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Abstract

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two n-tuples of positive integers, let
X be a set of positive integers, and let g be a positive integer. In this work we show an
algorithmic process in order to compute all the sets C of positive integers that fulfill the
following conditions:

1. The cardinality of C is equal to g;

2. If x, y ∈ N \ {0} and x+ y ∈ C, then C ∩ {x, y} 6= ∅;

3. If x ∈ C and x−bi
ai
∈ N \ {0} for some i ∈ {1, . . . , n}, then x−bi

ai
∈ C;

4. X ∩ C = ∅.
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1 Introduction
Let Z and N be the sets of integers and non-negative integers, respectively. Let us suppose
that we want to compute a set C ⊂ N of six elements such that the following conditions
are fulfilled.

(C1) If x, y are positive integers such that x+ y ∈ C, then C ∩ {x, y} 6= ∅.

(C2) If x ∈ C and x− 4 is a positive integer, then x− 4 ∈ C.

(C3) If x ∈ C and x−1
2 is a positive integer, then x−1

2 ∈ C.

(C4) 5 6∈ C.

The purpose of this work will be to give an answer to this type of combinatorial problems.
Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two n-tuples (with n ≥ 1) of positive

integers, let X be a non-empty subset of N \ {0}, and let g be a positive integer. Let us
denote by P(a, b,X, g) the problem of computing all the subsets C of N \ {0} that fulfill
the following conditions.

(P1) The cardinality of C is equal to g.

(P2) If x, y ∈ N \ {0} and x+ y ∈ C, then C ∩ {x, y} 6= ∅.

(P3) If x ∈ C and x−bi
ai
∈ N \ {0} for some i ∈ {1, . . . , n}, then x−bi

ai
∈ C.

(P4) X ∩ C = ∅.

With the previous notation, we observe that the problem proposed at the beginning is
just P

(
(1, 2), (4, 1), {5}, 6

)
.

A numerical semigroup (see [6]) is a submonoid S of (N,+) such that N \ S is finite.
The cardinality of N \ S is the so-called genus of S and is denoted by g(S).

It is easy to see that C is a solution of P(a, b,X, g) if and only if S = N \ C is a
numerical semigroup that fulfills the following conditions.

(S1) g(S) = g.

(S2) If s ∈ S \ {0}, then as+ b ∈ Sn (where as+ b = (a1s+ b1, . . . , ans+ bn)).

(S3) X ⊆ S.

Let us denote by N (a, b,X) the set{
S | S is a numerical semigroup, X ⊆ S, and as+ b ∈ Sn for all s ∈ S \ {0}

}
.

With this notation, the solutions of P(a, b,X, g) are the elements of the set{
N \ S | S ∈ N (a, b,X) and g(S) = g

}
.

Let S be a numerical semigroup. The Frobenius number of S (see [2]), denoted by
F(S), is the maximum integer that does not belong to S.

A Frobenius variety (see [5]) is a non-empty family of numerical semigroups V that
fulfills the following conditions.
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(V1) If S, T ∈ V , then S ∩ T ∈ V .

(V2) If S ∈ V and S 6= N, then S ∪ {F(S)} ∈ V .

Before to show the structure of this paper, let us see some remarks in order to delimit
the problem P(a, b,X, g) inside the theory of numerical semigroups.

Remark 1.1. If we only impose condition (C1) (equivalently, condition (P2)), then we
are considering the family S of all numerical semigroups that, obviously, is a Frobenius
variety. Moreover, in [6] it is shown how to arrange the elements of S in a tree with root N.

Remark 1.2. Keeping in mind only conditions (C1) and (C4) (equivalently, conditions
(P2) and (P4) or condition (S3)), we have the family S(X) of all numerical semigroups
containing X . Once again, it is not difficult to check that S(X) is a Frobenius variety. In
addition, following the ideas of this paper, it will be clear how we can arrange the elements
of S(X) in a tree with root N.

Remark 1.3. Now let us consider only conditions (C1), (C2) and (C3) (equivalently, condi-
tions (P2) and (P3) or condition (S2)). In this case we get families of numerical semigroups
satisfying a set non-homogeneous patterns (see [1]). This case is related to the results of
[1], where the concept of m-variety makes possible to arrange the elements of certain fam-
ilies in trees with root Sm = {0,m,→} = {0}∪ {n ∈ N | n ≥ m}. Precisely, m-varieties
are examples of Frobenius pseudo-varieties (see [4]).

In Section 2 we will see that N (a, b,X) is a Frobenius variety. In addition, we will
show that such a variety is finite if and only if gcd(X ∪{b1, . . . , bn}) = 1 (where, as usual,
gcd(A) is the greatest common divisor of the elements in A).

Let us denote by M(a, b,X) the intersection of all the elements in N (a, b,X). Ob-
serve that M(a, b,X) is always a submonoid of (N,+). In addition, we will prove that
M(a, b,X) is a numerical semigroup if and only ifN (a, b,X) has finitely many elements.

In Section 2 we will show that P(a, b,X, g) has a solution if and only if the cardinality
of N \M(a, b,X) is greater than or equal to g. Moreover, we will give an algorithm in
order to compute M(a, b,X). Therefore, we will have an algorithmic process to decide
whether P(a, b,X, g) has a solution.

In Section 3, with the help of some results from [5], we will arrange the elements of
N (a, b,X) in a tree with root N. Moreover, we will characterize the children of a ver-
tex in such a tree and, consequently, will have a recursive procedure in order to build
N (a, b,X). Accordingly, we will have an algorithmic process to compute all the elements
of N (a, b,X) with a fixed genus and, in particular, an algorithm to compute all the solu-
tions of P(a, b,X, g).

Finally, using the concept of Frobenius pseudo-variety, we will state and solve a gener-
alization of P(a, b,X, g) in Section 4.

2 (a, b)-monoids
In this work, unless stated otherwise, a = (a1, . . . , an) and b = (b1, . . . , bn) denote two
n-tuples of positive integers. If X ⊆ N, then N (a, b,X) is the set{

S | S is a numerical semigroup, X ⊆ S, and as+ b ∈ Sn for all s ∈ S \ {0}
}
,

with as+ b = (a1s+ b1, . . . , ans+ bn).
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Proposition 2.1. N (a, b,X) is a Frobenius variety.

Proof. It is clear that N ∈ N (a, b,X) and, therefore, N (a, b,X) 6= ∅. It is also clear
that, if S, T ∈ N (a, b,X), then S ∩ T ∈ N (a, b,X). Now, let S ∈ N (a, b,X) such
that S 6= N. In order to show that S ∪ {F(S)} ∈ N (a, b,X), it is enough to see that
aF(S) + b ∈ (S ∪ {F(S)})n. Observe that, if i ∈ {1, . . . , n}, then aiF(S) + bi > F(S)
and, therefore, aiF(S)+bi ∈ S∪{F(S)}. Consequently, aF(S)+b ∈ (S∪{F(S)})n.

We will say that M is an (a, b)-monoid if M is a submonoid of (N,+) fulfilling that
am+ b ∈Mn for all m ∈M \ {0}.

Proposition 2.2. Let X be a non-empty subset of N. Then M is an (a, b)-monoid that
contains X if and only if there exists J ⊆ N (a, b,X) such that M =

⋂
S∈J S.

Proof. The sufficient condition is trivial. For the necessary one, let Mk = M ∪ {k,→},
for all k ∈ N (where {k,→} = {n ∈ N | n ≥ k}). Then it is clear that Mk ∈ N (a, b,X)
and that M =

⋂
k∈NMk.

Let us observe that, if we denote by M(a, b,X) =
⋂

S∈N (a,b,X) S, then M(a, b,X) is
the smallest (a, b)-monoid containing X .

Theorem 2.3. Let X be a non-empty subset of N\{0} and let g be a positive integer. Then
the problem P(a, b,X, g) has a solution if and only if the cardinality of N \M(a, b,X) is
greater than or equal to g.

Proof. (Necessity.) If C is a solution of P(a, b,X, g) and we take S = N \ C, then S ∈
N (a, b,X) and g(S) = g. Since M(a, b,X) ⊆ S, we have that N \ S ⊆ N \M(a, b,X)
and, thereby, the cardinality of N \M(a, b,X) is greater than or equal to g.

(Sufficiency.) Let us suppose that N \M(a, b,X) = {c1 < · · · < cg < · · · }. If we
take S = M(a, b,X) ∪ {cg + 1,→}, then it is clear that S ∈ N (a, b,X) and g(S) = g.
Therefore, C = N \ S is a solution of P(a, b,X, g).

Let us observe that, if P(a, b,X, g) has a solution and, in addition, we have computed
M(a, b,X), then the proof of the sufficient condition in the previous theorem gives us a
method to compute a solution of P(a, b,X, g).

If X is a non-empty subset of N, then we denote by 〈X〉 the submomoid of (N,+)
generated by X , that is,

〈X〉 = {λ1x1 + · · ·+ λkxk | k ∈ N \ {0}, x1, . . . , xk ∈ X, and λ1, . . . , λk ∈ N}.

IfM = 〈X〉, then we will say thatM is generated byX or, equivalently, thatX is a system
of generators of M . The next result is well known (see, for instance, [6]).

Lemma 2.4. If X ⊆ N, then 〈X〉 is a numerical semigroup if and only if gcd(X) = 1.

We know that M(a, b,X) is a submonoid of (N,+). From the following proposition
we will get that, if X ⊆ N \ {0}, then M(a, b,X) is a numerical semigroup if and only if
gcd(X ∪ {b1, . . . , bn}) = 1.

Proposition 2.5. If X ⊆ N \ {0}, then gcd(M(a, b,X)) = gcd(X ∪ {b1, . . . , bn}).
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Proof. Let d = gcd(M(a, b,X)) and d′ = gcd(X ∪ {b1, . . . , bn}). In order to prove the
proposition, we will show that d′ | d and d | d′. (As usual, if p, q are positive integers, then
p | q means that p divides q.)

First of all, it is clear that 〈{d′}〉 is an (a, b)-monoid containingX . Thus,M(a, b,X) ⊆
〈{d′}〉 and, consequently, d′ | d.

Now, let us take x ∈ X . Then {x, a1x + b1, . . . , anx + bn} ⊆ M(a, b,X) and
gcd{x, a1x + b1, . . . , anx + bn} = gcd{x, b1, . . . , bn}. Therefore, we have that X ∪(⋃n

i=1{aix+ bi | x ∈ X}
)
⊆M(a, b,X) and gcd

(
X ∪

(⋃n
i=1{aix+ bi | x ∈ X}

))
=

gcd(X ∪ {b1, . . . , bn}) = d′. Accordingly, d | d′.

In the next result we show when the Frobenius variety N (a, b,X) is finite.

Theorem 2.6. Let X be a subset of N \ {0}. Then the following conditions are equivalent.

1. N (a, b,X) is finite.

2. M(a, b,X) is a numerical semigroup.

3. gcd(X ∪ {b1, . . . , bn}) = 1.

Proof. The equivalence between conditions 2 and 3 is a consequence of Lemma 2.4 and
Proposition 2.5. Now, let us see the equivalence between conditions 1 and 2.

(1.⇒ 2.) It is enough to observe that the finite intersection of numerical semigroups is
another numerical semigroup.

(2. ⇒ 1.) If S ∈ N (a, b,X), then M(a, b,X) ⊆ S. Thus, S = M(a, b,X) ∪ Y
with Y ⊆ N \M(a, b,X). Since N \M(a, b,X) is finite, we conclude that N (a, b,X) is
finite.

Our next aim in this section will be to give an algorithm in order to computeM(a, b,X).
For this is fundamental the following result.

Proposition 2.7. Let M be a submonoid of (N,+) generated by X ⊆ N \ {0}. Then M is
an (a, b)-monoid if and only if ax+ b ∈Mn for all x ∈ X .

Proof. The necessary condition is trivial. For the sufficiency, let m ∈ M \ {0}. Then
there exist x1, . . . , xt ∈ X such that m = x1 + · · · + xt. If t = 1, then m = x1 and
am+ b = ax1 + b ∈Mn. If t ≥ 2, then

am+ b = a(x1 + · · ·+ xt) + b = a(x1 + · · ·+ xt−1) + axt + b.

Since a(x1 + · · ·+ xt−1), axt + b ∈Mn, we finish the proof.

The above proposition will be useful in order to determine whether a submonoid M of
(N,+) is or is not an (a, b)-monoid. Let us see an example.

Example 2.8. S = 〈{4, 5, 11}〉 is an
(
(1, 2), (4, 1)

)
-monoid because (1, 2)4 + (4, 1) =

(8, 9) ∈ S2, (1, 2)5 + (4, 1) = (9, 11) ∈ S2, and (1, 2)11 + (4, 1) = (15, 23) ∈ S2.
Nevertheless, T = 〈{5, 7, 9}〉 is not an

(
(1, 2), (4, 1)

)
-monoid because (1, 2)5 + (4, 1) =

(9, 11) /∈ T 2 (observe that 11 /∈ T ).
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With the help of Proposition 2.7, it would be possible to give an algorithm in order to
computeM(a, b,X). However, we are going to postpone such an algorithm because, as we
will see now, we can focus on case in which gcd(X ∪{b1, . . . , bn}) = 1, and thus simplify
the computations.

We say that an integer d divides an n-tupla of integers c = (c1, . . . , cn) if d | ci for all
i ∈ {1, . . . , n}. In such a case, we denote by c

d =
(
c1
d , . . . ,

cn
d

)
. If A ⊆ Z and k ∈ Z,

then kA = {ka | a ∈ A}. Finally, if A ⊆ Z, d ∈ Z, and d | a for all a ∈ A, then
A
d =

{
a
d | a ∈ A

}
.

Lemma 2.9. Let M be an (a, b)-monoid such that M 6= {0}. If gcd(M) = d, then

1. d divides b;

2. if d′ ∈ N \ {0} and d′ | d, then M
d′ is an

(
a, b

d′

)
-monoid;

3. if k ∈ N \ {0}, then kM is an (a, kb)-monoid.

Proof. 1. If we take X = M \ {0}, and having in mind that M(a, b,X) is the smallest
(a, b)-monoid containing X , then this item is a consequence of Proposition 2.5.

2. It is clear that M
d′ is a submonoid of (N,+). In addition, if x ∈ M

d′ \ {0}, then
d′x ∈M \ {0} and, therefore, ad′x+ b ∈Mn. Consequently, ax+ b

d′ ∈ Mn

d′ =
(
M
d′

)n
.

3. It is clear that kM is a submonoid of (N,+). Now, arguing as in the previous item,
if x ∈ kM \ {0}, then x

k ∈ M \ {0} and, therefore, ax
k + b ∈ Mn. Consequently,

ax+ kb ∈ k ·Mn = (kM)n.

The next result says us that, in order to compute M(a, b,X), it is sufficient to calculate
d = gcd

(
X ∪ {b1, . . . , bn}

)
and M

(
a, bd ,

X
d

)
. Observe that gcd

(
X
d ∪

{
b1
d , . . . ,

bn
d

})
= 1

and, therefore, M
(
a, bd ,

X
d

)
is a numerical semigroup.

Proposition 2.10. Let X be a subset of N \ {0}. If gcd(X ∪ {b1, . . . , bn}) = d, then
M(a, b,X) = d ·M

(
a, bd ,

X
d

)
.

Proof. From item 3 of Lemma 2.9, we have that d ·M
(
a, bd ,

X
d

)
is an (a, b)-monoid con-

taining X . Therefore, M(a, b,X) ⊆ d ·M
(
a, bd ,

X
d

)
.

On the other hand, from Proposition 2.5 and item 2 of Lemma 2.9, we deduce that
M(a,b,X)

d is an
(
a, bd

)
-monoid containing X

d . Consequently, M
(
a, bd ,

X
d

)
⊆ M(a,b,X)

d , that
is, d ·M

(
a, bd ,

X
d

)
⊆M(a, b,X).

We are now ready to show the announced algorithm.

Algorithm 2.11.
INPUT: A non-empty finite set of positive integers X such that

gcd
(
X ∪ {b1, . . . , bn}

)
= 1.

OUTPUT: M(a, b,X).

(1) A = ∅ and G = X .
(2) If G \A = ∅, then return 〈G〉 and stop the algorithm.
(3) m = min(G \A).
(4) H =

{
aim+ bi | i ∈ {1, . . . , n} and aim+ bi /∈ 〈G〉

}
.

(5) If H = ∅, then go to (7).
(6) G = G ∪H .
(7) A = A ∪ {m} and go to (2).
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In order to justify the performance of this algorithm, let us observe that, if the algorithm
stops, then it returns 〈G〉 such that ag + b ∈ 〈G〉n for all g ∈ G. Therefore, by applying
Proposition 2.7, we have that 〈G〉 is an (a, b)-monoid. In addition, by construction, it is
clear that G must be a subset of every (a, b)-monoid which contains X . Thus, 〈G〉 is the
smallest (a, b)-monoid containing X . Consequently, in order to justify the algorithm, it
will be enough to see that the algorithm stops. In fact, when we arrive to step (7) at the first
time, we have that gcd(G) = 1 and, thereby, 〈G〉 is a numerical semigroup. Therefore,
N \ 〈G〉 is finite and we can go to the step (6) only in a finite number of times.

Let us illustrate the performance of Algorithm 2.11 with two examples. In the first one
M(a, b,X) is a numerical semigroup.

Example 2.12. We are going to compute M =M
(
(1, 2), (4, 1), {5}

)
.

• A = ∅ and G = {5}.

• m = 5, H = {9, 11}, G = {5, 9, 11}, and A = {5}.

• m = 9, H = {13}, G = {5, 9, 11, 13}, and A = {5, 9}.

• m = 11, H = ∅, G = {5, 9, 11, 13}, and A = {5, 9, 11}.

• m = 13, H = {17}, G = {5, 9, 11, 13, 17}, and A = {5, 9, 11, 13}.

• m = 17, H = ∅, G = {5, 9, 11, 13, 17}, and A = {5, 9, 11, 13, 17}.
Therefore, M = 〈{5, 9, 11, 13, 17}〉.

Going back to the problem P
(
(1, 2), (4, 1), {5}, 6

)
of the introduction, we have that,

since N \M = {1, 2, 3, 4, 6, 7, 8, 12} has cardinality equal to 8, then Theorem 2.3 asserts
that the proposed problem has a solution. Moreover, the solutions will be some subsets,
with cardinality equal to 6, of {1, 2, 3, 4, 6, 7, 8, 12}. In addition, by the proof of the suffi-
ciency of Theorem 2.3, we know that {1, 2, 3, 4, 6, 7} is a solution of such a problem.

Let us see now an example in which M(a, b,X) is not a numerical semigroup.

Example 2.13. Let us see that P
(
(2, 3), (4, 2), {6, 8}, 9

)
has a solution. For that, we begin

with the computation of M
(
(2, 3), (4, 2), {6, 8}

)
. By applying Proposition 2.10, since

gcd({6, 8, 4, 2}) = 2, we get that M
(
(2, 3), (4, 2), {6, 8}

)
= 2 ·M

(
(2, 3), (2, 1), {3, 4}

)
.

Now, from Algorithm 2.11, M
(
(2, 3), (2, 1), {3, 4}

)
= 〈{3, 4}〉. Therefore,

M
(
(2, 3), (4, 2), {6, 8}

)
= 〈{6, 8}〉 = {0, 6, 8, 12, 14, 16, . . .}.

Since N\M
(
(2, 3), (4, 2), {6, 8}

)
has infinitely many elements, its cardinality is greater

than or equal to 9 and, consequently, Theorem 2.3 assures that P
(
(2, 3), (4, 2), {6, 8}, 9

)
has a solution. Moreover, by the proof of the sufficiency of Theorem 2.3, we have that
{1, 2, 3, 4, 5, 7, 9, 10, 11} is a solution.

Remark 2.14. If we suppose, for a moment, that X = ∅ (in a sense, we are removing
condition (P4) in P(a, b,X, g) such as is observed in Remark 1.2), then it is obvious that
Sk = {0, k,→}, for all k ∈ N, are numerical semigroups that belong to N (a, b,X) inde-
pendently of the chosen n-tuples a, b. Thus M(a, b,X) = {0}, that is, the submonoid of
(N,+) generated by X = ∅.
Remark 2.15. Now, let us suppose that a, b are 0-tuples, that is, we remove condition (P3)
in P(a, b,X, g) (see Remark 1.3). In this case, it is straightforward to show thatM(a, b,X)
is just the monoid generated by X .
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3 The tree associated to N (a, b,X)

A graph G is a pair (V,E), where

• V is a non-empty set whose elements are called vertices of G,

• E is a subset of {(v, w) ∈ V × V | v 6= w} whose elements are called edges of G.

A path (of length n) connecting the vertices x and y of G is a sequence of different edges
of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) such that v0 = x and vn = y.

We say that a graph G is a tree if there exists a vertex r (known as the root of G) such
that, for every other vertex x of G, there exists a unique path connecting x and r. If (x, y)
is an edge of the tree, then we say that x is a child of y.

We define the graph G
(
N (a, b,X)

)
in the following way.

• N (a, b,X) is the set of vertices of G
(
N (a, b,X)

)
;

• (S, S′) ∈ N (a, b,X)×N (a, b,X) is an edge of G
(
N (a, b,X)

)
if S′ = S∪{F(S)}.

By Proposition 2.1 and [5, Theorem 27], we have that G
(
N (a, b,X)

)
is a tree with root

N. Our first purpose in this section will be to establish what are the children of a vertex in
such a tree. For this we need to introduce some concepts.

Let S be a numerical semigroup and let G be a system of generators of S. We say that
G is a minimal system of generators of S if S 6= 〈Y 〉 for all Y ⊂ G. It is well known (see
[6]) that every numerical semigroup admits a unique minimal system of generators and
that, in addition, such a system is finite. Observe that, if we denote by msg(S) the minimal
system of generators of S, then msg(S) =

(
S \ {0}

)
\
(
(S \ {0}) + (S \ {0})

)
. On the

other hand, we have (see [6]) that, if S is a numerical semigroup and s ∈ S, then S \ {s}
is another numerical semigroup if and only if s ∈ msg(S).

An immediate consequence of [5, Proposition 24, Theorem 27] is the next result.

Theorem 3.1. The graph G
(
N (a, b,X)

)
is a tree with root N. Moreover, the set of children

of a vertex S ∈ N (a, b,X) is{
S \ {m} | m ∈ msg(S), m > F(S), and S \ {m} ∈ N (a, b,X)

}
.

In the next result we will show the conditions that must satisfy m ∈ msg(S) in order
to have S \ {m} ∈ N (a, b,X).

Proposition 3.2. Let S ∈ N (a, b,X) and let m ∈ msg(S). Then S \ {m} ∈ N (a, b,X)
if and only if m−bi

ai
/∈ S \ {0} for all i ∈ {1, . . . , n} and m /∈ X .

Proof. (Necessity.) Since X ⊆ S \ {m}, we have that m /∈ X . Let us suppose that there
exists i ∈ {1, . . . , n} such that m−bi

ai
∈ S \ {0}. Since m−bi

ai
6= m, we have that m−bi

ai
∈

S \ {0,m} and that ai
(
m−bi
ai

)
+ bi = m 6∈ S \ {m}. Therefore, S \ {m} /∈ N (a, b,X).

(Sufficiency.) If S \ {m} /∈ N (a, b,X), then there exists s ∈ S \ {0,m} and there
exists i ∈ {1, . . . , n} such that ais+ bi /∈ S \ {m}. Since S ∈ N (a, b,X), we know that
ais+ bi ∈ S. Therefore, ais+ bi = m and, consequently, m−bi

ai
= s ∈ S \ {0}.

Our next purpose will be to build recurrently G
(
N (a, b,X)

)
from its root and joining

each vertex with its children by means of edges. In order to make easy that construction, we
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will study the relation between the minimal system of generators of a numerical semigroup
S and the minimal system of generators of S \ {m}, where m is a minimal generator of
S greater than F(S). First of all, it is clear to observe that, if S is minimally generated
by {m,m + 1, . . . , 2m − 1} (that is, S = {0,m,→}), then S \ {m} = {0,m + 1,→}
is minimally generated by {m + 1,m + 2, . . . , 2m + 1}. In other case we can apply the
following result, which is [3, Corollary 18].

Proposition 3.3. Let S be a numerical semigroup with minimal system of generators
msg(S) = {n1 < n2 < · · · < np}. If i ∈ {2, . . . , p} and ni > F(S), then

msg(S \ {ni}) =


{n1, . . . , np} \ {ni}, if there exists j ∈ {2, . . . , i− 1}

such that ni + n1 − nj ∈ S;(
{n1, . . . , np} \ {ni}

)
∪ {ni + n1}, in other case.

Let us illustrate the previous results with an example.

Example 3.4. By Proposition 2.7, it is easy to see that S = 〈{5, 7, 8, 9, 11}〉 belongs to
N
(
(1, 2), (4, 1), {5}

)
. On the other hand, from Theorem 3.1, we know that the set of

children of S in the tree G
(
N
(
(1, 2), (4, 1), {5}

))
is{

S \ {m} | m ∈ msg(S), m > F(S), and S \ {m} ∈ N
(
(1, 2), (4, 1), {5}

)}
.

Since F(S) = 6, we have that {m ∈ msg(S) | m > F(S)} = {7, 8, 9, 11}. Furthermore,
by Proposition 3.2, we know that S \ {m} ∈ N

(
(1, 2), (4, 1), {5}

)
if and only if m /∈ {5}

and
{
m − 4, m−12

}
∩
(
S \ {0}

)
= ∅. Thus, since that

{
7 − 4, 7−12

}
∩
(
S \ {0}

)
={

8 − 4, 8−12
}
∩
(
S \ {0}

)
= ∅,

{
9 − 4, 9−12

}
∩
(
S \ {0}

)
6= ∅, and

{
11 − 4, 11−12

}
∩(

S \ {0}
)
6= ∅, we conclude that S = 〈{5, 7, 8, 9, 11}〉 has two children. Namely, they are

〈{5, 7, 8, 9, 11}〉\{7} = 〈{5, 8, 9, 11, 12}〉 and 〈{5, 7, 8, 9, 11}〉\{8} = 〈{5, 7, 9, 11, 13}〉,
where we have applied Proposition 3.3.

Following the idea of the previous example, we can build G
(
N
(
(1, 2), (4, 1), {5}

))
in

a recurrent way starting from its root, that is, from N = 〈{1}〉 (see Figure 1).
Let us observe that, since gcd({5} ∪ {4, 1}) = 1 and by Theorem 2.6, then we know

that N ((1, 2), (4, 1), {5}) is a finite Frobenius variety and, thereby, we have been able of
building it completely in a finite number of steps.

Let us also observe that, if S ∈ N (a, b,X), then g(S) is equal to the length of the path
connecting S with N in the tree G

(
(N (a, b,X)

)
. Therefore, in order to build the elements

ofN (a, b,X) with a fixed genus g, we only need to build the elements ofN (a, b,X) which
are connected to N through a path of length less than or equal to g. Consequently, we have
an algorithmic process to compute all the solutions of the problem P(a, b,X, g).

For instance, in the tree G
(
N
(
(1, 2), (4, 1), {5}

))
, the numerical semigroups which

are connected to N through a path of length 6 are 〈{5, 8, 9, 11, 12}〉, 〈{5, 7, 9, 11, 13}〉, and
〈{5, 6, 9, 13}〉. Therefore, the problem proposed in the introduction has three solutions.
Namely, N\〈{5, 8, 9, 11, 12}〉 = {1, 2, 3, 4, 6, 7}, N\〈{5, 7, 9, 11, 13}〉 = {1, 2, 3, 4, 6, 8},
and N \ 〈{5, 6, 9, 11, 13}〉 = {1, 2, 3, 4, 7, 8}.

We finish with an example in which N (a, b,X) is an infinite Frobenius variety.

Example 3.5. Let us compute all the solutions of P
(
(2, 3), (4, 2), {6, 8}, 4

)
. First of all,

from Example 2.13, we know that M
(
(2, 3), (4, 2), {6, 8}

)
= 〈{6, 8}〉 and, by Theo-

rem 2.3, that the problem has a solution. Moreover, since gcd({6, 8} ∪ {4, 2}) = 2 6= 1,
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〈{1}〉

〈{2, 3}〉
�� @@

〈{3, 4, 5}〉 〈{2, 5}〉



PPPPP

〈{4, 5, 6, 7}〉 〈{3, 5, 7}〉
�
� @@

XXXXXX
〈{5, 6, 7, 8, 9}〉 〈{4, 5, 7}〉 〈{4, 5, 6}〉


 JJ

PPPPP
PPPPP

〈{5, 7, 8, 9, 11}〉 〈{5, 6, 8, 9}〉 〈{5, 6, 7, 9}〉 〈{4, 5, 11}〉


 JJ

b
bb

〈{5, 8, 9, 11, 12}〉 〈{5, 7, 9, 11, 13}〉 〈{5, 6, 9, 13}〉

〈{5, 9, 11, 12, 13}〉

〈{5, 9, 11, 13, 17}〉

Figure 1: Tree associated to the finite Frobenius variety N
(
(1, 2), (4, 1), {5}

)
.

we have that N
(
(2, 3), (4, 2), {6, 8}

)
is a infinite Frobenius variety. However, in a finite

number of steps, we can compute the elements of G
(
N
(
(2, 3), (4, 2), {6, 8}

))
which are

connected to N through a path of length 4, such as we show in Figure 2.

〈{1}〉 = N

〈{2, 3}〉
"

""
b
bb

〈{3, 4, 5}〉 〈{2, 5}〉
�����

HH
H

b
bb

〈{4, 5, 6, 7}〉 〈{3, 5, 7}〉 〈{3, 4}〉 〈{2, 7}〉
������
�
�

@
@

b
bb

XXXXXX
@
@

〈{5, 6, 7, 8, 9}〉 〈{4, 6, 7, 9}〉 〈{4, 5, 6}〉 〈{3, 7, 8}〉 〈{3, 5}〉 〈{2, 9}〉

Figure 2: Five first levels of the tree associated to the infinite Frobenius variety
N
(
(2, 3), (4, 2), {6, 8}

)
.

Therefore, the sets N \ 〈{5, 6, 7, 8, 9}〉 = {1, 2, 3, 4}, N \ 〈{4, 6, 7, 9}〉 = {1, 2, 3, 5},
N \ 〈{4, 5, 6}〉 = {1, 2, 3, 7}, N \ 〈{3, 7, 8}〉 = {1, 2, 4, 5}, N \ 〈{3, 5}〉 = {1, 2, 4, 7}, and
N \ 〈{2, 9}〉 = {1, 3, 5, 7} are the (six) solutions of P

(
(2, 3), (4, 2), {6, 8}, 4

)
.
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Remark 3.6. Let us observe that, in the construction of the trees, we can assume that
X = ∅ or that a, b are 0-tuples (see Remarks 2.14 and 2.15). Then, we obtain all the
possible solutions in each case. In particular, if we consider jointly such assumptions, then
we get the tree associated to the full family of numerical semigroups (see Remark 1.1).

4 A generalization of the problem
Along this section r and g are non-negative integers, a = (a1, . . . , an) and b = (b1, . . . , bn)
are n-tuples of positive integers, andX is a non-empty subset of {r+1,→}. We will denote
by Pr(a, b,X, g) the (generalised) problem of computing all the subsets C of {r + 1,→}
that fulfill the following conditions.

(GP1) The cardinality of C is equal to g.

(GP2) If x, y ∈ {r + 1,→} and x+ y ∈ C, then C ∩ {x, y} 6= ∅.

(GP3) If x ∈ C and x−bi
ai
∈ {r + 1,→} for some i ∈ {1, . . . , n}, then x−bi

ai
∈ C.

(GP4) X ∩ C = ∅.

Let us observe that P0(a, b,X, g) = P(a, b,X, g).
It is clear that a set C is a solution of Pr(a, b,X, g) if and only if S = {0, r+1,→}\C

is a numerical semigroup that fulfills the following conditions.

(GS1) g(S) = r + g.

(GS2) If s ∈ S \ {0}, then as+ b ∈ Sn.

(GS3) X ⊆ S.

Let us denote by Nr(a, b,X) the set of all numerical semigroups which are subsets of
{0, r + 1,→} and satisfy the conditions (GS2) and (GS3). Let us observe that, with this
notation, the solutions of Pr(a, b,X, g) are the elements of the set{

{0, r+, 1→} \ S | S ∈ Nr(a, b,X) and g(S) = r + g
}
.

Moreover, Nr(a, b,X) =
{
S ∈ N (a, b,X) | S ⊆ {0, r + 1,→}

}
.

The following proposition is analogous to Theorem 2.3.

Proposition 4.1. Let us take Mr(a, b,X) =
⋂

S∈Nr(a,b,X) S. Then Pr(a, b,X, g) has a
solution if and only if the cardinality of N \Mr(a, b,X) is greater than or equal to g + r.

Proof. (Necessity.) If C is a solution of Pr(a, b,X, g), then S = {0, r+1,→}\C belongs
to Nr(a, b,X) and g(S) = g + r. Since Mr(a, b,X) ⊆ S, then we conclude that the
cardinality of N \Mr(a, b,X) is greater than or equal to g + r.

(Sufficiency.) If {0, r + 1,→} \ Mr(a, b,X) = {c1 < · · · < cg < · · · } and S =
Mr(a, b,X) ∪ {cg + 1,→}, then it is easy to see that S ∈ Nr(a, b,X) and g(S) = g + r.
Therefore, C = {0, r + 1,→} \ S is a solution of Pr(a, b,X, g).

Observe that the cardinality of N \Mr(a, b,X) is greater than or equal to g + r if and
only if the cardinality of {0, r + 1,→} \Mr(a, b,X) is greater than or equal to g.

Proposition 4.2. Mr(a, b,X) =M(a, b,X).
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Proof. Since Nr(a, b,X) ⊆ N (a, b,X), then we have that

M(a, b,X) =
⋂

S∈N (a,b,X) S ⊆
⋂

S∈Nr(a,b,X) S =Mr(a, b,X).

Let us now see the other inclusion. Since {0, r+1,→} ∈ N (a, b,X) andN (a, b,X) is
a Frobenius variety, we have that, if S ∈ N (a, b,X), then S∩{0, r+1,→} ∈ N (a, b,X).
In addition, S∩{0, r+1,→} ⊆ {0, r+1,→} and, thus, S∩{0, r+1,→} ∈ Nr(a, b,X).
In this way, R =

{
S ∩ {0, r + 1,→} | S ∈ N (a, b,X)

}
⊆ Nr(a, b,X). Consequently,

Mr(a, b,X) =
⋂

S∈Nr(a,b,X) S ⊆
⋂

S∈R S =
⋂

S∈N (a,b,X) S =M(a, b,X).

As an immediate consequence of Proposition 4.2 and Proposition 2.10, we have the
next result.

Corollary 4.3. If gcd
(
X ∪ {b1, . . . , bn}

)
= d, then Mr(a, b,X) = d ·M

(
a, bd ,

X
d

)
.

Let us observe that, as a consequence fo the previous corollary, we can use Algo-
rithm 2.11 in order to compute Mr(a, b,X).

The following result is the analogous to Theorem 2.6 for the current problem.

Corollary 4.4. The following conditions are equivalent.

1. Nr(a, b,X) is finite.

2. Mr(a, b,X) is a numerical semigroup.

3. gcd(X ∪ {b1, . . . , bn}) = 1.

Proof. The equivalence between conditions 2 and 3 is a consequence of Proposition 4.2
and Theorem 2.6. Now, let us see the equivalence between conditions 1 and 2.

(1.⇒ 2.) It is enough to observe that the finite intersection of numerical semigroups is
another numerical semigroup.

(2.⇒ 1.) If S ∈ Nr(a, b,X), then Mr(a, b,X) ⊆ S. Thus, S = Mr(a, b,X) ∪ Y for
some Y ⊆ N \Mr(a, b,X). Since N \Mr(a, b,X) is finite, then we can conclude that
Nr(a, b,X) is finite.

Let us illustrate the previous results with several examples.

Example 4.5. Let us see that Pr

(
(1, 2), (4, 1), {5}, 6

)
has a solution if and only if r ∈

{0, 1, 2}. Since {5} ⊆ {r + 1,→}, then r ∈ {0, 1, 2, 3, 4}. By Proposition 4.2 and
Example 2.12, we have that M = Mr

(
(1, 2), (4, 1), {5}, 6

)
= 〈{5, 9, 11, 13, 17}〉. Since

N \M = {1, 2, 3, 4, 6, 7, 8, 12} has cardinality equal to 8, by applying Proposition 4.1, we
easily deduce that Pr

(
(1, 2), (4, 1), {5}, 6

)
has a solution if and only if r ∈ {0, 1, 2}.

Example 4.6. If r ∈ {0, 1, 2, 3, 4, 5}, then Nr

(
(2, 3), (4, 2), {6, 8}

)
is an infinite set. In

fact, this is an immediate consequence of Corollary 4.4 and that gcd({4, 2, 6, 8}) = 2 6= 1.

Example 4.7. Let us compute P3

(
(2, 3), (4, 2), {6, 8}, 9

)
. By Proposition 4.2 and Exam-

ple 2.13, we have thatM3

(
(2, 3), (4, 2), {6, 8}

)
= 〈{6, 8}〉. Now, if we apply the construc-

tion given in the sufficiency of Proposition 4.1, we have that {4, 5, 7, 9, 10, 11, 13, 15, 17}
is a solution.

If G is a tree and u, v are two vertices of G such that there exists a path between them,
then we will say that u is a descendant of v. The next result has an easy proof.
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Proposition 4.8. Nr(a, b,X) is the set of all descendants of {0, r + 1,→} in the tree
G
(
N (a, b,X)

)
.

A Frobenius pseudo-variety (see [4]) is a non-empty family P of numerical semigroups
that fulfills the following conditions.

(PV1) P has a maximum element max(P) (with respect to the inclusion order).

(PV2) If S, T ∈ P , then S ∩ T ∈ P .

(PV3) If S ∈ P and S 6= max(P), then S ∪ F(S) ∈ P .

As an immediate consequence of Proposition 4.8 and the comment above to Example 7 in
[4], we have the following result.

Proposition 4.9. Nr(a, b,X) is a Frobenius pseudo-variety.

Let us observe that, if r ≥ 1, then max(Nr(a, b,X)) = {0, r+1,→} 6= N. Therefore,
by applying [4, Proposition 1], we have that Nr(a, b,X) is not a Frobenius variety.

Now, let us notice that the subgraph, of a tree, which is formed by a vertex and all its
descendants is also a tree. We will denote by G

(
Nr(a, b,X)

)
the subtree of G

(
N (a, b,X)

)
formed by {0, r + 1,→} and all its descendants.

Example 4.10. The root of G
(
N3

(
(1, 2), (4, 1), {5}

))
is {0, 4,→} = 〈{4, 5, 6, 7}〉. Thus,

from Example 3.4, we have that such a tree is given by Figure 3.

〈{4, 5, 6, 7}〉
�
� @@

XXXXXX
〈{5, 6, 7, 8, 9}〉 〈{4, 5, 7}〉 〈{4, 5, 6}〉


 JJ

PPPPP
PPPPP

〈{5, 7, 8, 9, 11}〉 〈{5, 6, 8, 9}〉 〈{5, 6, 7, 9}〉 〈{4, 5, 11}〉


 JJ

b
bb

〈{5, 8, 9, 11, 12}〉 〈{5, 7, 9, 11, 13}〉 〈{5, 6, 9, 13}〉

〈{5, 9, 11, 12, 13}〉

〈{5, 9, 11, 13, 17}〉

Figure 3: Tree associated to the Frobenius pseudo-variety N3

(
(1, 2), (4, 1), {5}

)
.

Let us observe that Nr(a, b,X) is the set of vertices in G
(
Nr(a, b,X)

)
, and that

(S, S′) ∈ Nr(a, b,X) × Nr(a, b,X) is an edge of G
(
Nr(a, b,X)

)
if and only if S′ =

S ∪ {F(S)}. It is also clear that, if S ∈ Nr(a, b,X), then the set formed by the children of
S inNr(a, b,X) is the same that the set formed by the children of S inN (a, b,X). In this
way, by applying Theorem 3.1, we have the next result.

Proposition 4.11. The graph G
(
Nr(a, b,X)

)
is a tree with root {0, r+ 1,→}. Moreover,

the set of children of a vertex S in G
(
Nr(a, b,X)

)
is{

S \ {m} | m ∈ msg(S), m > F(S), and S \ {m} ∈ N (a, b,X)
}
.
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Now, let us notice that, by using Propositions 3.2 and 3.3, we can compute the children
of any vertex S in G

(
Nr(a, b,X)

)
and, consequently, we have an algorithmic process to

recurrently build the elements of Nr(a, b,X).
We finish this section with an illustrative example about the above comment.

Example 4.12. Let us compute all the solutions of P3

(
(2, 3), (4, 2), {6, 8}, 4

)
. In order

to do this, we have to determine the vertices of G
(
N3

(
(2, 3), (4, 2), {6, 8}

))
which are

connected to {0, 4,→} = 〈{4, 5, 6, 7}〉 through a path of length 4.
Let us observe that, if A is the set of vertices (of a tree) which are connected to

the root through a path of length k, then the set formed by all vertices that are children
of some vertex of A is just the set of vertices which are connected to the root through
a path of length k + 1. Thus, if we denote by Ai the set formed by the vertices of
G
(
N3

(
(2, 3), (4, 2), {6, 8}

))
which are connected to 〈{4, 5, 6, 7}〉 through a path of length

i, then (by applying Propositions 4.11, 3.2, and 3.3) we obtain recurrently the following
sets.

• A0 =
{
〈{4, 5, 6, 7}〉

}
• A1 =

{
〈{5, 6, 7, 8, 9}〉, 〈{4, 6, 7, 9}〉, 〈{4, 5, 6}〉

}
• A2 =

{
〈{6, 7, 8, 9, 10, 11}〉, 〈{5, 6, 8, 9}〉, 〈{5, 6, 7, 8}〉, 〈{4, 6, 9, 11}〉, 〈{4, 6, 7}〉

}
• A3 =

{
〈{6, 8, 9, 10, 11, 13}〉, 〈{6, 7, 8, 10, 11}〉, 〈{6, 7, 8, 9, 11}〉, 〈{6, 7, 8, 9, 10}〉,
〈{5, 6, 8}〉, 〈{4, 6, 11, 13}〉, 〈{4, 6, 9}〉

}
• A4 =

{
〈{6, 8, 10, 11, 13, 15}〉, 〈{6, 8, 9, 11, 13}〉, 〈{6, 8, 9, 10, 13}〉,
〈{6, 8, 9, 10, 11}〉, 〈{6, 7, 8, 11}〉, 〈{6, 7, 8, 10}〉, 〈{6, 7, 8, 9}〉,
〈{4, 6, 13, 15}〉, 〈{4, 6, 11}〉

}
Therefore, the set of solutions of P3

(
(2, 3), (4, 2), {6, 8}, 4

)
is{

〈{4, 5, 6, 7}〉 \ S | S ∈ A4

}
=
{
{4, 5, 7, 9}, {4, 5, 7, 10}, {4, 5, 7, 11}, {4, 5, 7, 13},

{4, 5, 9, 10}, {4, 5, 9, 11}, {4, 5, 10, 11}, {5, 7, 9, 11}, {5, 7, 9, 13}
}
.
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