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Abstract

The thickness of a graph is the minimum number of planar subgraphs into which the
graph can be decomposed. Determining the thickness for the complete bipartite graph is an
unsolved problem in graph theory for over fifty years. Using a new planar decomposition
for K4k−4,4k(k ≥ 4), we obtain the thickness of the complete bipartite graph Kn,n+4, for
n ≥ 1.
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1 Introduction
In this paper, all graphs are simple. A graph G is denoted by G = (V,E) where V (G) is the
vertex set and E(G) is the edge set. A complete graph is a graph in which any two vertices
are adjacent. A complete graph on n vertices is denoted by Kn. A complete bipartite graph
is a graph whose vertex set can be partitioned into 2 parts, such that every edge has its ends
in different parts and every two vertices in different parts are adjacent. We use Kp1,p2

to
denote a complete bipartite graph in which the ith part contains pi vertices, for i = 1, 2.

The thickness t(G) of a graph G is the minimum number of planar subgraphs into
which G can be decomposed [14]. It is a classical topological parameter of a graph and
has many applications, for instance, to graph drawing [12] and VLSI design [1]. Since
deciding the thickness of a graph is NP-hard [9], it is very difficult to get the exact number
of thickness for arbitrary graphs. Battle, Harary and Kodama [3] in 1962 and Tutte [13]
in 1963 independently showed that the thickness of K9 and K10 equals 3. Beineke and
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Harary [4] determined the thickness of complete graph Kn for n 6≡ 4 (mod 6) in 1965, the
remaining case was solved in 1976, independently by V.B. Alekseev and V.S. Gonchakov
[2] and by J.M. Vasak [15].

For complete bipartite graphs, the problem has not been entirely solved yet. By con-
structing a planar decomposition of Km,n when m is even, Beineke, Harary and Moon [5]
determined the thickness of Km,n for most values of m,n in 1964.

Theorem 1.1. [5] For m ≤ n, the thickness of the complete bipartite graph Km,n is

t(Km,n) =

⌈
mn

2(m+ n− 2)

⌉
, (1.1)

except possibly when m and n are both odd and there exists an integer k satisfying n =⌊
2k(m−2)
(m−2k)

⌋
.

We recall that the thickness of Kn,n is also obtained in 1968 by Isao and Ozaki [11]
independently. The following open problem is adapted from [7] by Gross and Harary.

Problem 1.2. [See Problem 4.1 of [7]] Find the thickness of Km,n for all m,n.

Beineke, Harary and Moon [5] also pointed out that the smallest complete bipartite
graph whose thickness is unknown is K17,21. From Euler’s Formula, the thickness of
K17,21 is at least 5.

From Theorem 1.1, we need to determine the thickness of Km,n for odd m,n. Since the
difference between the two odd numbers is even, we only need to determine the thickness of
Kn,n+2k for odd n and k ≥ 0. In this paper, we start to calculate the thickness of Kn,n+2k

for some small values of k. Indeed, we determine the thickness of Kn,n+4.

Theorem 1.3. The thickness of Kn,n+4 is

t(Kn,n+4) =

{
1, if n ≤ 2⌈
n+3
4

⌉
, otherwise.

The following corollary follows from Theorem 1.3.

Corollary 1.4. The thickness of K17,21 is 5.

We may refer the reader to [6, 10, 16] for more background on graph thickness.

2 The thickness of Kn,n+4

To begin with, we define two special graphs called the pattern graph and the kth-order nest
graph. Then, we prove a new planar decomposition of K4k−4,4k. Finally, we prove the
thickness of K4k−3,4k+1 and Kn,n+4.

2.1 The pattern graph

Let U = {u1, u2} and Xn be a set of n vertices. A graph is said to be a pattern graph of
order n+ 2, denoted by G[u1Xnu2], if it can be constructed by the following two steps.

1. Arrange the n vertices in a row, and put vertices u1, u2 on the above and below of n
vertices, respectively.
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2. Join both u1 and u2 to the n vertices using straight lines.

From the definition above, the pattern graph is a planar straight-line graph. Figure 1 illus-
trates the pattern graph G[u1Xnu2].

Remark 2.1. Unless explicitly mentioned, we always join vertices using straight lines in
the drawings of the following proofs.

u1

u2

Figure 1: The pattern graph G[u1Xnu2].

2.2 The kth-order nest graph

Let Uk = {ui1 , ui2 , . . . , uik}, Vk = {vj1 , vj2 , . . . , vjk} and W2k+2 = {wl1 , wl2 , . . . ,
wl2k+2

}, we define a kth-order nest graph G[Uk, Vk,W2k+2] as follows:

1. Arrange 2k + 2 vertices wl1 , wl2 , . . . , wl2k+2
in a row.

2. For 1 ≤ m ≤ k, place vertices uim and vjm on the above and below of the row,
respectively, and join them to wl1 , wl2m , wl2m+1 , wl2m+2 .

Figure 2 illustrates a third-order nest graph G[U3, V3,W8], where U3 = {u1, u2, u3},
V3 = {v1, v2, v3} and W8 = {w1, w2, . . . , w8}.

u1

v1

u2

v2

u3

v3

w1 w2 w3 w4 w5 w6 w7 w8

Figure 2: The third-order nest graph G[U3, V3,W8].

2.3 A new planar decomposition of K4k−3,4k+1, for k ≥ 4

In this subsection, we shall construct a planar decomposition for the complete bipartite
graph K4k−3,4k+1 with k planar subgraphs G1, G2, . . . , Gk. Suppose that the vertex parti-
tion of K4k−3,4k+1 is (X,Y ), where X={x1, x2, . . . , x4k−3}, Y ={y0, y1, y2, . . . , y4k}.
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2.3.1 The planar decomposition for K4k−4,4k

Let the vertex partition of K4k−4,4k be (X1, Y1), where X1 = {x1, x2, . . . , x4k−4}, Y1 =
{y0, y1, . . . , y4k−1}. In this subsection, all subscripts in yj are taken mod 4k.

1. In the graph Gi (1 ≤ i ≤ k), we arrange 4k vertices in a row, and divide the 4k
vertices into two subsets L2k and R2k such that each subset contains 2k vertices
according to the following steps.

2. In the graph Gi (1 ≤ i ≤ k − 1), we choose four vertices x4i−3, x4i−2, x4i−1, x4i

from X1 and construct two pattern graphs G[x4i−3L2kx4i−1] and G[x4i−2R2k x4i].
Then we join both x4i−3 and x4i−1 to the first vertex and the last vertex in R2k. Fi-
nally, we label the vertices in L2k and R2k as y1, y3, y5, . . . , y4k−1 and y2i+6, y2i+8,
y2i+10, . . . , y2i+4k+4 in turn, respectively.

3. In the graph Gk, we label the vertices in L2k and R2k as y1, y3, y5, . . . y4k−1 and
y2, y4, . . . , y4k−2, y0, respectively. First, we construct a (k − 1)th-order nest graph
G[Uk−1, Vk−1,W2k], where Uk−1 = {x2, x6, x10, . . . , x4k−6} , Vk−1 = {x4, x8,
x12, . . . , x4k−4, } and W2k = {y1, y3, y5, . . . , y4k−1}. We join x4i−3 to y2i and
y2i+2, for 1 ≤ i ≤ k− 1. Second, we construct a union of paths, if k is even, we join
x4i−1 to y2i+2k and y2i+2+2k, for 1 ≤ i ≤ k − 1; otherwise k is odd, we join x4i−1
to y2i+2k−2 and y2i+2k, for 1 ≤ i ≤ k − 1.

4. In each graph Gj (1 ≤ j ≤ k − 1), we put x4i−2, x4i in the quadrangle x4j−3y4j+1

x4j−1y4j+3, and join them to y4j+1 and y4j+3, for 1 ≤ i < j. We put the vertices
x4i−2, x4i in the quadrangle x4j−3y4j−1x4j−1y4j+1, and join both x4i−2 and x4i

to y4j−1 and y4j+1, for j < i ≤ k − 1. Next, we put x4i−3 in the quadrangle
x4j−2y4j−2i+4x4jy4j−2i+6, and join x4i−3 to y4j−2i+4, y4j−2i+6, for 1 ≤ i < j.
We put x4i−3 in the quadrangle x4j−2y4j−2i+4kx4jy4j−2i+4k+2, and join x4i−3 to
y4j−2i+4k, y4j−2i+4k+2, for j < i ≤ k − 1.

For each i (1 ≤ i ≤ k − 1), we define a set Mi = {i + 1, i + 2, . . . , i + k − 2}.
Suppose that m ∈Mi, if m ≤ k − 1, we let j = m; otherwise, j = m− k + 1.

(i) k is even. If i+1 ≤ m ≤ i+ k−4
2 , we put x4i−1 in the quadrangle x4j−2y4m−2i+4

x4jy4m−2i+6, and join x4i−1 to y4m−2i+4, y4m−2i+6. If i+ k−4
2 +1 ≤ m ≤ i+k−2,

we put x4i−1 in the quadrangle x4j−2y4m−2i+8x4jy4m−2i+10, and join x4i−1 to
y4m−2i+8, y4m−2i+10.

(ii) k is odd. If i+1 ≤ m ≤ i+ k−5
2 , we put x4i−1 in the quadrangle x4j−2y4m−2i+4

x4jy4m−2i+6, and join x4i−1 to y4m−2i+4, y4m−2i+6. If i+ k−5
2 +1 ≤ m ≤ i+k−2,

we put x4i−1 in the quadrangle x4j−2y4m−2i+8x4jy4m−2i+10, and join x4i−1 to
y4m−2i+8, y4m−2i+10.

Theorem 2.2. Let G1, G2, . . . , Gk be the planar subgraphs obtained from steps 1, 2, 3 and
4 above, then {G1, G2, . . . , Gk} is a planar decomposition of K4k−4,4k.

Proof. From the constructions above, we have E(Gi) ∩ E(Gj) = ∅, for 1 ≤ i 6= j ≤ k.
In order to prove that {G1, G2, . . . , Gk} is a planar decomposition of K4k−4,4k, we need
to show that E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk) = E(K4k−4,4k). We denote dGi

(v) as the
degree of v in Gi, for 1 ≤ i ≤ k.
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By the construction above, Step 2 contributes to the degrees of v4i−3, v4i−1, v4i−2, and
v4i in Gi by terms 2k+2, 2k+2, 2k+1 and 2k+1, respectively. In other words, we have
dGi

(v4i−3) = dGi
(v4i−1) = 2k + 2 and dGi

(v4i−2) = dGi
(v4i) = 2k + 1.

For 1 ≤ i ≤ k − 1, Step 3 contributes to dGk
(v4i−3), dGk

(v4i−1), dGk
(v4i−2) and

dGk
(v4i) by terms 2, 2, 3, and 3, respectively.
For 1 ≤ j ≤ k − 1 and i 6= j, Step 4 contributes to each of dGj

(v4i−3), dGj
(v4i−1),

dGj (v4i−2) and dGj (v4i) a term 2.

In total, for 1 ≤ i ≤ k − 1, we have
k∑

j=1

dGj
(v4i−1) =

k∑
j=1

dGj
(v4i−3) = dGi

(v4i−3) +

k∑
1≤j 6=i≤k−1

dGj
(v4i−3) + dGk

(v4i−3)

= 2k + 2 + 2(k − 2) + 2 = 4k,

and
k∑

j=1

dGj
(v4i−2) =

k∑
j=1

dGj
(v4i) = dGi

(v4i) +

k∑
1≤j 6=i≤k−1

dGj
(v4i) + dGk

(v4i) =

2k + 1 + 2(k − 2) + 3 = 4k.

From the discussion above, the result follows.

2.3.2 Add the vertex x4k−3

1. In the graph Gi(1 ≤ i ≤ k − 1), put the vertex x4k−3 in the quadrangle x4i−3y4i−1
x4i−1y4i+1, and join it to y4i−1, y4i+1.

2. In the graph Gk, place the vertex x4k−3 below the row of 2k vertices of R2k, and
join it to y1, y4k−1 and all the 2k vertices of R2k.

2.3.3 Add the vertex y4k

1. In the graph Gi(1 ≤ i ≤ k − 1), put the vertex y4k in the quadrangle x4i−2y4i+8x4i

y4i+10, and connect it to x4i−2, x4i.

2. In the graph Gk, place the vertex y4k above the row of vertices of R2k, and join it to
x1, x5, . . . , x4k−7, x3, x7, . . . , x4k−3.

We have the following theorem.

Theorem 2.3. The thickness of K4k−3,4k+1 is k, for k ≥ 4.

Proof. From Theorem 2.2, Subsection 2.3.2 and Subsection 2.3.3, a planar decomposition
of K4k−3,4k+1 with k planar subgraphs G1, G2, . . . , Gk is obtained. From Euler’s formula,
we have

t(K4k−3,4k+1) ≥
⌈
(4k − 3)(4k + 1)

2(8k − 4)

⌉
= k,

and so t(K4k−3,4k+1) = k.

Example 2.4. By using the procedure above, the two planar decompositions of K17,21

(k = 5 is odd) and K21,25 (k = 6 is even) are shown in Appendix A (See Figures 3-7) and
Appendix B (See Figures 8-13), respectively.
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2.4 Proof of Theorem 1.3

From Theorem 1.1, the proof has two cases:
Case 1: n = 4k−3 (k > 0). When 1 ≤ k ≤ 3, it is routine to check that the theorem is true.
For k ≥ 4,

⌊
2k(4k−3−2)
4k−3−2k

⌋
=
⌊
4k + 1 + 3

2k−3

⌋
= 4k+1, thus, the thickness of K4k−3,4k+1

can not be determined by Theorem 1.1. By Theorem 2.3, we have t(K4k−3,4k+1) = k =⌈
n+3
4

⌉
.

Case 2: n = 4k − 1 (k > 0). Since 4k − 1 and 4k + 3 are both odd and 4k + 3 6=⌊
2(k+1)(4k−1−2)
4k−1−2(k+1)

⌋
(See Lemma 1 of [5] for details), the thickness of K4k−1,4k+3 can be

determined by Theorem 1.1, thus

t(Kn,n+4) = t(k4k−1,4k+3) =

⌈
(4k − 1)(4k + 3)

2(4k − 1 + 4k + 3− 2)

⌉
=

⌈
k +

1

2
− 3

16k

⌉
= k + 1 =

⌈
n+ 3

4

⌉
.

Summarizing the above, the theorem follows.

3 Conclusion
In this paper, we determine the thickness for Kn,n+4. The proof replies on a planar decom-
position of K4k−3,4k+1 and the Theorem 1.1 of Beineke, Harary and Moon. We observe
that our approach for the construction of a planar decomposition of Kn,n+4 is the first step
in finding a solution for Problem 1.2. From Theorem 1.1, the next classes of complete
bipartite graphs whose thickness is unknown is K4k−1,4k+7, for k ≥ 10. Furthermore, the
new smallest complete bipartite graph whose thickness is unknown is K19,29. We hope that
the construction here helps establish intuition and structure of the Problem 1.2.

Another way of solving the Problem 1.2 is to find a new planar decomposition of Km,n,
for odd m,n. Actually, using a new planar decomposition of the complete tripartite graph
K1,g,n and a recursive construction, we also [8] obtained the thickness of Ks,t, where s is
odd and t ≥ (s−3)(s−2)

3 . Now we split Problem 1.2 into the following two problems.

Problem 3.1. Find the thickness of Kn,n+4k for odd n and k ≥ 2.

Problem 3.2. Find the thickness of Kn,n+4k+2 for odd n and k ≥ 0.
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A A planar decomposition {G1, G2, G3, G4, G5} for K17,21

y1 y3 y5 y7 y9 y11 y13 y15 y17 y19 y8 y10 y12 y14 y16 y18 y0 y2 y4 y6
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x3

x2

x4
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x13 x9 x5

x15

x11 x7
y20

Figure 3: The graph G1.
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x16
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x4

x1 x3 x13 x9 x15 x11y20

Figure 4: The graph G2.
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Figure 5: The graph G3.
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Figure 6: The graph G4.



338 Ars Math. Contemp. 14 (2018) 329–344

y1 y3 y5 y7 y9 y11 y13 y15 y17 y19 y2 y4 y6 y8 y10 y12 y14 y16 y18 y0
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x16 x17
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Figure 7: The graph G5.
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B A planar decomposition {G1, G2, G3, G4, G5, G6} for K21,25
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Figure 8: The graph G1.
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Figure 9: The graph G2.
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Figure 10: The graph G3.



342 Ars Math. Contemp. 14 (2018) 329–344

y1

y3

y5

y7

y9

y11

y13

y15

y17

y19

y21

y23

x20x18

x2 x4

x6 x8

x10 x12

y12

y10

y8

y6

y4

y2

y0

y22

y20

y18

y16

y14
x9 x11

x5

x1

x7

x3

x17

x19

x13

x14

x15

x16

x21

y24

Figure 11: The graph G4.
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Figure 12: The graph G5.
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Figure 13: The graph G6.


