., 2019).

Naravni na novo sestavljenih metagenomov nismo ugotovili razlik, kar sovpada rezultatom na ravni
taksonomskih podatkov, pridobljenih s programom Metaphlan. To je skladno z nasim opazanjem, da
med mikrobioto prezgodaj in pravocasno rojenih ni pomembnih taksonomskih razlik (Deutsch in
sod., 2022b).

Z zgoraj opisanimi rezultati lahko potrdimo dve alternativni hipotezi iz poglavja 1.4.1. Prva potrjena
hipoteza navaja, da obstajajo pomembne razlike med prezgodaj rojenih in pravocasno rojenimi
skupinami udelezencev v metabolitih fecesa in urina, ki jih je mogoce povezati z njihovo fizicno
zmogljivostjo v poskusih in fizioloS8kimi podatki med vadbo in mirovanjem. Druga hipoteza navaja,
da obstajajo pomembne razlike na ravni metagenomske sestave obeh skupin, zaradi ¢esar je mogoce
identificirati specifi¢ne metabolne poti, ki se med skupinama razlikujejo, in znacilnosti njihovega
crevesnega okolja. Razlike med na novo sestavljenimi metagenomi med obema skupinama nismo
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opazili, zato v tem primeru ne moremo ovreci nic¢elne hipoteze, ki pravi, da ni razlike med prezgodaj
in pravoc¢asno rojeno skupino.

Vet kot 1200 zbranih vzorcev smo zdruzili pri izdelavi slovenske baze podatkov 'H-NMR urina. Vsi
zbrani urinski vzorci iz 5 projektov (PlanHab, spinalna miSi¢na atrofija, X-Adapt, PreTerm, zdrave
zenske in moski) so bili integrirani. Vsi izmerjeni spektri so bili analizirani z enakim postopkom, da
bi dobili enake metabolite v vseh skupinah. Pokazali smo, da je na tej ravni fizioloSkih podatkov
mogoce razlikovati med razli¢nimi stopnjami aktivnosti na podlagi metabolitov v urinu. Vsi vzorci
so bili obdelani na enak nacin in jih je mogoce v prihodnosti ponovno obdelati z uporabo nadaljnjih
posodobitev baze podatkov Human Metabolome Database (Wishart in sod. 2007; Wishart in sod,
2022) z uporabo nasih lastnih orodij za obdelavo metabolomskih podatkov (Sket in sod., 2020;
Murovec in sod., 2018; Deutsch in sod., 2021a; Deutsch in sod., 2021b; Deutsch in sod., 2022a;
Deutsch in sod., 2022b) skupaj s komercialno dostopno programsko opremo za taréno 'H-NMR
analizo. Na primer, iste spektre je mogoce ponovno analizirati s prihodnjimi posodobitvami baze
podatkov o ¢loveski metabolomski bazi (HMDB), saj je ta narasla z nekaj tiso¢ metabolitov v prvi
izdaji (Wishart in sod., 2007) na 217.000 metabolitov v zadnji izdaji v 2021 (Wishart in sod., 2021).
Standardizirani analiticni protokoli, vzpostavljeni v naSem laboratoriju, so nam omogocili, da smo
zmanjSali sistemati¢ne napake. Box-Cox normalizacija in pristop sSPLSDA, uporabljena za integracijo
vseh metabolomov v nasi Studiji, sta pokazala uspeSnost pri odstranjevanju u¢inkov razli¢nih serij
vzorcev na eni strani, hkrati pa pokaze Se vedno ohranjene razlike zaradi zivljenjskega sloga ali drugih
bioloskih razlogov (Wang in La Cao, 2020). Ta pristop nam je omogocil tudi potrditev alternativne
hipoteze iz razdelka 1.4.3, da obstajajo pomembne razlike v urinskih metabolomih, ki omogocajo
identifikacijo naborov biomarkerjev in presnovnih poti, ki razmejujejo razli¢ne skupine, ki jih
preucujemo (Schmidt, 2021).

Pokazali smo, da lahko metabolni prstni odtis v urinu omogo¢i posnetek metabolnega statusa
celotnega sistema telesa, ki ga lahko povezujemo z zdravjem ali boleznijo (Azad in Shulaev, 2019;
Mussap in sod., 2021). Metabolomika na splosno vkljucuje sistemati¢no identifikacijo metabolitov v
Cloveskem telesu (Ashrafian in sod., 2021). Razvoj nacionalne baze podatkov naj bi izboljSal
razumevanje slovenskega metaboloma vzporedno s Studijami iz drugih evropskih drzav in
identifikacijo metabolitov, specifi¢nih za razli¢ne bolezni ali fizi¢na stanja. Metabolomika 'H-NMR
ima potencial za zajemanje Sirokega spektra obicajnih klini¢nih spremenljivk v epidemioloskih
Studijah, vkljuéno z manjkajo¢imi spremenljivkami za metapodatke o pacientih in omogoca
ustvarjanje biomarkerjev za razlikovanje med razlicnimi boleznimi na podlagi strojnega ucenja.
Celostna razlaga metabolomskih podatkovnih nizov, zlasti urina, ki ga je mogoce zbrati neinvazivno,
lahko zagotovi dovolj podatkov za sklepanje o tem, kako je treba vzorce razvrstiti v razlicne skupine.
Upamo, da bomo spodbudili zanimanje drugih raziskovalcev za vklju¢itev NMR metabolomike v
svoje raziskave, da bi razsirili naSo uveljavljeno bazo podatkov na priblizno 10.000 vzorcev na
nacionalni ravni. Modeliranje takSnega zbiranja podatkov predstavlja edinstveno pot za ustvarjanje
modelov strojnega ucenja, ki jih je mogoce vsaj okvirno uporabiti v medicinski praksi za razlikovanje
med zdravimi in nezdravimi metabolomskimi stanji poleg razlicnih bolezni. Tako ta pristop
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predstavlja korak blizje personalizirani medicini, ki temelji na podatkih in ima potencial za
informiranje o zdravju na nacionalni ravni. Raziskovalni ¢lanek o slovenski NMR bazi je v pripravi.

Zgodba o Slovenski NMR bazi tece naprej. V skladu s tem je bilo (i) zbranih in izmerjenih skupno
320 vzorcev iz projekta PreAlti (razsiritev projekta PreTerm), (ii) razSiritev SMA je trenutno v fazi
zbiranja vzorcev, (iii) vzorci se zbirajo tudi iz dveh klini¢nih kohort iz Univerzitetnega klini¢nega
centra Ljubljana v sodelovanju s Pediatri¢no kliniko (tiki, anoreksija), medtem ko v okviru (iv)
klini¢ne kohorte, povezane s projektom Million Microbiomes from Humans Project, nameravamo
zbrati ve€ kot 1000 vzorcev blata in urina za metagenomiko in metabolomske analize. S temi projekti
smo na poti, da ustvarimo na tisoc¢e gigabajtov molekularnih podatkov, ki bodo v bodoc¢e uporabni
tudi v vsakodnevni diagnostiki in so primerljivi najvecjim evropskim Studijam. Ohranjanje sistemske
homeostaze ter odzivanje na prehranske in okoljske izzive zahteva usklajevanje razli¢nih organov in
tkiv. Da bi odgovorili na razli¢ne presnovne zahteve, clovesko telo integrira sistem medorganske
komunikacije, prek katerega lahko eno tkivo vpliva na presnovne poti v oddaljenem tkivu. PoruSitev
teh komunikacijskih poti zaradi pomanjkanja vadbe (sedeci zivljenjski slog) ali vnosa
visokokalori¢ne prehrane prispeva k ¢loveskim boleznim, kot so debelost, sladkorna bolezen, bolezni
jeter in ateroskleroza. Za pravocasne posege bi morali razmisljati o uporabi telesnih tekocCin (kot je
urin), ki omogocajo neinvazivno vzorcenje, hkrati pa so dovolj obcutljive, da razlikujejo med vrstami
biomarkerjev (Schmidt, 2021).

To odpira prostor za boljSe razumevanje medorganske komunikacije kot vratarja za metabolno
zdravje, saj obstajajo vecsmerne interakcije med organi in osrednjim Ziv¢énim sistemom, z namenom
ohranjanja energijske homeostaze in omogocanja novih terapevtskih strategij in spodbujanja
zdravega zivljenja za preprecevanje presnovnih motenj in drugih bolezni.
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