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The need for parallel processing is felt in many disciplines. In
this paper we discuss the essential issues involved in these
systems. Various architectural proposals reported in the
literature are cla&sified based on the execution order and
parallelism exploited. Design and salient features of some
architectures which have gained importance are highlighted.
Architectual features of non-von Neumann systems such as data-
driven, demand-driven, and neural computers, which open the
horizont for research in the new models of computations, are
presented in this paper. Principles and requirements of
programming languages and operating system9 for parallel
architectures are also reviewed.
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1• Introduction

There has been an ever-increasing need for
more and more computing power. In a real-time
enviroraent, the demands are much more. While
the computers built around a single processor
cannot stretch their processing speed beyond a
few milliona of floating point operations per
second (FLOPS), an operating speed of a few
giga FLOPS is required in many applications.
Parallel processing techniques offer a
•promising scope for the3e applications.

Several applications such as computer
graphics, computer aided design (CAD) of
electronic and mechanical systems, wheather
modeling and robotics have a high greed for
high computirig power. To quote an example, ray
tracing techniques [32] used to display 3-
dimensional objects in computer graphics have
to process 5xlO6 rays, each ray intersecting 10
to 20 surfaces, and each intersection
computation requiring 20 to 30 floating. point
operations on an average. In order to provide a
fast, interactive and flicker-free display,
each frame has to be computed 30 times per
second. Thus, the total computation pouer
required 60 giga FLOPS. Comparing this with the
execution speed of the present day
supercomputers -- whose expected/measured
performance is about 100 millions FLOPS [53] --
we observe that the deroand is more by an order
of magnitude of two.

The need for parallel processing is
conspicuous from the above illustration. The
recent advances witnessed in VLSI technology
and the consequent decline in the hardware cost
further encourage the construction of massively
parallel processing systems.

The paper is organized in the following
manner. In Section 2, we point out the major
iasues associated with multiprocessing systems,
with a brief discussion on each of theae items.
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We classify parallel processing architectures
broadly into two classes. The firat of them,
the von Neumann type, includes all
multiprocessing systems that adopt the
principles of the von Neumann computation
model. Pipeline and vector processing, SIMD
machines, MIMD raachines and VLSI systems which
fall under this category are surveyed in
Section 3. Supercomputers employ one or more of
theae techniques for achiving high performance.
More emphasis is given to current and recent
developmenta in these areas. In non-von Neumann
architecture, we include data-driven, demand-
driven and neural computers. Their methodology
of computation is functionally different from
the ones discussed earlier. An overview of
these architectural configurations is presented
in Section 4.

The programming language and operating
system support required for working with theBe
complex parallel processing systems are
reviened in detail in the subsequent section.
Parallel programming languages are classified
into two categories: the conventional von
Neumann type (that adop the imperative style of
programming) and the non-von Neumann languages.
Case studies of some of the popular languages
and their salient features are also reported.

We remark that an exhaustive coverage of
all contributions and research work reported in
this fascinanting area of parallel processing
systems is beyond the scope of this paper and
we do not attempt that. Rather, we will
concentrate on the basic principles behind the
design of the various architectures. We will
pay more attention to some specific
architectures and models of computation which
have gained importance.

2. Issues in Parallel Processing System3

In the this section we discuss the various
associated with multiprocessing systems. First,
it is interesting to look at the raodels of
computation, the way one has evolved from the
other, leading to myrial architectural
configurations and machines.

2.1. Models of Computation

Depending on the instruction execution
order, coraputer systems can be classified as
control-driven, data-driven or demand-driven
machines.

Control Flow Conventional von Neumann
uniprocessing and multiprocessing systems have
an explicit execution order specified by the
prograraraer. Thia hinders the extent of
parallelism that can be exploited. Hovever,
these control models perform well for
structured data items such as arrays [34]. Also
the three decades of programming experience we
had with these raodels still makes it a
proponent candidate for future generation
computers.

Data-Driven Model In this model, the
execution order is specified by the data
dependency alone [26]. Instructions are
executed as soon as all their input arguments
become available to them. Data flow model is
suitable for expression evaluation [34]. Since,
only data dependency determines the execution
order, and the granualarity of parallelism
exploited is as low as a single inatruction,
this model of computation exploits maximum
parallelism. However, because of its eagerness
in evaluating functions, it executes an
instruction, if its operands are available,
irrespective of whether or not it is required
for the computation of the final result.

Demand-Driven Model In demand-driven (also
called reduction) execution, pioneered by
Berkling [15] and Backus [9], the demand for
result triggers the execution which ia turn
triggers the evaluation of its arguments and so
on. This demand propagation continues until
constanta are encountered; then a value is
returned to the demanding node and execution
proceeds in the opposite direction. Since a
demand-driven computer performs only those
computations required to obtain the results, it
will perform less computations, in general,
than a data-driven computer. Aa the computation
model is 'laz^'1 in evaluating expreaaions,
instructions accept partially filled data
structures2. Thia makea demand-driven model to
support infinite data struotures. Such a
facility ia not available in the other raodel8
of computation. Houever, thia inodel auffers
overheads in terms of execution time due to the
additional propagation of the demand <for
arguments). The control mechanism and the
management of program meroory add further to the
inefficiency [91].

2.2. Concurrency

The granularity and nature of parallelisra
exploited, aignificantly influence the
performance of the parallel procesaing ayateins.

Temporal, Spatial and Aaynchronous
Paralleliam By performing overlapped
computation one can exploit tetnporal
parallelism. Pipeline computers [53,77] execute
instructions in an overlapped raanner as in the
assembly line of manufacturing to achieve
parallelism. Exaraples of pipeline proceaaing
are the execution of the different phasea of an
inatruction namely, instruction fetch, decode,
opcode fetch and execution; execution of the
various ateps involved in floating point
arithmetic operations at various stages of the
pipeline. These roachines are ideally suited for
processing vector instructions [53] namely,
vector add, vector raultiply and dot product.

Spatial parallelism is the paralleliam
inherent in performing an operation over the
elements of structured data, auch as arrays.
Spatial paralleliam is eaay to detect and
exploit [34]. The synchronization and
scheduling overheads involved in exploiting
spatial paralleliam are much leas compared to
those experienced in the other two models.

Multiple instruction multiple data (MIMD)
[53] machines achieve asynchronous parallelism
through a aet of interactive prpcessora with
shared resources. Several independent processes
running asynchronously on different processors
work to accomplish a common goal by exchanging
messages or by sharing common variables.

While spatial parallelism is easy to
detectet and exploit, the range of applications
on which it is inherent i8 limited. MIMD
machines whieh exploit asynchronous
paralleliam, on the other hand, offer
flexibility in programming. Hence it can be
used for a wide range of problems.

Granularitv of Parallelism For high
performance, we want to exploit as muoh

1 The nature of the raodel in executing
an inatruction only on ia termed 'lazy'.

2 The computation of a recursively
defined data atructure, for example SEQ(N) =
CONS(N,SEQ(N+1)) never terrainates, and hence is
infinite. Such a. data Btructure can partially
be filled by evaluating only those terma which
are required for further computation.
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parallelism as possible. This means that the
granularity of the tasks should be low. We
observe that as the level of granularity goes
down, the parallelism that can be exploited
increases. Honever, loner the level of
parallelism raore will be tfae synchronization
overheads. A tradeoff between the parallelism
exploited and the synchronization overheads is
required "to achieve high perforraance.

Another major issue involved is
parallelism detection. Parallelisoi can eitfeer
be explicitly specified foy the user, or can be
detected frora a program written in a sequentlal
language using an intelligent compiler. For
expreasing parallelism explicitly, language
auch as CSP I50J, Occam [55] and Concurrent
Pascal 145] can be used. The user need to have
a knowledge of the architecture of the machine
on which the program is executed, the
application program and its runtime
characteristics. The second approach whioh uses
program restructuring techniques [71] to
transform a sequential program into a parallel
forni, does not required a knowledged-user.
Houever, these techniques are inefficient and
cannot detect parallelism to the fullest
extent. Active research to develop efficient
parallel programs using these paradigms is
underway.

2.3. Scheduling

In a multiprocessor system, scheduling
algorithms assign each task to one or raore
processors with the goal of achieving high
performance. Scheduling can again be static or
dynamic (refer [6] for a comparison). In static
scheduling, the tasks are allocated to
proceasors either during the algorithm design
by the user or at compile time by an
intelligent corapiler. In both these approaches,
the scheduling costs are paid only once even if
the program is run many times with different
data. Morover, there is no runtime overhead.
The disadvantage of static scheduling is
possible inefficiency in guessing the runtirae
profile of each task.

Dynaraic scheduling at runtime offers
better utilization of processors, but at the
cost of additional scheduling time. The dynamic
scheduling algorithm can be distributed or
centralized.

(iii) NYU Ultracomputer's 'fetch &. add' [42].

The subsequent sections highlight the
architectural features of parallel processing
systems. The whole spectrum of architectures
proposed in the literature can broadly be
classified as conventional von Neumann parallel
processing systems and the' non-von Neumann
systems.

3. Von Neumann Parallel Processing Systems

Von Neumann parallel processing systems
can be divided into three raajor architectural
configurations: pipeline, SIMD, and MIMD
architectures. These three architectural models
exploit the three kinds of parallelism, namely
temporal, spatial and asynchronous parallelism
respectively. Each of the above mentioned
architectures is discussed in detail and the
design and salient features of certain parallel
processing roachines are highlighted in this
section. Reconfigurable architectures and VLSI
systems, though not entirely distinct from the
above discuased models, attract the attention
of researchers due to their many interesting
features. In particular VLSI systems offer new
scope in computing for designing dedicated
architectures for a variety of applications.
Conatit.uent elements of the VLSI systems are
systolic [63] and navefront [64] architectures.

3.1. Pipeline and Vector Processing

Pipeline Architecture Pipelining [77]
offers an economical way to realize teraporal
parallelism. The concept of pipeline processing
in a computer is sirailar to manufacturing in
assembly lines in an industrial plant. To
achieve pipelining one must subdivide the input
task into a sequence of aubtasks, each of which
can be executed by a specialized hardnare stage
that operates concurrently with other stages in
the pipeline. Succeasive tasks are pumped into
the pipe and get executed in an overlapped
fashion at the subtask level. Pipeline
processing leads to a tremendous improvement in
systera throughput. A k-stage linear pipeline
could be at most k times faster. Hoviever, due
to memory conflicts, data dependency, branch
and interrupts this ideal speedup cannot be
achieved.

2.4. Synchronization

Synchronization methoda are required to
coordinate parallel execution of tasks in a
multiproceasor system. Architectures with
shared storage achive synchronization by
semaphores [27] and monitors [49]. In a massage
passing multiprocessing system, synchronization
of processes is achived using remote procedure
calls [46].

In order to update the shared variables in
a multiprocessor in a consistent raanner
(avoiding read-read, read-write races [53]),
the updating of the variables is done in a
region called critical region. Only one
process ia allowed to enter the critical region
at a tirae. Preventing accesa by other processes
when the critical region is being accessed by a
process ia known as rautual exclusion.
Synchronization primitivea are uaed to achieve
mutual exclusion.

Of the many aynchronization primitives
proposed (refer [35] for a survey), a few worth
mentioning are

(i) the 'test & set1 primitive of IBM
360/370 machines [17];
(ii) 'lock' instruction used in C.mmp [101];

One way of claasifying a pipeline ia baaed
on the function performed by the pipeline.
There are two classea of pipelines based on
thla claaaification, namely the instruction
pipeline and the arithraetic pipelinei In the
instruction pipeline, the varioua phases of
inatruction execution auch aa instruction
fetch, inatruction decode, operand fetch, and
instruction execution, are identified and are
executed in the successive atagea of the linear
pipeline. Thus, from pipeline, after an initial
delay, inatructiona are executed once every
clock cycle.

Arithmetic pipelines aubdivide the
arithmetic operations auch as floating-point
add or floating-point multiply into aubtaaka
and execute them on specialized arithmetic and
logic units. In an inatruction pipeline, the
instruction execution unit can itself be an
arithmetic pipeline to further improve the
performance. IBM 360/91 machine employs both
theae pipelines. Much research has already been
done on scheduling of pipelinea; buffering and
delaying techniques are used to improve the
execution apeed. In Cray 1 [82], there are 12
functional pipeline units to perform both
scalar and floating point arithmetic
operationa. Cyber 205 supports four vector
pipelines in addition to a soalar arithmetic
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unit.

Vector Procesaing In thia section, we
explaint the basic concepts of vector
processing [53]. Vector proceasors operate on
vector data and execute vector instructions.
Vector pipelineai unlike acalar pipelines, are
assured of continuous atream of data. The
overhead8 involved in initializing the veotor
pipeline is compensated by the speedup
improvement gained, as the number of tasks
executed is large. Loop termination conditions
are performed by specialized hardware in
various stage of the vector pipelines. These
features make vector proceasing more efficient
than the scalar pipelines.

Vectorizing compilers [6] tranaform
programs written in conventional imperative
languages into vector instructiona auitable for
execution on vector proceaaora. The fact that
present day supercomputers have vectorizing
compilers and vector proceasors as their major
components demonstratea that pipeline
processing is an easy and efficient way of
realizing high apeed computation, However, not
all programs can be vectorized. Pipeline
proceasors perform poorly in auch casea.

3.2. SIMD Machines

A synchronous array of parallel proceasora
executing in a lock-step faahion, conaiating of
multiple procesaing elementa under the
superviaion of one control unit ia called an
array proceaaor. The system and uaer programs
are executed under the control of control unit.
The array proceaaor can handle single
inatruction and multiple data (SIMD) stream.
SIMD machines exploit apatial paralleliam, The
processing cella are interconnected by a data-
routing network. The interconnection pattern to
be • established for apecific computation ia
under program control. Veotor instructiona are
broadcaat to the proceasing cells for
diatributed execution over different
proceaaora. The cells are passive devicea
without instruction decoding capabilities.

Array processors became well publicized
with development of Illiac IV [12], Clip 4
[29], and Maa8ively Parallel Procesaors (MPP)
[14]. Future research in SIMD machines ia
towards designig and implementing multiple-SIMD
(MSIMD) machinea [53], consisting of more than
one control unit. Each control unit. in thia
class of machinea shared a pool of dynamically
allocatable processora.

Array proceaaora are characterized by
their ability to support paralleliara at a low-
level. They are ideally auited for apecific
applications in the areas of image and aignal
processing [81]. For example, cellular array
[81] i8 a two dimensional array of processors,
each of which communicate directly with it8
neighbora. The atructure of the array ia very
appropriate in terma of layout on a chip. Work
in this direction haa led ua to the deaign of
SIMD architecturea for CAD applications [78].

Hovever, as mentioned in aection 2.2, the
range of applicationa over which SIMD machinea
can be put into efficient uae ia reatricted and
hence they are not candidate architectures for
general purpoae parallel processing machines.

3.3. MIMD Architecture

MIMD machinea can be groaaly characterized
by two attributea: firat, a multiproceaaor
ay8tem is a single computer that includes
multiple procesaors and aecond a multicoraputer
that has several autonornous computers which are

geographically diatributed and connected
through a communication netuork. There exists
an important distinction betueen two aystems.
In the firat case, the raultiple procesaors work
concurrently in order to aohieve a aingle .goal.
Interaction between two proceaaora is
eaaentially in terma of intermediate reaulta
and aynchronization mesaagea. Khereas
multicomputera communicate among themaelvea
baaically to ahare expenaive reaources. Each
autonomoua computer worka on an independent
taak. In thia aection we will concentrate raore
on multiproceasora. Diacu8aion on distributed
computing syateras using coraputer network ia
beyond fhe acope of thia paper.

Multiproceaaing syateins oan be claaaified
into two groups, based on how the procesaing
elementa interact among themaelvea [53]. When
aeveral processors communicate among themaelvea
through a shared global memory, we clasaify
them aa tightly coupled 8yatema (refer Fig. 1 ) T-
Hence the rate at which the prooessors cah
communicate is of the order of the bandwidth of
the memory. On the other hand, we have loosly_
coupled syatems nhere proceaaors do not share \a
common memory, but communicate uaing meaaag^
paa8ing primitivea.
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(a) Linear array (b) Ring (c) Star (d) Tree (e) Near-neighbor
mesh

(f ) SystoMc array (g) ComDletely
connected

(h) Chordal
ring

(i) Cube

Fig. 2 Static Interconnection Topologies

The interconnection network plays an
important role in raultiprocessor aystemB, and
significantly influence the performance of the
syatem. A quick overview of the interconnection
netuork is presented in this aection, which-
will be followed by a siscussion on the two
configurations of multiprocesaing sy3tems.

Interconnection Networks The increasing
popularity of many proposed multiprocessing
systems with 10* to 105 processing elements
makes the concept, design and implementation of
the interconnection network a crucial factor in
the design of such systems. A typical
interconnection network consists of a set of
auitching elements. The network can be
classified based on the following four design
factors: operation mode, control strategy,
switching method and network topology [30]. A
netnork can send and receive messages in a
synchronoua or asynchronous mode.
Classification on the control strategy is based
on whether the switching elements are
controlled in a centralized or distributed
manner.

order of n*, where n is the nuraber
proceasing cells in the system.

of the

Multistage interconnection netvork (MIN)
strikes a balance between cost and performance.
It is dynaraic netviork using a number of
switching elements, unlike a static network
uhere dedicated linka are used. A MIN of n x n
size establishea' a maximum of n links at any
instance, at a cost of n log n. This attractive
feature makes MIN a proponet in many
multiprocessing aystems auch aa the New York
univeraity Ultracomputer (NYU) [42].

(a) 8 x 8 baseline netvvork

Circuit switching and paoket switching are
two switching methods adopted in a netuork. In
circuit switching, a phyaical path is actually
established between the source and destination
nodes. In contraat, in packet auitching, data
is put in a packet vihich ia routed through the
network without eatablishing a physical path.
Fig. 2 and Fig. 3 depict some of the atatic and
dynamic topologiea of computer netvrork.

The bus interconnection scheme connects
the various proceasing cells through a common
shared bua. The bandwidth of the bua is very
low, and contention is a serious consequence
when a large number of cells are connected to
the bua. Various schemes [11] such as daiay
chain, parallel priority and time-aliced
schemes, have been proposed to resolve bus
contention. Fig. 4 shows the organization of a
ahared bua multiprocessing system with daisy
chain scheme for priority reaolving. Despite
its ahortcomings, ahared bus still attracts
system .deaigners because of its low cost and
complexity and easy upgradability of the
system.

Cross bar awitch [53] on the other hand is
very expenaive, but provides high memory
bandwidth. The cost of the network ia of the

(b) 8x6 Benes netvvork

n x m rxr m x n

1

2

1

2

b4 1

2

(c) Clos netvvork

Fig. 3 Dynamic Interconnection Topologies
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Fig. 4 Daisy Chain Implementat.ion of Shared Bus

Tightly Coupled Multiprocessors Tightly
coupled systems are ideally suited if high
speed or real-time processing is desired. In a
tightly coupled system a set of processing
elements is connected to a set of memory
modules through an interconnection network.

If two or more processors attempt to
access the same memory module, a conflict
occurs. Hence the memory raodules are either
low-order interleaved or high-order interleaved
to reduce the number of conflicts. In a variant
of tightly coupled systenis, each processor is
allowed to have a private memory, called the
cache for that processor. This will greatly
reduce the traffic through the network as local
data can be stored in and accessed from the
cache.

Processors communicate the interraediate
results through the shared memory modules. The
set of processors may be homogeneous or
heterogeneous. It is homogeneous if the
processors are functionally identical. Also, a
processor may differ from others in its
capability to access 1/0 systems, performance
and reliability.

Various multiprocessing systems have been
proposed using a shared memory architecture.
Examples of these are, the C.mmp system [101],
the Heterogenous Element Processor (HEP) [25],
the New York university Ultracomputer (NYU)
[42], Honeywell 60/66, Univac 1100/80 and IBM
3084 AP. A dedicated raultiprocessing
architecture with time shared bus has been
designed and experimented by use for computer
graphics applications [36,37,38].

Tightly coupled systems can tolerant a
higher degree of interaction without rauch
deterioration in perforraance. Houever, one of
tlje limiting factor of tightly coupled systems
is the performance degradation due to memory
conflicts when the number of processors in the
sy9tem ia increased.

Loo8ely Coupled Hultiprocessora Loosely
coupled multiprocessor systems do not generally
encounter the degree of raemory conflicts
experienced by tightly coupled systems. In such
systeras, each processor has a set of
input/output devices and large local memory
where it accesses most of the instructions and
data. Processes which execute on different
computer modules communicate by exchanging
messages through a message transfer system. The
degree of coupling in such a system is very
loose (and hence the name). The determining
factor in the degree of coupling is the
communication topology of the associated
message transfer systera. Loosely coupled
systems are- efficient when the interactions
among the tasks are minimal.

Fig. 5 illustrates the model of a loosely
coupled system. The channel and arbiter svitch
in each of the computer modules may have a high
speed communication meraory which is used for
buffering block transfers of messages. The
communication mernory is accessible by all
processors through the communication interfaoe.
The raessage transfer system for non-
hierarchical system could be a simple time
shared bus. The performance of such
configuration is limited by the message arrival
rate on the bus, the raesage length, and the bus
capacity (in bits per second).

(a) COMPUTER MOOULE
Computer module 0 Computer module N-1

(LM) I i/o

Message Iransler syslem
(MTS)

Fig. 5

(b) LOOSE COUPUNG 0F COMPUTER MODULE

Model of a Loosely Coupled System

Loosely coupled systems where processors
are connected using dedicated links, are also
popular. In such a network of processors,
locality (nearness between a pair of
processors) oan be exploited by scheduling
tasks which interact among themselves more to a
group of processors uhich are closer to each
other. Failure of a node or link will not
catastrophically affect the system, as
alternate paths can be established and the
system can perform with graceful degradation.

The Cm« architecture [54] developed at the
Carnegie Mellon University is one exaraple of a
loosely coupled system. It consists of a set of
clusters connected by an intercluster bus (Fig.
6). Each cluster has a set of processing
elements connected over a map bus. The system
forms a good example for hierarchical
structure.
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Intercluster buses

Fig. 6 Cm» Architecture

A loosely coupled system designed for
artificial intelligence and image processing
application is ZMOB [80]. In this architecture,
a set of 256 Zilog microprocessors are
connected by a pipeline system.

Another loosely coupled architecture which
has attracted the attention of many researchers
due to its high performance and relatively low
cost, is the hypercube architecture [47,83].
Because of the increased attention it has
received, we devote the following paragraphs to
this architecture.

The concept of a hypercube computer can be
traced back to the work done in the early
1960's by Squire and Palais [93] at yhe
University of Michigan. They carried out a
detailed paper design of a 4096-node (12-
diraensional) hypercube.

TKe hypercube topology is an n-diraensional
generaTization of the simple cube. The
hypercube of diraension n has 2° cells. Each
cell is connected to n neighboring cells which
are at a Hamming distance of one. The
connection betueen adjacent nodes is by point-
to-point link. Fig. 7 shows the topology of
hypercube architecture for dimensions three and
four. The cube manager provides a high level

000

110*1

(a) Dimension = 3

(b) Dimension = A

Fig 7. Hypercubes

interface for system users. It serves as a
local host for the cube, supporting the
programming environment, compilation, program
loading, input/output and error handling.

Hypercube architecture has many attractive
properties. The hypercube topology yields a
regular array in which the node are close to
one another: no more than n steps apart. At the
same time, the number of connections from each
node to its neighbors is quite low (also equal
to n). It thus strikes a balance betneen a two-
dimensional array in which the internode
connection costs id low, but the nodes are far
apart O(n 1 / 2) steps on an average, and a
corapletely connected array in whioh the
internode connection costs is high, but the
nodes are only one step apart.

The hypercube architecture is homogeneous
in the sense that all the hodes are identical.
Further, the hypercube architecture is
hierarchical and eminently partitionable. For
example, a hypercube of dimension n+1 can be
pertitioned into two hypercubes of dimension n.
This means that it is quite easy to allocate
subcubes to subtasks, especially for problems
which adopt a divide-and-conquer strategy.
Lastly, the hypercube architecture can itself
embed other regular topologies such as tree,
mesh, pyramid or hexagonal structure.

3.4. Reconfigurable Architecture

Another interesting aspect of
multiprocessing systems in which active
research is under progress is reconfigurability
[85]. Often, full potentials of multiprocessing
systems are not realised in raany applications.
The reaspn for this is the mismatch between the
application and the architecture. In order to
alleviate this problera, we build dedicated
systems where the architecture matches the
application. Another approach which is activelv
pursued by researchers is building
multiprocessing systems with programmable
switches; using these switches it is possible
to reconfigure the system depending on the
application. Such a reconfigurable system, by
nature, is flexible and hence can be used for a
variety of applications. Configurable Highly
Parallel computer (CHiP) [85] is a
reconfigurable system designed to suit the
topologies of various applications. In this
section we will highlight the salient features
of another reconfigurable architecture, the
Connection Machine [48], Its organization is
similar to an SIMD machine, but it functions as
a reconfigurable architecture executing
multiple instructions on multiple data streams,
and henče it is hard to classify this as SIMD
or MIMD.

Connection Machine The desire to build a
machine that will be able to perform the
functions of a human mind, the thinking
machine, is the raotivating force behind the
design of Connection Machine. Specifically,
retrieving commonsense knowledge frora a
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semantic netvork was the application in the
deaigner'a mind.

The Connectlon Machine computes through
the interaction of many, say a million, simple
identical procesaing/memory cells. The two
requirements for the connection machine are:

(i) each processing element must be as small
as possible so that we can afford to have as an
many of them as we need;
(ii) the procesaing elements should be

connected by software.

The Connection Machine architecture
follows directly from these two requirements.
It provides a large number of tiny
processor/meinory cells connected by a
programmable netnork. Each cell is sufficiently
small 8O that it is incapable of performing
meanlngful computations on its own. Inatead,
multiple calla are connected together into
data-dependent patterns, called 'active data
structurea' that both represent and process the
data. The activities of these active data
structures are directed frora outside the
Connection Machine by a conventional host
computer. This host computer stores data
structures on the Connection Machine in much
the same way that a conventional machine stores
them in a memory. Unlike a conventional memory,
though, the Connection Machine has no
processor/memory bottleneck. The memory cells
themselves do the processing. More precisely,
the computation takes place through the
coordinated interaction of the cells in the
active data structure. Because thousands or
even millions of procesaing cella work on the
problem simultaneoualy, the computation
proceeds much more rapidly than would be
possible on a conventional machine.

A Connection Machine is connected to a
conventional computer much like a conventional
memory. Ita internal atate can be read and
vritten a word at a time from the conventional
memory. It differa from a conventional meraory
in three aspects. First, associated with each
cell of atorage ia a proceasing cell that can
perform local coraputationa baaed on the
information atored in that cell. Second, there
exits a general intercommunication network that
can connect all the cella in an arbitrary
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Fig. 8 Connection Machine

pattern. Third, there is a high-bandwidth
input/output channel that can tranafer data
betvieen the Connection Machlne and peripheral
devices at a much higher rate than would be
possible through the host.

A connection is formed between two
proceaaing memory cells by atoring a pointer in
the memory. These connectiona can be set up by
the host, loaded through the input/output
channel, or determined dynamically by the
Connection Machine itaelf. In this prototype
syatera, there are 65,536 (2»») proceasor/memory
cella each with 4096 bita of memory. The block
diagram of the Connection Machine with host,
proceaaor/memory cell8, communication netuork,
and input/otput is shown in Fig. 8.

The control of the individual
proces8or/memory cella ia orcheastrated by the
host of the computer. For example, the hoat may
ask each cell that ia in a certain atate to add
two of it8 (cell's) memory locationa locally
and pass the reaulting aum to a connected cell
through the communication netuork. Thus a
single coramand from the hoat can reault in tena
of thouaanda of additions and a permutation of
data that depend8 on the pattern of
connectiona. Each procesaor/nieniory cell ia ao
small that it ia es8entially incapable of
computing or even atoring the reaulta of any
aignificant computation on ita own. Inatead,
the coraputation takea place in the orcheatrated
interaction of thousanda of cells through the
communication netuork.

The ability to configure the topology of
the machine to match the topology of the
problem turna out to be one of the most
important featurea of the Connection Machine.
The Connection Machine can alao be used as a
content addresaable or asaociative memory, but
it ia alao able to perform non-local
computationa through its coramunication network.

3.5. VLSI Svstema

While the previoua aubaection discussea
the features and requirementa of reoonfigurable
architecturea, this aection ia devoted to the
architeoture of dedicated aystema. Nowdays,
raature VLSI/WSI (Very Large Scale Integration /
Wafer Scale Integration) technology permita the
manufacture of circuita whose layouts have
minimum feature aize of 1 to 3 microns [69].
The effective yields of VLSI/WSI fabrication
processes make poaaible the implementation of
circuita with upto half a million transiators
at reaaonable coat -- even for relatively araall
production quantitiea. Thia opena the horizont
for building systems with thousanda of
processora in a coat-effective and compact
raanner.

The key attributes of VLSI computing
atructures [33,63] are

(i) siraplicity and regularity,
(ii) concurrency and communication and
(iii) computation-intensiveneaa.
A VLSI atructure should be auch that ita basic
building block ia aimple and regular, and is
used repetitively with aimple interfacea. This
helpa us to cope with high complexity. The
algorithm designed for theae structurea ahould
support a high degree of concurrency, and
employ only, aimple, regular communioation and
control to allow efficient implementation. VLSI
procesaora are auitable for implementing
compute-bound algorithma. In VLSI processors,
we discuaa the two classes of architecturea
namely, 8yatolic and wavefront proceaaora.

Systolic Arraya Syatolic arraya are
adraired for their elegance and potential for
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high performance. Systolic arrays belong to the
generation of VLSI/WSI architectures for which
regularity and modularity are important to
achieve area-efficient layouts. The concept of
systolic architecture is a general raethodology

rather than being an ad hoc approach -- for
mapping high-level computations into hardware
structures. In systolic system data flows from
the computer memory in a rhythmic fashion,

passing through many processing elements before
it returns to memory, much as blood circulates
to and from the heart. Systolic arrays derive
their computational efficiency from
multiprocessing and pipelining. The data items
pumped into the systolic processors are reused
many times as the move through the pipelines in
the array. This results in balancing the
processing and input/output bandviidths, a
requirement for any parallel processing system
for alleviating the von Neumann bottleneck.

The topologies for interconneoting the
processing elements of a sy8tolic array are
many. Some of the most commonly used
topologies, namely linear, mesh, triangular,
hexagonal and tree structures are shovrn in Fig.
9.

Easentially, the whole operation of the
systolic system is synchronized with a global
clock and it may be visualized as a sequence of
computation and data transfer cycles.
Incidentally, the clock JB the only global
signal allowed in systolic architecture apart
from the power and ground lines [93]. During
the data transfer cycle, all the prooessing
elements pump data into the existing data
channels, to be accepted by the neighboring
processing elements connected to the data
channels. After thia oycle is over, all the
processing cells enter the computation cyole
where each of the cells computes concurrently
till the end of the computation cycle. This
8equence goes on rhythmicall and perpetually in
striot synchronisra with the clook beats.
Systolio architectures thus capture the
concepts of parallel processing, pipelining and
regular interconnection struoture in a unified
frameuork [63].

Having all the desirable properties of an
efficient special purpose system, the systolic
architecture is an interesting area of research
for a variety of applications, namely digital
and iraage processing [62], linear algebra
[28,69], database systems [63], computer
graphics [67,96,97], computer-aided design, and
solid modeling [60]. The systolic algorithms
are characterized by repeated computations of a
few types of relatively simpleoperations that
are common to many input data items. Often, the
algorithms can be described with nested loops
or by recurrence equations that describe
computations performed on indexed data.

The systolic architectures were originally
conceived as devices capable of performing a
specialized task. Essentially, these
architectiires consist of a large number of
identical processors, each having only a single
arithmetic or logic operatidn build into its
harduare. This greatly limits the applicability
of a system to raany areas. The latest trend in
research in this direction is towards the
development of systolic cells which are
versatile enough to iraplement the compute-
intensive functions. The design of programmable
systolic cells [31] has been suggested as an
effective way touards achieving high
performance systolic systems. Each aystolic
cell now possesses a rich instruction set along
with some amount of local storage, which were
completely absent in the original versions of
the systolic architecture. By suitably
programming these systolic cells, a variety of
operationa can be performed. The programmable
nature of the systolic cells offers a high
degree of flexibility in operation and high
performanoe.

Wavefront Array Processors The data
movements in a systolic array are controlled by
global timing-reference 'beats'. The burden of.
synchronizing the operations of the entire
systolic coraputing network becomes heavy for
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very large arrays. A simple solution is to take
advantage of the data flow computing principle
[91] (which will be discussed in detail in
Section 4.1), which leads the designer to
wavefront array [64] processing.

The wavefront array combines systolic
pipelining principle with the data flow
computing concept. In fact, the navefront array
can be viewed as a static data flow array that
supports the direct hardware implementation of
regular data flow graphs. Exploitation of the
data flow principle makes theextraction of
parallelisra and programming for uavnfrnnt.
arrays relatively simpler.

Synchronizing with the global clock and
consequently the large surge of current {due to
the simultaneous energizing OF changing of
states of the components) are two major
problems in systolic arrays. Theae can be
alliviated in wavefront arrays, because of
their asynchronous nature. When the processing
times of the individual cells are not uniform,
a synchronous array may have to accommodate the
slowest cell by using a slower clock. In
contrast, uavefront arrays, because of their
data-driven nature, do not have to hold back
faster cells in order to accommodate the slower
one. Wavefront arrays also yield higher speed
when the computing times are data-dependent.
Lastly, programming of wavefront arrays is
easier than that of systolic arrays because
uavefront arrays require only the assignment of
coraputations to processing elements, whereas
systolic arrays require both assignment and
scheduling of computations.

3.6. Critigue on von Neumann Systems

The most serious problem with the
raultiprocessors which use the von Neumann
model, as discussed in [10], is the presence of
globally updatable shared memory. Special
mechanisms are required to ensure correctness
of results while updating a meraory cell. The
explicit execution order to be specified by the
programmer is another bottleneck of von Neumann
systems. This has led to research in non-von
Neumann architectures.

4. Non-von Neumann Architectures

The principal stirauli for developing the
non-von Neumann machines have come from the
pioneering work on data flow machines by Jack
Dennis [26], and on reduction languages and
machines by John Backus [9] and Klaus Berkling
[15]. In data-driven model, the availability of
operands triggers the execution of the
operation to be performed on thera, whereas in
demand-driven model, the requirement for a
result triggers the operation that will
generate the result. Of late, the realization
of the suitability of biological nervous
systems for many applications and the use of
artificial nets have triggered the design of a
new system, the neural computer. In this
section, we present the details of these three
non-von Neumann approaches.

4.1. Data-Driven Model

In a data flow computer, an instruction is
executed as soon as all its operands are
available. Since the data availability solely
dictates the execution order of instructions,
there is no need for having a program counter.
Also, the data are passed as values between
instructions; this eliminates shared memory and
makes the synchronization mechanism siinpler.

Thua data flow model alleviatea the shortcotning
of the von Neumann model. Also, parallelism is
exploited at lnstruotion level. Hence, a very
high speed of computing is possible.

The machine language for data flow
computer ip the data flow graph [24]. The data
flow sraph conslsts of nodes, to represent
operatora, and arcs, to carry data between the
nodes. Tokena carry data valuea along the arcs
to the nodea. When all the required operands
are available, the node is 'fired'. As a
result, the input tokena are removed and output
tokens are produced.

Data flow architectures are classified as
statio and dynatnic arohitecture, In atatic
model, an additional constraint -- no token
should be preaent on any of the output aros of
node — la required to enable the execution of
an inatruetion. The implioation of thia ia that
the static data flow model cannot support
execiition of reentrant routines. This severely
restricta the extent of parallelism and
aaynchrony that can be exploited in the static
model. In a dynamic model, additional tags,
called environment tags {color), are asaociated
with the token to diatinguish the various
inatantiations of a rentrant routine. Thua, the
dyrramic model aupporta fine grain paralleliam
with full a8ynchrony. In this paper we describe
the architecture of a data flow computer, uaing
the Mancheater data flow computer [98] as an
illustrative example.

In Fig. 10, the svitch unit aerves aa an
interface betueen the host computer and the
data flow machine. It routea the intermediate
reaulta to the token queue and the final
reaulta to the hoat computer. The token queue
unit ia a FIFO buffer which smoothes the flow
of tokena in the ring. Tokena in the token
queue are checked for their operand type. All
tokena directed to aingle input nodea are
direotly routed to the node atore. Other tokens
are sent to the matching unit.

Tokens that arrive in the matching unit
aearch for their raatching partner. If the
search faila, the token ia atored in the
matching atore; it awaita its partner. On the
other hand, if the matching partner is found,
it (the matching partner) ia removed from the
matching atore; the inooming token 18 merged
with its partner to form a group token. The
group token which containa the information
about the operand valuea, address (of the node
to which the token ia de8tined to) and
environment tag ia aent to the node store.

The node store unit atores the program
graph; it stores the opcode for the operator,
destination and operand type of reault tokens.
Tokena entering the node store get the above
information to form an executable token. The
executable packeta are sent to the diatributor
unit which diatributea the tokena to one of the
free processing elementa. The proceaaing
element performs the operation specified by the
token to produce result tokens. The result
tokena are collected by the arbitrator and are
aent to the awitch unit. Fig. 10 depicta the
block schematic of the Manchester data flow
coraputer.

Reaearch in the area of data flow
coraputation ia a rapidly expanding area in
United Statea, Japan and Europe. There are a
number of data flow projecta that are underway
in many univeraitiea. Some of them worth
mentioning here are M.I.T. data flow computer
[26] developed by Dennia, Irvine data flow

machine [7,39] by Arvind, Manchester data flow
aystem [98], ita extended veraion (EXtended
MANcheater architecture) proposed by the
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authors [74], Texas Instruments distributed
data processor [22], Utah data driven machine
[23], Toulouse LAU system [20,76], Nevrcastle
data-control flow computer [89], the efficient
static dataflow architecture for specialized
computation proposed by the authors [87], and
the high speed data flow aystem developed by
Nippon Telegraph and Telephone Systems [3].

Much work needs to be carried out in the
design of languages for data flow machines, and
implementation of compilers for converting the
programs into data flow graphs. (Refer [88] for
the initial work on these issues.) Efficient
methods to overcorae the inherent overheads
associated with exploiting . fine-grain
parallelism have to be developed. Although many
data flow machines have been proposed in the
literature, no effort is made to prototype
them. Demonstrating the feasibility of the data
flow model of computation is thus a positive
step towards the commercialization of such
systems.

4.2. Demand-Driven Systems

In contrast to control flow and' data flow

programs which are built from fixed-size
instructions, demand-driven (reduction) [91]
programs are built from nested expressions.. The
need for result triggers the execution' of a
particular instruction.

An important point to note is that, in a
reduction machine, a program is mathematically
equivalent to its value. Demanding the result
of definition a, defined as x = (y+1) * (y-z),
means that the embedded reference to x is to be
reuritten in a simple form. This requires that
only one definition of x may occur in a
program, and all references to it give the same
value, a prqperty known as referential
transparency [91].

There are two form of reduction, called
string reduction and graph reduction. The basis
for string reduction i3 that' each instruction
that accesses a particular definition will take
and manipulate a seperate copy of the function
definition. Whereas, in graph reduction each
instructiori that accesseš a particular
definition will manipulate references to that
definition. That is, graph reduction is based
on sharing of arguments using pointers. In
string reduction each access for a definition
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will result in the evaluation of the
definition. Reduced definitions or data values
are acoessed when the demanded definition haa
already been evaluated. While graph reduction
machine takes advantage of the shared
definition (in term of the number of
definitions evaluated), it is more complex than
string reduction.

There are two basic problems in supporting
reduction approach on a maohine organization
[90]: first, managing dynamically the memory of
the program atructure being transformed and,
second, keeping control information about
information about the atate of the
transformation. The basic organization of a
reduction machine, the Neucastle reduction
machine [90], is presented below (refer Fig.

The reduction machine organisation
di8cussed here supports reduotion by expresaion
evaluation. To find work, each procesaing
element traverses the subexpression in its
memory looking for a reducible expression. When
a proceasing element locatea a reference to be
replaced by the corresponding definition, it
sends a requeat to the communication unit via
its communication element. The communication
unit in such a computer frequently organized as
a tree-struotured netuork on the assumption
that the majority of communicationa will
exhibit properties of locality of reference.
Concurrency in auch reduction computers is
related to the number of reducible
subexpressiona at any instant and also to the
number of procesaing eleraents that traverse
these expres8ions.

Apart from the pioneering work of Klaus
Berkling [15], the stage of development of
reduction computers somevrhat lags behind that
of data flow computers [91]. Houever,
researcher8 have demonstrated the principle and
feasibility of reduction oachine organization
by designing many prototype system such as the
GMD reduction machine [58], Nevrcastle reduction
machine [90], Mago's oellular tree machine
[66], Applicative Multiprocesaing Systems
(populary knovm as AMPS) [57], and Combridge
Univeraity SKIM reduction machine [92].

4.3. Neural Computers

In the fields of image processing and
speech recognition, the ability to adapt and
continue learning is eaaential. Traditional
techniques used in these applications are not
adaptive. It has been realized that the
biological nervous systera is more suitable for

applications involving pattern recognition and
learning [2]. Artificial neural nets have been
studied during the last few years in the hope
of achieving human like performance in the
fields of image processing and speech
recognition. The neural net models [65] attempt
to achieve good performance via dense
interconnection of aimple computational
elements. The interest in this type of non-von
Neumann computing techniques in recent years ia
due to the development of new net topologies
and algorithos, new analog VLSI implementation
techniques and the growing fascinantion for the
understanding of the functioning of the human
brain as well aa the realization that human-
like performance is required for applications
involving enormous araount of procesaing
[51,65]. Several mathematical models have been
proposed to exhibit some of the essential
qualities of human mind: the ability to
recognize patterns and relationahips, to store
and use knowledge, to reason and plan, to learn
from experience and to undrstand what is
observed.

Neural net models are apecified by the net
topology, node characteristics and training or
learning rules. The computational elements or
nodes used in neural net models have nonlinear
characteriatics, typically analog, and are
specified by the type of nonlinearity. Most net
algorithma al3o adapt in time to improve
performance based on current results. Any
artificial neural model must neceasarily be a
speculation: definitive experimental evidence
about the 8tructure and function of the
neurological circuitry in the brain is
extremely difficult to obtain since it ia hard
to measure the neural activity without
interfering with the flow of information in the
neural circuit. Further, the neurons are
intricately interconnected and the flow of
inforraation is complicated by the presence of
raultiple feedback loops.

Nevertheless enough is known about some
parts of the brain to fuel the desire for
constructing mathematical models of the neural
circuit. In general, the raodela propose to
generate a senaory-activated goal-directed
behavior and control a multilevel hierarchy of
computing modules. At each level of hierarchy,
input commanda are decomposed into strings of
output subcommands, that form input commands to
the next lower level. Feedback from external
environment or from internal sources drives the
decomposition proceas, and ateers selection of
subcomraands to achieve the goal successfullv
(refer Fig. 12).
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The benefits of neural net include high
computation rates, provided by massive
parallelism and a greater degree. of fault-
tolerant since there are many processing nodes
each with primarily local connections.
Designing artifioial neural nets to solve
problems and studying real biological nets may
also change the way we think about problems and
lead us to new insighta and algorithmic
improvements.

5. Software Issues Related to Multiprocessing

Systems

Having discussed the various
multiprocessing systems, it is worth probing
further into two aspects of parallel
processing: the language to program and the
operating system support to handle these
complex systems.

5.1. Parallel Programming Languages

One of the motivations behind the
developraent of concurrent languages has been
the structuring of software -- in particular,
operating system -- by means of high-level
language constructs. The need for liberating
the production of real-time applications from
assembly language has been another driving
force. In the following discussion, we classify
the concurrent high-level languages into two
groups: 'traditional' languages of the von
Neumann type (based on imperative atyle of
programming) and the unconventional languages,
such as data flow, functional and logic-based
languages. A quick review of some of these
languages is presented below.

Conventional Parallel Languages Based on
the imperative style of programming, these
languages are just the extensions of their
sequential counterparts. A concurrent language
should allow programmers to define a set of
sequential activities to be executed in
parallel, to initiate their evolution and to
specify their interaction (refer [4] for an
excellent survey on the concepts and notations
for parallel programming). One important point
regards the 'granularity of parallelism', i.e.
the kinds of granules that can be processed in
parallel. Some languages specify concurrency at
statement level, and certain others at task
level . Constructs for specifying inter-activity
interaction are probably the most critical
linguistic aspects of concurrency. Language
constructs ensuring mutual exclusion are called
synohronization primitives. Some of the best-
known and landmark solutions that have been
adopted to solve these problems are the
semaphores [27], raailboxes, monitors [49] and
remote procedure calls [46]. Research in this
direction is towards designing new raachanisms
for interprocessor communication, such as
ordered ports. [13]. In the following discussion
we restrict ourselves to a few parallel
programming languages and their salient
features.

Communicating Sequential Processes (CSP)
[50] is a language designed especially for
distributed architectures. In CSP, activities
comraunicate via input/output coramands.
Coramunication requires both the participating
processes to issue their commands. Also CSP
achieves process synchronization using the
input/output commands. Another interešting
feature of . this language is its ability to
express non-determinism using guarded commands.
An implementation of a subset of CSP [73] has
been has been succesafully attempted by the

authors' research group. Their work on the
design of an architecture to execute CSP is
reported in [79].

Distributed Processes (DP) [46], developed
by Hansen, is proposed for real-time
applications controlled by microcomputer
networks with distributed storage. In DP, a
task consists of a fixed number of subtasks
that are started simultaneously and exist
forever. A process can call common procedures
defined within other processes. These
procedures are executed when the other
processes are waiting for some conditions to
become true. This is the only means of
coramunication among the processes. Processes
are synchronized by means of non-deterrainistic
guarded commands.

. /
Occam language [55], which is based on CSP

has also been designed to support concurrent
applications by using concurrent processes
running in a distributed architecture. These
processes comraunicate through channels. The
Transputer [56], also developed by Inmos
Corporation, supports the direct execution of
this language.

Languages which adopt monitor-based
solution for synchronization are oriented
towards architectures with shared memory.
Examples of these languages are Concurrent
Pascal [45], Ada [5], and Modula [99]. These
languages, in general, support strong type
checking and seperate compilation, and express
concurrent actions using explicit constructs.

Concurrent Pascal [45] extends the
sequential programming language Pascal using
the concurrent programraing tools, processes and
monitors.. The main contribution of this
language is extending the concept of the
monitor using an explicit hierar'chy of access
rights to shared data structures that can be
started in the program text and checked by a
corapiler.

The prograroming language Modula [99] is
primarily intended for programming dedicated
computer systeras. This language borrows many
ideas from Pascal, . but in addition to
conventional blook structure, it introduces a
so-called module structure. A module is a set
of procedures, data types and variables where
the programmer has precise control over the
naraes that are imported from and exported to
the environment [99]. Modula includes general
multiprooessing facilities such as processes,.
interface modules and signals.

In Ada [5], we only have active
components, the tasks. Information may be
exchanged among tasks via entries. An entry is
very similar to a procedure. The call to an
entry is like a procedure call; parameters
should be passed if the called entry requires
them. A randezvous is said to occur when the
caller is in the call state and the called task
is in the accept state. After executing the
entry subprogram both the tasks resume their
parallel execution. Ada provides specific and
elaborate protoools for task termination. Ada
is designed to support reliable and efficient
real-time programming.

Non-von Neumann Languages Conventional
languages imitate the von Neumann computer. The
dependericy of these languages on the basic
organization of the von Neumann machine ia
essentially a limitation to. express and exploit
parallelism [10]. These imperative languages
perform a task by changing the state of a
system rather than raodifying the data directly.
In parallel processing applications, it makes
more sense to use a language with a
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nonsequential semantic base. Various paradigms
have been adopted and new programming languages
based on these approaches have evolved. We will
restrict ourselves in this paper to two such
paradigms, namely the applicative and the non-
procedural style of programming, and the
resulting parallel versions of the languages
that adopt these approaches.

Applicative languages (also referred to as
functional languages) avoid side-effects, such
as those caused by an assignment statement. The
lack of side-effects accounts, at least
partially, for the well-known Church-Rosser
property, which essentially states that no
matter what order of computation is chosen in
executing a program, the program is guaranteed
to give the same result (assuming termination).
This raarvellous determinacy property is
invaluable in parallel systems. Another key
point is that in functional languages the
paralleliam is iraplicit and supported by their
underlying semantics.

A system of languages known as Functinal
Programming languages (FP) [10] and Lisp [68]
are two major outcoraes of the applicative atyle
of programming. Languages for data flow
architectures, which avoid side-effects and
encourage single assignment, are also included
in the set of applicative languagea. Dennis1

Value oriented Algorithmic Language (VAL) [1],
Arvind'3 Irvine Data flow language (Id) [8],
and Keller'8 Flow Graph Language (FGL) [57] are
candidate examples in this category.

Considerable work has been done by us in
the area of aplicative programming languages. A
high level language for data flow computers,
called Data Flow Language (DFL) [72], has been
proposed by us, and a compiler to convert the
programs written in this language into data
flow graphs has been implemented. The concepts
borrowed from CSP and DP when embedded into
data flow systems results in two new languages
for distributed processing, namely
Communicating Data Flow Channels (CDFC) and
Distributed Data Flow (DDF) respectively [75].
Communication and non-deterrainism features have
been added to FP by us {40,41] to strengthen
its power as a programming language. We have
also proposed that FP can be used as a language
for program specification [41].

Although parallelism in a program is
expressed by the functional languages in a
natural way, their autoraatic detection and
mapping to processors do not result in optimal
performance. It is desirable to provide the
user with the ability to explicitly express
parallelism and mapping, retaining the
functional style of programming. Languages
which allow the programmers to annotate the
parallelism and mapping scheme for the target
architecture lead to optimal performance on a
particular machine. Two languages developed
with this motivation are ParAlfl (the Para-
Functional language) [52] and Multilisp [44].
Efforts have been taken to exploit the
advantages offered by the functional languages
to the maximum extent by developing new
machines based on non-von Neumann architecture
(refer [95] for a recent survey).

Applications such as the design of
knowledge base systems and natural language
processing revealed the inadequacies of the
conventional programming languages to offer
elegant solutions. The use of predicate logic,
which is a high-level human oriented language
for describing problera and problem solving
methods for computers, promised great scope for
these applications. Logic programming languages
corabine simplicity with a lot of powerful
features. They aeparate the logic and control

[59], the two major componenta of an algorithm,
and thus enable the programmer to write more
correct, raore easily improved and more readily
adapted programa. The powerful features of
these languagea also include the declarative
atyle, the unifioation mechanism for parameter
passing and execution atrategy offered by non-
deterrainiatio computation rule. The powerful
execution mechanisra provided by theae languages
is due to the non-procedural paradigm. An
outcome of the reaearch carried out in this
area with these motivationa ia the design of
the language Prolog [19].

Logic programming languagea offer three
kinds of parallelism, namely the 'AND', 'OR1

and 'argument' paralleliam [21,43]. The
inability of the von Neumann architecture to
efficiently execute logic programming language
(in eaaence supporting non-procedural paradigm)
haa led to the design of many parallel logic
prograraming machinea [16,43,70,94,100]. Further
research on these languages haa led to the
deaign of three parallel logic programming
languages, the PARLOG (PARallel LOGic
programming) [18], P-Prolog [103] and
Ooneurrent. Prolog [84].

With the increasing size and complexity of
parallel proceaaing systems, it becomea
essental to design efficient operating aysteraa,
without which handling of such systems would be
impoaaible. The general principlea and
requireraenta of multiproceaaor operating
aystems are diacuaaed in the following aection.

5.2. Multiproceaaor Operating Systems

The basic goala for an operating syatem
are to provide programmer-interfaoe to the
machine, raanage reaources, provide mechaniama
to iraplement policies, and facilitate matching
applicationa to the machine. There is
conceptually little difference betueen the
operating aystem requirementa of a
multiprocesaor and thoae of a large computer
system with raultiprogramming. The operating
sjrstem for a raultiprocesaor ahould be able to
support multiple aaynchronoua taska which
execute concurrently, and hence ia more
coraplex.

The functional capabilities of a
multiprocessor operating syatem include
reaource allocation and manageraent schemea,
memory and data set protection, prevention of
system deadlock and abnormal prooess
termination or exception handling and processor
load-balancing. Also, the operating system
ahould be capable of providing ayateni
reconfiguration schemes to aupport graceful
degradation of performance in the event of a
failure. In the following diacuasion, we
introduce brifly the three baaic
configurations, naraely maater-alave, aeparate
supervision and floating-supervision systems
[53].

In a 'master-slave' configuration, one
processor, called the raaater, maintaina the
atatua of all processors in the system and
apportions the work to all the slave
procesaors. Service oalla from the slave
proceasors are sent to the master for executive
aervice. Only one processor (the raaater) uses
the superviaor and ita asaociated procedures.
The merit of thia configuration is its
simplicity. Houever, parallel processing system
which haa the maater-slave configuration ia
susceptible to cataatrophic failures, and a low
utilization of the alave processora may result
if the raaster cannot despatoh processes fast
enough. Cyber 170 and DEC System 10 uae thia
mode of operation. The master-slave
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configuration is most effective for special
applications where the work load is well-
defined.

In a 'seperate supervisor system.' , each
processor contains a copy of a basic kernel.
Each processor services its own needs. However,
since there is some interaction among the
processors, it is necessary for some of the
supervisory code to be reentrant, unlike in the
master-slave raode. • Separate supervisor mode is
more reliable then master-slave mode. But the
replication of the kernel in all the processors
causes an under-utization of memory.

' The 'floating supervisor' scheme treats
all the proeessors as well as other resources
symmetrically or as an anonymous pool of
resources. In this mode, the supervisor routine
floats from one processor to another, although
several of the proceasors raay be executing
service routines simultaneously. Conflicts in
service requests are resolved by priorities.
Table access should be carefully controlled to
maintain the systein integrity. The floating
supervisor mode of operation has the advantages
of providing graceful degradation and better
availability of reduced capacity systems.
Furthermore, it is flexible and it provides
true redundancy and makes the most efficient
use of available resources. Examples of the
operating systems that exečute in this raode are
the MVS and VM in the IBM 3081 and the Hydra
[102] on the C.mmp.

6. Conclusions

In this survey, we have identified the
various issues involved in parallel processing
systems. Approaohes followed to solved the
associated problems have also been discussed
and their relative merit are put forth. The
principles and the requirements of language and
operating system support for complex
multiprocessing systems are elaborately
described. For the wide spectrum of
architectures proposed in the litarature, their
design principles and salient features are
brought out in a comparative menner.

While the envisaged potentials offer a
promising scope for parallel processing systeras
for many applicationa, hardly a few systems are
commercialized. The reasons fot this is the
lack of good software support for these
systems. Design of intelligent compilers which
can identify parallel subtasks in a program
(written in a sequential language), schedule
the subtasks to the processing elements and
manage coramunication among the scheduled tasks,
is a step toward this end. Although there are
many existing proposals in this line, none of
them seems to achive all the three goals in an
integrated manner, relieving the burden from
the user completely.

Another question that remains unanswered
is whether or not to continue with von Neumann
approach for building complex parallel
processing machines. While familiarity and the
past experience with control flow model inake it
a proponent candidate, its inherent
inefficiencies, such as the explicit
specification of control and global updatable
memory, limit its capabilities. Although data-
driven and demand-driven coraputers exploit
maximum parallelism in a program, their complex
structure and inadequate software support force
the designer to have a second throught on these
approaches.

With the advent of VLSI technology and
RISC design, dedicated architectures are
becoming more and raore popular. However, the

inapplicability of these systems to a variety
of applications causes a serious concern, At
the other end of the spectrum, we have general
purpose parallel processing systeras which give
degrade performance due to the mismatch of the
architecture and algorithm, and the
reconfigurable machines. Considerable and on
design efficient algorithms (for general
purpose computing systems) which will bridge
the gap between the application program and
architecture.

Finally, the research on neural computer
and molecular machines is at its infancy.
Modeling the neural circuits and understanding
the functioning of human brain have to be
considerable refined before one could make use
them for building high speed computing systems.

The vast.r.ess of this fascinanting area in
which active research is underway, and the
innumerable problems that remain to be solved
are themselves standing evidences for the
proraising future of parallel processing. With
the ever-growing greed for very high speed of
computing, and with the inability of the
switching devices to cope up with the need,
parallel processing techniques seem to be the
only alternative.
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