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Abstract

A 4-configuration is a collection of points and lines in the Euclidean plane such that each
point lies on four lines and each line passes through four points. In this paper we introduce
a new family of these objects. Our construction generalizes a 2010 result of Berman and
Grünbaum in which suitable 4-configurations from the well-understood celestial family
are altered to yield new configurations with reduced geometric symmetry groups. The con-
struction introduced in 2010 removes every other line of a symmetry class from the celestial
configuration; here we we give conditions under which every p-th line can be removed, for
p ∈ {2, 3, 4, · · · }. The geometric symmetry groups of the new configurations we obtain
are of correspondingly smaller index as subgroups of the symmetry group of the underlying
celestial configuration. These sparse constructions can also be repeated and combined to
yield a rich variety of previously unknown 4-configurations. In particular, we can begin
with a configuration with very high geometric symmetry—the dihedral symmetry of an
m-gon for m quite large—and produce a configuration whose only geometric symmetry is
180◦ rotation.
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1 Introduction

An n-configuration is a set of n points and n lines with the property that each point lies
on n lines and each line passes through n points. Configurations can be investigated as
geometric objects or more generally as combinatorial objects where the lines are abstract
sets of points. In this work we take the geometric perspective and consider points and
lines in the Euclidean plane. Although such geometric objects were studied in the 19th
century and several theorems on 3-configurations were proved, no illustration of a geomet-
ric 4-configuration appeared in print until much more recently, in [4]. Since then many
more examples have been introduced. In this paper we give a technique that produces a
large new class of 4-configurations, including 4-configurations with very few symmetries.
We emphasize that by a symmetry of a configuration we mean an isometry of the plane
which maps the configuration to itself, as opposed to the more general notion of combina-
torial symmetry. The collection of symmetries of a configuration, or its symmetry group,
partitions the points and lines into orbits, called the symmetry classes of points, and the
symmetry classes of lines.

One frequently studied class of 4-configurations is the celestial family. Its members have
the property that every point lies on exactly two lines from each of two symmetry classes
of lines, and every line is incident with two points from each of two symmetry classes
of points. Figure 2 gives an example of a celestial 4-configuration. The first published
4-configuration, in [4], was of this class, and more examples appeared in [6]. The first
discussion of celestial configurations as a family appeared in a paper called Polycyclic
Configurations by Marko Boben and Tomaž Pisanski [2], where they were investigated
as a particular class of polycyclic 4-configurations. Branko Grünbaum’s 2009 monograph
Configurations of Points and Lines [3] gives a detailed analysis of the construction method
and theory for celestial 4-configurations. In that reference Grünbaum refers to them as
k-astral 4-configurations. However, he also uses the term “k-astral” to describe configu-
rations which have k symmetry classes of points and k symmetry classes of lines; while
celestial 4-configurations have this property, there are many other 4-configurations with this
property that are not celestial. We reserve the term “k-astral” for the more general class of
configurations with k symmetry classes of points and lines, and use the term “celestial” to
refer to 4-configurations with the particular symmetry restrictions described above.

In [1], one author (LWB) developed two procedures which modify suitable celestial config-
urations to yield new 4-configurations. In the first of these, every other line from a particu-
lar symmetry class is deleted and then an equal number of new lines that pass through the
center of the configuration—diameters—are added in such a way that the resulting struc-
ture is a (noncelestial) 4-configuration. The number of points and lines remains unchanged
at the end of the construction since one diameter is added for every line removed. In the
second procedure, particular elements of certain symmetry classes of points and of lines
are both deleted and then diameters are added in such a way that every point is incident
with four lines and every line is incident with four points, with a net loss of both points and
lines.

In this paper we generalize the first of those procedures. We refer to this generalized pro-
cedure as sparse line deletion or p-sparse line deletion because in general it is possible
to delete a smaller number of lines than in the old construction. The new configurations
obtained in this way differ qualitatively from those introduced in [1] in that they exhibit a
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wider variety of symmetry groups compared to the symmetries of the underlying celestial
configurations. In particular, despite beginning with a configuration with a high degree
of geometric symmetry, we can obtain configurations of quite low symmetry by repeating
the sparse line deletion construction, in contrast to the previous construction. Figure 1 de-
picts three examples of these new objects; beginning with celestial configurations with d18,
d12 and d16 symmetry, we develop configurations with d6, d4 and d4 symmetry, respec-
tively.

The paper is organized as follows. In Section 2 we review the theory and notation for celes-
tial configurations. We correct a minor notational ambiguity from [1] and give new results
describing the incidences of the diameters in a series of lemmas. In Section 3 we describe
the p-sparse line deletion construction. In Section 4 we show how the construction may be
carried out several times simultaneously to yield a rich variety of new configurations. In
Section 5 we give examples of configurations obtained by a related, but poorly understood
technique applicable in the case where each symmetry class contains an odd number of
objects. We close by mentioning several questions that deserve further study. All figures in
this paper were generated using the free software Matplotlib [5].

2 Celestial configurations

A celestial configuration is a 4-configuration with a high degree of geometric symmetry;
specifically, such a configuration has the property that every point is incident with exactly
two lines from each of two symmetry classes, and every line is incident with exactly two
points from each of two symmetry classes. If a celestial configuration has k symmetry
classes of points and of lines, we refer to it as a k-celestial configuration. Each k-celestial
configuration consists of a composite number mk of points and mk lines for some m.
The points are the vertices of k concentric regular m-gons, and the configuration exhibits
m-fold dihedral symmetry (that is, dm symmetry).

An example of a 3-celestial configuration is shown in Figure 2. In that figure, the three
symmetry classes of points are distinguished by color (red, green and blue), and the three
symmetry classes of lines are distinguished in the same way (also red, green, and blue).
Each green line contains two red points and two green points (and similarly for the other
two classes of lines), and each blue point lies on two red and two blue lines (and similarly
for the other two classes of points).

Celestial configurations will serve as the building blocks of all of the new 4-configurations
described in this paper. One useful feature of celestial configurations is the fact that every
celestial configuration may be described by a configuration symbol

m#(s1, t1; s2, t2; · · · ; sk, tk)

which encodes a geometric construction algorithm. The integers si, ti,m in the configura-
tion symbol must satisfy several constraints for the construction to yield a 4-configuration;
in this case we say the symbol is valid. The constraints are: m ≥ 7, k ≥ 2, 1 ≤ si, ti < m

2
for all i, and

1. (order condition) adjacent entries in the sequence (s1, t1, s2, · · · , tk) (taken cycli-
cally) are distinct;
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18#(13*,7;8,6)

(a) 18#(13∗, 7; 8, 6);D∗
12#(23*,4;1,2;4,1)

(b) 12#(23∗, 4; 1, 2; 4, 1);D∗,

16#(54*,3;4,5;3,4)

(c) 16#(54∗, 3; 4, 5; 3, 4);D∗,

Figure 1: Three new 4-configurations. (a), the 3-sparse line deletion 18#(13∗, 7; 8, 6);D∗,
with d6 symmetry. (b) the 3-sparse line deletion 12#(23∗, 4; 1, 2; 4, 1);D∗, with d4 sym-
metry. (c) the 4-sparse line deletion 16#(54∗, 3; 4, 5; 3, 4);D∗, with d4 symmetry.
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Figure 2: The 3-celestial configuration 8#(2, 1; 3, 2; 1, 3). The labeling updates Figure 2a
in [1]. Throughout the paper we use red for v0 and L0, blue for v1 and L1, and green for
v2 and L2.

2. (even condition)
∑k
i=1 si + ti is even; and

3. (cosine condition)
∏k
i=1 cos

(
siπ
m

)
=
∏k
i=1 cos

(
tiπ
m

)
;

4. (substring condition) the symbol m#(L) is invalid whenever L is a proper contigu-
ous substring of (s1, t1; · · · ; sk, tk).

As an example illustrating contiguity, (3, 2; 1, 4) and (4, 7; 5, 3) are contiguous substrings
of (5, 3; 2, 1; 4, 7) but (5, 2; 4, 7) is not.

The cosine condition is satisfied automatically if the sets S = {s1, . . . , sk} and T =
{t1, . . . , tk} are equal, in which case the configuration is called trivial. All the configura-
tions in this paper, with the exception of those in Figures 1a and 3, are formed from trivial
celestial configurations. More information on these conditions can be found in [3, Chapter
3].

We now turn to the construction algorithm encoded by the symbol.

2.1 Geometric construction algorithm (celestial configurations)

We write P ∨Q for the line passing through points P and Q and L∧M for the intersection
of lines L and M . In the symbols (vi)j and (Li)j , the second index j is to be interpreted
modulo m. The construction algorithm to produce a celestial configuration given a valid
configuration symbol is as follows.

1. Begin with the vertices of a regularm-gon; e.g. take (v0)i =
(
cos
(
2πi
m

)
, sin

(
2πi
m

))
,

for 0 ≤ i < m. Let v0, written without a second subscript, denote the collection of
these points.
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2. Given points vj , define (Lj)i = (vj)i ∨ (vj)i+sj+1 , for 0 ≤ i < m. We denote by
Lj the collection of these lines.

3. Given lines Lj , define (vj+1)i = (Lj)i ∧ (Lj)i−tj , for 0 ≤ i < m, and let vj+1

denote the collection of these points.

4. Repeat the previous two steps until the line class Lk−1 is obtained using the parame-
ter sk. Stop before constructing the points vk; if the symbol is valid, the set of points
vk that would be constructed in the next step would coincide setwise with the points
v0.

For future reference we list all of the incidences explicitly in Table 1.

Table 1: Incidences between members of point and line classes in the celestial configuration
m#(s1, t1; . . . ; sk, tk). The quantity δ is defined by δ = 1

2

∑k
i=1 si − ti.

Object Incidences
(Lj)i, 0 ≤ j < k − 1 (vj)i (vj)i+sj+1

(vj+1)i, (vj+1)i+tj+1

(Lk−1)i (vk−1)i (vk−1)i+sj+1
(v0)i+δ (v0)i+δ+tk

(v0)i (L0)i (L0)i−s1 (Lk−1)i−δ (Lk−1)i−δ−tk
(vj)i, 0 < j ≤ k − 1 (Lj)i (Lj)i−sj+1 (Lj−1)i (Lj−1)i−tj .

2.2 Lines through the origin

The vertices in a given point class vj of a celestial configuration form a regular m-gon.
For each integer ` it follows that the angle ∠(vj)0O(vj)` is an integer multiple of 2π/m
(that is, an even multiple of π/m). A slightly weaker statement holds for points in different
symmetry classes: for i 6= j, it is still true that the angle ∠(vi)0O(vj)` is an integer
multiple of π/m. In the constructions we consider we will add lines through the center of
the configuration (although the center is not one of the points of the configuration). We
denote by Dj the line through the origin that makes an angle of j πm radians with the line
O ∨ (v0)0 (conventionally a horizontal line) for j = 0, 1, · · · ,m− 1. For j ≥ m or j < 0
we reduce modulo m so that Dm = D0 = O ∨ (v0)0. This notation is more flexible than
the concept of diametral type introduced in [1] and does not require m to be even. We refer
to all of the Dj as diameters.

With this notation we restate some useful facts on celestial configurations.

1. Suppose that m is even and (vj)i lies on Da. Then (vj)i+m
2

also lies on Da so that
Da passes through two points of vj . However, if q is odd then Da+q passes through
no points of vj . Hence if m is even, each diameter passes through either zero or two
points from each symmetry class.

2. Suppose thatm is odd. Then each diameter is incident with exactly one point of each
symmetry class.

3. Let 0 ≤ j < k − 1. If (vj)0 lies on Da then (vj+1)0 lies on Da+sj+1−tj+1 .

By combining (1) and (3) we see that if m and (s1 + t1) are even, then the even-numbered
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diameters pass through two points from each of v0 and v1 while the odd-numbered diame-
ters miss all of the points in v0 and v1.

We now give three lemmas providing specific information on the incidences of the diame-
ters. This information is conveniently expressed in terms of the constants {βj} defined by
β0 = 0 and

βj =

j∑
q=1

sq − tq, j = 1, · · · , k − 1.

Lemma 2.1. For all i and j, the point (vj)i lies on the diameter Dβj+2i.

Proof. By definition, (v0)0 lies on D0. Applying (3) repeatedly we see that (vj)0 lies on
diameter Dβj . It follows that (vj)i lies on Dβj+2i.

Lemma 2.2. For 0 ≤ ` < m, and 0 ≤ j < k, the diameter D` passes through the
following points of vj:

none m even, βj − ` odd;
(vj) `−βj

2

, (vj)m+`−βj
2

m even, βj − ` even;

(vj)m+`−βj
2

m odd, βj − ` odd;

(vj) `−βj
2

m odd, βj − ` even.

Proof. Lemma 2.1 states that for each i the point (vj)i lies on Dβj+2i, so it suffices to
solve the congruence ` ≡ βj + 2i (m) for i. Equivalently we solve 2i ≡ `− βj (m). If m
is odd, this equation has one solution because 2 is a generator of the cyclic group Z/mZ.
This solution depends on the parity of `− βj as indicated. If m is even then 2i and 2i−m
are always even, so there is no solution if ` − βj is odd. If ` − βj is even then both `−βj

2

and m+`−βj
2 are solutions, as indicated.

Lemma 2.3. If 0 ≤ j, ` < k and 0 ≤ i < m, the points of v` sharing a diameter with (vj)i
are 

none m even, β` − βj odd;
(v`)i+ βj−β`

2

, (v`)i+m+βj−β`
2

m even, β` − βj even;

(v`)i+m+βj−β`
2

m odd, β` − βj odd;

(v`)i+ βj−β`
2

m odd, β` − βj even.

Proof. Lemma 2.1 implies that (vj)i lies on Dβj+2i. Lemma 2.2 then states which points
of v` lie on this diameter. Writing ˜̀= βj + 2i and j̃ = ` to match the notation of Lemma
2.2, we find that the following points of vj̃ lie on D˜̀:

none m even, βj̃ − ˜̀odd;
(vj̃) ˜̀−β

j̃
2

, (vj̃)m+˜̀−β
j̃

2

m even, βj̃ − ˜̀even;

(vj̃)m+˜̀−β
j̃

2

m odd, βj̃ − ˜̀odd;

(vj̃) ˜̀−β
j̃

2

m odd, βj̃ − ˜̀even.
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In other words, the following points of v` lie on Dβj+2i:

none m even, β` − βj odd;
(v`) βj+2i−β`

2

, (v`)m+βj+2i−β`
2

m even, β` − βj even;

(v`)m+βj+2i−β`
2

m odd, β` − βj odd;

(v`) βj+2i−β`
2

m odd, β` − βj even.

The result follows.

3 Sparse line deletion

Consider the celestial configuration 18#(5, 1; 4, 6), illustrated in Figure 3a. Suppose we
delete the lines (L0)k, k = 0, 3, 6, 9, 12, 15; the resulting structure is not a configuration
because some of the points, shown larger in Figure 3b, have lost an incidence. We say that
these points have been affected by the line deletion. Note that the affected points of v0 lie
on the same diameters as the affected points of v1, and each diameter that has any affected
point incident with it in fact is incident with two points from each of the two symmetry
classes. In addition, each affected point is missing precisely one line. Therefore, if we add
the six diameters {D0, D4, D6, D10, D12, D16}, we obtain the 4-configuration depicted in
Figure 3c. This is an example of the 3-sparse line deletion construction.

We call this construction sparse in comparison with the construction given in [1], because
we remove only one-third of the lines L0 instead of one-half. Figure 4 shows the result of
the construction technique described in [1], which was called odd deletion in that work and
which corresponds to 2-sparse deletion in the terminology of the present work, beginning
from the same celestial configuration 18#(5, 1; 4, 6). The example of Figure 4 also serves
to correct an error from [1], where it was claimed incorrectly that the construction would
work only for k-celestial configurations with k ≥ 3.

The following theorem gives necessary conditions for the procedure described above to
succeed, given parameters m, si, ti of the celestial configuration and a sparsity p. The
proof shows that the affected points all lie on a particular set of diameters, and that all
points on these diameters are affected. The case p = 2 was proven in [1].

Theorem 3.1 (p-Sparse Line Deletion). Let p ≥ 2, and let C be a celestial 4-configuration
with symbol m#(s1, t1; s2, t2; · · · ; sk, tk) satisfying the following conditions:

(i) p does not divide s1.

(ii) m is even, and either m
2 ≡ 0 (mod p) or m

2 ≡ s1 (mod p).

(iii) The points lying on even-numbered diameters are precisely those of v0 and v1, i.e.:

If k = 2, then s1 + t1 and s2 + t2 are both even.

If k ≥ 3, then si + ti is odd for i = 2, i = k, and even otherwise.

(iv) The following sets coincide when reduced modulo p:

{0, s1} =
{
s1 + t1

2
,
s1 − t1

2

}
.
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18#(53*,1;4,6)

(a) 18#(5, 1; 4, 6)

(b) 18#(53∗, 1; 4, 6)

18#(53*,1;4,6)

(c) 18#(53∗, 1; 4, 6);D∗

Figure 3: The 3-sparse line deletion construction. (a) The celestial configuration
18#(5, 1; 4, 6) with (L0)n drawn thicker for n ≡ 0 mod 3. (b) Lines (L0)n for n ≡
0 mod 3 have been deleted and the points affected by the deletion are drawn larger. This
structure is denoted 18#(53∗, 1; 4, 6) and is not a 4-configuration; the notation 53∗ is ex-
plained in Theorem 3.1. (c): The 4-configuration 18#(53∗, 1; 4, 6);D∗ obtained from (b)
by adding diameters.
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Figure 4: The 2-sparse line deletion configuration 18#(52∗, 1; 4, 6);D∗. All of the diam-
eters have been added, so the other constructions considered in this paper are sparse in
comparison. In the notation of [1] this would have been denoted 18#(5∗, 1; 4, 6);D.

Remove from C the lines (L0)np, 0 ≤ n < m
p . Add the diameters passing through the

affected points of v0, i.e. D2np, D2(np+s1), for 0 ≤ n < dm2pe. Then the resulting structure
C′ is again a 4-configuration, which we denote as m#(sp∗1 , t1; . . . ; sk, tk);D∗.

Proof. We verify that each object in the new structure has exactly four incidences.

Each line (Lj)i of C that is not deleted still has exactly four incidences in C′ since no points
are added or deleted in this construction.

The added diameters also pass through exactly four points. To see this, note that by condi-
tion (iii) the classes v0 and v1 and no others lie on even-numbered diameters. Condition (ii)
implies that m is even, so each even-numbered diameter passes through two points from
each of v0 and v1 and no others.

Consider now the points (vj)i with j > 1. By condition (iii) these lie on odd-numbered
diameters. They therefore do not gain any incidence from the added diameters, and they do
not lose any incidence either since the deleted lines are chosen from L0 and these lines are
incident only with points of v0 and v1 (again by condition (iii)).

It remains only to show that each point of v0 and v1 lies on exactly four lines after diameters
are added.

We begin with the points v0. A point (v0)i lies on two lines of L0, namely (L0)i and
(L0)i−s1 . Because s1 6≡ 0 (mod p) by condition (i), at most one of these lines is deleted.
Because we add a diameter if and only if it passes through an affected point of v0, the
affected points regain their lost incidence and have exactly four incidences. Hence all
points (v0)i have at least four incidences in C′.

We must still check that none of them have five, i.e., that no unaffected point of v0 lies
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directly across the origin from an affected point of v0 on the same diameter. We therefore
suppose that (v0)i is affected by the deletion, i.e. i ≡ 0 (mod p) or i ≡ s1 (mod p),
and we show that its reflection (v0)i+m

2
across the origin is also affected. To do so, we

must show that either i+ m
2 ≡ 0 (mod p) or i+ m

2 ≡ s1 (mod p). We consider the two
cases of condition (ii). In the first case, where m

2 ≡ 0 (mod p) the desired congruence
is immediate. In the second case we have m

2 ≡ s1 (mod p), so 2s1 ≡ m ≡ 0 (mod p).
However, i + m

2 is congruent to i + s1, since we are in the case where m
2 ≡ s1 (mod p),

and this is now congruent to either s1 or 2s1 ≡ 0 (mod p), according to whether i ≡ 0 or
i ≡ s1. Hence all of the points v0 have exactly four incidences in the new structure C′.

Now consider the points of v1. We begin by showing that a point (v1)i can lose at most one
incidence when the lines (L0)np, 0 ≤ n ≤ dm2pe, are deleted. Indeed, (v1)i lies on only
two lines from the first line class, namely (L0)i and (L0)i−t1 . Thus, we need to show that
t1 6≡ 0 (mod p). This follows from condition (iv). If t1 were congruent to 0 (mod p), we
would have s1−t1

2 ≡ s1−t1
2 + t1 ≡ s1+t1

2 (mod p). These numbers cannot be congruent,
however, since one is congruent to 0 and the other to s1. This shows that each point (v1)i
will lose either zero or one incidence when the lines (L0)np are removed. It follows that
each line deletion affects two points of v1 as well as two points of v0, so the same number
of points are affected in each of these point classes.

Finally, we argue that the affected points of class v1 are precisely those that lie on the
added diameters. Because v1 contains the same number of affected points as v0, it suffices
to show that each affected point of class v1 lies on one of the diameters added previously.
A counting argument then guarantees that no unaffected point lies on an added diameter.
Since β1 = s1 − t1 is even by condition (iii) and m is even by condition (ii), Lemma 2.3
implies that each point (v1)i shares a diameter with (v0)i+ 1

2 (s1−t1)
. The affected points of

v1 are those lying on (L0)q where q ≡ 0 (mod p), namely (v1)q and (v1)q+t1 . It therefore
suffices to show that

if i ≡ 0 or t1 (mod p), then i+
1

2
(s1 − t1) ≡ 0 or s1 (mod p),

since 0 and s1 are the remainders modulo p of the indices of affected points in v0. But this
is equivalent to condition (iv). Hence the affected points of v1 lie on added diameters in C′.
This completes the proof.

3.1 Notation

The notation of [1] may be extended to these generalized p-sparse constructions. If each
p-th line of the class L0 has been deleted from the celestial configuration m#(s1, t1; . . . ;
sk, tk), we denote the resulting incidence structure by m#(sp∗1 , t1; . . . ; sk, tk); it is not a
configuration. The notation m#(s1∗, t1; . . . ; sk, tk) that was used in [1] should now be
written as m#(s2∗1 , t1; . . . ; sk, tk) since all of those constructions were 2-sparse.

We append the symbol D∗ to the end of the sequence to indicate that for 0 ≤ i < m we
add the diameter Di if any of the points on Di have been affected by the line deletion.
For brevity we do not explicitly state the indices of the added diameters. These can be
recovered if necessary: under the conditions of Theorem 3.1, the added diameters are Di

with i
2 ≡ 0 or i

2 ≡ s1 (mod p). Hence ifm#(s1, t1; . . . ; sk, tk) is a celestial configuration,
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24#(24*,10;7,2;10,7)

(a) 24#(24∗, 10; 7, 2; 10, 7);D∗

24#(26*,10;7,2;10,7)

(b) 24#(26∗1, 10; 7, 2; 10, 7);D∗

Figure 5: The celestial symbol 24#(2, 10; 7, 2; 10, 7) satisfies the hypotheses of Theorem
3.1 for both p = 4 and p = 6, yielding two new configurations.

then m#(sp∗1 , t1; . . . ; sk, tk) is an incidence structure formed by removing each p-th line
in L0, and Theorem 3.1 asserts that m#(sp∗1 , t1; . . . ; sk, tk);D∗ is again a configuration
under certain conditions on m, si, ti, and p.

We will need more powerful notation in the next section. In our examples so far, we
deleted the lines (L0)q for all q ≡ 0 (mod p). The construction works equally well if we
delete instead the lines (L0)q for all q ≡ b (mod p), where 0 ≤ b < p (to see this, rotate
the configuration through an angle of −2πb/m radians, perform the same operation, then
rotate back). If b 6= 0 we write b following the asterisk in the superscript of s1; for clarity
we may also do this even if b = 0.

The construction outlined in Theorem 3.1 also works if instead of deleting every p-th line
in class L0, we instead delete every p-th line in class Lj−1, provided the symbol satisfies
the (suitably shifted) conditions of Theorem 3.1.

We therefore use the notation

m#(· · · ; sp∗bj , tj ; · · · )

to indicate deletion of each line (Lj−1)q , with q ≡ b (mod p). See Figure 5b for an example
with j = 0 and b = 1.

The next section details a generalization of this deletion technique, in which several dele-
tions on the same set of lines are performed simultaneously; to denote this, we write

m#(· · · ; sp∗b1,b2,b3j , tj ; · · · )

to indicate deletion of each line (Lj−1)q , with q ≡ b1 or q ≡ b2 or q ≡ b3 (mod p).



L. W. Berman and W. H. Mitchell: Sparse line deletion constructions. . . 177

24#(24*0,6*1,10;7,2;10,7)

Figure 6: The constructions illustrated in Figure 5 have been carried out simultaneously
to obtain 24#(24∗0,6∗1, 10; 7, 2; 10, 7);D∗. This procedure degrades the symmetry group
from d24 to d2.

4 Repetition of sparse line deletion

4.1 Multiple deletions within the first line class

Consider the celestial configuration 24#(2, 10; 7, 2; 10, 7). This symbol satisfies the con-
ditions for Theorem 3.1 for both p = 4 and p = 6. We can delete the lines (L0)q for
q = 0, 4, 8, · · · and add diameters to obtain 24#(24∗0, 10; 7, 2; 10, 7);D∗, depicted in Fig-
ure 5a. The affected points of v0 are those (v0)i with i ≡ 0 or i ≡ s1 = 2 (mod 4).
This leaves all of the (v0)i with odd i untouched. On the other hand, if we delete all
lines (L0)q with q ≡ 1 (mod 6), only points (v0)i of odd index will be affected: see Fig-
ure 5b. We may therefore perform both constructions together to obtain the configuration
24#(24∗0,6∗1, 10; 7, 2; 10, 7);D∗, depicted in Figure 6. We have now added all but two
of the even-numbered diameters, and the deletion is “sparse” only in comparison with the
construction given in [1]. The resulting configuration has only the four symmetries of a
rectangle, compared to the 48 symmetries of the underlying celestial configuration. That
is, the new symmetry group has index 12 in the original group. For 2-sparse line deletion
the index is at most 4. This indicates that the more general procedure can give qualitatively
novel configurations.

Many celestial configurations admit p-sparse line deletions for several values of p. A naı̈ve
exhaustion search by machine using the conditions of the theorem uncovered several ex-
treme examples. The celestial configuration 48#(13, 11; 20, 13; 11, 20) admits p-sparse
line deletion with p = 2, 3, 4, 6 or 12. With 80#(12, 28; 23, 12; 28, 23) we can take
p = 5, 8, 10, or 20. By repeating and combining the p-sparse line deletions for some-
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what larger values of p, we can obtain a large number of new 4-configurations. Even in the
relatively small case of 24#(2, 10; 7, 2; 10, 7) we can obtain the configurations illustrated
in Figure 7 in addition to those from Figures 5 and 6.

4.2 Combining deletions in the first and third classes in 4-celestial configurations

Another possibility for repetition of the p-sparse line deletion construction arises in the
special case of 4-celestial configurations. Suppose that the hypotheses of Theorem 3.1
hold for the celestial symbol

m#(s1, t1; s2, t2; s3, t3; s4, t4)

with p = p1. Suppose further that they hold for the symbol

m#(s3, t3; s4, t4; s1, t1; s2, t2)

with p = p2. Beginning from the first symbolm#(s1, t1; s2, t2; s3, t3; s4, t4), we may then
perform p1-sparse deletion on the lines L0 and add even-numbered diameters to recover a
configuration (as in Theorem 3.1). We may additionally perform p2-sparse deletion on the
lines L2 and add odd-numbered diameters to recover yet another configuration of a family
not available previously.

For example, the 4-celestial configuration 20#(6, 4; 3, 6; 7, 3; 4, 7) admits a 5-sparse dele-
tion on both L0 and L2. We can delete the lines (L0)q with q ≡ 0 (mod 5) and add
even-numbered diameters, or we can delete the lines (L2)q with q ≡ 0 (mod 5) and add
odd-numbered diameters to obtain a 4-configuration. We can also do both; in this case we
arrive at the configuration 20#(65∗, 4; 3, 6; 75∗, 3; 4, 7);D∗, depicted in Figure 8b. By ro-
tating the first construction we obtain 20#(65∗1, 4; 3, 6; 75∗0, 3; 4, 7);D∗, depicted in Fig-
ure 8c. These three objects are different, at least in the geometric sense that they differ by
more than an isometry, illustrating the very large number of new configurations available
through this method.

Finally we note the possibility of repeating deletions within L0 and also repeating deletions
within L2. An example is 20#(65∗0,2, 4; 3, 6; 75∗0,4, 3; 4, 7);D∗; see Figure 8a and note
again the very small symmetry group.

5 Constructions with an odd number of points per symmetry class

Let C be a k-celestial configuration with symbol m#(s1, t1; . . . ; sk, tk). Suppose that m
is odd. The hypotheses of Theorem 3.1 cannot hold; in this section we ask if there is
another way to remove some lines of C and then add an equal number of diameters to
recover a 4-configuration. We will give some examples where this succeeds and suggest
a classification of the resulting configurations. We leave open the task of giving explicit
construction algorithms with sufficient conditions on m, s, t and p.

We claim that such a construction is possible only if k = 4. Indeed, since m is odd every
diameter passes through exactly one point in each symmetry class; if the added diameters
are lines in a 4-configuration then there must be exactly four classes.
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(a) 24#(24∗0,1, 10; 7, 2; 10, 7);D∗

(b) 24#(26∗0,1, 10; 7, 2; 10, 7);D∗ (c) 24#(26∗0,3, 10; 7, 2; 10, 7);D∗

Figure 7: Three more configurations arising from multiple modifications to the same celes-
tial configuration as in Figures 5 and 6. Note that in the configuration shown in (a) we have
deleted every red line (L0)q where q is congruent to 0 or 1 (mod 4). As a result all even-
numbered diameters have been added, although this configuration cannot be constructed
via 2-sparse line deletion.
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(a) 20#(65∗0,2, 4; 3, 6; 75∗0,4, 3; 4, 7);D∗

(b) 20#(65∗, 4; 3, 6; 75∗, 3; 4, 7);D ∗ . (c) 20#(65∗1, 4; 3, 6; 75∗0, 3; 4, 7);D ∗ .

Figure 8: Three configurations obtained from 20#(6, 4; 3, 6; 7, 3; 4, 7) by performing 5-
sparse deletion on both L0 and L2. Both odd- and even-numbered diameters have been
added.
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The examples in previous sections proceeded in steps where some of the lines in one sym-
metry class were removed and diameters were added to yield a new configuration; in the
more complicated examples several intermediate configurations were formed and destroyed
along the way. With m odd such a scheme cannot work. Because each added diameter
passes through points in four symmetry classes, while the lines of any line class Lj pass
only through the two point classes vj , vj+1, we must simultaneously delete lines from more
than one symmetry class. The necessity of coordinating these different classes of removed
lines is the main challenge in this section.

We propose the following classification for line deletion constructions. The ray from the
origin through (v0)0 passes through either zero points or one point from each of the classes
v1, v2, v3. If this ray passes through a point of class vj we say that vj is a cis class; oth-
erwise we say that vj is a trans class (that is, trans classes are on the opposite side of the
origin from points v0, while cis classes are on the same side of the origin as points v0).
Hence v0 is always a cis class, and our Theorem 3.1 addresses the case where m is even
and the set of cis classes is {v0, v1}.

There are 23 = 8 possible sets of cis classes in a 4-celestial configuration. In Figures 9, 10,
and 11 we give examples where m is odd and the cis classes are {v0, v1}, {v0, v1, v2, v3},
and {v0, v2, v3} respectively. It may be that for each of the eight possibilities one can find
sufficient conditions for some line deletion procedure in the spirit of Theorem 3.1. This
problem is beyond our scope here.

6 Questions for further study

In Configurations of Points and Lines, Grünbaum wrote that “constructing new 4-configura-
tions is still more of an art than a science” [3]. We now offer several possible directions for
future work towards the ultimate goal of finding and classifying all 4-configurations.

The technique we have explored here, the replacement of some lines of a celestial config-
uration with an equal number of diameters, can be extended further. The examples given
in Section 5 should be systematized with explicit construction algorithms and sufficient
conditions. There are also possibilites with m even that are not covered by Theorem 3.1.
Figure 12 gives an example with m = 12 where v0 and v2 are of cis type, in contrast to the
situation of Theorem 3.1, where v0 and v1 are of cis type. This could be the first example
of a new infinite family obtained by a more general construction.

We also have yet to consider the “even deletion” procedure introduced in [1], in which
points as well as lines are removed. This no doubt has a p-sparse generalization and could
be worth exploring since the “even deletion” construction in [1] yielded previously un-
known (254) configurations.

We close by mentioning a related question. We say that two configurations are (combina-
torially) isomorphic if there exists an incidence-preserving bijection between the two con-
figurations. It is not clear how many of the configurations introduced here belong to new
isomorphism classes in this combinatorial sense. For example, it is not known whether or
not the configurations depicted in Figures 8b and 8c are combinatorially isomorphic. Even
for the celestial configurations this question has not been solved.
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Figure 9: The configuration 15#(43∗, 2; 1, 4; 53∗, 1; 2, 5);D∗. The ray from the origin
through (v0)0 (red) passes through (v1)−1 (blue) but no points of v2 (green) or v3 (ma-
genta), so the cis classes are v0 and v1.
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Figure 10: The configuration 27#(43∗, 2; 8, 4; 103∗, 8; 2, 10);D∗. All four points on each
added diameter lie on the same side of the origin, so all point classes are of cis type. The
diameters could be extended through the origin without hitting other points because m is
odd.



184 Ars Math. Contemp. 9 (2015) 165–186

Figure 11: The configuration 35#(125∗, 13; 3, 12; 75∗, 3; 13, 7);D∗. The cis classes are
v0, v2, and v3.
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Figure 12: The configuration 12#(23∗0, 5; 4, 3; 53∗1, 2; 3, 4);D∗. Here the cis classes are
v0 and v2.
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