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ABSTRACT

In this work, we are motivated by the desire to classify skin lesions as malignants or benigns from color
photographic slides of the lesions. Thus, we use color images of skin lesions, image processing techniques and
artificial neural network classifier to distinguish melanoma from benign pigmented lesions. As the first step of
the data set analysis, a preprocessing sequence is implemented to remove noise and undesired structures from
the color image. Second, an automated segmentation approach localizes suspicious lesion regions by region
growing after a preliminary step based on fuzzy sets. Then, we rely on quantitative image analysis to measure
a series of candidate attributes hoped to contain enough information to differentiate melanomas from benign
lesions. At last, the selected features are supplied to an artificial neural network for classification of tumor
lesion as malignant or benign. For a preliminary balanced training/testing set, our approach is able to obtain
79.1% of correct classification of malignant and benign lesions on real skin lesion images.
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INTRODUCTION

The malignant melanoma is the most dangerous
human skin disease. It is the deadliest form of all
skin cancers and arises from cancerous growth in
pigmented skin lesion. The incidence has increased
dramatically during the last years. In the US, the
incidence of melanoma is rising more rapidely
than any other cancer. Data base available on the
internet (e.g. Nidus Information Services (2001):
http://www.ucdmc.ucdavis.edu/) report that since the
early seventies, the melanoma has increased 126% in
USA. In Europe, the malignant melanoma incidence is
increasing by 5% every year and it is responsible of
91% of deathly skin cancer (Sboner et al., 2001).

If early recognized, the melanoma can be excised
and the patient can recover completely. So one
should intensify the awareness of all citizens. Indeed,
the curability of skin melanoma is nearly 100%
if recognized early enough, and treated surgically
(Pehamberger et al., 1987). The early diagnosis of
malignant melanoma is therefore a crucial issue for
dermatologists. As a step towards improving early
interpretation, a number of diagnostic checklists have
been proposed, including UK “Seven Point checklist”
(Healsmith et al., 1994), the American “ABCD” list
(Stolz et al., 1994), and “ABCDE” list (Fitzpatrick et
al., 1988). The lists specify visual features associated
with malignant lesions symptoms. Unfortunately, it

can be difficult to interpret visually these features
and then to recognize malignant pigmented lesion.
Even experienced dermatologists have difficulties
for distinguishing melanoma from other pigmented
lesions of the skin, such as typical and atypical lesions
whose are benign. In fact, correct detection rates based
on clinical visual investigation is commonly about
65% (Lee, 2001).

This problem has stimulated interest in adjunctive
diagnostic modalities that might facilitate clinical
recognition of melanoma, including the automated
interpretation of dermatoscopic color images with
computerized image analysis. Thus, there has been
increasing interest in computer-aided systems (CAD)
for the clinical diagnosis of melanoma as a support
for the dermatologists in different analysis steps, such
as the lesion boundary detection, the quantification
of diagnostic features, the classification in different
types of lesions, the visualization, etc. Over the last
few years, many works have developed allowing
diagnostically useful systems based on image
processing and recognition algorithms for atypical
melanoma lesion. Readers interested in the current
state of the art in computer aided image analysis in
melanoma research, can refer to our precedent paper
(Zagrouba and Barhoumi, 2003a).

Typically, the whole process for color image
processing for melanoma detection includes four
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main steps: image formation and preprocessing,
segmentation, features extraction and classification
of the lesion. In fact, after the acquisition and
preprocessing of color images of the skin, the next
step of the whole image analysis process is the
segmentation of the lesion from the surrounding
skin. The lesion areas and boundaries being clearly
identified, various attributes of the lesion characteristic
of the malignity symptoms must be measured. Such
characteristic features will then be the raw input
to a recognition algorithm classifying the lesion as
melanoma or not. For a classification system to be
successful, all four sub-tasks must be performed with
care. The four steps are addressed in the next sections.

IMAGE FORMATION AND
PREPROCESSING

DATA DESCRIPTION

Dermatologists commonly use slides for lesion
image storage and visual comparison. In this work,
these slides were digitalized with a 35mm film scanner
Nikon LS-1000. The resulting images that we used
are BMP-format and are coded on 24 bits storing
the three color components r (red), g (green) and b
(blue). These rgb images are 150× 150× 3 pixels in
size, stored in 67 KBytes, with a spatial resolution of
0.0264 cm×0.0264 cm per pixel. Each image has one
or more lesions located near the center and the lesions
are surrounded by normal skin of variable hue. Lesions
can vary in size, shape, color and saturation. Fig.
(1) shows the images of 4 different lesions. Lesions
a and b are benign nevus, however, lesions c and
d are malignant melanomas (Fig. 1). Other features,
such as hairs and pigments, can be observed in the
images which can confuse the further analysis of the
images. Thus, a preprocessing step is needed in order
to ameliorate the image quality. It consists in reducing
noise, strongly present in dermatoscopic images, and
to enhance edges in order to eventually facilitate the
separation between the lesion and the surrounding
skin.

In our system, we applied a median filtering for
minimizing the influence of small structures (like
thin hairs) and isolated islands of pixels (like small
air bubbles) in the segmentation result. For images
including thick hairs with a color hue similar to the one
of the lesion and thus irremovable by the median filter
(e.g. Fig. 1d), a specific hair removal technique (called
DullRazor (Lee et al., 1997)) is applied. The last
preprocessing step in our system is the application of
the Karhunen-Loève transform that enhances the edges

towards making easier the extraction of the lesion from
the surrounding skin.

  (a)                                                                           (b) 

   (c)                                                                             (d)

Fig. 1. Color images of lesions. (a-b): benign nevus,
(c-d): melanomas.

MEDIAN FILTERING

Small structures and artifacts should be removed
from skin images towards reducing the over-
segmentation while at the same time preserving edges.
These artifacts can be considered as impulsive noise
and can be reduced using a median filter (Hintz-
Madsen et al., 1996) (e.g. Fig. 2).

(a)                                                                            (b) 

Fig. 2. Median filtering. (a) original image. (b) result
after median filtering: inner structures and thin hairs
have been smoothed out.
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THICK HAIRS REMOVAL
This process is necessary only for images covered

by thick hairs where the median filtering is insufficient
for hair suppression (e.g. Fig. 3). For these images,
more than 50% of the pixels in the current 5× 5
pixel neighborhood scanned by the median filter could
be hair pixels. The median value would be then
representative of the hairs. Thus, the median filtering
can intensify the undesired pixels which may degrade
the segmentation process.

Fig. 3. Insufficiency of median filtering with a fixed
5×5 neighborhood for thick hair removal. (a) original
image. (b) result after median filtering: some hair
structures are intensified.

Of course, shaving the hairs before imaging
sessions may be a solution. However, this solution not
only adds extra costs and time to the image session,
but also is uncomfortable and impractical especially
for multiple lesions or total-body nevus imaging
(Voight and ClaBen, 1995). Hence, in spite of its
algorithmic complexity, the preprocessing technique
called DullRazor (Lee et al., 1997) appeared to us
as the best solution, from a practical point of view,
for thick hair removal. It consists in identifying hair
areas and replacing hair pixels with nearby non-hair
pixels. In fact, for every pixel p a generalized grayscale
morphological closing operation is applied on the three
color bands separately in order to localize the dark
hairs. In practice, for every color band bk (k∈{r,g,b}),
this operation approximates thick hairs shapes by
smoothing out low intensity values along fixed-size
structure elements in horizontal, diagonals and vertical
directions (e0, e45, e135 and e90) representing classical
hair forms. The generalized grayscale closing image
Gk is obtained by taking the maximum response from
the individual closing operations for each color band
(Eq. 1). Then, a binary hair mask Hk image is created
by thresholding Gk. This hair mask divides the hair
and non-hair regions into disjoined areas. Finally, the

global binary hair mask (H) is the union ⊕ of all three
hair masks H = Hr⊕Hg⊕Hb (e.g. Fig. 4a).

∀k ∈ r,g,b, ∀p, Gk(p) =| bk(p)−max(cp) |,

cp =
{

[bk • e0](p), [bk • e45](p),

[bk • e90](p), [bk • e135](p)
}

, (1)

where • denotes the grayscale closing operation.

   (a)                                                                                 (b)

   (c) 

Fig. 4. Tick hairs removal. (a) hair mask H of Fig. 3a.
(b) the cleaned mask H ′ relatively to H. (c) cleaned
image of Fig. 3a.

Before the replacement is performed, each pixel in
the hair mask is checked to ensure that it is located
within a thick and long structure (i.e hair structure);
otherwise, the pixel is rejected as noise. In fact, for
each pixel inside the hair region H , line segments are
drawn in 8 directions, up, down, left, right and the four
diagonals, radiating from the concerned pixel until the
line segment reaches the non-hair region. These 8 line
segments form 4 straight lines centred at the pixel. The
length of each line is calculated and the longest one
is noted. In our experiments, the longest line must be
longer than 75 pixels and other lines must be shorter
than 35 pixels (e.g. Fig. 4b). Then, a cleaned mask H ′

is obtained. In the last step, every pixel Im(i, j) verified
to be inside a hair structure is replaced by the bilinear
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interpolation In(i, j) of the two nearby non-hair pixels
Im(i1, j1) and Im(i2, j2) along the shortest line (Eq. 2).

In(i, j) = Im(i1, j1)∗
d2((i, j),(i2, j2))
d2((i, j),(i1, j1))

+

+ Im(i2, j2)∗
d2((i, j),(i1, j1))
d2((i, j),(i2, j2))

, (2)

with d2 is the euclidean distance defined by (Eq. 3):

d2 ((i1, j1),(i2, j2)) =

√

|i2− i1|
2 + | j2− j1|

2 . (3)

KARHUNEN-LOÈVE TRANSFORM
The next preprocessing step consists in applying

the Karhunen-Loève transform aiming to facilitate
the segmentation process by enhancing the edges
in the image. The Karhunen-Loève transform, also
called principal components analysis (Loève, 1998),
is the projection of the three color components on the
eignvectors of their covariance matrix. The covaraince
matrix Cov of the three channels (RGB) is computed
as expressed by Eq. (4):

Cov =
V ·V t −mV ·mt

V
x · y

= BΛBt , (4)

where (x,y) is the size of each color channel, V is
a 3× xy matrix of pixel-realizations of the 3 color
channels (Eq. 5), mV is the vector mean of the color
channels (Eq. 6), B = [b1 b2 b3] is a matrix whose
columns are the eigenvectors of the covariance matrix
and Λ a diagonal matrix containing the eigenvalues of
Cov in decreasing order: λ1 ≥ λ2 ≥ λ3.

V =





r(1,1) .. r(1,y) r(2,1) .. r(x,y)
g(1,1) .. g(1,y) g(2,1) .. g(x,y)
b(1,1) .. b(1,y) b(2,1) .. b(x,y)



 ,

(5)

mV =
1
xy

.
x

∑
i=1

y

∑
j=1





r(i, j)
g(i, j)
b(i, j)



 . (6)

The Karhunen-Loève transformation is given by
(Eq. 7):

∀k ∈ {1,2, · · · ,xy} , zk = Bt (vk−mV )

and T = (z1 z2 · · · zxy) =





t1
t2
t3



 , (7)

where vk is the kth column vector in V and T contains
what is known as the principal components. The kth

(k = 1,3) row of T , noted tk, is referred to as the kth

principal component.

Due to the decreasing ordering of the eigenvalues
and corresponding eignvectors, the first principal
component t1 will contain the maximum variance.
Since most variation occurs at edges between lesion
and surrounding skin, the first principal component is
a natural choice for segmentation. In fact, most of the
texture and structure information will be mapped onto
the first principal component (e.g. Fig. 5). However,
although others principal components contain a small
portion of the total variation, they may express features
hidden in the original images.

   (a)                                                                                 (b)

     (c)                                                                             (d) 

Fig. 5. Results of the Karhunen-Loève transform: (a)
the original median filtered color image, (b) the first
principal component accounting for 92.29% of the
total variance, (c) the second principal component –
7.63%, (d) the third principal lesion – 0.08%.

SEGMENTATION PROCESS

Several studies in the literature address the
segmentation of dermatoscopic images, with most
of them relying on color and grayscale thresholding
(Khanfir et al., 2002). However, the majority of
these techniques are unable to define a criterion to
separate with precision the pigmented lesion from the
background healthy skin. It is due to the low contrast
and the fuzzy nature of the boundaries of malignant
melanomas. We propose an automated segmentation
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approach to localize suspicious lesion region in
dermatoscopic images. It consists in determining the
boundary of the lesion by region growing after an
initial step based on fuzzy sets to enhance the lesion
region of interest (ROI).

PREPROCESSING BASED ON FUZZY
SETS

A typical first principal component of a median
filtered dermatoscopic image consists of a very light
background and a dark skin lesion with even darker
areas inside. Herein, and as done elsewhere (Zagrouba
and Barhoumi, 2002; Rangayyan et al., 1997), we
have decided to characterize the lesion ROI working
directly and only on the gray level intensities rather
than using other measurements (e.g. local gradients).
Then, a representative gray level gl of the lesion must
be chosen.

In agreement with the intuitive idea that the
relevant classes may correspond to the dominant peaks
in the gray level histogram, our objective is to obtain
a non ambiguous bimodal histogram expressing the
two following classes: lesion (class 1) and surrounding
skin (class 2). Along that line, starting from the noisy
bimodal histogram h of the t1 image (Fig. 6a), we
applied a succession of local smoothings of type Eq.
(8), yielding to the smoothed bimodal curve (Fig. 6b).
This curve is characterized by two significant peaks h1
and h2 and their corresponding gray levels gl1 and gl2
assumed to be representative of the gray levels of the
two classes. Since the lesion is always darker than the
surrounding skin, its gray level gl shall be the lower,
i.e. the minimum of gl1 and gl2.

h(i)←
1
3

[h(i−1)+h(i)+h(i+1)]. (8)

  (a)                                                                                 (b) 

Fig. 6. histogram smoothing. (a) histogram of the first
principal component image, (b) the smoothed bimodal
curve.

The enhancement of the ROI may be achieved
by defining an appropriate membership function that
evaluates the similarity between the properties of any
current pixel and those of the ROI itself (gl). Thus,
the original image t1 will be mapped to a fuzzy
set according to a symmetric membership function,
decreasing monotonically from 1 to 0, and assigning
a membership of 1 to pixels of gray level gl. The
selected function has been defined after a study of
many classical membership functions (Zagrouba and
Barhoumi, 2003b) and is expressed by Eq. (9) where
β defines the opening of the membership function.
The contrast of the ROI in the resulting image depends
strongly upon the β value. The larger β , the more the
function is strict; the smaller β , the more the function
is permissive. Fig. (7) expresses the resulting fuzzy set
obtained with a small value for β (β = 0.007). The
obtained fuzzy set represents pixels whose properties
are close to the lesion with a high membership degree.

mS(p) =
1
2

[

2−β 2 |gl(p)−gl|2

1+β |gl(p)−gl|

]

. (9)

Fig. 7. Enhancement of the ROI: white pixels are close
to 1. Note that the fuzzy image has been rescaled to
enhance the visual quality.

LESION DETECTION BY REGION
GROWING
We propose to obtain the lesion ROI and its

associated boundary by performing region growing
upon the obtained fuzzy set image. Region growing
is a segmentation technique that gathers pixels into
an homogeneous region according to a similarity
criterion. This algorithm needs a seed pixel that
lies inside the ROI and a threshold θ as a stopping
condition. It starts with the seed pixel which represents
the first approximation of the ROI. Four-connected
neighboring pixels that are above the threshold
are labeled as one, the neighbors of these pixels
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are inspected and the procedure continues. If the
connected pixel is less than the threshold, it is
labeled as zero, indicating a boundary pixel, and its
neighborhood are not processed. The recursive process
continues until all connected pixels fail the test of
inclusion in the region.

In order to optimize the region growing results, we
wish to select the center of a homogeneous area as the
seed pixel. For this, given the set ξ of pixels having gl
as gray level, the seed pixel S is selected according to
the criterion defined by Eq. (10) (Fig. 8).

|gl−m(S)|= min
p∈ξ
|gl−m(p)| . (10)

Where m(p) is the mean gray level of a 5× 5 pixel
neighborhood V (p) centered at pixel p.

(a)                                                                                            (b)        

Fig. 8. Seed pixel determination. (a) the set ξ of lesion
pixels having gl1 as gray level, (b) the seed pixel
location.

After the region growing process, a postprocessing
step of Dilatation-Erosion is done in order to remove
isolated pixels inside the lesion’s region (e.g. Fig. 9).
At the end, the out-put of the lesion extraction
procedure is the so-called binary plane (Fig. 9c)
that separates lesion from the healthy surrounding
skin. The resulting binary image (lesion vs. healthy
surrounding skin) will be then treated by an algorithm
of follow-up (Barhoumi and Zagrouba, 2002) applied
to the border pixels of the lesion characterized by a
local maximum of gradient. It allows the definition of
a polygon representing an approximation of the lesion
contour C.

(a)                                                          (b)                                                         (c)

Fig. 9. Region growing process. (a) original image, (b)
detection of the ROI lesion by region growing, (c) ROI
after postprocessing of Dilatation-Erosion.

The parameters used in our segmentation
algorithm, β and θ , must be adequately chosen in
order to stop region growing at the boundaries of
well-circumscribed lesions, where the membership
values are expected to drop sharply across the lesion
boundary (e.g. Figs. 10-11). In our study, optimal
results are obtained with the values β = 0.007 and
θ = 0.75. In conclusion, our algorithm of segmentation
is simple and easy to implement and will always
produce connected region and closed boundary. The
binary object and its closed boundary are the basis to
compute the vector of numerical features, which is the
purpose of the feature extraction module.

 (a)                                                    (b)                                                    (c) 

Fig. 10. Original rgb image superimposed with the
boundary for various β values (θ = 0.75). (a) β =
0.007, (b) β = 0.012, (c) β = 0.016.
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(a)                                                   (b)                                                  (c) 

Fig. 11. Original rgb image superimposed with the
boundary for various θ values (β = 0.007). (a) θ =
0.5, (b) θ = 0.7, (c) θ = 0.95.

DERMATOSCOPIC FEATURE
DESCRIPTION

The essential difficulty in melanoma recognition
systems is to design robust and relevant parameters
describing the lesions in order to ensure the separation
between melanoma and benign lesions, in particular
atypical benign ones which may be clinically mistaken
for melanoma. We used the mnemonic device, ABCD,
to describe several features that help to distinguish
melanomas from noncancerous growths. The choice
for the ABCD rule is based primarily on the fact that
the dermatologists we are working with use such rule.
It shall be noticed that some studies report that the
ABCD rule may not yield the highest performance
in melanoma diagnostic compared to alternative
strategies such as stratification methods (Lorentzen et
al., 2000). Yet, the diagnostic performance depends
more on the selected attributes to represents the rule
criteria, charaterizing the malignity symptoms, than
on the used rule itself (Ganster et al., 2001) so that
identifying the relevant ABCD features is definitely
worth the effort. The different letters stand for the
following criteria:

– Asymmetry (A): about half the time, a melanoma
develops in an existing mole; in other cases, it
arises as a new lesion that can resemble an ordinary
mole. A noncancerous mole, however, is generally
symmetric and circular in shape, while melanoma
usually grows in an irregular, asymmetric manner.

– Border Irregularity (B): benign lesions generally
have clearly defined borders. A melanoma, in
contrast, often shows notched or indistinct borders
that may signal ongoing growth and spreading of
the cancer.

– Color Variation (C): one of the earliest signs of
melanoma may be the appearance of various colors
within the lesion. Because melanomas arise within
pigment-forming cells, they are often varicolored
lesions of tan, dark brown, or black, reflecting the
production of melanin pigment at different depths
within the skin.

– Diameter (D): early melanomas tend to grow
larger than common moles and show typically at
least a diameter of about 6mm.

ABCD rules are commonly used by dermatologists.
Yet a diagnosis made by a dermatologist based on the
visual and qualitative evaluation of such criteria may
be subjective (Schmid-Saugeon et al., 2003). Thus,
our main purpose is to charaterize the ABCD criteria
by quantitative attributes measured by image analysis
and then used as input to an automate classifier.
In the literature, many attributes have been used
to describe these features. A previous study by the
authors (Zagrouba and Barhoumi, 2003a) of various
attributes revealed some correlation between every
single attribute and the melanoma diagnosis. However,
each attribute alone is not sufficient to diagnose a
lesion precisely. In other words, a combination of a set
of p (p > 1 in general) relevant attributes is necessary
for the quantification of every feature and then for the
diagnostic decision.

In Zagrouba and Barhoumi (2003b), we used 14
parameters describing the ABCD rule and yielding
83% correct classification using a neural network
classifier. This rate is related to a test subset of a
series of images randomly selected from a database
of 200 lesion images. However, this high number
of attributes increases the classification complexity
and the CPU time. We decided accordingly to
define a reduced number of well-selected attributes
permitting to obtain a higher correct classification
rate while reducing the complexity and the CPU
time by removing the redundant information. We
will present, relatively to every feature, the adequate
attributes that were chosen after many experiments and
discussions with dermatologists. In fact, we realized
a statistical study of 15 parameters (the 14 used
in Zagrouba and Barhoumi (2003b) along with the
diameter) representing the four criteria (Barhoumi et
al., 2003). We classified a set of 100 lesion images
by using a neural network classifier considering every
attribute separately. For simplicity reasons, we chose
a simple training set of images composed of 50
significant melanomas, 50 significant benign lesions
and 0 atypical lesions images. Then, we measure for
every attribute the correct classification rate (TCR)
relatively just to the chosen training set (this could
explain the realtively high recorded TCR values of
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some attributes, e.g. Fig. 12). We kept only the
attributes having a correct classification rate greater
or equal to mTCR with mTCR is the mean value of
the 15 TCR. In other words, we do not keep the
attributes whose shall decrease the global diagnostic
performance. Besides, we decided not to use the lesion
diameter (attribute number 5) since it is indirectly
integrated in the other attributes. Thus, the set of 9
attributes discussed below was selected.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
TCR

:0.691

attributes

T
C

R

Fig. 12. Statical study of the correct classification rates
of 15 attributes using a NN classifier.

ASYMMETRY QUANTIFICATION
In order to measure asymmetry, we rely hereafter

on geometrical properties called inertial moments
(Sonka et al., 1993). Such inertial moments are used
to calculate two features: the asymmetry index AI and
the lengthening index Å.

Asymmetry index
As far as asymmetry quantification is concerned,

the origin of the local Cartesian basis is the center of
mass G of a current lesion L described by a binary
function z(i, j) (z(i, j) = 1 if (i, j) ∈ L, 0 otherwise).
The quadratic inertial centred moment I(ϕ) of the
lesion L with respect to an arbitrary axis through G
showing an angle ϕ with the horizontal Cartesian axis
∆ is given by Eq. (11):

I(ϕ) = ∑
(i, j)∈L

D2
ϕ(i, j)

= ∑
(i, j)∈L

[

−isinϕ + j cosϕ
]2

, (11)

where Dϕ(i, j) is the distance between a current
pixel (i, j) and its projection on ∆, along a direction

normal to ∆. The major principal axis is associated
to the smallest inertia moment of L and provides the
longitudinal direction, ϕ0, of L. It may then be obtained
by computing the derivative of Eq. (11) and setting it
to zero as expressed by Eq. (12):

∂ I(ϕ)

∂ϕ
= 0 =⇒ ϕ0 =

1
2

tan−1
[

2mc
11

mc
20−mc

02

]

, (12)

where mc
11, mc

20 and mc
02 represent the standard product

moment, the quadratic moment with respect to the
horizontal Cartesian axis Gx and the quadratic moment
with respect to the vertical Cartesian axis Gy.

The minor principal axis of L associated to the
direction ϕ0 + π/2 yields the transverse direction of
L associated to the largest moment of inertia. The
obtained longitudinal and transverse axes of L may be
used to calculate the asymmetry index. This is done
by folding the lesion L about these orthogonal axes
and measuring the area of non overlap as expressed by
Eq. (13) (e.g. Fig. 13):

AI =
1
2

2

∑
k=1

∆Ak

AL
, (13)

where the subscript k identifies the principal axis
(major vs. minor), ∆Ak is the corresponding non-
overlapping area of the folded lesion and AL (AL =
mc

00) is the lesion area.

Fig. 13. Skin lesion image showing the two principal
axes used to calculate asymmetry index. These axes
define directions of smallest and largest moments of
inertia. The asymmetry index for this lesion is 0.1796.

Lengthening index

This measure is used to describe the lengthening
of a lesion, i.e. the degree of anisotropy of a lesion.
Lengthening of a lesion is related to the eigenvalues λ ′,
λ ′′ of the inertial tensor matrices. It is defined by the
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ratio of the inertial moment λ ′ about the major axis by
the inertial moment λ ′′ about the minor axis (Eq. 14):

Å =
λ ′

λ ′′
,

λ ′ =
mc

20 +mc
02−

√

(

mc
20−mc

02

)2
+4(mc

11)
2

2
,

λ ′′ =
mc

20 +mc
02 +

√

(

mc
20−mc

02

)2
+4(mc

11)
2

2
. (14)

BORDER IRREGULARITY
QUANTIFICATION
The irregularity of a lesion border has been

presented as a very significant diagnostic factor when
assessing a lesion for malignancy (Keefe et al., 1990).
In this work, we used five features to quantify the
border irregularity. These features are: compactness
index CI, fractal dimension f d, edge abruptness Cr
and pigmentation transition me and ve.

Compactness index
The compactness index (CI) (Eq. 15) is the most

popular border shape measurement estimating the
roundness of a 2D object. However, this measure is
very sensitive to noise along the border which is
amplified by the square term of the perimeter (Lee,
2001):

CI =
P2

L
4πAL

, (15)

where PL is the perimeter of the lesion.

Fractal dimension
Extending from single-scale methods, the fractal

dimension ( f d) is an elegant multi-scale method
showing a high correlation with the human intuitive
notion of roughness for curve lines (Tamura et al.,
1978; Pentland, 1984). The fractal concept is based
on the fact that different results are obtained when
classical geometrical curves and fractal curves (such
as coast lines) are measured using rulers of various
size. For the first ones, the measured length ` converges
to its true value as the ruler size r decreases (Eq.
16). However, for the second ones ` increases as r
decreases. The inverse relationship between ` and r
is due to the fact that many bays and promontories
smaller than the ruler size r are unnoticed and omitted
(Mandelbrot, 1982); they become noticeable if the unit
size r decreases:

` = λ r1− f d , (16)

where λ is a scaling constant and f d is the
characteristic of the coastline known as fractal

dimension. The value of f d is a fractional number that
is larger than or equal to the Euclidean dimension of
the object.

Many studies have used the fractal dimension to
estimate the irregularity of lesion border (Ng and Lee,
1996). The application of this measure to pigmented
skin lesions showed that probability of a lesion being
malignant increased with increasing fractal dimension,
and hence border irregularity (Claridge et al., 1992;
1998). The box counting method is one of the most
popular techniques to estimate the fractal dimension
of a given curve `. The number of boxes N(r) of size r
required to cover ` has the following relationship (Eq.
17):

N(r) ∝
1

r f d . (17)

Thus, we used a square grid dividing the image into
pixels of size r x r (e.g. Fig. 14). N(r) was evaluated
as the number of pixels containing a piece of the lesion
boundary. Different pixel sizes r were used and f d was
obtained as the slope of the regression line of log(r) vs.
log(N(r)).

Fig. 14. Calculation of the fractal dimension ( f d)
using the box counting method.

Edge abruptness

A lesion with irregular border has a large variance
in the radial distance (i.e. the distance d2 between its
centroid GL and boundary C). Guthowicz-Krusin et al.
(1997) estimated border irregularity by analyzing the
variance of the radial distance distribution (Eq. 18):

Cr =

1
PL

∑p∈C (d2(p,GL)−md)
2

m2
d

, (18)

where md is the mean of the distance d2 between the
boundary points and the centroid GL.
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Pigmentation transition

This important feature describes the transition
of the pigmentation between the skin lesion and
the surrounding skin. A sharp abrupt edge suggests
malignancy while a gradual fading of the pigmentation
indicates a benign lesion (Hintz-Madsen et al., 1996).
For this, we consider the luminance component
lum(i, j) (Eq. 19) of the original color image as just an
equally weighted sum of the three color components.
Then, we estimate the gradient magnitude of the
intensity component lum along the boundary C of
the skin lesion. We obtain a set of K gradient
magnitude values e(k) (1 ≤ k ≤ K, where K is the
number of boundary samples) describing locally the
transition between the lesion and the skin background
at each edge point. To describe more globally the
transition, we used the mean me and variance ve of the
gradient magnitude values e(k) describing globally the
abruptness level and its variation (Eq. 20).

lum(i, j) =
1
3

[r(i, j)+g(i, j)+b(i, j)] . (19)

me =
1
K

K

∑
k=1

e(k), ve =
1
K

K

∑
k=1

e2(k)−m2
e . (20)

COLOR VARIATION QUANTIFICATION

To further constrain the diagnosis, color variations
in a lesion are here described by the color homogeneity
Ch and the correlation between geometry and
photometry Cpg.

Color homogeneity

The luminance histogram of the lesion is
divided into three intervals of equal length. The
interval relating to the third smallest (resp. highest)
luminance values defines the dark (resp. clear) areas
in the lesion (Fig. 15); the intermediate interval
relates to the rest of the lesion and does not
participate in color quantification (Fig. 15). Then,
color homogeneity Ch (Taouil et al., 2002) is defined
as the number of transitions clearer zone/darker zone
and darker zone/clearer zone when scanning the lesion
horizontally and vertically.

(a)                                                                        (b) 

Fig. 15. Evaluation of the color homogeneity. (a) initial
image, (b) the 3 color zones of the lesion used for the
color homogeneity measure.

Correlation between geometry and
photometry

This attribute evaluates the color distribution on
the lesion. It consists in describing the evolution of the
color level from the centroid GL towards the boundary
of a lesion (Eq. 21). This value is greater for benign
lesions since they have a targeted aspect, while low
values are signs of malignancy.

Cpg =
1

AL
. ∑

p∈L

(lum(p)−ml) .(d2(p,GL)−md)

vl.vd
,

(21)
where md and vd are the mean and variance of the
distance d2 introduced in Eq. (18), ml and ml relating
to the luminance.

CLASSIFICATION PROCESS

The last step of our strategy consists in training
a classification process with the feature attributes
selected above. On the one hand, several techniques
of classification, such as K-Nearest Neighbors (KNN)
(Ganster et al., 2001), Fuzzy C-Means (FCM)
(Cucchiara and Grana, 2002) and decision tree (Sboner
et al., 2001), have been applied to diagnose skin
lesions. On the other hand, dermatologists base
their clinical diagnostic decisions on experience
as well as on complex inferences and extensive
pathophysiological knowledge. Such experience can
not be condensed into a small set of relations and this
may limit the performance of algorithmic approaches
(Ercal et al., 1994). Experience-based learning is the
advantage of neural networks (Astion and Wilding,
1991) and this is a strong motive to using that
type of approach in diagnostic applications such as
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ours. Besides, as illustrated by many previous studies
(Binder et al., 1994; Ercal et al., 1994), neural
networks (NN) may result in reduced error rates
for the melanoma diagnosis problem when compared
to strictly algorithmic approaches. NN approaches
are also a very flexible means for mapping a fixed
number of inputs into a set of discrete classes. Such
characteristics motivated the use below of a NN
approach towards mapping a series of sample attribute
values into two diagnostic classes (cancerous lesions,
healthy lesions).

NEURAL NETWORK IMPLEMENTATION

In the last two decades, NN have been extensively
used for classification applications. In fact, the
classical approach to classification is statistical and
concerns the modeling of stationary class-conditional
probability distribution by a set of basis functions
(Ripley, 1996). The most common neural network
architecture for supervised classification is the multi-
layer perceptron (Rumelhart et al., 1988). It possesses
the important universal approximation capability, i.e.,
it may approximate any given function with arbitrary
precision as long as the number of hidden-units is large
enough. Thus, the multi-layer perceptron is the type of
network that best fits our diagnosis application. After
many tests with a different number of hidden layers,
we decided to use a mono-layer perceptron yielding a
satisfactory performance in a minimum training time.
It may be represented by the network diagram in
(Fig. 16).

y1
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n
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1

o  (Y)p

IW W HY

Fig. 16. Mono-layer perceptron structure.

The mono-layer perceptron is typically defined by
sigmoidal hidden unit basis functions and by linear
output functions. In this work, the chosen hidden
activation function are hyperbolic tangent functions.
Thus, the output of the hidden units for a pattern Y

(Y = (y1,y2, · · · ,yn); n: number of input attributes)
may be expressed as Eq. (22):

∀ j ∈ {1,2, · · · ,m} , h j(Y ) = tanh

(

n

∑
i=1

wI
jiyi +wI

j0

)

,

(22)
where wI

ji is the weight connecting input i and hidden
unit j, wI

j0 is the threshold for hidden unit j and m is
the number of units in the hidden layer.

The hidden unit outputs are weighted and summed
yielding the following unbounded network outputs Eq.
(23):

∀k ∈ {1,2, · · · , p} , ok(Y ) =
m

∑
j=1

wH
k jh j(Y )+wH

k0 ,

(23)
where wH

k j is the weight connecting hidden unit j and
the unbounded output unit k, wH

k0 is the threshold for
the unbounded output unit k and p is the units number
in the output layer.

In our case, the network architecture is defined
by 9 input units representing the 9 selected attributes
describing the malignity symptoms (AI, Å, CI, f d,
Cr, me, ve, Ch and Cpg), m hidden units and one
linear output unit (thresholding function) producing
a binary result (1 for a malignant lesion and 0 for
a nonmalignant lesion). The attributes show different
units and range values. Towards normalizing all
attributes between 0 and 1, an objective scaling was
performed by calculating the corresponding z-scores
(Kaufman and Rousseeuw, 1996).

After defining its architecture, the network
is trained with supervision using the standard
back-propagation algorithm. This algorithm allows
the perceptron to approximate the classification
function given the supervised training data. It is
a process by which the free parameters of the
perceptron (weights and thresholds) are adapted
through the process of simulation using the training
in supervised manner. Basically, back-propagation
learning algorithm consists of two passes through the
different layers of the network: a forward pass and a
backward pass. In the forward pass, an input vector
is applied to the network and its effect propagates
through the network layer by layer. Then, a set of
outputs is produced as the actual response of the
perceptron. The weights of the network are all fixed
during the forward pass. The backward pass starts
at the output layer by passing error signals leftward
through the perceptron and computing recursively the
local gradient for each unit. Finally, this permit the
perceptron weights to be all adjusted in accordance
with an error-correction rule (Haykin, 1999).
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In our case, to approximate the classification
function of a lesion as either benign or malignant,
the back-propagation algorithm minimizes the squared
error εr between current outputs of the network and
the desired ones given with the training data. The
training process allows the perceptron to learn and gain
experience about the melanoma diagnosis problem in
order to automatically classify correctly skin lesions
other than those included in the training set. The
training continues till either the error εr is lower than
0.1 or 10,000 iterations are executed which ensures the
convergence of the perceptron to a global solution.

Furthermore, there are a number of arbitrary
parameters whose values need to be defined carefully
if the perceptron is to provide good performance. In
particular, the number of hidden units largely affects
the ability of the perceptron to determine the properties
of patterns which are not members of the training
set (Bostock et al., 1993). In fact, the gap between
the approximation achieved by a neural network and
the classification function to approach is inversely
proportional to the number of hidden neurons (Barron,
1993). Unfortunately this result is not constructive,
in the sense that it can only give vague estimations
of the number of necessary hidden neurons. Thus, it
does not exist at present time theoretical arguments to
predict the number of necessary hidden units, to get a
specified performance of the model, held account of
the available data (Dreyfus, 2002). Thus, we varied the
number of hidden units until optimal performance on
the test set was obtained.

EXPERIMENTS AND RESULTS

The data set used herein consists of 200 images
representing 75 representatives malignant lesions and
125 representatives benign ones. To evaluate the
classifier performance of the designed perceptron, we
used the holdout method (Huberty, 1994) which is
the simplest kind of cross validation models. This
method indicates how well the classifier will do
when it is asked to make new predictions for data
it has not already seen. It consists in separating the
images data set into two disjoint and independent
sets, called the training set T1 and the testing set
T2. The classification function approximator fits a
function using the training set only. Then, the function
approximator is asked to predict the output values for
the data in the testing set (it has never seen these output
values before). The errors it makes are accumulated as
before to give the mean absolute test set error, which
is used to evaluate the classifier performance. The
evaluation may depend heavily on which data images
end up in the training set and which end up in the
test set, and thus the performance evaluation of the

perceptron may be significantly different depending on
how the division is made. On the one hand, the size
of the training set should be large enough to ensure a
good classification rate. On the other hand, the size of
the testing set should be also large enough to increase
the confidence in the results (estimation of general
performance). Herein we chose to use training and
testing sets of comparable sizes; the following training
T1 / testing T2 percentiles (κ) were used: 40/60,
50/50 and 60/40 (Table 1).

The obtained results are summarized in Table 1 for
different number of hidden units (n) so that the effect
of architecture on performance could be assessed.
This table records correct detection rates, using the
perceptron classifier, on the training set T1 (TCR1)
and on the testing set T2 (TCR2). Besides, accuracy
of classification on the testing set is evaluated in terms
of sensitivity sn2 (percentage of malignant lesions
correctly classified) and specificity sp2 (percentage of
benign lesions correctly classified). For each couple
(κ ,n), the network weights are initialised randomly
over [−1,1] in every run and the final result, given
in Table 1, is computed as the average over a set of
10 runs. In Fig. 17, the results of a typical run of the
designed algorithm of classification is shown.
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Fig. 17. Part of the results of a typical run of the
melanoma recognition using the designed perceptron
classifier: The development of the classification error
during training of the perceptron by using back-
propagation algorithm. Optimal weights are found by
minimizing the validation error. Note that also the test
errors decrease.
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Table 1. Neural network diagnostic results (percentage
success rates) as a function of the number of hidden
units (n) and the training T1 / testing T2 combination
percentiles (κ).

κ n TCR1 sn2 sp2 TCR2
40/60 3 69.9 56.0 73.2 64.6
40/60 4 85.7 68.3 77.1 72.7
40/60 5 81.3 66.5 80.3 73.4
40/60 6 81.0 76.6 79.2 77.9
50/50 3 74.7 63.6 70.9 67.25
50/50 4 88.6 69.5 75.1 72.3
50/50 5 74.2 67.0 76.4 71.7
50/50 6 81.7 61.3 76.8 69.05
60/40 3 71.8 61.2 77.4 69.3
60/40 4 94.5 75.1 83.1 79.1
60/40 5 86.1 67.4 76.5 71.95
60/40 6 93.7 74.5 81.2 77.85

When we compare the success classification rates
(TCR1 and TCR2) for the three studied training/testing
combinations (κ), we can conclude that the best results
are recorded for the 60/40 combination. Independently
of the hidden units number, this combination produces
the higher mean of correct classification for both
training and testing sets (86.53%, 74.55%) when
compared with the 50/50 (79.8%, 70.08%) and
40/60 (79.48%, 72.15%) combinations. This may be
explained by the fact that the size of current database is
so small, so that it appears more appropriate to exploit
the maximum of data for the training step in order
to generalize the network decision. Thus, a total of
120 (resp. 80) lesions were used in the training (resp.
testing) set, including 45 (resp. 30) melanomas.

Given this training/testing combination, the
perceptron architecture having 4 hidden units gave
optimal performance, both on the training and testing
sets (72.14%, 67.05%) comparatively to these given
with 3 (89.6%, 74.7%), 5 (80.51%, 72.35%) and 6
(85.47%, 74.94%) hidden units architectures.

In conclusion, given the disposed database, the
perceptron with one hidden layer composed of four
units, trained on 120 lesion images and tested on 80
lesion images yielded the best results with correct
classification rate (TCR2) of 79.1%, sensitivity (sn2)
of 75.1% and specificity (sp2) of 83.1%. These
results are comparable with the detection rates of very
experienced dermatologists. However, the relatively
higher rate of specificity when compared with the
sensitivity rate is believed to be the consequence of
the higher number of benign lesions than of melanoma
images characterizing our data base.

CONCLUSION AND FUTURE
WORK

In this study, we attempted to diagnose melanoma
from color skin images using image processing
techniques and an artificial neural network classifier.
Towards that end, we relied on a preprocessing
step essentially based on a median filter for its
ability to remove noise and undesired components.
Then, we performed a PCA like analysis to enhance
edges. To extract the lesion from the image,
an automated segmentation approach permitted to
localize suspicious lesion region by region growing
after a preprocessing step based on fuzzy sets. Then,
after a study of several existing features describing the
lesion malignity, a set of 9 attributes to distinguish
melanoma from benign lesions was defined and
methods to measure these attributes were described.
Finally, a mono-layer perceptron was trained with
these attributes in order to classify the lesion as
melanoma or nonmelanoma.

Future studies will be carried out on the
enlarged data set (483 dermatoscopic color images)
so that a more rigorous evaluation of our approach
can be made. Besides, we will try to extract a
more reduced attributes set, using subset feature
selection techniques, in order to keep the classification
complexity low and to reduce the CPU time while at
the same time preserving a high correct classification
rate.
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