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The need for parallel processing is felt in many disciﬁlines. In
this paper we discuss the essential issues involved in these

systems, Variocus

architectural

proposals reported in the

literature are classified based on the execution order and

parallelism exploited. Design
architectures which have gained

and salient features of some

importance are highlighted.

Architectual features of non-von Neumann systems such as data-

driven, demand-driven, and

neural computers, which open the

horizont for research in the new models .of computations, are

presented in this paper.
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1. Introduction

There has been an ever-increasing need for-
more and more computing power. 1In a real-time
enviroment, the demands are much more. While
the computers built around a single processor
cannot stretch their processing speed beyond a
few millions of floating point operations per

second (FLOPS), an operating speed of a few
giga FLOPS is required in many applications,
Parallel processing techniques - offer a

‘promising scope for these applications.

Several applications such as computer
graphics, computer aided design (CAD) of
electronic and mechanical systems, wheather
modeling and robotics have.a high greed for
high computing power. To quote an example, ray
tracing techniques [32] used to display 3~
dimensional objects in computer graphics have
to process 5x10%* rays, each ray intersecting 10
to 2Q surfaces, and each intersection
computation requiring 20 to 30 floating, point
operations on an average. In order to provide a
fast, interactive and flicker-free disaplay,
each frame has to be computed 30 times per

second. Thus, the total computation power
required 60 giga FLOPS. Comparing this with the
execution sepeed of the present day
supercomputers -—- whose éxpected/measured

performance is about 100 millions FLOPS [53] --
we observe that the demand is more by an order
of magnitude of two.

The need for parallel processing is
conspicucus from the above illustration. The
recent advances witnessed in VLST technology
and the consequent decline in the hardware cost
further encourage the conatruction of massively
parallel processing syatems,

The paper is organized in the following
manher. In Section 2, we point out the major
issues associated with multiprocessing systems,
with a brief discussion on each of these items.



We classify parallel processing architectures
broadly into two classea. The first of them,

the von Neumann type, includes all
multiprocessing aystems that adopt the
principles of the von Neumann computation

model. Pipeline and vector processing, SIMD
machines, MIMD machines and VLSI systems which
fall wunder this category are surveyed in
Section 3. Supercomputersa employ one or more of
these techniques for achiving high performance.
More emphasis is given to current and recent
developments in these areas, In non-von Neumann
architecture, we include data-driven, demand-
driven and neural computers. Their methodology
of computation is functionally different from
the ones discussed earlier. An overview of
these architectural configurations is presented
in Section 4.

The programming language and operating
eystem support required for working with these
complex parallel processing systems are
reviewed 1in detail in the subsequent section.
Paralle]l programming languages are c¢lasgified
into two categories: the c¢onventional wvon
Neumann type {(that adop the imperative style of
programming) and the non-von Neumann languages.
Case studies of some of the popular languages
and their salient features are also reported.

We remark that an exhaustive coverage of
all contributions and research work reported in
this fascinanting area of parallel processing
aystems is beyond the scope of this paper and
we do not attempt that, Rather, we will
concentrate on the basic principles behind the
design of the various architectures. We will
pay nore attention to some specific
architectures and models of computation which
have gained importance.

-2. Issues in Parallel Processing Systems

In the this section we discuss the various
associated with multiprocessing systems. First,
it is interesting to look at the models of
computation, the way one has evalved from +the
other, leading to myrial architectural
configurations and machines.

2.1. Models of Ceomputation

Depending on the instruction execution
order, computer =systems can be classified as
control-driven, data-driven or demand-driven
machines.

Control Flow Conventional von Neumann
uniprocesaing and multiprocessing systems have
an explicit execution order specified by the
programmer. This hinders the extent of
parallelism that can be exploited. However,
these control models perform well for
structured data items such as arrays [34]. Also
the three decades of programming experience we
had with these models still makes it a
proponent candidate for future generation
computers.

Data-Driven Model In this model, . the
execution order is specified by the data
dependency alone [26]. Instructions are
executed as soon as all their input arguments
become available to them. Data flow model is
suitable for expression evaluation [34]. Since,
only data dependency determines the execution
order, and the granualarity of parallelism
exploited is as low as a single instruction,
this model of computation exploits maximum
parallelism. However, because of its eagerness
in evaluating functions, it executes an
instruction, if its operands are availeble,
irrespective of whether or not it is required
for the computation of the final result.

Demand-Driven Model In demand-driven (also
called reduction) execution, pioneered by
Berkling [151 and Backus [9], the demand for
result triggers the execution which ia turn
triggers the evaluation of its arguments and so
on. This demand propagation continues until
constants are encountered; then a wvalue is
returned to the demanding node and execution
proceeds in the opposite direction. BSince a
demand-driven computer performs only those
computations required to obtain the results, it
will perform less computations, 1in general,
than a data-driven computer. As the computation
model is 'lazy'! in evaluating expressions,
instructions accept partially filled data
structures?. This makes demand-driven model to
support infinite data structures. Such =&
facility is not available in the other modeles
of computation., However, this model suffers
overheads in terms of execution time due to the
additional propagation of the demand {for
arguments) ., The control mechanism and the
management of program memory add further to the
inefficiency [91}.

2.2. Concurrency

The granularity and nature of parallelism

exploited, gignificantly influence the
performance of the parallel processing systems.

Temporal, Spatial and Asynchronous
Parallelism By performing overlapped
computation one can exploit temporal

parallelism. Pipeline computers [53,77] execute
instructions in an overlapped manner as in the
asaembly line of manufacturing to achieve
parallelism. Examples of pipeline processing
are the execution of the different phases of an
instruction namely, instruction fetch, decode,
aopcode fetch and execution; execution of the
various atepas involved in floating point
arithmetic operaticns at various stages of the
pipeline. These machines are ideally suited for
processing vector instructions (53] namely,
vector add, vector multiply and dot product.

Spatial parallelism is the parallelism
inherent in performing an operation over the
elements of structured data, such as arrays.
Spatial parallelism is easy to detect and
exploit [34]. The synchronization and
scheduling overheads involved in exploiting
spatial parallelism are much less compared to
those experienced in the other two models.

Multiple instruction multiple data (MIMD)
[53]) machines achieve asynchronous parallelism
through a set of interactive processors with
shared rescurces. Several independent processes
running asynchronously on different processors
work to accomplish a common goal by exchanging
messages or by sharing common variables.

While spatial parallelism is easy to
detectet and exploit, the range of applications
on which it is inherent is limited. MIMD
machines which exploit asynchronous
parallelism, on the other hand, offer
flexibility in programming. Hence it can be
used for a wide range of problems.

Granularity of Parallelism For high
performance, we want to exploit as much

1 The nature of the model in executing
an inatruction only on is termed ?lazy’.

3 The computation of a recursively
defined data structure, for example SEG(N) =
CONS{N,SEQ(N+1)) never terminates, and hence is
infinite. Such a data structure can partially
be filled by evaluating only those terms which
are required for further computation.




parallelism as possible. This means that the
granularity of the tasks should be low. We
observe that as the level of granularity goes
down, the parallelism that can be exploited
increases. However, lower the. level of
parallelism more ®ill be the synchronization
overheads. A tradeoff between the parallelism
exploited and the synchronizration. overheads is
required to achieve high performance.

Another major issue involved: is
parallelism detection., Parallelism can either
be explicitly specified by the user, or canr be
detected from a program written in a gsequential
language using an intelligent <compiler., ¥For
expressing parallelism explicitly, language
auch as CSP [50], Occam [55] and Concurrent
Pascal [45] can be used. The user need to have
a knowledge of the architecture of the machine
on which the program is executed, the
application program and its . runtime
characteristics. The second approach which uses
program restructuring techniques [71] to
transform a sequential program into a parallel
form, does ncot -required a knowledged-user.
However, these techniques are inefficient and
canhot detect parallelism to the
extent. Active vresearch to develop efficient
parallel programs using these paradigms is
underway.

2.3. Scheduling

In a multiprocessor system, scheduling
algorithms assign each task to one or more
processors with the goal of achieving high
performance. Scheduling can again be static or
dynamic {(refer [6] for a comparison}, In static

scheduling, the tasks are allocated to
processors either during the aigorithm design
by the wuser or at compile time by an

intelligent compiler. In both these approaches,
the scheduling costs are paid only once even if
the program is run many times with different
data. Morover, there is no runtime overhead.
The disadvantage of static scheduling is
possible inefficiency in guessing the runtime
pEPfile of each task.

Dynamic gcheduling at runtime offers
better wutilization of processors, but at the
cost of additional scheduling time. The dynamic
scheduling walgorithm can be distributed or
centralized.

2.4. Synchronization

Synchronization methods are required to
coordinate ©parallel execution of tasks in =a
multiprocessor syatem. Architectures with
shared storage achive synchronization by
semaphores [27] and monitors [49]. In a massage
‘passing multiprocessing system, synchronization
of processes is achived using remote procedure
calls [46].

In order to update the shared variables in
a multiprocessor in @ consistent manner
{avoiding read-read, read-write races [53]),
the wupdating of the variables is done 1in a
region called c¢ritical region. Oonly one
process is Allowed to enter the critical region
at a time. Preventing access by other processes
when the critical region is being accessed by a
process is known as mutual exclusiaon.
Synchronization primitives are used te achieve
mutual exclusion. '

Of the many synchronization primitives

proposed (refer [35] for a survey), a few worth
mentioning are
{i) the ’test & set?
360/370 machines [17];
{ii} 'loek’ instruction used in C.mmp (101];

fullest

primitive of IBM

{iii} NYU Ultracomputer's 'fetch & add' [42].

The subsequent sections highlight the
architectural features of parallel processing
systems. The whole spectrum of architectures
proposed in the literature -can broadly be
classified as conventional von Neumann. parallel
processing systems and the non-von Neumann
syastems.

3. Von Neumann Parallel Processing Systems

Von Neumann parallel processing systems
can be divided into three major architectursal
configurations: pipeline, SIMD, and MIMD
architectures. These three architectural models
exploit the three kinds of parallelism, namely
temporal, spatial and asynchronous parallelism
respectively’ Each of the above mentioned
architectures 1is discussed in detail and the
design and salient features of certain parallel
processing machines are highlighted in this
section. Reconfigurable architectures and VLST
systems, though not entirely distinct from the
above discussed models, attract the attention
of researchers due to their many interesting
features. In particular VLSI systems offer new
scope in computing for designing dedicated
architectures for a variety of applications.
Constituent elements of the VLSI systems are
systolic [63]) and wavefront [64] architectures.

3.1. Pipeline and Vector Processing

Pipeline Architecture Pipelining (771
offers an economical way to realize temporal
parallelism. The concept of pipeline processing
in & computer is similar to manufacturing in
asgembly lines in an industrial plant. To
achieve pipelining one must subdivide the input
task into a sequence of subtasks, each of which
can be executed by a specialized hardware stage
that operates concurrently with other stages in
the pipeline. BSuccessive tasks are pumped into
the pipe &and get executed in an overlapped
fashion at the subtask level. Pipeline
processing leads to a tremendous jimprovement in
system throughput. A k-stage linear pipeline
could be at most k times faster. However, due
to memory conflicts, data dependency, branch
and Iinterrupts this ideal speedup cannet be
achieved.

One way of classifying a pipeline is based
on the function performed by the pipeline.
There are two classes of pipelines based on
this classification, namely the instruction
ripeline and the arithmetic pipeline. In the
instruction pipeline, +the various phases of

instruction execution such as instruction
fetch, instruction decode, operand fetch, and
instruction execution, are identified and are

executed in the successive stages of the linear
pipeline. Thus, from pipeline, after an initial
delay, instructions are executed once every
claock cycle.

Arithmetic pipelines subdivide the
arithmetic operations such as fleating-point
add or ' floating-point multiply into subtasks
and execute them on specialized arithmetic and
logic wunits. In an instruection pipeline, the
instruction execution unit can itself be an
arithmetic pipeline to further improve the
performance. IBM 360/91 machine employs both
these pipelines. Much research has already been
done on scheduling of pipelines; buffering and
delaying techniques are used to - improve the
execution speed. In Cray 1 [82], there are 12
functional pipeline units to perform both
scalar and floating point arithmetic
operations. Cyber 205 supports four vector
pipelines in addition to a scalar arithmetic



unit.

VYector Processing In this gection, we
explaint the basic concepts of vector
processing [53]. . Vector processora operate on
vector data and execute vector inatructions.
Vector pipelineas, unlike scaelar pipelines, are
assured of continucus satream of data. The
overheads involved in initializing the wvector
pipeline is compensated by the speedup
improvement gained, as the number of tasks
executed is large. Loop termination conditions
are performed by specialized hardware in
various stage of the vector pipelines. These
features mahke vector processing more efficient
than the scalar pipelines.

Vectorizing compilers [61] transform
program8 written in conventional imperative
languages into vector inatructiona suitable for
execution on vector processors. The fact that
pregent day supercomputers have vectorizing
compilers and vector processors ag their major
components demonstrates that pipeline
processging is an easy and efficient way of
realizing high speed computation. However, not
all programs can be vectorized. Pipeline
processors perform poorly in such cases.

3.2, SIMD Machines

A synchronous array of parallel processors
executing in a lock-step fashion, consisting of
multiple processing elements under the
superviaion of one control unit is called an
array processor. The system and user programs
are executed under the control of control unit.
The array processor can handle single
instruction and multiple data (SIMD) stream.
SIMD machines exploit spatial parallelism, The
processing cells are interconnected by a data-
routing network. The interconnection pattern to
be -established for specific computation is
under program control. Vector instructions are
broadcast Lo the processing cells for
distributed execution over different
processors. The cells are passive devices
without instruction decoding capabilities,

Array processors became well publicized
with development of Illiac IV ([12), Clip 4
[29], and Massively Parallel Processors {(MPP}
[14]. Future research in SIMD machines is
towards designig and implementing multiple-SIMD
(MSTIMD) machines [53)], c¢onsisting of more than
one control unit. Each control unit in this
class of machines shared a pool of dynamically
allocatable processors.

Array processors are characterized by
their ability to support parallelism at a low-
level. They are ideally suited for s8pecific
applications in the areaz of image and signal
processing [(281). For example, cellular array
[81) is a two dimensional array of processors,
each of which communicate directly with its
neighbors., The structure of the array ia very
appropriate in terms of layout on a chip. Work
in this direction has led us to the design of
SIMD architectures for CAD applications [78].

However, as mentioned in section 2.2, the
range of applicationg over which SIMD machines
can be put into efficient use is restricted and
hence they are not candidate architectures for
general purpose parallel processing machines.

3.3. MIMD Architecture

MIMD machines can be grossly characterized
by two attributea: first, a multiprogessor
system 18 & single computer that includes
multiple processors and second a multicomputer
that has several autonomous computers which are
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(PC)

OMA and butfer
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memory modules

geographically distributed and connected
through &a communication network. There exists
an important distinction between two systems.
In the firat case, the multiple processors work
concurrently in order to achieve a single goal.
Interaction between two processors is
essentially in terms of intermediante results
and synchronization messages., Whereas
multicomputers communicate among themselves
basically to share expensive resources. Each
autonomous computer works on an independent
task. In this section we will concentrate more
on multiprocessors. Discussion on distributed
computing systems wusing computer network is
beyond the scope of this paper.

Multiprocessing systems can be classified
into two groups, based on how the processing
elements interact among themselves [53]. When
several processors communicate among themselves
through a shared global memory, we classify
them as tightly coupled systems (refer Fig. 1)+
Hence the rate at which the processors ca
communicate is of the order of the bandwidth of
the memory. On the other hand, we have loosly_
coupled systems where processors do not sharen
COMWRON memory, but communicate using messag
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Fig. 1 Model of a Tightly Coupled System
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Fig. 2 8tatic Interconnection Topologies

The. interconnection network plays an order of n?, where n is the number of the
important role in multiprocessor systems, and proceasing cells in the system. "
significantly influence the performance of the
aystem. A quick overview of the interconnection Multistage interconnection network (MIN}
network 18 presented in this section, which: strikes a balance bethen cost and performance.
will be followed by & sigcussion on the two It is dynamic network using & number of
configurations of multiprocessing systems. awitching elements, wunlike a static network

where dedicated links are used. A MIN of n x n

Interconnection Netwoarks The increasing size establishes a maximum of n links at any
popularity of many proposed multiprocessing instance, at a2 cost of n log n. This attractive
systems with 104 to 10®* processing elements feature makes MIN a proponet in many
makes the concept, design and implementation of multiprocessing systema such as the New York
the interconnection network a crucial factor in university Ultracomputer (NYU)} [42].
the design of such systems. A typical .
interconnection network consists of a set of
switching elementsa. The network can be
classified based on the following four design
factors: operation mode, contraol satrategy,

switching method and network topology [30]1. A

network can send and receive messages in a

seynchronous or asynchronous mode .

Classification on the control strategy is based

on whether the gwitching elements are

controlled in a centralized or distributed :
manner. {a} 8 %= 8§ baseline network

Circuit switching and packet switching are
two switching methods adopted in a8 network. In
circuit switching, a physical path is actually
established between the source and destination
nodes. In contrast, in packet switching, data
iz put 'in a packet which is routed through the
network without establishing a physical path.
Fig., 2 and Fig. 3 depict some of the static and
dynamic topologies of computer network.

(b) 8x8 Benes network

The bus interconnection scheme connects

the various proecessing cells through a common nxm rxr mxn
shared bus. The bandwidth of the bus is very l { 1 3 1 |
low, and contention is a serious consequence : n_t VT f : : n
when a large number of cells are connected to

the bus. Various schemes [11] such as daisy 212 F 3 2 F 32
chain, parallel priority and time-sliced = : o ; : *
schemes, have been proposed to resclve bus ) . . .
contention., Fig. 4 shows the organization of a . - . .
shared. bus multiprocessing system with daisy - . .
chain scheme for priority resolving. Despite .

ita shortcomings, shared bus still attracts ; tlrE lm: Tr ]

syatem .designers because of its low cost and
complexity and easy upgradability of the

system. (¢) Clos network

Cross bar switch [53] on the other hand is
very expensive, °~ but provides high memory A . . .
bandwidth, The c¢ost of the network is of the Fig. 3 Dynamic Interconnection Topologies
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Tightly Coupled Multiprocessors Tightly
coupled systems are ideally suited if high
speed or real-time processing is desired. In a
tightly coupled system a set of processing
elements i3 connected to a set of memory

modules through an interconnection network.

If . two or more processors attempt to
access the same memory module, a conflict
occurs. Hence the memory modules are either
low-order interleaved or high-order interleaved

to .reduce the number of conflicts. In a variant
of tightly coupled systems, each processor is
allowed to have a private memory, called the
cache for that processor. This will gdreatly
reduce the traffic through the network as local

data can be stored in and accessed from the
cache.

Processors communicate the intermediate
resulte through the shared memcry modules. The
set of procesgsors may be homogenecus or
hetercgeneous. It is homogeneous if the
processors are functionally identical. Alsoc, a
processor may differ from otherse in its
capability to access I/0 systems, performance

and reliability.

Various nultiprocessing systems have been
proposed using a shared memory architecture.
Examples of these are, the C.mmp system [101],
the Heterogenous Element Processor {(HEP) [25],
the New York university Ultracomputer (NYU)
[42]), Honeywell 60/66, Univac 1100/80 and IEM
3084 AP, A dedicated multiprocessing
architecture with time shared bus has been
designed and experimented by use for computer
graphics applications [36,37,38].

Tightly coupled systems can tolerant =a
higher degree of interaction without much
deterioration in performance. However, one of
the limiting factor of tightly coupled aysatems
is the performance degradation due to memory
conflicts when the number of processors in the
syastem is increased.

Loosely Coupled Multiprocessors Loosely

coupled multiprocessor systems de neot generally
encounter the degree of memory conflicts

experienced by tightly coupled systems. In such
systems, each processor has a set of
input/output devices and large local memory

where it accesses most of the instructions and
data. Processes which execute on different
computer modules communicate by exchanging
messages through a message transfer system. The
degree of coupling in such a syatem is very
loose ({and hence the name)., The determining
factor in the degree of coupling is the
communication topology the asgociated
message transfer system, Loosely coupled
syastems are- efficient when the interactions
among the tasks are minimal.

of

poecena=

f—-——e==e-m

-]

Daisy Chain Implementation of Shared Bus

Fig. 5 illustrates the model of a Jloosely
coupled system. The channel and arbiter switch
in each of the computer modules may have a high

speed communication memory which is used for
buffering block transfers of measages. The
communication memory is accessible by all

processors through the communication interface.

The message transfer system for non-
hierarchical system could be a simple time
ashared bus, The performance of such

configuration is limited by the message arrival
rate on the bus, the mesage length, and the bus
capacity {(in bits per second).
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(b} LOOSE COUPLING OF COMPUTER MODULE

Fig. 5 Model of a Loosely Coupled System
Loosely coupled systems where processors
are gonnected using dedicated links, are also
popular. In such a network of processors,
locality {nearness between a pair of
processors) can be exploited by scheduling

tasks which interasct among themselves more to a

group of processors which are closer to each
other. Failure of a node or link will not
catastrophically affect the system, as
alternate paths can be established and the

system can perform with graceful degradation,

The Cm* architecture [54)] developed at the
Carnegie Mellon University is one example of a
loosely coupled system. It consists of a8 set of
clusters connected by an intercluster bus (Fig.

6}. Each c¢luster has a2 set of processing
elements connected over a map bus. The system
forms a good example for hierarchical
structure.
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Intercluster buses

Fig. 6 Cm*

A loosely coupled system designed for
artificial " intelligence and image processing
application is ZMOB [80]. In this architecture,
a set of 256 Zilog microprocessors are

connected by & pipeline system.

Another loosely coupled architecture which
has attracted the attention of many researchers

due to its high performance and relatively low
cost, 1is the hypercube architecture [47,83]).
Because of the increased attention it has

received, we devote the follow1ng paragraphs to
this architecture.

The concept of a hypercube computer can be
traced back to the work done in the early
1960's by Squire and Palais ([93] at yhe
University of Michigan. They carried out a
detailed paper design of a 4096-node ((2-
dimensional} hypercube.

THe hypercube topology is an n-dimensional

generalization of the simple cube. The
hypercube of dimension n has 2® cella. Each
cell is connected to n neighboring cells which
are at 8 Hamming distance of one. The
connection between adjacent nodes is hy point-
to-point link. Fig. 7T shows the topology of

hypercube architecture for dimensions three and
four. The cube manager provides a high level

(b} Dimension =4

Fig 7. Hypercubes

Architecture
interface for system users. It serves as a
local host for the cube, supporting the
programming environment, compilation, program

loading, input/output and error handling.

Hypercube architecture has many attractive
properties. The hypercube topology yields a
regular array in which the node are c¢lose to
one another: no more than n steps apart. At the
same time, the number of connections from each
node  to its neighbora is quite low {(also equal
to n). It thus strikes a balance between a two-
dimensional array in which the internode
connection cogts id low, but the nodes are far
apart ©O(n'/2) ateps on an average, and a
completely connected array in which the
internode connection costs is high, but the
nodes are only one step apart.

The hypercube architecture is homogeneous
in the sense that all the nodes are identical.
Ffurther, the hypercube architecture is
hierarchical and eminently partitionable. For
example, a hypercube of dimension n+l can bhe
pertitioned into two hypercubes of dimension n.

This means that it is quite easy to allocate
subcubes to subtasks, especially for problems
which adopt a divide-and-conquer strategy.
Lastly, the hypercube architecture can itself
embed other regular topologies such as tree,
mesh, pyramid or hexagonal structure.
3.4, Reconfigurable Aréhitecture

Another interesting aspect .Df
multiprocessing. systems in which active

research is under progress is reconfigurability
{8531, Often, full potentials of multiprocessing
systems are not realised in many applications.
The reason for this is the mismatch between the
application and the architecture. In order to
alleviate this problem, we build dedicated
syatems where the architecture matches the
application. Another approach which is mctively
pursued by researchers is building
multiprocessing systems with programmable
switches; using these switches it is possible
to reconfigure the system depending on the
application. Such a reconfigurable system, by
nature, is flexible and hence can be used for a
variety of applications. Configurable Highly
Parallel computer {CHiP) [85] is a
reconfigurable system designed to suit the
topologies of various applications. In this
section we will highlight the salient features
of another reconfigurable architecture, the
Connection Machine [48]. 1Its organization 1is
similar to an SIMD machine, but it functions as
a reconfigurable architeocture executing
multiple instructions on multiple data streams,
and hence it is hard to classify this as SIMD
or MIMD, :

Connection Machine The desire to build a
machine that will be able to perform the
functions of a human mind, the thinking
machine, is the motivating force behind . the
design of Connection Machine. Specifically,
retrieving commonsense knowledge from a




semantic network was the application in the
degigner’s mind.

The Connection Machine computes through
the interaction of many, say a million, simple
identical processing/memory cells. The two
requirements for the connection machine are:

{i) each processing element must be ag small
as possible so that we can afford to have as an
many of them as we need;

(ii) the processaing elementsa should be
connected by goftware,
The Connection - Machine architecture

follows directly from these two requirements.
It providen a large number of tiny
proceasor/memory cells connected by a
programmable network. Bach cell is sufficiently
small so that it is incapable of performing

meaningful computations on its own. Inastead,
multiple calls are connected together into
data-dependent patterns, called ’'active data
structures' that both represent and process the
data. The activities of these active data
structureas . are directed from outside the
Connection Machine by a conventional host
computer. This host computer stores data
structures on the Connection Machine in much
the same way that a conventional machine stores
them in & memory. Unlike a conventional memory,
though, the Connection Machine has no
processor/memory bottleneck. The memory ocells
themselves do the processing. More precisely,
the computation- takes place through the
coordinated interaction of the cells in the
active data structure. Because thousands or
even millions of processing cells work on the
problem simultanecusly, the computation
proceeds much more rapidly than would be
poasible on a conventional machine.

A Connection Machine is connected to a
conventional computer much like a conventional
memory. JIta internal state can be read and
written a word at a time from the conventional
memory. It differs from a conventional wmemory
in three aspects. First, associated with each
cell of storage is a processing cell that can
perform local computations based on the
information stored in that cell. Second, there
exits a general intercommunication network that
can connect all the cells in an arbitrary
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Fig. 8 Connection Machine

pattern, Third, there is a high-bandwidth
input/output channel that can transfer data
between the Connection Machine and peripheral
devices at a much higher rate than would be
possible through the host.

A connection is formed between two
processing memory cells by storing a poeinter in
the memory. These connections can be get up by
the Thost, loaded through the input/output
channel, or determined dynamically by the
Connection Machine itself. In this prototype
system, there are 65,538 (214} processor/memnory
cells each with 4096 bits of memory. The block
diagram of the Connection Machine with host,
processor/memory cells, communication network,
and input/otput is shown in Fig. 8.

The control of the individual
processor/memory cells is orcheastrated by the
host of the computer. For example, the host may
ask each cell that is in a certain state to add
two of its (cell’s} memory locations locally
and pass the resulting sum to a connected cell
through the communication network. Thus =
gingle command from the host can result in tens
of thousands of additions and a permutation of
data that dependa on the pattern of
connections. Rach processor/memory cell is so
small that it is essentimlly incapable of
computing or even storing the results of any
significant computation on its own. Instead,
the computation takes place in the crchestrated
interaction of thousands of cells through the
communication network,

The ability to configure the topology of
the machine to match the topology of the
problem turns out to be one of the most
important features of the Connection Machine.
The Connection Machine can also be used as a
content addressable or associative memory, but
it is also able +to perform non-local
computations through its communication network,

3.5, V.81 Systems

While the previous subsection discusses
the features and requirements of reconfigurable
architectures, this section is devoted to the
architecture of dedicated systems. Nowdays,
mature VLSI/WSI (Very Large Scale Integration /
Wafer Scale Integration) technology permits the
manufacture of cireuits whose layouts have
minimum feature size of 1 to 3 microns (69].
The effective yields of VLSI/WSI fabrication
processes make possible the implementation of
circuits with upto half a million transistors
at reasonable cost -- even feor relatively small
production quantities. This opens the horizont
for building systems with thousands of
processors in a cost-effective and compact
manher.,

The key attributes of VLSI computing

structures [33,83) are

(i} simplieity and regularity,

{ii) concurrency and communication and

{iii} computation-intensiveness.
A VLSI structure should be such that its basic
building block is simple and regular, and is
used repetitively with simple interfaces. This
helps us to cope with high complexity. The
algorithm designed for these structures should
support a high degree of concurrency, and
employ only, simple, regular communication and
control to allow efficient implementation. VLSI
processors are suitable for implementing
compute-bound algorithms. In VLSI Processors,
we discuss the two classes of architectures
namely, systolic and wavefront processors.

Systolice Arrays S8ystolic arrays are
admired for their elegance and potential for
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high performance. Systolic arrays belong to the
generation of VLSI/WSI architectures for which
regularity and modularity are important to
achieve area-efficient layocuts. The concept of
systolic architecture is a general methedology
-- rather than being an ad hoc approach -~ for
mapping high~level computations into hardware
structures. In systolic system data flows from
the computer memory in a rhythmic fashion,
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passing through many processing elements before
it returns to memory, much as bloed circulates
to and from the heart. 8Systolic arrays derive
their computational efficiency from
multiprocessing and pipelining. The data items
pumped into the systolic processors are reused
many times as the move through the pipelines in
the array. This results in- balancing the
processing and input/output bandwidths, a
requirement -for any parallel processing system
for alleviating the von Neumann bottleneck.
for interconnecting the

processing elements of a systolic array are.
many. Some of the most commonly used

topologies, namely linear, wmesh, triangular,

hexagonal and tree structures are shown in Fig.

9.

The topologies

Essentially, the whole operation of the
systolic system is synchronized with a global
clock-and it may be visualized as a segquence of
computation and data transfer cycles.
Incidentally, the clock Js the only global
signal allowed in-systolic architecture apart
from the power and ground lines [93). During
the data transfer oycle, all the processing
elements pump data into the existing data
channels, to be accepted by the neighboring
procesaing elements connected to the data
channels. After this oycle is over, all . the
processing cells enter the computation cycle
where each of the cells computes conourrently

till the end of the computation ecycle. This
sequence goes on rhythmicall and perpetually in
strioct synchronism with the oclook beats.
Systolic architectures thus capture the
concepts of parallel processing, pipelining and
regular interconnection structure in a unified
framework [63}. .

Having all the desirable properties of an
efficient special purpose system, the systolic
architecture is an interesting area of research

for a variety of applications, namely digital
and image processing [62], linear algebra
[28,69], database systems 1631, computer

graphics [67,96,97], computer~aided design, and
solid madeling [60)]. The systolic algorithms
are characterized by repeated computations of a
few types of relatively simpleoperations that
are common to many input data items. Often, the
algorithms can be described with nested loops
or by recurrence equations that describe
computations performed on indexed data.

The systolic architectures were originally
conceived as devices capable of performing a
specialized task. Essentially, these
architectures consiast of a large number of
identical processors, each having only a single
arithmetic or logic operation build into its
hardware. This greatly limite the applicability -
of a system to many areas, The latest trend in

research in this direction is towards the
development of s8ysatolic cells which are
versatile enough to implement the compute-

intensive functions. The design of programmable

gystalic cells ({31] has been suggested as an
effective way towards achieving high
performance systolic =systems. Each systolic

cell now possesses a rich instruction set along
with some amount of local storage, which were
completely absent in the original versions of
the systolic architecture, By - suitably
programming these systolic cells, a variety of
operations can be performed. The programmable

‘nature of the systolic cells offers: a high
degree of flexibility in operation and high
performance.

Wavefront Array Processors The data

movements in A systolic array are controlled by
global timing-reference 'beats’. The burden of
synchronizing the operations of ~the entire
systolic. computing network becomes heavy for



very large arrays. A simple solution is to take
advantage of the data flow computing principle
[91)] (which will be discussed in detail in
Section 4.1), whichk leads the designer to
wavefront array [64] processing.

Tha wavefront array combines systolic
pipelining principle with the data flow
computing concept. In fact, the wavefront array
can be viewed as & static data flow array that
supports the direct hardware implementation of
regular data flow graphs. Exploitation of the
data flow principle makes theextraction of
parallelism and programming for wavefront
arrays relatively simpler.

Synchronizing with the global clock and
consequently the large surge of current {due to
the simultaneous energizing or changing of

states of the components) are two major
problems in systolic arrays. These oan he
alliviated in wavefront arrays, because of

their asynchronous nature. When the processing
times of the individual cells are not uniferm,
a synchronous array may have to accommodate the
slowest cell by wusing a slower clock. In
contrast, wavefront arrays, because of their
data-driven nature, do not have to hold back
faster cells in corder to accommodate the slower
one. Wavefront arrays also yield higher speed
when +the computing times are data-dependent.
Lastly, programming of wavefront arrays is
easier than that of systolic arrays because
wavefront arrays require only the assignment of
computations to processing elements, whereas
syatolie arrays require both assignment and
scheduling of computations,.

3.5, Critigue on von Neumann Systems

The most serious problem with the
multiprocessors which use the wvon Neumann
model, as discussed in [18], is the presence of
globally updatable shared memory. Special
mechanisms are required to ensure correctness
of results while updating a memory cell. The
explicit execution order to be specified by the
programmer is another bottleneck of von Neumann
gsystems. This has led te research in non-von
Neumann architectures.

4., Non-von Neumann Architectures
The principal stimuli for developing the
non-von Neumann machines have come from the
picneering work on data flow machines by Jack
Dennis [261, and on reduction languages and
machines by John Backus [9] and Klaus Berkling

[15]. In data-driven model, the availability of
operands triggers the execution of the
operation to be performed on them, whereas in
demand-driven model, the requirement for a
result triggers the operation that will
generate the result. Of late, the realization
of the suitability of biological nervous
systems for many applications and the use of
artificial nets have triggered the design of a
new system, the neural computer. In this
section, we present the details of these three
non-von Neumann approaches.

4.1, Data-Driven Model

In a data flow computer, an instructioen is
executed as soon as all its operands are
available. Since the data availability sclely
dictates the execution order of instructions,
there is no need for having a program counter.
Also, the data are passed as values between
instructions; this eliminates shared memory and
makes the synchronization mechanism simpler,

Thua data flow model alleviates the shortcoming
of the von Neumann model. Also, parallelism is
exploited at inatruction level. Hence, a very
high speed of computing is possible.

The machine language for a data flow

?Ymguter 1ﬂ the thu flgw graph [24]. ‘The data
o grap censists o nodes, to represent

operators, and arcs, to carry data between the
nodes. Tokens carry data values along the arcs
to the nodes. When all the required operands
are avallable, the node is *fired’. As a
result, the input tokens are removed and sutput
tokens are produced.

DPata flow architectures are classified as
static and dynamic architecture. In statie
model, an additional consgtraimt -- no token
should be present on any of the cutput arcs of
node -- is required to enable the execution of
an instruction. The implicatien of this is that
the static data flow model cennot =support
execution of reentrant routines. This severely
reatricts the extent of parallelism and
asynchrony that can be exploited in the static
model. In & dynamic model, additional tags,
called environment tags {color), ars associated
with the token to diatinguish the wvarious
instantiationz of a rentrant routine. Thus, the
dynemic model supports fine grain parallelism
with full asynchrony. In this paper we descridbe
the archltecture of a data flow computer, using
the Manchester data flow computer (98} as an
illustrative example.

In Fig. 10, the switch unit serves as an
interface between the host computer and the
data flow machine, It routes the intermediate
results to the taoken queue and the final
results to the host computer. The token queue
unit is a FIFO buffer which smoothes the flow
of tokens in the ring. Tokens in the token
queue are checked for their operand type. All
tokena directed to sgingle input nodes are
directly routed to the node store. Other tokens
are sent to the matching unit.

Tokens that arrive in the matching unit
search for their matching partner. If the
search falla, the tocken is stored in the
matching store; it awaits itz partner. ©On the
other hand, if the matching partner ie found,
it (the matching partner) is removed from the
metching store; the incoming token is merged
with 1ts partner to form a group token. The
group token which contains the information
about the operand velues, address (of the node
to which the token is destined to) and
environment tag is sent to the rode store.

The node store unit stores the program
graph; it stores the opcode for the operator,
destination and operand type of result tokens.
Tokens entering the node store get the above
information +to form an executable token. The
executable packets are sent to the distributor
unit which distributes the tokens to one of the
free processing elements, The processing
element performs the operation specified by the
tolken to produce result tokens. The result
tokens are collected by the arbitrator and are
sent to the switech unit. Fig, 10 depicts the
block schematic of the Manchester data flow
computer.

Research in the area of data flow
computation is a rapidly expanding ares in
United Statea, Japan and Europe. There are a
number of data flow projects that are underway
in many wuniversities, Some of them worth
mentioning here are M.I.T. data flow computer
[26] developed by Dennis, Irvine data flow

machine [7,39) by Arvind, Manchester data flow
system [98], its extended version (EXtended
MANchester architecture} proposed by the
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authors [ﬁ4],"'Texas Inatruments distributed programs which are built from~ fixed-size

data processor [22], Utah data driven machine

instructions, demand-driven (reduction) [91}

(23}, Toulouse LAU system [20,76], Newcastle programs are built from nested expressions.. The
data~control flow computer [89], the efficient need for ?esult tfiggers the exgcution of a
static’ dataflow architecture for specialized particular instruction. a '
Computation proposed by the authors {871, and ) ) ) L , .
the high speed data flow system developed by An  important point to note is that, in a
Nippon Telegraph and Telephone Systems [3]. reduction machine, a program is mathemat1ca11y
‘ equivalent to its value. Demanding the result

Much work needs to be carried out in the of definition a, defined as x = (y+l) % (y-z}),
design of languages for data flow machines, and means that the embedded reference to x is to be
implementation of compilers for converting the rewritten in a simple form. This requires that
programs’ into data flow graphs. (Refer {88] for only one definition of x may ocecur in a
the initial work on these issues.) Efficient program, and all references to it give the same
methods +to overcome the inherent overheads value, a property known as referential
associated with ‘exploiting . fine-grain transparency [91].

parallelism have to be developed. Although many
data flow machines have been proposed in
literature, no effort is made to prototype
them. Demonstrating the feasibility of the data
flow model of computation is thus a positive
step towards the commercialization of such

systems.

4.2, Démand—Dri?en Systems

In contrast to control flow and data flow

the

There are two form of reduction, called
string reduction and graph reduction. The basis
for string reduction is that each instructien
that accesses a particular définition will take
and manipulate a seperate copy of the function
definition. = Whereas, 1in- graph reduction each
instruction that accesses a particular
definition will manipulate references to that
definition. That is, graph reduction is hased
on  sharing of arguments using pointers. In
string reduction each access for a definition
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will result in the evaluation of the
definition. Reduced definitions or data values
are accessed when the demanded definition has
already been evaluated. While graph reduction
machine takes advantage of the shared
definition {in term of the number of
definitions evaluated), it is more complex than
string reduction.

There are two basic problems in supporting
reduction approach on a machine organization
[90): first, managing dynamically the memory of
the program structure being transformed and,
second, keeping contrel information about
information about the state of the
tranaformation. The basic organization of a
reduction machine, the MNewcastle reduotion
m??hina {801, is presented below {refer Fig.
1 .

The reduction machine organisation
digcussed here supports reduction by expression
evaluation. Toe find work, each processing

element traverses the subexpression in its
memory looking for a reducible expression. When
a processing element locates a reference to be
replaced by the corresponding definition, it
sends a request to the communication unit via
“its communication element. The communication
unit in such a computer frequently organized as
& tree-structured network on the assumption
that the majority of communications will
exhibit properties of locality of refarence.
Concurrency in such reduction computers is
related to the number of reducible
subexpressions at any instant and algo to the
number of processing elements that traverse
these expressions.

"~ Apart from the pioneering work of Klaus
Berkling ([15), the stage of development of
reduction computers somewhat lags behind that
of data flow computers [91]). However,
researchers have demonstrated the principle and
feasibility of reduction machine organization
by designing many prototype system such as the
GMD reduction mechine [68}, Newcastle reduction
machine [90), Mago’s cellular tree machine
(66), Applicative Multiprocessing Systems
{populary known as AMPS) (57}, and Combridge
University SKIM reduction machine [921].

4.3. Neural Cowputers

In the fields of image processing and
speech recognition, the ability to adapt and
continue learning is essential. Traditional
techniques used in these applications are not
adaptive, It has been realized that the
biological nervous system is more suitable for

Feed back

1 |

applications involving pattern recognitton and
learning [2]). Artificial neural nets have been
studied during the last few years in the hope
of achieving human 1like performance in the
fields af image processing and speech
recognition. The neural net models {65] attempt
to achieve good performance via denge
interconnection of aimple computational
elements. The interest in this type of non-von
Neumann computing techniques in recent vears is
due to the development of new net topologies
and algorithms, new analog VLSI implenmentation
techniques and the growing fascinantion for the
understanding of the functioning of the human
brain as well as the realization that human-
like performance is required for applications
involving enormous amount of processing
[51,85]. Several mathematical models have been
propoged to exhibit some of the essential
qualities of husan mind! the ability to
recognize patterns and relationships, to store
and use knowledge, to reason and plan, to learn
from experience and to undrstand what is
observed,

Neural net models are specified by the net
topology, node characteristics and training or
learning rules. The computational elements or
nodes wused in neural net models have nonlinear
characterigstics, typically analog, and are
specified by the type of nonlinearity. Most net
algorithms also adapt in time to improve
performance bazed on current results. Any
artificial neural model must necessarily be a
speculation: definitive experimental evidence
about the structure and Ffunction of the
neurclogical circuitry in the brain is
extremely difficult to obtain since it is hard
to measure the neural activity without
interfering with the flow of information in the
neural circuit. Further, the neurons are
intricately interconnected and the flow of
information is complicated by the presence of
multiple feedback loops.

Nevertheless enocugh is known about some
parts of the ©brain to fuel the desire for
constructing wmathematical models of the neural
circuit. In general, the models propose to
generate a sensory-activated goal-directed
behavior and control a multilevel hierarchy of
computing modules. At each level of hierarchy,
input commands are decomposed into strings of
output subcommands, that form input commands to
the next lower level. Feedback from external
environment or from internal sources drives the
decomposition process, and steers selection of
subcommands to achieve the goal successfully
{refer Fig. 12).
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The benefits of neural net include
computation rates, provided by
paralleliam and a greater degree of fault-
tolerant &since there are many processing nodes
each with primarily local connections.
Designing artificial neural nets toc solve
problems and studying real biological nets may
also change the way we think about problems and
lead us to new insights and algorithmic
improvements.

high

5. Software Issues Related ta Multiprocessing

Systems

. the various
systems, it is worth probing
two agpects of parallel
language to program and the

support to handle these

Having
multiprocessing
further into
processing: the
operating system
complex systems.
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5.1. Parallel Programming Languages

One of the

been

the motivations behind
development of concurrent languages has
the structuring of software -- in particular,
operating system -- by means of high-level
language constructs. The need for liberating
the production of real-time applications from
assembly language has been another driving
force. In the following discussion, we classify
the concurrent high-level langusges into two
groups: 'traditional’ languages of the von
Neumann type (based on imperative satyle of
programming) and the unconventional languages,
such asg data flow, functional and logic-based
languages. A quick. review of some of these
- languages is presented below.

Conventional Parallel Languages Based on
the imperative style of programming, these
languages are Jjust the extensions of their
sequential counterparts. A concurrent language
should allow programmers to define a set of
sequential activities to be executed in
parallel, to initiate their evolution and to
specify their interaction (refer [4] for an
excellent survey on the concepts and notations
for parallel programming). One important peint
regards the 'granularity of parallelism', 1i.e,

the kinds of granules that can be processed in
parallel. Some languages specify concurrency at
statement level, and certain others at task

level., Constructs for specifying inter-activity
interaction are probably the most critical
linguistic aspects of concurrency. Language
constructgs ensuring mutual exclusion are called
synchronization primitives. Some of the best-
known and landmark solutions that have been
adopted to solve these problems are the
semaphores [27]), mailboxes, monitors [49] and

remote procedure calls [46). Research in this
direction is towards designing new machanisms
for interprocessor communication, such as

ordered ports. [13}. In the following discussion

we restrict’ ourselves to a few parallel
programming languages and their ~ salient
features.

Communicating Sequential Processes (CSP)
[80) is a language designed especially for

distributed architectures. In C35P, activities
communicate via input/output commands .
Communication requires both the participating
processes to issue their commands. Also CS8P
achieves process synchronization wusing the
input/output commands. Another interesting
feature of.. this 1language is its ability to

express non-determinism using guarded commands.
An implementation of a suhset of CSP [73] has
been has been successfully attempted by the

massive.
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"started

authors' research group. Their work on the
design of an architecture to execute CSP is
reported in [79].

Distributed Processes (DP) [46], developed
by - Hansen, is proposed for real-time
applications controlled by microcomputer
networks with distributed storage. In DP, a
task consists of a fixed number of subtasks
that are started simultaneously and exist
forever. A process can call common procedures
defined within other processes. These
procedures are executed when the other
processes are waiting for some conditions to
become true. This is the only means of
communication among the processes. Procesgés
are synchronized by means of non-determin{gtic
guarded commands.

' R

Occam language [55], which is based on CSP

has also been designed to support concurrent
applications by ‘using concurrent processes
running in a distributed architecture. These
processes communicate through channels. The
Transputer [86}., also developed by Inmos
Corporation, supports the direct execution of
this language. ‘
Languages monitor-based

are oriented

which adopt
solution for synchronization
towards architectures with shared mEMOTY .«
Examples of these languages are Concurrent
Pascal [45], Ada {51, and Modula [99]. These
languages, in general, support strong type
checking and seperate compilation, and express
concurrent actions using explicit constructs.

extends the
Pascal wusing
processes and
this

Concurrent Pascal [45}
sequential programming language
the concurvent programming tools,
monitors.. The main contribution of
language is extending the concept of the
monitor using an explicit hierarchy of access
rights to shared data structures that can be
in the program text and checked by a
compiler.

The
primarily

programming language Modula [991 is
intended for programming dedicated
computer systems.  This language borrows many
ideas from: Pascal, . but in addition to
conventional block structure, it introduces a
so~called module structure. A module is a set
of procedures, data types and variables where
the programmer has precise control over the
names that are imported from and exported to
the environment [989]. Modula includes genersal
multiprocessing facilities such ds processes,
interface modules and signals. .

In Ada [51, we only have active
components, the tasks. Information may be
exchanged among tasks via entries. An entry is
very similar to a procedure. The call to an
entry 1is like a procedure call; parameters

should be passed if the called entry requires
them, A randezvous ias séid to occur when the
caller is in the ¢all state and the called task
is in the accept state. After executing the
entry subprogram both the tasks resume their
parallel execution., Ada provides specific and
elaborate protocols for task termination. Ada
is designed to support reliable and efficient
real-time programming.

Non=-von Neumann
languages imitate the

Conventional
von Neumann computer. The
dependency of these languages on the basie¢
organization of the von Neumann machine 1is
essentially a limitation to. expreas and exploit
parallelism [10}. These imperative languages
perform a task by changing the state of . a
system rather than modifying the data directly.
In parallel processing applicationg, it makes
more sSense to use a language with a

Languages




nonseguential semantic base. Various paradigms
have been adopted and new programming languages
based on these approaches have evolved. We will

restrioct ourselves in this paper to two such
paradigms, namely the applicative and the non-
procedural style of programming, and the
resulting parallel versions of the languages

that adopt these approaches.

Applicative languages (also referred to as
functiconal languages) avoid side-effects, such
as those caused by an assignment statement. The
lack of side-effects accounts, at least
partially, for the well-known Church-Rosser
property, which essentially states that no
matter what order of computation is chosen in
executing a program, the program is guaranteed
to give the same result (assuming termination).

This marvellous determinacy property is
invaluable in parallel systems. Another key
point is that in functional languages the
parallelism is implicit and supported by their

underlying semantics,

A system of languages known as Functinal
Programming languages (FP) [10] and Lisp [68]
are two major ocutcomes of the applicative style
of programming. Languages for dats flow
architectures, which aveid side-effects and
encourage single assignment, are also included
in the set of applicative languages. Dennis'
Value oriented Algorithmic Language (VAL) [1],
Arvind's Irvine Data flow language (Id} (8],
and Keller's Flow Graph Language (FGL) [57] are
candidate examples in this category.

Considerable work has been done by us in

the area of aplicative programming languages. A
high level language for data flow computers,
called Data Flow Language (DFL}) [72], has been
propesed by us, and s compiler to convert the
programe written 4in this language into data
flow graphs has been implemented. The concepts
borrowed from CSP and DP when embedded into
data flow systema results in two new languages
for distributed processing, namely
Communicating Data Flow Channels ({CDFC) and
Distributed Data Flow (DDF) respectively [75].
Communication and non-determinism features have
been added to FP by us {40,41) to strengthen
ite power as a programming language. We have
also proposed that FP can be used as & language
for program specification [41],

Although parallelism in a
expressed by the functional languages in =&

natural way, their automatic detection and
mapping to processors do not result in optimal

performance, It is desirable to provide the
ugser with the ability to explicitly express
paralleliem and mapping, retaining the
functional style of programming. Languages
which &allow the programmers to annotate the
parallelism and mapping scheme for the target
architecture lead to optimal pevformance on a
particular machine, Two languages developed
with this motivation are ParAlfl (the Para-
Functional language) [52] and Multilisp [44].
Efforts have been taken to exploit the
advantages offered by the functional languages
to the maximum extent by developing new
machines based on non-von Neumann architecture
(refer [95] for a recent survey).

program is

Applications such as the design of
knowledge base saystems and natural language
procesaing revealed the inadequacies of the
conventional programming languages toc offer
elegant solutions. The use of predicate logic,
which is a high-level human oriented language
for describing problem and problem =solving
methods for computers, promised great scope for
these applications. Logic programming languages
combine sgimplicity with a lot of powerful
features. They separate the logic and control
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1591, the twe major components of an algorithm,
and thus enable the programmer to write more
correct, more easily improved and more readily
adapted programs. The powerful features of
these languages also include the declarative
style, the unification mechanism for parameter
passing and execution strategy offered by non-
deterministic computation rule, The powerful
execution mechanism provided by these languages
is due to the non-procedural paradigm. An
outcome of the research carried out in this
area with these motivations is the design of
the language Prolog [19].

programming languages offer three
namely the 'AND', 'OR'
and 'argument’ parallelism (21,431, The
inability of the von Neumann architecture teo
efficiently execute logic programming language
{in essence supporting non-procedural paradigm)
has led to the design of many parallel logice
programming machines [16,43,70,94,100}. Further

Logic
kinds of parallelism,

research on these languages has led to the
design of +three parallel logic programming
languages, the PARLCG (PARallel LOGie
programming) [i81, P-Prolog [103) and

Concurrent. Prolog [R4).

With the increasing size and complexity of
parallel processing systems, it becomes
essental to design efficient operating systems,
without which handling of such systems would be
impossible. The general principles and
requirements of multiprocessor operating
systems are discuased in the following section.

5.2. Multiprogessor Operating Systems

The basic goals for an operating syatem
are to provide programmer-interface to the
machine, manage resources, provide mechanisms

to implement policies, and facilitate matching

applications to the machine. There is
conceptually little difference between the
operating system requirements aof B
multiprocesser and those of a large computer
system with multiprogramming. The operating
system for a multiprocessor should be able to
support multiple asynchronous tasks which
execute concurrently, and hence is more
complex.

The functional capabilities of a
multiprocessor operating system include
resource &8llocation and management schemes,
memory and data set protection, prevention of
system deadlock and abnormal pProcess

termination or exception handling and processor
load-balancing. Also, the operating system
should be capable of providing system
reconfiguration schemes to support graceful
degradation of performance in the event of a
failure, In the following discussion, we
introduce brifly the three basie
configurationa, namely master-slave, separate
supervision and floating-supervision systems
[531].

configuration,
maintains
system

one
the
and

'master-slave’
called the master,
all processors in the
apportions the work to all the slave
Processors. Service calls from the slave
processors are sent to the master for executive
service. Only one processor (the master) uses
the supervisor and its associated procedures,
The merit of this configuration is its
simplicity. However, parallel processing system
which has the master-slave configuration is
susceptible to catastrophic failures, and a low
utilization of the slave processors may result
if the master cannot despatch processes fast
enough. Cyber 170 and DEC System 10 use this
mode of operation. The master-slave

In a
proecessor,
status of



most effective for
the work load is

configuration is
applications where
defined.

special
well-

In a 'seperate supervisor system’, each
processcor contains a copy of a basic kernel.
Each processor services its own needs. However,
since there 1is sgsome interaction among the
processors, it is necessary for some of the
supervigory code to he reentrant, unlike in the
master-slave mode. . Separate supervisor mode is
more reliable then master-slave moede. But the
replication of the kernel in all the processors
calses an under-utization of memory.

‘The ‘’floating superviser' scheme treats
all the processors as well as other resources
aymmetrically or as an anonymous pool of

resources., In this mode, the supervisor routine
floats from one processor to anocther, although
several of the procegsors may be executing

service routines simultaneously. Conflicts in
service requests are resolved by priorities,
Table accesgs should he carefully conhtrolled to
maintain the system integrity. The floating
supervisor mede of operation has the advantages
of providing graceful degradation and better
availability of reduced capacity systems.
Furthermore, it is flexible and it provides
true redundancy and makes the most efficient
use of available rescurces. Examples of the
operating systems that execute in this mode are
the MVS and VM in the IBM 3081 and the Hydra
[102] on the C.mmp.

6. Conclusions

In this survey, we have. identified
various issues invelved in parallel
systems. Approaches followed to
associated problems have alsc been discussed
and their relative merit are put forth., The
principles and the requirements of language and
operating system support for complex
multiprocessing systems are elaborately
described. For the wide spectrum = of
architectures proposed in the litarature, their
degign - principles and salient features are
brought out in a comparative menner,

the
processing
solved the

While the envisaged potentials offer a
promising scope for parasllel processing systems
for many applications, hardly a few systems are
commercialized. The reasons fot this is the
lack of good software support for these
systems. Design of intelligent compilers which
can identify parallel subtasks in a program
(written in a sequential language), schedule
the subtasks to the processing elements and
manhage communication among the scheduled tasks,
is a step toward this end. Although there are
many existing proposals in this line, none of
them seems to achive all the three goals in an

integrated manner, relieving the burden from
the user completely.
Another .question that remains unanswered

is whether or not to continue with von Neumann
approach for building complex parallel
processing machines. While familiarity and the
past experience with control flow model make it

a proponent candidate, * its inherent
inefficiencies, .guch as the explicit
specification of control and global updatable

memory, limit its capabilities. Although data-
driven and demand-driven computers exploit

, maximum parallelism in a program, their complex
structure and inadequate software suppert force
the designer to have a second throught on these
approaches.

With the advént of VL3I technoleogy and
RISC design, dedicated architectures are
becoming more and more popular., However, the
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inapplicability of these systems to a variety
of applications causes a serious concern. At
the other end of the spectrum, we have general

purpose parallel processing systems which give
degrade performance due to the mismatch of the
architecture and algorithm, angd the
reconfigurable machines. Considerable and on
design efficient  algorithms (for general
purpese computing systems) which will bridge
the gap Dbetween the application program and

architecture. .

Finally, the research on neural computer
and molecular machines is at its infancy.
Modeling the neural circuits and understanding

the functioning of human brain have to be
considerable refined before one could make use
them for building high speed computing systems.

The vastness of this fascinanting area in
which saective rtesearch is underway, and the
innumerable problems that remain to be solved
are themselves standing evidences for the
promising future of parallel processing. With

the ever-growing greed for very high speed of
computing, and with the inability of the
switching devices to cope up with the need,
parallel processing techniques seem to be the
only alternative. .
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