
Motion Representations for Learning

Robots and Human-Robot Interaction

Polynomial Splines and Movement Primitives

Aleš Ude

Jožef Stefan Institute, Ljubljana

Faculty of Electrical Enginnering, University of Ljubljana

__
Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani
COBISS.SI-ID 222235395
ISBN 978-961-243-475-5 (PDF)

URL: https://www.ijs.si/usr/aude/teaching/motion_reps.pdf

Copyright © 2025 Založba FE. All rights reserved. Razmnoževanje (tudi fotokopiranje) dela v
celoti ali po delih brez predhodnega dovoljenja Založbe FE prepovedano.

Naslov: Motion Representations for Learning Robots and Human-Robot Interaction
Avtor: Aleš Ude
Založnik: Založba FE, Ljubljana,
Izdajatelja: Fakuleta za elektrotehniko, Ljubljana

 Institut Jožef Stefan, Ljubljana
Urednik: prof. dr. Sašo Tomažič
Recenzenta: Matjaž Mihelj, Andrej Gams
Kraj in leto izida: Ljubljana, 2025
1. elektronska izdaja

Preface

The performance of complex tasks in robotics often involves executing a variety of move-

ments that require distinct control policies. For instance, using a tool might involve

picking it up, positioning it appropriately, and performing a task – all of which demand

separate motion trajectories. This textbook focuses on the specification of robot motion,

bridging the gap between task-level planning and precise motion execution.

Traditional industrial robots often rely on straightforward linear or circular move-

ments, whereas robots in unstructured environments require more complex and adaptive

trajectories. Representing and learning such motions presents a significant challenge, as

they are difficult to program directly using conventional methods. Consequently, learning

from demonstration and reinforcement learning have become key methodologies for ac-

quiring flexible motion representations. These methods not only enable robots to replicate

demonstrated behaviors but also allow them to adapt learned skills to novel scenarios.

This way their versatility can be enhanced.

In dynamic environments, static time-parameterized representations, such as polyno-

mials and splines, are often insufficient due to their inability to accommodate interruptions

or environmental changes. To mitigate this, motion representations based on autonomous

dynamical systems have been developed, eliminating the dependency on time as a trajec-

tory parameter. These representations ensure that desired motions remain adaptable to

variations in task conditions, enabling smooth and safe operation even in unpredictable

scenarios. The ability to dynamically adapt trajectories based on real-time feedback has

become a cornerstone of modern robotics, ensuring both safety and task success in diverse

environments.

The ability to encode multiple trajectories into a unified representation is another criti-

cal advancement in robotics. By leveraging data from multiple demonstrations, robots can

learn generalized motion patterns that adapt to new situations. This requires combining

computational efficiency with the ability to encode variability and uncertainty. Methods

like probabilistic and dynamic movement primitives address this by providing parametric

representations that support on-the-fly adaptations to changes in the environment or task

objectives. Moreover, these representations facilitate the integration of motion planning

and control into a cohesive framework, bridging the gap between abstract task planning

and physical execution.

This textbook introduces a range of modern motion representation techniques, includ-

ing polynomial splines, dynamic movement primitives (DMPs), probabilistic movement

3

4

primitives (ProMPs), and dynamic systems based on Gaussian mixture models (GMMs).

These representations address the limitations of static trajectory planning, enabling adap-

tation to dynamic environments and variability in task requirements. Computational

methods for learning and parameterizing these representations are presented. The em-

phasis is on their role in encoding complex robot skills. Practical examples and case

studies illustrate how these techniques are applied in real-world scenarios. Readers are

provided with a clear understanding of their strengths and limitations.

The materials are in part based on extensive research on motion representations at

the Department of Automatics, Biocybernetics, and Robotics at Jožef Stefan Institute.

They are intended for advanced students and researchers in robotics. The text requires a

foundational understanding of mathematics, control engineering, and robotics. It serves

as an essential resource for those wishing to deepen their knowledge of motion representa-

tion and learning in robotics. By providing a comprehensive overview of state-of-the-art

methodologies, the text aims to equip readers with the tools to address current and future

challenges in robot motion control and learning.

Contents

1 Preliminaries 9

1.1 Control policies . 10

1.2 Motion specification in Cartesian space . 11

1.2.1 Representation of orientation by rotation matrices 12

1.2.2 Quaternions . 14

1.2.3 Logarithmic map . 18

1.3 Programming by demonstration . 20

1.3.1 Programming by Demonstration Levels 21

1.3.2 Challenges of Programming by Demonstration 24

1.4 Data collection for robot programming by demonstration 25

1.4.1 Marker-Based Optical Trackers . 25

1.4.2 Inertial Measurement Units (IMUs) 29

1.4.3 Electromagnetic Trackers . 29

1.4.4 Computer Vision Techniques . 30

1.4.5 Teleoperation . 31

1.4.6 Virtual Reality Systems . 31

1.4.7 Wearable Sensor Systems . 32

1.4.8 Kinesthetic Guidance . 33

1.4.9 Summary . 34

2 Polynomials and splines 35

2.1 Point-to-point motion . 36

2.1.1 Minimum jerk trajectories . 36

2.1.2 SLERP trajectories . 37

2.2 Polynomial splines . 38

2.2.1 B-splines . 39

2.2.2 Natural and complete smoothing splines 41

2.3 Summary . 45

3 Dynamic Movement Primitives 47

3.1 Control Policies as Dynamic Systems . 48

3.1.1 Discrete (point-to-point) movements 49

5

6 CONTENTS

3.1.2 Periodic (rhythmic) movements . 52

3.2 Computing DMP parameters from a single demonstration 52

3.2.1 Adaptive frequency oscillators . 57

3.2.2 Integration of DMPs for robot control 58

3.3 Cartesian Space DMPs . 60

3.3.1 Quaternion based DMPs . 60

3.3.2 Position trajectories . 63

3.3.3 Rotation matrix based DMPs . 63

3.3.4 Comparison of DMPs defined on SO(3) 64

3.4 Third-order DMPs and Sequencing . 67

3.4.1 Third-order DMPs in Cartesian space 68

3.5 Modulation of DMPs . 68

3.5.1 Phase stopping . 69

3.5.2 Robustness to perturbations through coupling of DMPs 70

3.5.3 Obstacle avoidance . 71

3.6 Learning of DMPs from Multiple Demonstrations 73

3.6.1 Action generalization using dynamic movement primitives and local

weighting . 74

3.7 Summary . 79

4 Dynamic Systems and Gaussian Mixture Regression 81

4.1 Robot Motion Representation and Dynamical

Systems . 81

4.2 Lyapunov Stability Theory and Conditions 82

4.3 Design of Dynamic Systems by PBD . 83

4.3.1 Data Collection . 83

4.3.2 Gaussian Mixture Model (GMM) 84

4.3.3 Gaussian Mixture Regression (GMR) 85

4.3.4 Stable Estimator of Dynamical Systems (SEDS) 87

4.3.5 Selecting Optimal Number of Mixture Components for SEDS 90

4.3.6 Accuracy of Motion Reproduction with SEDS 91

4.4 Summary . 93

5 Probabilistic Movement Primitives (ProMPs) 95

5.1 Mathematical Formulation of ProMPs . 95

5.1.1 Using Phase Variables Instead of Time 96

5.1.2 Marginalizing Over Weights to Compute Likelihoods 97

5.1.3 Product of Gaussian Distributions 98

5.2 Learning the Parameters of the Weight Distribution 99

5.2.1 Motion Reproduction . 101

5.3 Ensuring Specific Configuration at a Given Time 103

5.3.1 Conditioning on a Specific Configuration 103

CONTENTS 7

5.3.2 Detailed Derivation of Conditioned Mean and Covariance 103

5.3.3 Reproducing the Conditioned Trajectory 104

5.3.4 Bayesian Basis for Conditioning . 106

5.4 Summary and Discussion . 106

6 Motion Representations and Robot Learning 109

8 CONTENTS

Chapter 1

Preliminaries

When specifying robot motion, we distinguish between the concepts of path and trajectory.

A path specifies the robot’s spatial motion without considering its time course, i.e. the

time at which the robot reaches a point on the path remains undefined. The path becomes

a trajectory once the timing is determined, i.e. the time at which the robot reaches each

point on the path is specified. The term path planning refers to finding the spatial path of

robot motion from the given initial position to the final position while satisfying spatial

constraints, e.g. avoiding obstacles. If the path is specified, the term trajectory planning

refers to finding the optimal velocity and acceleration profiles for the given path that

satisfy time constraints, e.g. velocity and acceleration limits. However, the spatial course

and timing of the trajectory can also be determined simultaneously, in which case the term

trajectory planning refers to the specification of a complete robot trajectory. Finally, robot

control deals with accurately tracking the specified trajectory with a real (physical) robot

in all controllable degrees of freedom (DOF).

Trajectory planning can be used to generate short-term, continuous motions for robot

manipulators. Such motions are often called movement, motion or motor primitives.

They are considered the basic building blocks of robot behaviors. Generally speaking,

motion primitives are the building blocks from which complex robot skills are generated

by querying, sequencing and superposition of movement primitives. Here the term robot

skill refers to an entire class of short-term motion plans that can be used to achieve the

desired result, e.g. move the robot hand to different desired end-positions and orientations

along a certain type of reaching trajectory, throwing motions so that an object hits the

desired target locations, etc.

More complex behaviors such as cooking, assembling a product, making up the room,

etc. are never planned as one super long trajectory or skill but are rather constructed

from a sequential execution of multiple movement primitives or skills. The problem of

finding an optimal sequence of robotic operations / skills to solve a given task is referred

to as task planning.

In this textbook we focus on representations that can be used for the specification

of movement primitives and on data-driven approaches for the learning of robot skills

9

10 CHAPTER 1. PRELIMINARIES

constructed from movement primitives. Most of the motion representations discussed in

this textbook have built-in mechanisms to specify complex skills from a combination of

movement primitives. We primarily present optimizaton-based and statistical approaches

and omit other approaches such as reinforcement learning, which would require another

book to cover adequately.

1.1 Control policies

To analyze what kind of representation is most suitable to drive the motion of a robot

in an unstructured, dynamic environment, we analyze the controllers used to track the

desired joint space motion trajectory, which is for example specified as a superposition

of basis functions with parameters ααα (see Chapter 2). A proportional derivative (PD)

controller may be used for this purpose

∆y(y,ααα, t) = Ky(yd(t)− y) +Kẏ(ẏd(t)− ẏ). (1.1)

Here ∆y ∈ Rn is the computed change of the joint angle positions. It depends on the

desired and current robot configuration and velocity y, ẏ ∈ Rn, respectively. K, Kd ∈
Rn×n are respectively the positional and velocity gains, yd(t), ẏd(t) ∈ Rn are the desired

robot configuration and velocity at time t, and n is the number of robot degrees of freedom.

If specified as a linear superposition of basis functions, the desired trajectory is computed

as

yd(t) =
∑
i

αααiBi(t), (1.2)

ẏd(t) =
∑
i

αααiḂi(t), (1.3)

where Bi are the basis functions used to encode the desired trajectory and αααi from Eq.

(1.1) specifies a time-dependent control policy that the robot follows to realize the desired

motion.

Formulation (1.1) works well for robots operating in known environments where no

disturbances occur. However, as explained in [31], such control policies are not very

flexible. For example, if a robot arm is wiping a glass and is held stationary for a few

seconds, the PD controller will try to catch up, i.e. reduce the discrepancy between the

desired position yd(t) and the actual robot position y, by the shortest possible path once

the robot arm is released. This can cause the robot to attempt moving through the

glass, which will not result in successful task execution, may trigger the robot’s safety

mechanism to abort the motion, and potentially cause damage either to the environment

or to the robot.

Thus a more flexible approach is needed to plan the motions in dynamic environments.

An alternative is offered by autonomous dynamic systems, where the change of state is

1.2. MOTION SPECIFICATION IN CARTESIAN SPACE 11

computed using differential equation

ẏ = f(y,ααα). (1.4)

Given the current state of the robot y and the control parameters ααα, the above system

is used to compute the desired change of robot configuration, ∆y = ẏ∆t, and other

kinematic target quantities, e.g. the desired velocity and acceleration. The computed

target values can then be used by robot controllers to compute the motor commands [31].

This way it is easier to deal with perturbations in dynamic environments.

The above system is called autonomous because it removes the explicit time depen-

dency from motion planning. When motion is computed according to (1.4), the system

automatically deals with perturbations like when the robot is prevented from moving be-

cause the same target values are computed by Eq. (1.4) as long as the robot state y does

not change. In addition, in some cases it is possible to build into Eq. (1.4) mechanisms

that deal with changes to the desired final position of the robot, avoidance of robot joint

limits, obstacle avoidance, motion speed scaling, etc.

1.2 Motion specification in Cartesian space

A rigid body is a solid object in which the distances between any two points remain

constant, ensuring that the object does not deform and maintains its shape and size

throughout its motion. In robotics, we are typically interested in motion of solid objects,

such as the link of a robot manipulator or an object a robot manipulates. Rigid body

motion can be divided into translation, where every point in the object moves uniformly in

the same direction, and rotation, where the object turns about a fixed axis. Importantly,

during rigid body motion, both the distances between any two points and the cross product

of any two vectors within the object are preserved, maintaining the relative angles and

orientations of vectors.

The specification of robot motion in 3-D Cartesian space involves the specification

of the position and orientation of the robots’s end-effector at any moment in time. The

coordinate frame of the robot’s end-effector is usually attached to the tool center point.

The robot end-effector position is defined as the coordinates p = [x, y, z]T ∈ R3 of the

frame attached to the robot’s tool center point in the robot’s base system. The end-effector

orientation is defined as the instantaneous rotation of the coordinate frame attached to the

tool center point with respect to the robot’s base frame. Unlike the position, the robot’s

orientation cannot be represented as a 3-D vector because the set of all orientations is

not a vector space. Since any rotation can be characterized by a 3 × 3 rotation matrix,

the space of all orientations can be represented by rotation matrices, which form a special

orthogonal group SO(3)

SO(3) =
{
R ∈ R3×3, RTR = I, det(R) = 1

}
. (1.5)

12 CHAPTER 1. PRELIMINARIES

While SO(3) is not a vector space, it forms a group with respect to matrix multiplication.

It is also a real three dimensional manifold [22]. Thus planning the orientational robot

motion is equivalent to trajectory planning in SO(3). Every orientation can be identified

with a unique R ∈ SO(3). Any orientation trajectory on time interval [0, T] can be

written as R(t) ∈ SO(3), 0 ≤ t ≤ T .

As a 3-D manifold, SO(3) can be parameterized by three parameters, e. g. Euler angles.

However, such parameterizations always contain singularities. It turns out that there

exists no minimal (3-D) representation of orientation that 1. contains no singularities,

i. e. a continuous orientational motion in 3-D space is continuous also in the 3-D parameter

space, and 2. is continuously differentiable, i. e. the partial derivatives of the parameters

with respect to any differential rotation, at any orientation, are finite.

It is preferable to use parameterizations that do not introduce artificial discontinuities

not existing in the real world into motion planning. As outlined above, such represen-

tations of orientation have more than three parameters and must therefore fulfill addi-

tional constraints in a higher dimensional space to be guaranteed to lie on the constraint

manifold. In the following we study two such representations: rotation matrices and

quaternions.

1.2.1 Representation of orientation by rotation matrices

The position of a point p(t) on a rigid body that is rotating about some axis can be

expressed as a function of the initial position vector p0 and a rotation matrix R(t)

p(t) = R(t)p0. (1.6)

To find the angular velocity ωωω(t), we take the time derivative of the position vector p(t):

ṗ(t) = Ṙ(t)p0. (1.7)

Since R(t)R(t)T = I, we can compute Ṙ(t)R(t)T + RṘT = 0, We obtain Ṙ(t)R(t)T =

−R(t)Ṙ(t)T = −
(
Ṙ(t)R(t)T

)T
, which means that

ΩΩΩ(t) = Ṙ(t)R(t)T (1.8)

is a skew symmetric matrix, i.e. ΩΩΩ(t)T = −ΩΩΩ(t). Any skew symmetric matrix can be

written as

ΩΩΩ(t) = [ωωω(t)]× =

 0 −ωz(t) ωy(t)

ωz(t) 0 −ωx(t)

−ωy(t) ωx(t) 0

 , ωωω(t) =

 ωx(t)

ωy(t)

ωz(t)

 . (1.9)

1.2. MOTION SPECIFICATION IN CARTESIAN SPACE 13

We can write

ṗ(t) = Ṙ(t)p0 = Ṙ(t)R(t)Tp(t) = ΩΩΩ(t)p(t) = ωωω(t)× p(t). (1.10)

ωωω(t) defines the angular velocity of a rotational motion.

If a rigid body rotates with constant angular velocity ωωω, we obtain a homogeneous

linear differential equation with constant coefficients

ṗ(t) = ωωω × p(t) = [ωωω]×p(t). (1.11)

It is well known from calculus that such equations have an analytic solution given by a

matrix exponential map,

p(t) = et[ωωω]× p(0), (1.12)

where p(0) is the initial point position. By comparing Eq. (1.6) and (1.12), we obtain

the following expression for rotation with constant angular velocity ωωω

R(t) = e[ωωωt]× (1.13)

= e[ωωωt]× = I+ [ωωωt]× +
1

2!
[ωωωt]2× +

1

3!
[ωωωt]3× + . . . (1.14)

where (1.14) is obtained using the definition of the matrix exponential.

We next show that the angular velocity ωωω is equal to the product of rotation angle θ

in unit time and rotation axis n, i.e. ωωω = θn. Under rotational motion, the points along

the axis of rotation do not move. We can deduce from Eq. (1.11) that this is the case

for points along ωωω since ωωω × ωωω = 0. Thus the angular velocity vector ωωω is aligned with

the axis of rotation, n = ωωω/∥ωωω∥. Let’s also define θ = ∥ωωω∥. Assuming small θ and using

Rodrigues’ formula (1.16), we obtain the following approximation for R(n, θ)

R(n, θ) ≈ I+ θ[n]×.

We can then calculate the positional change as follows

∥∆p∥ = ∥p(t)− p0∥ = ∥(I+ θ[n]×)p0 − p0∥ = θ∥n× p0∥ = θ∥p0∥ sin(β),

where β is the angle between the vectors n and p0 and we applied the formula ∥n×p0∥ =

∥nnn∥∥p0∥ sin(β). For the points orthogonal to the axis of rotation, we have β = π/2 and

we obtain ∥∆p∥ = θ∥p0∥. For the point p0 on a circular path around the origin, the

positional change is equal to θ∥p0∥, which shows that θ is indeed the rotation angle.

From the angular velocity we can thus compute the axis of rotation n = [nx, ny, nz]
T =

ωωω/∥ωωω∥ and the angle θ = ∥ωωω∥ travelled per time unit. The rotation about axis n by angle

θ in unit time can then be expressed by

R(n, θ) = e[ωωω]× = eθ[n]× = I+ θ[n]× +
θ2

2!
[n]2× +

θ3

3!
[n]3× + . . . (1.15)

14 CHAPTER 1. PRELIMINARIES

Using the fact that for a unit axis vector n it holds [n]3× = −[n]× and using the formulae

for Taylor series expansion of sine and cosine, the exponential map (1.15) can be computed

by Rodrigues’ formula

eθ[n]× = I+

(
θ − θ3

3!
+

θ5

5!
− . . .

)
[n]× +

(
θ2

2!
− θ4

4!
+

θ6

6!
− . . .

)
[n]2×

= I+ sin(θ)[n]× + (1− cos(θ)) [n]2×. (1.16)

It can be shown also algebraically (see [22], page 29) that R(n, θ) ∈ R3×3 is a rotation

matrix, i.e. it is orthogonal, RTR = I, and has a determinant equal to 1.

The exponential map (1.15) is surjective, i.e. for any rotation matrix R there exists

unit axis n and angle 0 ≤ θ ≤ π so that Eq. (1.16) holds (see Section 1.2.3 for a

constructive proof). Furthermore, it is easy although somewhat tedious to verify that

equation (1.16) can be rewritten as

R(n, θ) =

 n2
x(1− c) + c nxny(1− c)− nzs nxnz(1− c) + nys

nynx(1− c) + nzs n2
y(1− c) + c nynz(1− c)− nxs

nznx(1− c)− nys nzny(1− c) + nxs n2
z(1− c) + c

 , (1.17)

where c = cos(θ) and s = sin(θ).

1.2.2 Quaternions

The parametrization of rotation matrices by exponential map defined in equation (1.15)

shows that the space of all orientations is three-dimensional. Since rotation matrices have

9 parameters, it can be cumbersome to use them to represent orientation trajectories. An

alternative representation is offered by quaternions, a generalization of complex numbers

developed by William Rowan Hamilton.

A quaternion q is an ordered four-parameter vector that consists of a scalar part v ∈ R
and vector part u = [ux, uy, uz]

T ∈ R3. The space of all quaternions H forms an algebra,

i.e. it is a vector space with multiplication ∗. The addition of two quaternions is defined

as usually [
v1
u1

]
+

[
v2
u2

]
=

[
v1 + v2
u1 + u2

]
. (1.18)

By interpreting real numbers v ∈ R as quaternions with zero vector part v and real 3-D

vectors u ∈ R3 as quaternions with zero scalar part, we can write[
v

u

]
= v + u. (1.19)

The distinguishing property of quaternions is that we can define a quaternion multiplica-

1.2. MOTION SPECIFICATION IN CARTESIAN SPACE 15

tion [
v1
u1

]
∗

[
v2

u2

]
=

[
v1v2 − uT

1 u2

v1u2 + v2u1 + u1 × u2

]
. (1.20)

Note that since in general u1×u2 ̸= u2×u1, the quaternion multiplication is not commu-

tative, i.e. q1 ∗ q2 ̸= q2 ∗ q1. It is, however, easy to check that quaternion multiplication

is associate, i.e. q1 ∗ (q2 ∗ q3) = (q1 ∗ q2) ∗ q3. The inverse of quaternion q ̸= 0 with

respect to multiplication ∗ is given by

q−1 =

[
v

u

]−1

=

[
v/(v2 + ∥u∥2)
−u/(v2 + ∥u∥2)

]
. (1.21)

The conjugation of a quaternion is defined as

q =

[
v

u

]
=

[
v

−u

]
. (1.22)

Note that for unit quaternions q, ∥q∥ =
√
q ∗ q =

√
v2 + ∥u∥2 = 1, thus conjugation and

inverse are in this case equivalent, i.e. q = q−1.

Unit quaternions are a subset of all quaternions q ∈ H such that ∥q∥ = 1. They form

a unit sphere S3 in R4. Let’s interpret an arbitrary point p ∈ R3 as quaternion with zero

scalar part. Such quaternions are called pure quaternions. For any unit quaternion q, we

define the following operator

Lq(p) = q ∗ p ∗ q. (1.23)

We can write

q ∗ p ∗ q =

[
v

u

]
∗

[
0

p

]
∗

[
v

−u

]
=

[
−uTp

vp+ u× p

]
∗

[
v

−u

]

=

[
−vuTp+−vpTu

(uTp)u+ v(vp+ u× p)− vp× u− (u× p)× u

]

=

[
0

(uTp)u+ v2p+ 2vu× p− ((uTu)p− (pTu)u)

]

=

[
0

2(uTp)u+ v2p+ 2vu× p+ (v2 − 1)p

]

=

[
0(

2uuT + (2v2 − 1)I+ 2v[u]×
)
p

]
. (1.24)

16 CHAPTER 1. PRELIMINARIES

From (1.24) we can see that just like p, Lq(p) is also a pure quaternion. We can write

Lq(p) =

 2(v2 + u2
x)− 1 2(uxuy − vuz) 2(uxuz + vuy)

2(uxuy + vuz) 2(v2 + u2
y)− 1 2(uyuz − vux)

2(uxuz − vuy) 2(uyuz + vux) 2(v2 + u2
z)− 1

p. (1.25)

Let’s assume 0 ≤ θ < 2π and n = [nx, ny, nz]
T ∈ R3, ∥n∥ = 1. We define a quaternion

q(n, θ) ∈ H as follows

q(n, θ) =

[
v

u

]
=

v

ux

uy

uz

 =

cos(θ/2)

sin(θ/2)nx

sin(θ/2)ny

sin(θ/2)nz

 . (1.26)

We can easily see that ∥q(n, θ)∥ =
√

cos2(θ/2) + sin2(θ/2)nTn = 1, thus q(n, θ) is a

unit quaternion. Moreover, for any unit quaternion q = [v,uT]T, we can compute θ =

2arccos(v), n = u/∥u∥ (with n = 0 for the special case of v = 1, u = 0). Thus the map

q(n, θ) is surjective, i.e. for any unit quaternion q there exists θ, n so that q = q(n, θ).

This means that for any quaternion q that defines the operator Lq in Eq. (1.25), there

exists n, θ so that q = q(n, θ). Let’s write

R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (1.27)

Using standard trigonometric formulae and algebraic manipulations, we now show that

the matrix R(n, θ) from Eq. (1.17) is equal to the matrix specified in Eq. (1.25), where

q = q(n, θ) is defined as in equation (1.26). For example,

r11 = n2
x(1− cos(θ)) + cos(θ) = n2

x(1− (1− 2 sin2(θ/2)) + 2 cos2(θ/2)− 1

= 2
(
cos2(θ/2) + n2

x sin
2(θ/2)

)
− 1 = 2(v2 + u2

x)− 1. (1.28)

The proof for other coefficients of R(n, θ) is similar. Thus

Lq(p) = R(n, θ)p. (1.29)

We observe that q ∗ p ∗ q is equivalent to the rotation of p about the rotation axis u

by angle θ. Thus just like rotation matrices, unit quaternions can be used to compute

rotations. This expression also makes it clear that we can use quaternions to a new

compute rotation from two successive rotations:

q2 ∗ (q1 ∗ p ∗ q1) ∗ q2 = (q2 ∗ q1) ∗ p ∗ (q2 ∗ q1). (1.30)

1.2. MOTION SPECIFICATION IN CARTESIAN SPACE 17

Thus the quaternion multiplication can be used to compute a new quaternion q2 ∗ q1

combining two successive rotations. It follows that the unit quaternion ∆q that rotates

the starting orientation q1 to the target orientation q2 can be computed as follows

∆q = q2 ∗ q1. (1.31)

Unit quaternions provide a singularity-free, non-minimal representation of orientation

(it has four instead of three parameters). However, this representation is not unique. This

can be seen by observing that the matrix in Eq. (1.25) only contains quadratic terms.

Thus unit quaternion q ∈ S3 and its antipod −q ∈ S3 are transformed into the same

rotation matrix R(n, θ). Since

cos((2π − θ)/2) = cos(π − θ/2) = − cos(θ/2),

sin((2π − θ)/2)(−n) = − sin(π − θ/2)n = − sin(θ/2)n,

and using the fact that each unit quaternion pair q and −q represents the same orien-

tation, we can conclude that the rotation about axis −n by angle 2π − θ results in the

same orientation as the rotation about axis n by angle θ. Thus unit quaternions provide

a double covering of the space of all orientations.

We already know that using formula (1.25), we can transform any unit quaternion to

its corresponding rotation matrix. To derive the formulae for mapping a rotation matrix

to the corresponding quaternion, we equate the matrices in Eq. (1.27) and (1.25). Using

simple algebraic manipulations and considering that ∥q∥2 = v2 + u2
x + u2

y + u2
z = 1, we

obtain the following formulae

v = ±1

4

√
(r11 + r22 + r33 + 1)2 + (r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2, (1.32)

ux = sx
1

4

√
(r32 − r23)2 + (r11 − r22 − r33 + 1)2 + (r21 + r12)2 + (r31 + r13)2, (1.33)

uy = sy
1

4

√
(r13 − r31)2 + (r21 + r12)2 + (r22 − r11 − r33 + 1)2 + (r32 + r23)2, (1.34)

uz = sz
1

4

√
(r21 − r12)2 + (r31 + r13)2 + (r32 + r23)2 + (r33 − r11 − r22 + 1)2, (1.35)

where sx, sy, sz ∈ {−1, 1} respectively determine the sign of ux, uy and uz. This choice

arises because of the sign ambiguity (unit quaternions q and −q represent the same

rotations and thus map onto the same rotation matrix). If we select the nonnegative

values of v, i.e. v ≥ 0, then sx, sy and sz must be assigned the signs of r32− r23, r13− r31,

and r21−r12, respectively. This mapping was developed by Cayley and has been shown to

be superior to other mappings for the conversion of rotation matrices to unit quaternions

used in robotics, both due to its simplicity and numerical stability.

18 CHAPTER 1. PRELIMINARIES

1.2.3 Logarithmic map

The rotation matrix logarithm is defined as an inverse of the exponential map (1.15).

Given rotation matrix R and using Eq. (1.26) and (1.32), we can compute the angle of

rotation as follows

θ = 2arccos

(
1

4

√
(r11 + r22 + r33 + 1)2 + (r32 − r23)2 + (r13 − r31)2 + (r21 − r12)2

)
.

(1.36)

In the above formula we selected the positive value of v from Eq. (1.32). For θ ̸= 0, the

unit axis of rotation can be obtained by normalizing the vector u as computed by Eq.

(1.33) – (1.35), n = u/∥u∥. The matrix logarithm can now be computed as follows

log(R) =

[
0, 0, 0

]T
, R = I

θnnn, otherwise
. (1.37)

The components of log(R) ∈ R3 are called exponential coordinates of R. This repre-

sentation of orientation is commonly referred to as axis-angle representation. Note that

∥ log(R)∥ = ∥θn∥ = θ because n is a unit vector and we use the non-negative value of v

from Eq. (1.32) to compute θ, thus 0 ≤ θ ≤ π. For θ = π we cannot compute nnn using

the above formula because in this case, the off-diagonal terms of rotation matrices do not

provide information about the direction of rotation axis (which is nevertheless defined up

to a sign ambiguity). Recall that the rotation about axis n by angle θ is equal to the rota-

tion about axis −n by angle 2π− θ. For θ = π. Thus that the rotations by angle π about

axis n and axis −n are the same. However, we can still compute ∥ log(R)∥ = ∥±πn∥ = π.

Thus the norm ∥ log(R)∥ is defined for all R ∈ SO(3). It can be used to define a metric

on SO(3)

d(R1,R2) =

∥ log(R2R
T
1)∥, θ < π

π, otherwise
. (1.38)

Note that d(I,R) = ∥ log(R)∥.

To define a logarithmic map for unit quaternions, we first define the quaternion expo-

nential. Note that for any pure unit quaternion n, i.e. unit quaternion with scalar part

equal to 0, we can compute n ∗ n = −1, i.e. its square is equal to quaternion −1, which

has zero vector part. Let’s define

exp(θn) = 1 + θn+
θ2

2!
n2 +

θ3

3!
n3 + . . . = (1− θ2

2!
+

θ4

4!
− . . .) + (θ − θ3

3!
+

θ5

5!
− . . .)n

= cos(θ) + sin(θ)n. (1.39)

Here θn is interpreted as pure quaternion with zero scalar part. By comparing Eq. (1.26)

1.2. MOTION SPECIFICATION IN CARTESIAN SPACE 19

and (1.39) we can write

q(n, θ) = exp

(
θ

2
n

)
= cos

(
θ

2

)
+ sin

(
θ

2

)
n. (1.40)

For any unit quaternion q =
[
v,uT

]T ̸= [−1, 0, 0, 0]T, its logarithm is defined as inverse

of the exponential. It can easily be computed analytically from (1.40)

log(q) = log

([
v

u

])
=

arccos(v)

u

∥u∥
, ∥u∥ ≠ 0[

0, 0, 0
]T

, otherwise

. (1.41)

Note that unlike with rotation matrix logarithm, where several choices needed to be made

regarding signs to compute the logarithm as defined in Eq. (1.37), there are no choices

regarding signs to be made in Eq. (1.41). This makes it easier to use quaternions instead

of rotation matrices for planning orientational motions. The logarithm exists for any unit

quaternion except for q = −1, where the rotation axis is undefined. Nevertheless, we can

compute the angle θ for any unit quaternion including q = −1, where θ = arccos(−1) = π.

Let’s now assume that we have two quaternions q1 and q2 and compute the difference

quaternion ∆q = q2 ∗ q1 according to (1.31). We have shown in Eq. (1.26) that there

exists angle θ and axis n so that ∆q = exp(1/2 θn). We can thus compute the angular

velocity that takes q1 to q2 within unit time as ωωω = θn. Using the quaternion logarithm

(1.41), we can now compute the constant angular velocity that rotates unit quaternion

q1 to unit quaternion q2 within unit time as follows

ωωω = θn = 2 log(exp(θn/2)) = 2 log(q2 ∗ q1). (1.42)

The quaternion logarithm can also be used to define a distance metric on S3 [34]

d(q1,q2) =

{
2π, q1 ∗ q2 = [−1, 0, 0, 0]T

2∥ log(q1 ∗ q2)∥, otherwise
. (1.43)

Note that d defined above is not a metric on SO(3) because d(q,−q) = 2π although q and

−q represent the same orientation. It is nevertheless possible to compute the distance on

SO(3) also using the quaternion logarithm. This can be done by checking the norms of

the two logarithms, ∥2 log(q1 ∗q2)∥ and ∥2 log(−q1 ∗q2)∥. The smaller value should then

be taken to obtain the distance on SO(3).

Finally, we derive the relationship between quaternion derivative and angular velocity.

For a small time interval ∆t, the rotation can be approximated as a small rotation by an

angle ∆θ around the axis given by the angular velocity vector ω. According to (1.40),

20 CHAPTER 1. PRELIMINARIES

such a rotation is defined by a quaternion

q(∆θ,ωωω/∥ωωω∥) = cos

(
∆θ

2

)
+ sin

(
∆θ

2

)
ωωω

∥ωωω∥
≈ 1 +

∆θ

2

ωωω

∥ωωω∥
≈ 1 +

ωωω∆t

2
. (1.44)

The right-hand site of this equation was derived from the relationship between the angular

velocity ωωω and the rate of change of the rotation angle

∆θ

∆t
≈ ∥ωωω∥. (1.45)

We obtain

q(t+∆t) ≈
(
1 +

ωωω∆t

2

)
∗ q(t) = q(t) +

ωωω∆t

2
∗ q(t) (1.46)

and

q̇ = lim
∆t→0

q(t+∆t)− q(t)

∆t
=

1

2
ωωω ∗ q. (1.47)

Note that Eq. (1.8) provides a similar relationship between rotation matrix derivative

and angular velocity

Ṙ = [ωωω]×R. (1.48)

1.3 Programming by demonstration

Robot Programming by Demonstration (PbD), also known as Learning from Demonstra-

tion (LfD), Imitation Learning, or Teaching by Showing, is an approach that allows robots

to learn tasks by observing and imitating human demonstrators. This method offers a

more intuitive way to program robots, especially for those who may not have extensive

technical expertise in robotics. By bridging the gap between human intuition and robotic

execution, PbD provides a platform for teaching robots complex tasks in unstructured

environments.

Traditional robot programming can be a daunting task. It requires in-depth knowl-

edge of robotics principles and programming skills. Programming robots often involves

intricate understanding of kinematics, dynamics, control systems, and sensor integra-

tion. Developers need to write detailed code to specify every movement and decision

a robot must make, which is a time-consuming and error-prone process. Furthermore,

the diversity of environments and tasks necessitates domain-specific expertise to tailor

robotic behaviors appropriately. As robots are employed in more complex and varied

applications, the limitations of traditional programming approaches become increasingly

apparent. This complexity creates a barrier for those who wish to leverage robotic tech-

nology without the technical background. Programming by Demonstration offers a more

accessible solutions for such users.

Programming by Demonstration aims to simplify robot programming by allowing

robots to learn tasks from human demonstrations. Instead of explicitly programming

1.3. PROGRAMMING BY DEMONSTRATION 21

every detail of a task, PbD involves showing the robot how the task is performed, en-

abling it to learn and generalize from these examples. This method reduces the need for

extensive coding and provides a more natural interface for interacting with robots.

The benefits of PbD are manifold. It makes robot programming more accessible to

non-experts, significantly reduces the time and effort required to teach robots new tasks,

and increases adaptability to different environments and tasks. By focusing on human-

like learning and imitation, PbD allows robots to handle tasks with more flexibility and

efficiency, particularly in unstructured or changing environments.

1.3.1 Programming by Demonstration Levels

Programming by Demonstration can be understood across several levels, each addressing

different aspects of robot learning and task execution. These levels include

• trajectory level,

• skill level,

• task level,

• symbolic level, and

• hyrbid PbD.

Trajectory-level programming by demonstration

Trajectory-level programming focuses on capturing and replicating the precise paths and

movements demonstrated by a human instructor. By using modern motion capture

systems, trajectory-level Programming by Demonstration (PbD) involves recording the

demonstrator’s movements and translating them into robot-executable trajectories. This

approach ensures that robots follow the exact movements necessary for task completion,

making it ideal for tasks that require high precision and accuracy, such as surgical proce-

dures, welding, or assembly tasks in manufacturing.

The strength of trajectory-level programming lies in its ability to replicate complex,

continuous motions that may be difficult to describe through traditional programming

methods. By directly capturing human motion and mapping it to the robot motion, robots

can achieve smooth and natural movements that closely mimic human performance.

However, trajectory-level programming can struggle with adapting to variations in task

execution, as it emphasizes specific motion reproduction rather than task understanding.

This limitation can make it challenging for robots to adapt to changes in the environment

or to different task conditions, such as varying object sizes or positions. Additionally,

trajectory-level programming may not handle dynamic or unpredictable environments

well, as it lacks the flexibility to adapt to real-time changes.

22 CHAPTER 1. PRELIMINARIES

Skill-level programming by demonstration

Skill-level programming provides an intermediate layer between trajectory-level and task-

level programming. It focuses on teaching robots reusable skills or behaviors that can

be combined to perform complex tasks. Skills such as grasping, manipulating objects,

or navigating obstacles are abstracted from specific tasks and can be reused in different

contexts. These skills serve as building blocks for more intricate operations, emphasizing

modularity and flexibility. This approach enables robots to adapt and generalize across

various tasks by learning skills that can be transferred between different applications.

A critical component of skill-level programming is the concept of movement primitives,

which are fundamental building blocks of complex behaviors. Movement primitives repre-

sent basic actions or motions that can be combined and sequenced to form complete skills.

By learning these primitives through Programming by Demonstration (PbD), robots can

capture essential movements from human demonstrations and use them as a basis for de-

veloping more complex skills. For instance, a movement primitive for a robot arm might

involve the basic motion required to reach out and grasp an object, which can then be

adapted and modified for various tasks involving different objects or environments.

In skill-level programming by demonstration, robots observe human demonstrations to

learn these skills. The process involves capturing key actions and movements, abstracting

them into skills and movement primitives that can be applied in various situations. For

example, a robot might learn the skill of grasping by observing a human picking up objects

of different shapes and sizes, then generalize this skill to handle new objects it has never

encountered before. This ability to generalize makes skill-level PbD particularly valuable

in dynamic environments where tasks vary widely.

Combining skill programming by demonstration with other techniques, such as rein-

forcement learning, can further enhance the learning process. While PbD is effective for

initial skill acquisition, reinforcement learning can refine and optimize these skills based

on feedback from the environment. This synergy allows robots to continuously improve

their performance, making skills more robust and adaptable to different scenarios. A

key challenge in this approach is identifying and segmenting skills and movement primi-

tives from continuous demonstrations, which requires sophisticated algorithms to analyze

and classify actions accurately. Moreover, ensuring that skills are transferable between

different tasks and environments is crucial, necessitating a deep understanding of the un-

derlying principles of each task and the ability to abstract these principles into generalized

skills.

Task-level programming by demonstration

Task-level programming by demonstration (PbD) shifts the focus from replicating precise

movements to achieving high-level goals and action sequences necessary for completing a

task. At this level, tasks are abstracted into a series of steps that need to be executed

in a specific order. The assumption is that the robot already knows how to execute low-

1.3. PROGRAMMING BY DEMONSTRATION 23

level operations, such as moving an arm or gripping an object, and these operations are

combined into a sequence to perform a more complex task. Task-level PbD provides a

structured approach to replicating demonstrated behaviors and decision-making processes

by observing human actions and translating them into symbolic or abstract representa-

tions.

This approach is particularly useful for tasks requiring coordination and executing

multiple actions in a precise sequence, such as assembly operations, navigation, or collab-

orative tasks with humans or other robots. By focusing on high-level goals rather than

specific movements, task-level PbD allows robots to interpret the intent behind actions

and understand how to adapt them to new or changing situations. This flexibility enables

robots to adjust their actions based on real-time feedback and environmental changes, im-

proving their ability to function autonomously and effectively in dynamic environments.

While task-level PbD offers generalization across similar tasks, it often requires adap-

tation to the specific context or environment in which the task is performed. This adap-

tation can be achieved through sensory feedback, machine learning techniques, or user

input, which help the robot refine its behavior in varying scenarios. By incorporating

these elements, robots can learn from demonstrations to not only replicate tasks but

also enhance their decision-making capabilities. Additionally, task-level PbD can be inte-

grated with other levels, such as trajectory-level programming, to ensure that high-level

plans are executed with the necessary precision and accuracy. This integration creates a

comprehensive framework for robotic learning, combining the strengths of both high-level

abstraction and detailed execution.

Symbolic-level programming by demonstration

Symbolic-level programming by demonstration (PbD) involves using symbols and logical

constructs to teach robots complex tasks through human demonstrations. This approach

focuses on abstract reasoning and decision-making, allowing robots to learn from demon-

strations by representing tasks as high-level symbols that capture the essential features

and relationships within the task environment. Through symbolic-level PbD, robots are

capable of understanding abstract concepts such as objects, actions, and goals, enabling

them to generalize learned knowledge to new situations and adapt to changes more effec-

tively than with lower-level programming.

In symbolic-level PbD, robots observe human actions and extract symbolic represen-

tations that define the task’s structure and intent. For example, in a household setting, a

robot might observe a human placing objects in specific locations and represent this task

with symbols like “pick,” “place,” “object,” and “destination.” This symbolic representa-

tion allows the robot to plan and execute similar tasks even when conditions change, such

as when objects or destinations differ from the original demonstration. By abstracting

tasks into symbolic forms, symbolic-level PbD facilitates a higher level of autonomy and

decision-making, as robots can reason about the task’s goals and constraints and adjust

their actions accordingly.

24 CHAPTER 1. PRELIMINARIES

One of the main challenges of symbolic-level programming by demonstration is con-

verting sensory data into meaningful symbolic representations. This requires sophisticated

algorithms capable of interpreting and categorizing complex sensory inputs. Additionally,

integrating symbolic reasoning with real-time control systems can be difficult, as it neces-

sitates seamless coordination between high-level planning and precise execution.

Hybrid robot programming by demonstration

Hybrid robot programming by demonstration (PbD) combines multiple learning levels to

enable robots to perform complex tasks efficiently and flexibly. For instance, in a furniture

assembly task, a robot utilizes trajectory-level programming to capture precise movements

from human demonstrations, such as aligning parts and inserting screws. These precise

actions are then abstracted into skill-level programming, where the robot develops reusable

skills like “screwing” and “aligning” that can be adapted to various assembly scenarios.

Task-level programming coordinates these skills into a coherent sequence to achieve the

overall assembly goal, allowing the robot to execute multiple actions efficiently and adjust

its plan as needed. At the same time, symbolic-level programming provides high-level

reasoning capabilities, enabling the robot to interpret assembly instructions and make

decisions about the sequence and tools required for different furniture designs. This

integration of programming levels allows the robot to adapt to changing conditions and

perform complex tasks with precision and autonomy, enhancing its ability to operate in

dynamic environments.

1.3.2 Challenges of Programming by Demonstration

While robot programming by demonstration offers significant advantages, it also presents

various challenges. A major challenge is the correspondence problem, which arises due to

differences in human and robot body structures, making it difficult to map human motions

directly to robot actions. Human muscles allow for smooth, continuous, and adaptable

movements due to their complex structure and ability to modulate force naturally, while

traditional robot actuators produce less compliant movements due to their mechanical

nature.

Additionally, it is generally difficult to capture and replicate the forces and torques

arising in human demonstrations, especially when robots lack tactile feedback, which

is crucial for tasks involving physical interactions. Dynamics play a critical role here, as

robots need to understand not just the positions and velocities of movements but also how

forces and torques affect interactions with objects and the environment. This complexity

requires sophisticated models to translate the demonstrated dynamic tasks into robotic

actions accurately.

To address these challenges comprehensively, several strategies are employed. Pro-

gramming by demonstration is easier if robots with anthropomorphic features are used to

imitate demonstrated tasks. This can simplify the mapping of human motions to robot

1.4. DATA COLLECTION FOR ROBOT PROGRAMMING BY DEMONSTRATION25

actions by, to a degree, mimicking human anatomy and movement patterns. In some

cases, focusing on the goal of an action rather than replicating the exact motion can

circumvent the need for direct motion mapping, allowing robots to achieve the desired

outcomes without accurately replicating the demonstrated motion. Integrating sensors

that provide feedback on force, torque, and environmental conditions further enhances

robots’ ability to adapt their actions dynamically. The integration of sensory feedback

supports adaptive control strategies, which are especially important for handling dynamic

interactions during complex tasks.

Another significant challenge is acquiring a sufficient number of high-quality human

demonstrations for the desired tasks. Human demonstrations are often limited due to

practical constraints such as time, effort, and variability among different human instruc-

tors. This scarcity of data can hinder the effectiveness of PbD approaches and the robots’

ability to generalize across different tasks and environments. Advanced machine learning

algorithms can help address this issue by enabling robots to learn from fewer examples

through techniques such as data augmentation, transfer learning, and reinforcement learn-

ing. Additionally, simulation environments offer a safe and effective way to test and refine

the computed programs before deploying them in the real world. This approach mini-

mizes the risk of damage to both the robot and its surroundings and enables knowledge

refinement without the need for the physical execution of tasks.

1.4 Data collection for robot programming by demon-

stration

In robot programming by demonstration (PbD), collecting accurate data on human ac-

tions and movements is essential for enabling robots to learn and replicate tasks effectively.

Various systems are employed to capture these demonstrations, each offering unique meth-

ods to capture and interpret human behaviors. These systems can be categorized based

on the technology used, and each has its own advantages and challenges.

1.4.1 Marker-Based Optical Trackers

Marker-based optical tracking systems are widely used in robotics for capturing detailed

motion data. These systems rely on cameras and markers to track the position and

orientation of objects in three-dimensional space. They are divided into two types: passive

and active optical trackers.

Passive optical trackers use markers that reflect infrared light. These markers are often

spherical and coated with retro-reflective material. The system includes multiple infrared

cameras that emit light, which is then reflected by the markers. The cameras capture these

reflections and use the data to triangulate the precise location of each marker in space.

The simplicity and cost-effectiveness of passive markers make them appealing for many

26 CHAPTER 1. PRELIMINARIES

applications. However, they are highly susceptible to occlusion and require a controlled

environment to maintain accuracy.

Active optical trackers, on the other hand, use markers that emit their own infrared

signals. These markers are often equipped with LEDs that actively send signals to the

cameras, which then process the data to determine the marker’s position. The advantage

of active markers lies in their ability to maintain tracking even when occlusions occur. The

unique signals emitted by active markers allow for continuous identification, making them

more reliable in dynamic environments. However, active markers require a power source,

which adds complexity and potential signal interference from other infrared devices. The

power source are usually small batteries, which slightly increases the weight of markers.

One of the key challenges in using optical trackers is the need for data post-processing.

After data collection, it is often necessary to correct for occlusions, noise, and inconsis-

tencies in marker detection. This involves using sophisticated algorithms to smooth data,

fill in missing information, and ensure the captured motion data accurately reflects the

intended movements.

Motion capture pipeline for PbD

In PbD, captured motion data is used to teach robots how to perform tasks by replicating

human actions. This involves translating human movements into robot kinematics. A

typical processing pipeline is as follows:

• Marker Placement:

Markers are placed on or near joints such as shoulders, elbows, wrists, hips, knees,

and ankles. This placement is crucial to accurately capture the motion of the limbs.

For example, placing markers at the lateral and medial sides of the knee joint helps

capture knee flexion and extension. Markers can also be attached to body segments

like torso, head, and limbs (middle of the upper arm, forearm, thigh, and calf)

to track the movement and rotation of these parts accurately. On larger body

segments, markers may be arranged in a triangular or tetrahedral configuration to

provide more precise data about the segment’s orientation and deformation. This

setup helps in accurately defining the 3D space occupied by the limb.

Ensuring symmetrical placement on bilateral body parts is essential for balanced

data capture. This means placing markers at equivalent positions on both the left

and right limbs. To minimize errors due to skin movement (soft tissue artifacts),

markers should be securely attached and, when possible, placed over areas where

skin movement is minimal. Strapping markers over tight clothing can also help

reduce artifacts.

Passive markers are often attached using double-sided adhesive tape, ensuring they

remain securely in place during motion. Active markers, due to their additional

weight, may be attached using straps or clips, providing more secure attachment,

especially during dynamic activities.

1.4. DATA COLLECTION FOR ROBOT PROGRAMMING BY DEMONSTRATION27

Well-placed markers simplify the data processing pipeline, as the software can more

easily identify and track markers throughout the motion sequence. This reduces the

need for manual corrections.

• Camera Setup and Calibration:

Multiple high-resolution cameras are arranged around the capture area to provide

complete coverage. The camera placement should ensure that each marker is al-

ways observed by more than one camera. The cameras are equipped with infrared

filters to detect light reflected or emitted by the markers. They are calibrated to

define a global coordinate system in which marker motion is computed. Calibra-

tion involves capturing known points or patterns and adjusting camera settings to

minimize distortion and align perspectives.

Calibration often includes a process called “wand calibration”, where a wand with

known markers is moved through the capture volume to help align and synchro-

nize the cameras. Proper calibration ensures that all cameras work in harmony to

produce accurate 3D reconstructions of the captured motion.

• Image Data Acquisition:

The subject, fitted with markers as explained above, performs movements within the

capture volume. Cameras capture the motion from different angles simultaneously.

The system synchronizes images from all cameras to ensure a coherent measurement

of marker positions. This synchronization is crucial for accurately reconstructing

the 3D trajectories of the markers.

• Marker Data Acquisition and Processing:

The software identifies and labels each marker in the captured frames, distinguishing

between markers based on patterns of movement and spatial relationships. Active

systems simplify this process as each marker can emit a unique signal. The system

triangulates the 3D positions of the markers using data from multiple camera per-

spectives. This involves solving mathematical equations to determine precise spatial

coordinates of each marker. Filtering techniques, such as Kalman filters or spline

smoothing, can then be applied to reduce noise and remove artifacts from the data,

ensuring smoother motion paths.

Additional post-processing steps may include correcting for any remaining noise,

dealing with marker swaps (where markers might get mislabeled), and refining the

trajectory data to ensure it accurately reflects the intended motion.

• Skeleton Mapping and Kinematic Analysis:

The 3D marker data is mapped onto a skeleton model representing the subject’s

body structure. This mapping involves computing the joint angles of the skeleton

28 CHAPTER 1. PRELIMINARIES

model so that the model markers match the measured 3D marker positions. Typi-

cally, the marker positions are first transformed into the 3D poses of body segments,

and the joint angles are computed from the relative orientation of adjacent body

segments. For example, the elbow joint angle is derived from the orientation of the

forearm relative to the upper arm.

Skeleton mapping and human motion analysis perform best when personalized skele-

ton models are used. These models are derived from a generic skeleton model of

the human body, which contains predefined joint locations and lengths of limbs

and other body parts. The generic skeleton model serves as a baseline that can

be adjusted to fit an individual’s specific anatomical features. The scaling of the

generic model to create personalized models is accomplished by using marker data

to measure limb lengths and joint positions. This process often involves an auto-

matic calibration step, where the system aligns the template’s proportions with the

subject’s unique body dimensions, ensuring precise motion representation. By ad-

justing the template, the motion capture system can accurately map the subject’s

movements and provide detailed kinematic analysis.

There are several challenges that must be tackled by the described pipeline. A signifi-

cant issue are soft tissue artifacts. Markers placed on the skin can move independently of

the underlying bone structure, leading to inaccuracies in joint angle calculations. Tech-

niques such as marker clusters and algorithms that estimate bone positions based on skin

movement help mitigate this problem. Occlusions, where markers are temporarily hidden

by other body parts or objects, can cause data gaps. Increasing the number of cameras

can help maintain continuous marker visibility. A similar challenge is marker swapping

due to fast or complex motions that cause the system to confuse markers. This can be

addressed with uniquely identifiable active markers or advanced algorithms that predict

each marker’s trajectory.

Environmental conditions, such as poor lighting, reflections, or interference from other

infrared sources, can also disrupt data capture. Controlled environments or using adaptive

systems that can handle variable conditions are essential. Additionally, infrared-based

systems may suffer from interference caused by external infrared sources like sunlight,

reducing accuracy. Using filters and adjusting camera sensitivity can help mitigate this

interference. Human error during marker placement or system configuration can lead to

inaccurate data. Standardized procedures and automated setup systems can reduce the

impact of human error, enhancing the reliability of motion capture systems. Lastly, in

applications requiring real-time feedback, latency can be a critical issue, affecting the

responsiveness of the system. Optimizing algorithms for faster processing and reducing

the computational demands can minimize latency, providing more immediate feedback

and improving the user experience.

1.4. DATA COLLECTION FOR ROBOT PROGRAMMING BY DEMONSTRATION29

1.4.2 Inertial Measurement Units (IMUs)

Inertial Measurement Units (IMUs) are advanced sensor systems that integrate accelerom-

eters, gyroscopes, and sometimes magnetometers to provide comprehensive data about an

object’s orientation, velocity, and gravitational forces. They are widely used for motion

capture in various applications, including robot programming by demonstration (PbD).

One of the primary advantages of IMUs is their portability. IMUs are small, lightweight,

and easy to attach to different parts of the human body. This portability allows for the

recording of natural human movements in diverse environments, including outdoor set-

tings, without the need for a fixed setup. Unlike optical systems, which may require

specific lighting conditions or line-of-sight visibility, IMUs can function effectively in a

wide range of settings, providing flexibility in data collection. IMUs excel in capturing ro-

tational data, offering precise measurements of body segment orientations. By attaching

IMUs to key points on the body, such as the limbs and torso, it is possible to accu-

rately compute joint angles and understand how different body parts interact during task

execution.

IMUs can also measure the relative position of body parts by integrating the acceler-

ation data captured by the accelerometers. This process involves integrating acceleration

over time to obtain velocity and then integrating velocity to derive displacement. How-

ever, this method provides a way to estimate how much a particular body segment has

moved relative to its initial position, and this approach is inherently subject to errors.

Any inaccuracies in the initial acceleration measurements are compounded through the

integration process, leading to drift over time. Drift refers to the accumulation of er-

rors in the calculated position and orientation, which can result from sensor noise, bias,

temperature fluctuations, and prolonged use.

Despite their benefits, IMUs present several challenges that need to be addressed to

maximize their effectiveness in PbD. One significant issue is drift, a phenomenon where

small errors in measurement accumulate over time, leading to inaccuracies in the reported

position and orientation. Implementing algorithms to correct drift and recalibrate sensors

regularly is essential to ensure reliable data capture. Kalman filters or other sensor fusion

techniques are often used to mitigate drift by combining IMU data with information from

other sensors,

1.4.3 Electromagnetic Trackers

Electromagnetic tracking systems use magnetic fields to determine the position and ori-

entation of sensors relative to a fixed transmitter. Like IMUs and unlike optical systems,

electromagnetic trackers do not require a direct line of sight between the transmitter and

sensors, making them highly effective in cluttered or confined environments where visual

interference is common. This capability allows for seamless motion capture and teaching

of robots in complex setting. The real-time tracking capability of electromagnetic sys-

tems provides immediate feedback, which is vital for applications that demand fast and

30 CHAPTER 1. PRELIMINARIES

accurate motion capture, such as PbD.

However, electromagnetic tracking systems face some significant challenges, primarily

due to their sensitivity to metal and electronic interference. Such interference can distort

the magnetic field and lead to inaccuracies in position and orientation data, necessitating

careful setup to avoid potential disruption sources. Additionally, the effective range of

these systems is typically limited to a few meters from the transmitter, which can restrict

their use in large spaces. For robots to learn effectively in PbD, it is crucial to strategically

position transmitters to cover the intended area adequately. While calibration is usually

straightforward, it may need to be repeated if environmental conditions change, ensuring

the accuracy and integrity of the captured data.

In the context of PbD, electromagnetic tracking systems are beneficial for applications

that require continuous and unobstructed data capture. They are particularly useful in

scenarios where optical systems might fail, such as in virtual reality environments.

1.4.4 Computer Vision Techniques

Computer vision systems leverage cameras and AI algorithms to analyze visual data

and track movements without the need for markers. This markerless motion capture

approach simplifies setup, reduces time and cost, and provides a more natural and unob-

trusive method for capturing human motion. Such systems are versatile and applicable

across various environments, making them a valuable tool in robotic programming by

demonstration (PbD).

Deep learning has significantly enhanced computer vision systems, particularly for

pose and posture estimation in robot PbD. Algorithms such as convolutional neural net-

works (CNNs) and recurrent neural networks (RNNs) extract features and patterns from

complex visual data. CNNs, which excel in image recognition and classification tasks, are

particularly effective for identifying and tracking body parts and objects during demon-

strations. By employing multiple layers of convolutional filters, CNNs detect intricate

patterns in visual data, facilitating accurate motion tracking without requiring manual

feature extraction. RNNs complement this capability by processing sequential data, en-

abling the detection and reconstruction of complex action sequences demonstrated by

humans.

Several systems have successfully integrated deep learning techniques for pose detec-

tion, which is critical for robot PbD. OpenPose and Google’s PoseNet estimate human

poses in real-time by identifying key points on the human body, such as joints and limbs.

These systems use CNNs to analyze video input, translating pixel information into detailed

pose estimations. OpenPose is widely recognized for its ability to detect multiple body

parts simultaneously, including hands and facial landmarks, while PoseNet focuses on

identifying key body joints and provides efficient solutions for single-person pose estima-

tion. Both systems exemplify the power of CNNs in analyzing complex motion patterns.

Additionally, DeepLabCut is an open-source toolkit that uses CNNs for precise motion

1.4. DATA COLLECTION FOR ROBOT PROGRAMMING BY DEMONSTRATION31

capture. By training the network to recognize specific body parts in a small subset of

labeled images, DeepLabCut generalizes this knowledge to new frames, which enables

accurate tracking of posture and motion. MediaPipe, developed by Google, employs

machine learning models to detect landmarks on the body, face, and hands. Through the

combined use of CNNs and graphical models, MediaPipe ensures spatial and temporal

consistency. This makes it a robust solution for understanding human motion in real-time.

Despite their advantages, computer vision systems face several challenges in robot

PbD. Accurate processing requires complex algorithms, significant computational power,

and high-performance hardware, which can limit real-world applications. Environmen-

tal factors such as lighting conditions, shadows, and occlusions can also affect system

performance, leading to inconsistencies in image quality and tracking accuracy. Address-

ing these challenges requires the development of robust algorithms capable of adaptation

to varying conditions and compensation of these disturbances. As technology advances,

these challenges are gradually being mitigated, which makes the applicability of computer

vision systems in robotic programming by demonstration increasingly viable.

1.4.5 Teleoperation

In a typical teleoperation setup for PbD, a human operator uses control interfaces such

as joysticks or haptic devices to guide the robot’s actions. As the operator controls the

robot, the robot’s movements are recorded, capturing the precise motion trajectories. If

the robot is equipped with force-torque sensors, the applied forces due to environmental

interactions can also be recorded. The operator can observe how the robot moves either

directly or through live video feeds. Haptic devices offer tactile feedback, allowing the

operator to “feel” the environment and perform delicate manipulations with precision.

The data collected through teleoperation focuses on the robot’s actual movements

rather than the operator’s commands. By recording how the robot moves in response to

human guidance, the system captures detailed information about the robot’s kinematics

and dynamics.

Despite its advantages, teleoperation for PbD faces challenges. Network latency can

affect the responsiveness of the control system, leading to inaccuracies in executing com-

mands, especially in fast-paced or safety-critical tasks. To mitigate these delays, robust

communication systems and predictive algorithms are necessary to ensure smooth control.

Additionally, translating human inputs into robot actions can be challenging, especially

for intricate tasks.

1.4.6 Virtual Reality Systems

Virtual Reality (VR) systems provide a simulated environment where users can perform

tasks and demonstrate actions to gather data for PbD. VR systems like Oculus Rift and

Microsoft HoloLens offer immersive experiences that facilitate detailed task demonstra-

tions by allowing users to interact with virtual objects and environments as if they were

32 CHAPTER 1. PRELIMINARIES

real. The primary advantage of VR systems in PbD is the creation of a safe demon-

stration environment. This enables users to explore complex tasks without the fear of

causing damage or harm. VR systems provide a rich, controlled environment for cap-

turing demonstrations, allowing for precise manipulation and interaction that might be

difficult to achieve in the real world.

However, one of the significant challenges when transitioning from VR to real-world

applications is the reality gap. This gap arises due to differences between the simulated

environment and the physical world, particularly concerning physical dynamics and in-

teractions. For example, a robot learning a task in VR might not encounter the same

friction, gravity, or collision responses when performing the task in the real world. These

discrepancies can lead to errors or inefficiencies in the robot’s performance when moving

from the virtual to the physical environment. Addressing the reality gap requires sophis-

ticated modeling techniques to ensure that the VR environment accurately reflects the

real-world conditions.

Modeling environments with sufficient accuracy for PbD is a complex and challenging

task. It involves creating detailed simulations of physical properties, such as material

textures, forces, and kinematic constraints. This level of detail requires advanced software

and computational power to achieve realistic simulations, making it a significant barrier

to the widespread adoption of VR in PbD setups. For instance, simulating the weight

and resistance of objects, the tactile feedback when interacting with surfaces, and the

dynamic response of objects to forces all require computationally expensive algorithms.

Moreover, VR systems often require sophisticated hardware, such as high-resolution

headsets and motion tracking equipment, to ensure realistic simulations. This adds to

the complexity and cost of using VR for PbD.. Despite these challenges, ongoing ad-

vancements in VR technology continue to improve the fidelity and realism of simulations,

gradually narrowing the reality gap and enhancing the effectiveness of VR in teaching

robots through demonstration.

1.4.7 Wearable Sensor Systems

Wearable sensors, such as data gloves and sensesuits, are worn directly on the body to

capture detailed motion data. In the case of humanoid robots, sensesuits are designed

to replicate the kinematic structure of the target humanoid robot. Thesy consist of pas-

sive mechanical structures embedded with sensors, such as goniometers, which measure

joint angles and their motion. This design ensures that the recorded human motion can

be directly mapped onto the robot without complex transformation algorithms. This

eliminats the correspondence problem often encountered in PbD. Wearable sensors of-

fer high-resolution data, capturing even the most subtle movements and enabling the

recording of complex trajectories essential for sophisticated robotic tasks.

Despite their advantages, wearable systems can be cumbersome and may interfere

with the user’s natural movement. The bulkiness can restrict fluidity, leading to less

1.4. DATA COLLECTION FOR ROBOT PROGRAMMING BY DEMONSTRATION33

naturalistic data capture. Moreover, data gloves require frequent calibration to maintain

accuracy and can experience drift over time, compromising the precision of the data

collected. While necessary, the calibration processes can be time-consuming and may not

always eliminate all sources of error.

Sensesuits, much like clothing, are typically designed in specific sizes, which can be a

limitation when working with human demonstrators of varying heights and body types.

This means that a different sensesuit may be required for taller or shorter individual.

Additionally, because sensesuits are constructed to mirror a specific kinematic structure,

they are only suitable for robots with such a kinematic structure. This bespoke design

approach makes sensesuits more expensive than other, more adaptable measurement de-

vices.

1.4.8 Kinesthetic Guidance

Kinesthetic guidance involves physically guiding a robot through the desired motions. In

this approach, the human instructor directly interacts with the robot, manually moving

its end-effector to demonstrate the specific movements needed for a task. This hands-on

method allows for precise control over the robot’s movements, making it a highly effective

way to teach robots complex motions.

The primary advantage of kinesthetic guidance is its directness and intuitiveness. Since

the human instructor physically guides the robot, the motions are recorded directly in the

robot’s joint space, eliminating the correspondence problem often encountered in other

Programming by Demonstration (PbD) methods. This direct mapping ensures that the

robot accurately learns the desired movements without needing complex transformation

algorithms to translate human motion into robotic actions. The instructor can specify key

points for point-to-point movements or capture entire joint space trajectories, providing

flexibility in how the motion data is recorded. This approach is particularly useful for

tasks where the focus is on the robot’s end-effector motion, such as manipulating objects,

assembling components, or performing precise tasks like welding.

Some robots, like the Franka Emika, are equipped with button interfaces that enhance

the kinesthetic guidance process. These interfaces allow the instructor to interact with

the robot’s control system directly during the guidance process. By pressing buttons

located on the robot, the instructor can easily switch between different modes, such as

teaching mode and playback mode, or lock specific joints to restrict movement to certain

axes. This capability makes it easier to demonstrate complex motions and adjust the

robot’s posture without interrupting the teaching process. The button interfaces provide

real-time feedback and control, allowing the operator to focus on the subtleties of the task

at hand while ensuring that the robot accurately records the intended path.

Despite its advantages, kinesthetic guidance has some limitations and requires skilled

operators to guide the robot accurately. The instructor must have a good understanding of

the task and the robot’s capabilities to ensure that the guided motion is both precise and

34 CHAPTER 1. PRELIMINARIES

safe. Additionally, while kinesthetic guidance excels in teaching end-effector movements,

it can be challenging to ensure specific robot configurations, especially for redundant

robots with more than six degrees of freedom. Redundant robots have multiple ways to

achieve the same end-effector position, making it difficult to control the robot’s entire

posture during guidance. This can lead to suboptimal configurations that might not be

ideal for certain tasks or environments.

Furthermore, kinesthetic guidance is less practical for dual-arm robots and other robots

requiring simultaneous control of multiple limbs. Since the instructor typically uses both

hands to guide a single robot arm, managing two arms at once can be cumbersome and

impractical. This limitation necessitates alternative approaches to handle multi-limb tasks

effectively. The development of advanced interfaces and control strategies continues to be

an area of active research, aiming to improve the usability and effectiveness of kinesthetic

guidance for complex robotic systems.

1.4.9 Summary

Each of these systems offers unique benefits and limitations, making them suitable for

different types of applications in robot programming by demonstration. The choice of

data collection system depends on factors such as the task’s complexity, the environment,

and the desired level of precision and adaptability. Combining these technologies can often

yield the best results, leveraging the strengths of each system to overcome the limitations

of others. By employing a diverse range of data collection techniques, robots can achieve

a more comprehensive understanding of human behavior, leading to more effective and

versatile robotic systems.

Chapter 2

Polynomials and splines

A standard approach to planning robotic motions is to specify a time-dependent para-

metric trajectory that determines the robot’s motion from the start at t = 0 to its end

at t = T . Trajectories are typically defined in the robot’s configuration space, specifying

the joint coordinates y(t), ∀t ∈ [0, T], y(t) ∈ Rn, where n is the number of the robot’s

degrees of freedom, or in the task space, such as 3-D Cartesian space. In task space,

the robot’s position p(t) ∈ R3 and orientation q(t) ∈ SO(3) ⊂ R4, expressed as unit

quaternions, are typically specified. Other task spaces, such as a 2-D plane, may also be

relevant depending on task constraints.

Smoothness and continuity are essential for generating feasible trajectories. To ensure

stable and dynamically consistent motion, trajectories should be continuous up to at

least the second derivative, meaning the trajectory, velocity, and acceleration profiles are

smooth throughout. For tasks requiring precise control, such as point-to-point movements

or following a complex path, this continuity minimizes abrupt transitions, reduces wear

on actuators, and ensures energy-efficient motion.

For simple point-to-point motions, minimum jerk trajectories provide an effective solu-

tion. Minimum jerk trajectories generate smooth straight-line spatial paths in Cartesian

space with speed profiles determined by fifth-order polynomials. Orientation changes are

handled using SLERP (Spherical Linear Interpolation), which ensures the shortest path

in quaternion space. However, more complex tasks, such as following curved paths or

adapting to obstacles, require more flexible representations.

Splines, particularly B-splines, address these challenges by enabling smooth trajecto-

ries over multiple segments with high-order continuity. Splines allow local control, mean-

ing changes in one segment affect only a small neighborhood. This makes them suitable

for handling dynamic constraints and adapting to new tasks. This flexibility is especially

valuable for learning robots, which must balance noisy sensor data, task constraints, and

trajectory smoothness.

The differences between polynomials and splines stem from their structure and flex-

ibility. While polynomials are simple and computationally efficient, they are limited

to describing single-segment trajectories and may suffer from oscillations when used for

35

36 CHAPTER 2. POLYNOMIALS AND SPLINES

longer paths. Splines, on the other hand, are composed of piecewise polynomial segments,

making them more robust and versatile for complex trajectory generation. Splines such as

B-splines and natural splines offer additional benefits like smooth transitions, the ability

to interpolate or approximate data, and ease of handling constraints.

In this chapter, we explore the mathematical tools of polynomials and splines for tra-

jectory generation. We begin with point-to-point motion using minimum jerk trajectories

and SLERP for orientation, followed by a detailed discussion of spline representations.

This includes polynomial splines and B-splines, and their role in generating complex,

smooth robot motions.

2.1 Point-to-point motion

Minimum jerk point to point movements between two positions in Cartesian space with

zero initial and final velocities and accelerations result in straight lines spatial paths

with speed profiles defined by a fifth order polynomial. Note that a straight line is the

shortest path between two points in space. Equivalently, a SLERP trajectory defines the

shortest path between two orientations in the orientation space. The term SLERP has

been coined in computer graphics and stands for spherical linear interpolation. To define

such trajectories, the following data needs to be available:

• the initial pose
[
tTi ,q

T
i

]T
and the final pose

[
tTf ,q

T
f

]T
, where ti, tf ∈ R3 respectively

denote the initial and final position and qi, qf ∈ S3 ⊂ R4 the initial and final

orientation expressed as unit quaternions, and

• the desired travel time T .

We write

pminJrk(t;
[
tTi ,q

T
i

]T
,
[
tTf ,q

T
f

]T
, T) =

[
t(t; ti, tf , T)

T,q(t;qi,qf , T)
T
]T

. (2.1)

Next, we first provide the formulas for the position trajectory t(t), followed by the formulas

for SLERP trajectory q(t) expressed in the space of unit quaternions.

2.1.1 Minimum jerk trajectories

Given the initial and final positions ti, tf ∈ R3, the minimum jerk position trajectory

t(t) ∈ R3 is given by a fifth order polynomial

t(t; ti, tf , T) = a6t
5 + a5t

4 + a4t
3 + a3t

2 + a2t+ a1, (2.2)

2.1. POINT-TO-POINT MOTION 37

with the coefficients computed as follows:

a1 = ti, (2.3)

a2 = 0, (2.4)

a3 = 0, (2.5)

a4 =
10(tf − ti)

T 3
, (2.6)

a5 = −15(tf − ti)

T 4
, (2.7)

a6 =
6(tf − ti)

T 5
. (2.8)

Here ai ∈ R3, ∀i. Note that

t(t; ti, tf , T) = ti + (tf − ti)
(
6 (t/T)5 − 15 (t/T)4 + 10 (t/T)3

)
. (2.9)

2.1.2 SLERP trajectories

Given the initial and final orientations qi, qf ∈ S3, a SLERP trajectory is defined as

follows:

q(t;qi,qf , T) = ϑ1(t)qi + ϑ2(t)qf , 0 ≤ t ≤ T, (2.10)

where

ϑ1(t) =
sin ((1− s(t)) θ)

sin(θ)
, (2.11)

ϑ2(t) =
sin (s(t)θ)

sin(θ)
, (2.12)

and θ is equal to the half of the rotation angle needed to rotate qi to qf . It can be

calculated as

θ = arccos(v), (v,u) = qf ∗ qi, v ∈ R, u ∈ R3, (2.13)

where ∗ denotes the quaternion product and the quaternion conjugation as defined in

Eqs. (1.20) and (1.22), respectively. To compute the shortest path in SO(3), we need to

select the quaternion (qf or −qf) closer to qi . If v ≥ 0, then qf is closer to qi, otherwise

we replace qf with −qf . This way, v is always non-negative.

The temporal course of motion is determined by a monotonously increasing function

s(t) ∈ R, 0 ≤ s(t) ≤ 1, s(0) = 0, s(T) = 1. A good choice is the fifth order polynomial

that provides the speed profile for minimum minimum jerk trajectories

s(t) = 6 (t/T)5 − 15 (t/T)4 + 10 (t/T)3 . (2.14)

It can be shown that q(t) ∈ S3, ∀t.
Since ṡ(0) = s̈(0) = ṡ(T) = s̈(T) = 0, the robot is at rest with zero angular velocity

38 CHAPTER 2. POLYNOMIALS AND SPLINES

and acceleration at the beginning and the end of motion. The angular velocity ωωω at time

t can be computed using the formula

ωωω(t) = 2 q̇(t) ∗ q(t), (2.15)

where q(t) is defined as in (2.10),

q̇(t) = ϑ̇1(t)qi + ϑ̇2(t)qf , (2.16)

ϑ̇1(t) = −cos ((1− s(t)) θ)

sin(θ)
ṡ(t)θ, (2.17)

ϑ̇2(t) =
cos (s(t)θ)

sin(θ)
ṡ(t)θ, (2.18)

and s(t) is defined as in (2.14).

2.2 Polynomial splines

Due to their flexibility and ease of computation, spline functions have an important role in

approximation theory and statistics. From the statistical point of view, they are described

in great detail in [6, 37], whereas the classic book of de Boor [5] provides their detailed

description from the numerical analysis and approximation theory point of view. They

have also been applied for the generation of complex robot trajectories [33]. A polynomial

spline function of order 2m on the strictly increasing knot sequence t1 < . . . < tN is a

polynomial of order 2m− 1 on every interval ti ≤ t < ti+1, i < N, and tN−1 ≤ t ≤ tN

si,k(t) =
k−1∑
j=0

γijt
j, i = 1, . . . , N − 1. (2.19)

For k = 1, we obtain linear splines, for k = 2 cubic splines and for k = 6 quintic splines.

These are the most useful polynomial splines for robotic applications.

As there areN−1 intervals, a polynomial spline of form (2.19) on knot sequence {τi}Ni=1

has k(N − 1) parameters. However, a spline function useful for robotic applications need

to be continuous and have continuous derivatives up to at least second order. To achieve

continuity, we impose constraints

s
(j)
i,k(ti+1) = s

(j)
i+1,k(ti+1), i = 1, . . . , N − 2, j = 0, . . . , d, (2.20)

where d is the highest derivative order that is required to be continuous. Besides k(N−1)

parameters, we now also have (d+1)(N −2) constraints. In this case there are altogether

(k−d−1)N +2(d+1)−k) free parameters. For cubic splines with continuous derivatives

up to the the second order, we have k = 4, d = 2. Thus in this case there are N + 2

free parameters. Similarly, in case of quintic splines with continuous derivatives up to the

2.2. POLYNOMIAL SPLINES 39

fourth order, we obtain N + 4 free parameters.

A linear combination of polynomials of a certain order is a polynomial of the same

order. Thus the space of all spline functions as defined in (2.19) is a vector space. A

linear combination of spline functions that fulfill constraints (2.20) also fulfills these same

constraints. This means that the space of all spline functions of order k that fulfill

constraints (2.20) is also a vector space. Its dimension is (k − d− 1)N + 2(d+ 1− k).

In case of polynomial splines with continuous derivatives, the representation from

equation (2.19) is not ideal because it has more parameters than the dimension of the

vector space it represents. In the following we show how to construct a minimal set of

basis spline functions that can be used to represent the vector space of polynomial splines

with continuous derivatives.

2.2.1 B-splines

Let’s assume that we a have a nondecreasing knot sequence τττ = {τ1, . . . , τÑ}, τi ≤ τi+1.

A B-spline of order 1 is defined as follows

Bi,1(t) =

1, τi ≤ t < τi+1

1, τi < τi+1 = τÑ , t = τÑ

0, otherwise

, i = 1, . . . , Ñ . (2.21)

Unlike at the beginning of Section (2.2), here we allow that a knot appears more than

once in the knot sequence τττ , i.e. τi = τi+1. Note that according to this definition, Bi = 0

if τi = τi+1. Moreover, Bi(t) ̸= 0 only on the interval [τi, τi+1) (or [τi, τi+1] for one B-spline

at the right end of the knot sequence τττ). Note also that for any t ∈ [τ1, τÑ], we obtain

Ñ−1∑
i=1

Bi,1(t) = 1.

From the first order splines defined in equation (2.21), we recursively obtain the B-splines

of higher orders (k > 1)

Bi,k(t) = γi,k(t)Bi,k−1(t) + (1− γi+1,k(t))Bi+1,k−1(t), (2.22)

γi,k(t) =

t− τi

τi+k−1 − τi
, τi ̸= τi+k−1

0, otherwise

.

Note that for τi ̸= τi+k−1, τi+1 ̸= τi+k, equation (2.22) can be rewritten as

Bi,k(t) =
t− τi

τi+k−1 − τi
Bi,k−1(t) +

τi+k − t

τi+k − τi+1

Bi+1,k−1(t), (2.23)

40 CHAPTER 2. POLYNOMIALS AND SPLINES

For the B-splines of order k, Ñ − k basis spline functions of order k can be obtained by

the recursive formulas (2.21), (2.22).

SinceBi,1 are defined as constant step functions and higher order B-splines are obtained

from lower order B-splines via multiplications that are linear in t, every B-spline of order

k is a piecewise polynomial of order k − 1 on knot sequence τττ .

Next we prove by induction that Bi,k(t) = 0 outside of the support interval [τi, τi+k]

and that Bi,k(t) > 0, ∀t ∈ (τi, τi+k). By definition (2.21) of B-splines of order 1, both

is true for k = 1. Higher order B-splines are defined by the recursive formula (2.22),

where Bi,k is computed as a linear combination of Bi,k−1 and Bi+1,k−1. By induction

assumption, Bi,k−1 and Bi+1,k−1 vanish outside of the intervals [τi, τi+k−1] and [τi+1, τi+k],

respectively. Thus their linear combination Bi,k is zero outside of the interval [τi, τi+k].

Similarly, by induction assumption Bi,k−1 and Bi+1,k−1 are greater than zero on (τi, τi+k−1)

and (τi+1, τi+k), respectively. Given that both γi,k(t) and 1 − γi+1,k(t) are greater than

zero on these same intervals and Bi,k−1(τi+k−1) = 0, Bi+1,k−1(τi+k−1) > 0, we have proven

that Bi,k(t) > 0, ∀t ∈ (τi, τi+k).

An important property of B-splines is that although the lowest order B-splines Bi,1

are not continuous, the two weights γi,1(t) and 1− γi+1,1(t) are exactly right to cancel at

each intermediate point τi+1 the jump discontinuity of Bi,1(t) and Bi+1,1(t) so that Bi,2(t)

are continuous also at the internal knot points τi+1. The order of continuity increases also

in derivatives as higher order B-splines are computed. In there are no multiple internal

knot points, the B-splines of order k are continuously differentiable up to the derivative

of order k−2 at the internal knot points. The multiplicity of internal knot points reduces

the order of continuity.

This proof of this property relies on Marsden’s identity, a fundamental result in spline

theory. Intuitively, Marsden’s identity provides a recursive relationship that combines

adjacent B-splines to construct higher-order B-splines. The identity ensures that the

resulting B-splines maintain the necessary continuity and smoothness properties. Specifi-

cally, Marsden’s identity guarantees that the weighting functions used to combine adjacent

B-splines inherently smooth out discontinuities in both the function and its derivatives,

up to the required order. This mathematical mechanism underpins the construction of

B-splines and explains their continuity properties. For a comprehensive proof and deeper

understanding of Marsden’s identity, we refer the reader to de Boor’s seminal book on

splines [5].

In summary, B-splines defined by equations (2.21) and (2.22) have the following prop-

erties

1. Each B-spline Bi,k depends only on the knots {τi, . . . , τi+k}.

2. Each B-spline Bi,k is a piecewise polynomial on interval [τi, τi+k), thus it can be

written as

Bi,k(t) =
k−1∑
j=0

si+j,k(t)Bi+j,0(t), (2.24)

2.2. POLYNOMIAL SPLINES 41

0 6543210
0

1

0.8

0.6

0.4

0.2

0

Figure 2.1: Cubic B-Splines on the knot sequence {0, 0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 6, 6, 6}

where si+j,k are defined as in equation (2.19).

3. Bi,k(t) = 0 outside of the interval [τi, τi+k] and Bi,k is equal to zero everywhere if

τi = τi+k.

4. Bi,k(t) > 0, ∀t ∈ (τi, τi+k).

5. Each Bi,k is k− 1−mj continuously differentiable at every knot point τj, where mj

is the multiplicity of the knot τj.

Example cubic B-splines with multiple knots at the edge of the support interval are

shown in Fig. 2.1.

2.2.2 Natural and complete smoothing splines

Let’s now assume a monotonically strictly increasing sequence {ti}Ni=1, ti < ti+1, and

define a knot sequence τττ = {τi}N+4m−2
i=1 , where τ1 = . . . = τ2m = t1, τN+2m−1 = . . . =

τN+4m−2 = tN , and τ2m+1 = t2, . . . , τN−2+2m = tN−1. As the multiplicity of all internal

knot points in τττ is equal to 1, the B-splines of order 2m defined on knot sequence τττ are

2m− 2 continuously differentiable on [t1, tN]. The multiplicity of edge knot points t1 and

tN does not cause discontinuities on interval [t1, tN] because the B-splines at the edges

are respectively right and left continuous.

By induction we can show that B-splines {Bi,2m}N+2m−2
i=1 associated with knot sequence

42 CHAPTER 2. POLYNOMIALS AND SPLINES

τττ form a local partition of unity, i.e.

N+2m−2∑
i=1

Bi,k(t) = 1,∀t ∈ [t1, tN]. (2.25)

This property holds on the complete support interval [t1, tN] because of 2m multiple knots

at the edges. Without multiple knots, additional knots outside of the support interval

[t1, tN] would be needed to obtain the local partition of unity property in the neighborhood

of t1 and tN .

Next we observe that B-splines {Bi,2m}N+2m−2
i=1 are linearly independent. To prove

this we must show that if
∑N+2m−2

i=1 αiBi,2m(t) = 0, ∀t ∈ (tj, tj+1), then αi = 0, ∀i.
For any interval (tj, tj+1), the local support property implies that there are only 2m

B-splines different from zero on this interval, i.e. Bj,2m, . . . , Bj+2m−1,2m. Thus for any

t ∈ (tj, tj+1), we obtain
∑2m−1

i=0 αj+iBj+i,2m(t) = 0. But on the interval (tj, tj+1), B-splines

are just polynomials of degree 2m − 1. Using the Mardsen’s identity, one can show that

each basis polynomial ti, i = 0, , . . . , 2m − 1, can be written as a linear combination of

Bj+i,2m(t). Thus {Bj+i,2m}2m−1
i=0 are linearly independent on (tj, tj+1). It follows that if∑2m−1

i=0 αj+iBj+i,2m(t) = 0, then αj+i = 0,∀i. Since this is true for any interval (tj, tj+1),

it follows that B-splines are linearly independent.

In Section 2.2 we have seen that the space of polynomial splines with d continuous

derivatives is at least (k−d−1)N+2(d+1)−k dimensional. Inserting k = 2m, d = 2m−2

into this formula, we obtain (2m − d − 1)N + 2(d + 1 −m) = N + 2m − 2. This means

that B-splines {Bi,2m}N+2m−2
i=1 form the basis for the space of polynomial splines with d

continuous derivatives.

In summary for B-splines {Bi,2m}N+2m−2
i=1 defined on knot sequence τττ , we can add the

following properties to the list from Section 2.2.1:

6. {Bi,2m}N+2m−2
i=1 form a local partition of unity.

7. {Bi,2m}N+2m−2
i=1 form the basis of polynomial splines with 2m− 2 continuous deriva-

tives.

Thus each polynomial spline can be written as

s(t) =
N+2m−2∑

i=1

αiBi,2m(t). (2.26)

Moreover, since the support interval of every Bi,2m is equal to [ti, ti+2m], we obtain for

tj ≤ t ≤ tj+1

s(t) =

j∑
i=j−2m+1

αiBi,2m(t) (2.27)

Thus for any t ∈ [t1, tN], we need to consider the values of only 2m B-splines to calculate

the value of s at t.

2.2. POLYNOMIAL SPLINES 43

Let’s assume now that for a given robot degree of freedom, we have a sequence of

desired values {ti, fi}Ni=1. Let’s consider the following variational problem

minimize

∫ tN

t1

(fm(t))2 dt, f ∈ Lm
2 [t1, tN] (2.28)

under the conditions f (i)(tj) = fi, i = 1, . . . , N,

where Lm
2 [t1, tN] denotes the space of functions with continuous derivatives up to f (m−1)

and square-integrable derivative f (m). It is well known [6, 37] that the optimization

problem (2.28) has a unique solution s that belongs to the space of polynomial splines of

order 2m with 2m− 2 continuous derivatives with a further condition that

s(m+i)(t1) = s(m+i)(tN) = 0, i = 0, . . . ,m− 2. (2.29)

Its solution can thus be written in the form (2.26). Polynomial splines that solve optimiza-

tion problem (2.28) are called natural (smoothing) splines [5]. For cubic natural splines

we obtain the additional conditions s̈(t1) = s̈(tN) = 0, while for quintic natural splines,

the additional conditions are given as s(3)(t1) = s(3)(tN) = s(4)(t1) = s(4)(tN) = 0. We

already know that the dimension of the space of polynomial splines of order 2m on knot

sequence τττ is equal to N +2m− 2. Thus we can compute the natural spline interpolating

the values fi at ti by solving the following linear interpolation system

N+2m−2∑
i=1

αiB
(m+j)
i (t1) = 0, j = m− 2, . . . , 0

N+2m−2∑
i=1

αiBi(tj) = fj, j = 1, . . . , N

N+2m−2∑
i=1

αiB
(m+j)
i (t1) = 0, j = 0, . . . ,m− 2

(2.30)

This system can be rewritten in a matrix form

Xααα = f , (2.31)

44 CHAPTER 2. POLYNOMIALS AND SPLINES

where X ∈ R(N+2m−2)×(N+2m−2), ααα ∈ RN+2m−2, and f ∈ RN+2m−2 are given by

X =

B
(2m−2)
1,2m (t1) B

(2m−2)
2,2m (t1) . . . B

(2m−2)
N+2m−2,2m(t1)

...
...

...
...

B
(m)
1,2m(t1) B

(m)
2,2m(t1) . . . B

(m)
N+2m−2,2m(t1)

B1,2m(t1) B2,2m(t1) . . . BN+2m−2,2m(t1)

B1,2m(t2) B2,2m(t2) . . . BN+2m−2,2m(t2)

.

B1,2m(tN) B2,2m(tN) . . . BN+2m−2,2m(tN)

B
(m)
1,2m(tN) B

(m)
2,2m(tN) . . . B

(m)
N+2m−2,2m(tN)

...
...

...
...

B
(2m−2)
1,2m (tN) B

(2m−2)
2,2m (tN) . . . B

(2m−2)
N+2m−2,2m(tN)

, ααα =

α1

α2

...

αÑ

 , f =

0
...

0

f1

f2
...

fN

0
...

0

,

(2.32)

where Ñ = N +2m−2. Due to the limited support of B-splines Bi,2m, the system matrix

X is banded with only 2m values different from 0 in every row. Thus the system (2.31)

can be solved efficiently. The partition of unity property of B-splines further contributes

to the stability of numerical computations.

For robot trajectories, it is often required that the robot starts and ends its motion

with velocities and accelerations equal to zero. It turns out that variational problem

minimize

∫ tN

t1

(fm(t))2 dt, f ∈ Lm
2 [t1, tN] (2.33)

under the conditions f (i)(tj) = fi, i = 1, . . . , N,
j∑

i=j−2m+1

αiBi,2m(t), j = 1, . . . ,m− 1,

has a unique solution that belongs to the space of polynomial splines of order 2m on knot

sequence τττ . Polynomial splines that solve optimization problem (2.33) are called complete

smoothing splines [11]. Unlike in the case of natural splines, there are no additional con-

ditions in this case. This is not surprising as variational problem (2.33) already contains

N + 2m − 2 conditions, which is equal to the dimensionality of the space of polynomial

splines of order 2m on knot sequence τττ . Similarly to variation problem (2.28), we can

solve (2.33) by solving equation system (2.31), where the right hand side vector f and

variable vector ααα are exactly the same as in (2.32), whereas system matrix X has different

first and last m − 1 rows. Instead of derivatives of order m + j, j = 0, . . . ,m − 2, we

compute the derivatives of order 1 + j, j = 0, . . . ,m− 2.

Interpolation works well if there is no noise in the desired positions fj that need to be

interpolated. However, if the desired positions are noisy, it is better to only approximate

the desired positions. Let’s now assume that we have a sequence of noisy desired positions

2.3. SUMMARY 45

{t̃j, f̃j}Mj=1. We assume that M > N + 2m − 2 and t1 = t̃1, tN = t̃M , whereas the inter-

mediate times t̃2, . . . , t̃M−1 may or may note coincide with the knot points t2, . . . , tN−1.

We can now solve the following overdetermined system of linear equations with equality

constraints

minimize
1

2
∥Xααα− f̃∥2 (2.34)

under the conditions
N+2m−2∑

i=1

αiB
(j)
i,2m(t1) = 0, j = 1, . . . ,m− 1

N+2m−2∑
i=1

αiB
(j)
i,2m(tN) = 0, j = 1, . . . ,m− 1

These types of problems are called constrained linear least squares. In (2.34), X ∈
RM×(N+2m−2), ααα ∈ RN+2m−2, and f̃ ∈ RM are computed as follows

X =

B1,2m(t̃1) B2,2m(t̃1) . . . BN+2m−2,2m(t̃1)

B1,2m(t̃2) B2,2m(t̃2) . . . BN+2m−2,2m(t̃2)

.

B1,2m(t̃M) B2,2m(t̃M) . . . BN+2m−2,2m(t̃M)

 , ααα =

α1

α2

...

αN+2m−2

 , f =

f̃1

f̃2
...

f̃M

(2.35)

The relationship between the number of measurements M and the number of knot points

N+2m−2 determines the amount of smoothing versus interpolation. If N is too large, the

polynomial spline computed by solving constrained linear least squares problem (2.34) will

result in a noisy trajectory because the measurements {f̃j}Mj=1 will be nearly interpolated.

If N is too small, the resulting trajectory will be oversmoothed and will not follow the data

well. One can start with a large N so that the resulting spline nearly interpolates the data

and then gradually decrease it until the resulting errors {
∑N+2m−2

i=1 αiBi,2m(t̃j) − f̃j}Mj=1

reach the expected standard deviation in the data. Bisection can be used to determine

the optimal N.

2.3 Summary

Polynomial and spline-based trajectory representations are foundational tools in robotics

for generating smooth and flexible robot motions. Their ability to ensure continuity up to

the second or higher derivatives makes them particularly suitable for robotic applications

where dynamic constraints and smooth transitions are essential. Polynomial trajectories,

such as minimum jerk motions, provide an analytically simple and computationally effi-

cient way to achieve point-to-point movements with zero initial and final velocities and

accelerations. These trajectories guarantee straight-line paths in Cartesian space and

shortest-path orientations using SLERP, which are advantageous for tasks requiring pre-

46 CHAPTER 2. POLYNOMIALS AND SPLINES

cision and minimal computational overhead. However, their limitation lies in their lack

of flexibility for complex, multi-segment paths.

Splines, particularly B-splines, address this limitation by enabling the construction

of complex, continuous trajectories over multiple segments. Their flexibility in handling

variable knot placement and their ability to maintain high-order continuity make them

a robust choice for generating smooth paths in robotics. B-splines offer local control,

as changes to one segment of the trajectory only affect a small neighborhood, and their

partition of unity property ensures numerical stability. Natural and complete splines

further extend these benefits by providing solutions to variational problems that balance

smoothness and adherence to boundary or data constraints. These properties make splines

highly effective for interpolation and approximation tasks, such as fitting noisy data or

generating motion paths that satisfy specified conditions.

Despite their advantages, spline-based methods have some shortcomings. The choice

of the number and placement of knots can significantly impact the quality of the trajec-

tory, and improper settings may lead to oversmoothing or noisy paths. Moreover, while

modern software packages simplify spline computation, understanding their underlying

mathematical principles remains critical for designing trajectories with desired properties.

These challenges highlight the trade-offs between simplicity, flexibility, and computational

complexity in spline-based trajectory design.

Overall, the combination of polynomials for simple tasks and splines for complex,

segmented paths offers a versatile approach to trajectory generation in robotics, catering

to a wide range of applications while addressing the unique requirements of robotic motion

planning and control.

Chapter 3

Dynamic Movement Primitives

As explained in Section 1.1, policies defined by PD controllers and desired time-dependent

trajectories are typically only valid near the desired trajectory. They lack flexibility and

are not suitable for dynamic and unpredictable environments, such as our homes. As

an alternative, representations based on parametric systems of autonomous differential

equations (1.4) can be used.

The goal of a motion generation system is to ensure that the robot successfully com-

pletes the desired task. In many cases, this involves point-to-point movements for activ-

ities like pick-and-place operations and grasping. There are also many tasks involving

periodic movements, such as polishing and repetitive pick-and-place operations. Whether

the specific path taken during these tasks matters can vary depending on the applica-

tion. In this chapter, we will show that these two types of movements can be formalized

using attractor dynamics: point attractors for point-to-point movements and limit cycle

attractors for repetitive, periodic movements.

To address these movement challenges, we describe an approach to specifying robot

control policies based on autonomous dynamic systems. We establish a modeling frame-

work that addresses both discrete and periodic movements within a unified and coherent

dynamic systems framework. The resulting representation is called Dynamic Movement

Primitives (DMPs), which were developed by Schaal, Ijspeert, and others [13, 14, 32, 12].

A notable feature of DMPs is the inclusion of adjustable parameters that do not com-

promise the stability of the dynamic system. This provides the basis for their integration

with optimization techniques to generate a wide range of robot motions.

We will demonstrate that DMPs provide a comprehensive framework for the specifi-

cation of robot control policies. They result in smooth kinematic control policies, which

are essential for implementing robust robot behaviors. DMPs are highly suitable for con-

trolling robots in uncertain environments because they: 1) guarantee smooth transitions

in the event of sudden changes in movement description or disturbances, 2) are not ex-

plicitly dependent on time, 3) provide an appropriate framework for trajectory learning

and adaptation using imitation and reinforcement learning algorithms, and 4) allow the

learning of complete families of trajectories from multiple demonstrations using statistical

47

48 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

learning algorithms. One of the unique properties of DMPs is their ability to modulate

trajectories in real time based on sensory feedback. For example, the phase-stopping

mechanism enables the robot to halt the progress of the phase and track the desired tra-

jectory even when a large position error arises. Such control responses are much more

difficult to implement with time-dependent representations, such as polynomial splines.

3.1 Control Policies as Dynamic Systems

We continue by explaining theoretical foundations of dynamic movement primitives. First

we define discrete movement primitives that can encode control policies for discrete point-

to-point movements. This type of DMPs is based on a set of nonlinear differential equa-

tions with a well-defined attractor dynamics. There are a few different but essentially

equivalent formulations in the literature, in the following we use the one outlined in

[31, 12]. For a single robot degree of freedom, here denoted by y, which can either be one

of the internal joint angles or one of the external task-space coordinates, the following

system of linear differential equations with constant coefficients has been used to derive

DMPs

τ ż = αz(βz(g − y)− z), (3.1)

τ ẏ = z. (3.2)

Note that the auxiliary variable z is just a scaled velocity of the control variable, i. e.

ẏ. The gain constants αz, βz > 0 have an interpretation in terms of spring stiffness and

damping. With the parameters appropriately set, these equations form a globally stable

linear dynamic system with g as a unique point attractor, which means that for any start

configuration y = y0, the parameter y would reach g after a transient motion, just like a

stretched spring, upon release, will return to its equilibrium point [31]. τ > 0 is called

a time constant and can be used to speed up (when τ decreases) or slow down (when τ

increases) the motion.

Let’s analyze why the above system is useful. We start by writing down a general

solution of the non-homogenous linear differential equation system (3.1) – (3.2). It is well

known that the general solution of such a system can be written as a sum of the par-

ticular and homogeneous solution, i.e. [z(t), y(t)]T = [zp(t), yp(t)]
T + [zh(t), yh(t)]

T . Here

[zp(t), yp(t)]
T denotes any function that solves system (3.1) – (3.2), while [zh(t), yh(t)]

T is

the general solution of the homogeneous part of Eq. (3.1) – (3.2), i. e.[
ż

ẏ

]
=

1

τ

[
−αz(βzy + z)

z

]
= A

[
z

y

]
, A =

1

τ

[
−αz −αzβz

1 0

]
. (3.3)

It is easy to check that a constant function [zp(t), yp(t)]
T = [0, g]T solves the system (3.1) –

(3.2). Additionally, it is well known that the general solution of homogeneous system (3.3)

3.1. CONTROL POLICIES AS DYNAMIC SYSTEMS 49

is given by [zh(t), yh(t)]
T = exp (At) c. Thus, the general solution of Eq. (3.1) – (3.2) can

be written as [
z(t)

y(t)

]
=

[
0

g

]
+ exp (At) c, (3.4)

where c ∈ R2 should be calculated from the initial conditions, [z(0), y(0)]T = [z0, y0]
T .

The eigenvalues of A are given by λ1,2 =
(
−αz ±

√
α2
z − 4αzβz

)
/(2τ). Solution (3.4)

converges to [0, g]T if the real part of λ1,2 is smaller than 0, which is true for any αz,

βz, τ > 0. The system is critically damped, which means that y converges to g without

oscillating and faster than for any other choice of A if A has two negative eigenvalues.

This happens at αz = 4βz.

It is important to note here that changing τ or g does not compromise the stability

of dynamic system (3.1) – (3.2). Regardless of their choice, the system remains critically

damped. Only the attractor point and the speed of convergence towards the attractor

point change with different τ and g.

3.1.1 Discrete (point-to-point) movements

Differential equations (3.1) – (3.2) ensure that y converges to g and can therefore be used to

realize discrete point-to-point movements. To increase a rather limited set of trajectories

that can be encoded by (3.1) – (3.2) and thus enable the representation of general point-

to-point movements, we can add a nonlinear component to Eq. (3.1). One possibility is

to add a linear combination of radial basis functions [31]

f(x) =

∑N
i=1wiΨi(x)∑N
i=1Ψi(x)

x(g − y0), Ψi(x) = exp
(
−hi (x− ci)

2) , (3.5)

where ci are the centers of radial basis function distributed along the trajectory and

hi > 0. The term g − y0, y0 = y(0), is used to scale the trajectory if the initial and / or

final configuration change. As long as the beginning and the end of movement are kept

constant, this scaling factor has no effect and can also be omitted. A phase variable x is

used in Eq. (3.5) instead of time to make the dependency of the resulting control policy

on time more implicit. Its dynamics is defined by

τ ẋ = −αxx, (3.6)

with the initial value x(0) = 1. (3.6) is called a canonical system. The gain αx must be

positive. Given the initial condition x(0) = 1, we can compute the analytical solution for

the first-order differential equation (3.6)

x(t) = exp
(
−αx

τ
t
)
. (3.7)

50 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

Note that according to this definition, phase decreases from 1 to 0 over time. As shown

in Section 3.5.1, the appealing property of using the phase variable x instead of explicit

time is that by appropriately modifying Eq. (3.6), the evolution of time can be stopped to

account for perturbations during motion. There is no need to manage the internal clock

of the system.

We now define the following system of nonlinear differential equations

τ ż = αz(βz(g − y)− z) + f(x), (3.8)

τ ẏ = z. (3.9)

In this formulation, the nonlinear function f is called a forcing term. It is defined as

a function of phase variable x to avoid explicit time dependency. By setting the initial

value of phase variable to 1, i.e. x(0) = 1, we can observe that the phase tends to 0 as

time increases because the solution to Eq. (3.6) with the initial value x(01) = 1 is given

by x(t) = exp(−αx/τt). Note that the phase variable x and consequently f(x) tend to 0

as time increases. Hence the influence of the nonlinear forcing term f(x) vanishes with

time and the system (3.8), (3.9), (3.6) is guaranteed to converge to [0, g]T , just like the

system (3.1), (3.2). The control policy specified by variable y and its first- and second-

order derivatives defines what we call a Dynamic Movement Primitive (DMP). For a robot

with several degrees of freedom, each DOF is represented by its own differential equation

system (3.8), (3.9), whereas the phase x defined by Eq. (3.6) remains common across

all robot degrees of freedom. Note that the free parameters ααα from Eq. (1.1) and (1.4)

consists of free parameters {wi}Ni=1, g and τ .

As the differential equation system (3.8), (3.9) are independent of each other, we can

write

τ ż = αz(βz(g − y)− z) + f(x), (3.10)

τ ẏ = z, (3.11)

where y, z ∈ Rn are the vectors combining all robot joins and auxiliary parameters while

n is the number of degrees of freedom. Note that each degree of freedom has its own

forcing term defined as a superposition of radial basis functions, which are gathered in

vector forcing term f(x) = [f1(x), . . . , fn(x)]
T
,

The parameters ci and hi of Eq. (3.5) are usually defined so that Gaussian basis

functions are uniformly distributed in the time domain. This can be achieved by setting

the following distribution pattern in the phase domain, given N basis functions

ci = exp

(
−αx

i− 1

N − 1

)
, i = 1, . . . , N, (3.12)

hi =
2

(ci+1 − ci)2
, i = 1, . . . , N − 1, hN = hN−1. (3.13)

3.1. CONTROL POLICIES AS DYNAMIC SYSTEMS 51

Canonical system
(phase)

Transformation
system 1

position
velocity
acceleration

Transformation
system 2

position
velocity
acceleration

Transformation
system n

position
velocity
acceleration

…

f1

f2

fn

Figure 3.1: Schematic presentation of the canonical system and the transformation system
that together form a DMP. The canonical system generates the phase that drives the
transformation systems, which generate motor commands for all degrees of freedom.

Note that c1 = 1 = x(0) and cN = exp (−αx) = x(tT), where tT is the time at which the

dynamic movement primitive ends.

System (3.10), (3.11) is called transformation system. In dynamic movement primi-

tives, the canonical system (3.6) and transformation systems work together to model and

generate complex movements. The canonical system plays the role of a temporal scaling

mechanism, controlling the progression of the phase of the movement. It provides a phase

variable that evolves monotonically from a starting point to an end point. This phase

variable serves as a reference for the transformation system, ensuring that the move-

ment is time-independent and can be adjusted for different durations without altering the

fundamental characteristics of the motion.

The transformation system, on the other hand, is responsible for shaping the movement

trajectory itself. It takes the phase variable provided by the canonical system and applies

it to a set of basis functions or nonlinear terms that define the desired trajectory. These

basis functions are weighted and combined to produce the movement, allowing the DMP

to generate complex, smooth, and adaptable trajectories. The transformation system

also includes components that ensure the generated trajectory smoothly converges to a

predefined goal, making the motion robust to changes in starting or goal positions.

Together, the canonical and transformation systems allow DMPs to encode and repro-

duce flexible, goal-directed movements that can be easily modified for different tasks and

environmental conditions, making them highly effective for robotic learning and control

applications. Their interplay is shown in Fig. 3.1.

52 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

3.1.2 Periodic (rhythmic) movements

In the case of periodic movements, we form the forcing term by a superposition of periodic

functions [31]

f(ϕ) =

∑N
i=1 wiΓi(ϕ)∑N
i=1 Γi(ϕ)

r, Γi(ϕ) = exp (hi (cos (ϕ−ci)−1)) . (3.14)

Here r is the amplitude of the oscillator and hi > 0. Writing Ω = 1/τ , Eqs. (3.10) and

(3.11) are replaced by

ż = Ω(αz(βz(g − y)− z) + f(ϕ)) , (3.15)

ẏ = Ωz. (3.16)

The phase variable ϕ has been introduced in this case to avoid the explicit dependency

on time. The phase is assumed to move with constant speed

ϕ̇ = Ω, (3.17)

where Ω is the frequency of oscillation. In the case of periodic functions, we distribute

the basis functions uniformly along the phase interval [0, 2π], i. e.

ci =
(2 ∗ i− 1)π

2N
, i = 1, . . . , N, (3.18)

and hi = 2.5π/N, ∀i. The phase interval [0, 2π] describes one period of motion.

3.2 Computing DMP parameters from a single demon-

stration

Next we will show that Eq. (3.8), (3.9) , and (3.6) can be used to approximate any discrete

point-to-point movement.

Discrete DMPs were designed to provide a representation with free parameters that

enables accurate representation of a desired point-to-point movement and at the same

time permits the modulation of different properties of the encoded trajectory. The shape

parameters wi are the key when it comes to accurately representing a desired motion

trajectory.

As explained in Section 1.3, programming by demonstration is an effective way to

specifying motion trajectories. In this approach, a human instructor demonstrates the

desired motion using one of the approaches described in Section 1.4. We obtain the

following measurements

{yd(tj), tj}Tj=0, (3.19)

3.2. COMPUTING DMP PARAMETERS FROM A SINGLE DEMONSTRATION 53

where yd(tj) ∈ Rn are the desired joint angles and T + 1 is the number of the measured

robot configurations on the robot trajectory.

To compute a DMP (Dynamic Movement Primitive) from this data, we must first

numerically compute the velocities and accelerations from the measured data. Central

finite differences can be used for this purpose. In the general case of non-uniformly

sampled data, we obtain the following formulas:

ẏd(tj) =
(tj − tj−1)(yd(tj+1)− yd(tj) + (tj+1 − tj)(yd(tj)− yd(tj−1))

(tj+1 − tj−1)(tj+1 − tj)
, (3.20)

ÿd(tj) =
2

(tj+1 − tj)(tj − tj−1)

(
yd(tj+1)− yd(tj)

tj+1 − tj
+

yd(tj)− yd(tj−1)

tj+1 − tj−1

)
. (3.21)

For uniform sampling, i.e. tj+1 − tj = tj − tj−1 = ∆t, the formulas simplify significantly:

ẏd(tj) =
yd(tj+1)− yd(tj−1)

2∆t
, (3.22)

ÿd(tj) =
yd(tj+1)− 2yd(tj) + yd(tj−1)

∆t2
. (3.23)

These formulas are valid for j = 1, . . . , T − 1. If the robot should be at rest at the

beginning and end of the motion, we can set:

ẏd(t0) = yd(tT) = ÿd(t0) = ÿ(tT) = 0.

The demonstrated data (3.19) must be consistent with this assumption for the real robot

to be at rest at the beginning and end of the motion. If the initial and final velocities are

not known, we can estimate them using left and right finite differences:

ẏd(t0) =
yd(t1)− yd(t0)

t1 − t0
, (3.24)

ẏd(tT) =
yd(tT)− yd(tT−1)

tT − tT−1

. (3.25)

Similarly, for accelerations we obtain

ÿd(t1) =
2

(t2 − t0)(t1 − t0)

(
yd(t2)− yd(t1)

t2 − t1
− yd(t1)− yd(t0)

t1 − t0

)
, (3.26)

ÿd(tT) =
2

(tT − tT−2)(tT − tT−1)

(
yd(tT)− yd(tT−1)

tT − tT−1

− yd(tT−1)− yd(tT−2)

tT−1 − tT−2

)
. (3.27)

We obtain the following data that can be used to compute a DMP

{yd(tj), ẏd(tj), ÿd(tj)}Tj=0, (3.28)

where yd(tj), ẏd(tj), ÿd(tj) are the measured positions, velocities, and accelerations on

54 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

the training trajectory and T + 1 is the number of sampling points.

Computing DMP parameters by solving a system of linear equations

To compute the DMP parameters, we now rewrite the system of two first-order linear

equations (3.8) – (3.9) as a second-order equation. This is done by replacing z with τ ẏ in

Eq. (3.8)

τ 2ÿ + αzτ ẏ − αzβz(g − y) = f(x), (3.29)

with the components of f = [f1, . . . , fn]
T defined as in Eq. (3.5). Note that time constant

τ is the same for all degrees of freedom. A possible choice is τ = tT , where tT is the

duration of the training movement. On the other hand, the attractor point g varies

across the degrees of freedom. It can be extracted directly from the data: g = yd(tT).

For every degree of freedom k, 1 ≤ k ≤ n and using the desired values yd(tj), ẏd(tj), ÿd(tj),

we can compute the following values

Fk,j = τ 2ÿd,k(tj) + αzτ ẏd,k(tj)− αzβz(gk − yd,k(tj)), (3.30)

By considering the right hand side of differential equation (3.29) and the definition of

function f(x) in (3.5), we obtain the following system of linear equations

Fk,j = xj(gk − y0,k)
N∑
i=1

wk,iΨi(xj)∑N
i=1Ψi(xj)

, j = 0, . . . , T, (3.31)

where y0 = yd(t0) and the phase sampling points xj, j = 0, . . . , T, are computed using

Eq. (3.7). Writing

Fk =

 Fk,0

. . .

Fk,T

 , Fk ∈ RT+1, wk =

 wk,1

. . .

wk,N

 , wk ∈ RN ,

we can rewrite the equation system (3.31) in the matrix form

Xwk =
1

gk − yk,0
Fk, (3.32)

where the system matrix X ∈ R(T+1)×N is given by

X =

Ψ1(x0)∑N
i=1 Ψi(x0)

x0 . . . ΨN (x0)∑N
i=1 Ψi(x0)

x0

.
Ψ1(xT)∑N
i=1 Ψi(xT)

xT . . . ΨN (xT)∑N
i=1 Ψi(xT)

xT

 . (3.33)

The equation system (3.32) need to be solved to estimate the weights wk specifying

a DMP encoding the k-th degree of freedom of the desired motion. The weights wk can

3.2. COMPUTING DMP PARAMETERS FROM A SINGLE DEMONSTRATION 55

be calculated by solving the above system of linear equations in a least-squares sense.

This system is overdetermined because typically T > N . The full DMP is specified by

computing separate DMPs for every robot degree of freedom.

The resulting DMP ensures that the robot reaches the attractor point g at time tT .

Since discrete DMPs have been designed to represent discrete point-to-point movements,

the training movement must come to a full stop at the end of the demonstration if the robot

is to stay at the attractor point after tT . If any other type of motion is approximated

by a DMP, the robot will overshoot the attractor point and returned back to it after

the dynamics of the second-order system of differential equations starts dominating the

motion. At least theoretically, the velocity does not need to be zero at the beginning of

movement, but this is not usual in real PbD systems.

In the equations above, αx, αz, and βz are constant. They are set so that the conver-

gence of the underlying dynamic system is ensured, which is for example the case if we

set αx = 2, βz = 3, αz = 4βz = 12.

Computing DMP parameters by locally weighted regression

Ijspeert et al. [14, 12] suggested to estimate the DMP weights wk,i independently of each

other using locally weighted regression [1]. Locally weighted regression computes the

weights wk,i using equations

Fk,j = xj(gk − y0,k)wk,i. (3.34)

This equation is obtained from (3.31) by assuming the constant forcing term wk,i. The

values of the kernel function Ψi(xj) are in this case used to weight the importance of each

of these equations, which results in the locally weighted least squares problem

T∑
j=0

Ψi(xj) (Fk,j − xj(gk − y0,k)wk,i)
2 . (3.35)

It is easy to show that this optimization problem is solved by

wk,i =
ξξξTkΓΓΓiFk

ξξξTkΓΓΓiξξξk
, (3.36)

where

ξξξk =

x0(gk − y0,k)

x1(gk − y0,k)
...

xT (gk − y0,k)

 , ΓΓΓi =

Ψi(x0) 0 . . . 0

0 Ψi(x1) . . . 0
.

0 0 . . . Ψi(xT)

 (3.37)

Note that no matrix inversion is needed to compute wk,i in this case.

The advantage of applying a full linear system (3.32) to estimate w is that this way

we can approximate trajectories more accurately with less basis function by considering

the interplay between the neighboring basis functions Ψi of Eq. (3.5). However, the

56 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

separate estimation of wk,i by solving optimization problem (3.35) also has its advantages,

especially in the presence of noise when overfitting can become a problem [13].

Incremental estimation of periodic DMPs

In case of periodic DMPs, the equation system that need to be solved is quite similar.

The second order differential equation system equivalent to (3.29) becomes

1

Ω2
ÿ +

αz

Ω
ẏ − αzβz(g − y) = f(ϕ), (3.38)

with the components of f = [f1, . . . , fn]
T defined as in Eq. (3.14). From the measurements

we obtain

Fk,j =
1

Ω2
ÿd,k(tj) +

αz

Ω
ẏd,k(tj)− αzβz(gk − yd,k(tj)), (3.39)

while the linear equation system (3.31) transforms to

Fk,j = r
N∑
i=1

wk,iΨi(ϕj)∑N
i=1Ψi(ϕj)

, j = 0, . . . , T, k = 1,n. (3.40)

The phase variables are simply computed as ϕj = Ωtj, which we obtain by solving Eq.

(3.17) with the initial value ϕ0 = 0.

Besides the weights wk,j, there are three additional parameters that need to be esti-

mated from the data: the amplitude r, the center of oscillation g, and the frequency of

oscillation Ω. r and g can easily be estimated from the data:

g =
1

T + 1

T∑
j=0

yd(tj), (3.41)

r = max
0≤j≤T

∥yd(tj)− g∥. (3.42)

The estimation of frequency Ω is more involved and is described in the following section.

Assuming r, g, and Ω are known, the shape parameters w could be computed by

solving the equation system (3.40)

Xwk = [Fk,0, Fk,1, . . . , Fk,T]
T (3.43)

with the system matrix

X = r

Γ1(ϕ0)∑N
i=1 Γi(ϕ0)

. . .
ΓN(ϕ0)∑N
i=1 Γi(ϕ0)

...
. . .

...
Γ1(ϕT)∑N
i=1 Γi(ϕT)

. . .
ΓN(ϕT)∑N
i=1 Γi(ϕT)

 . (3.44)

3.2. COMPUTING DMP PARAMETERS FROM A SINGLE DEMONSTRATION 57

However, periodic motions do not necessarily have an ending and new data is supplied

continuously. In such cases, shape parameters w can be estimated by applying recursive

least squares with a forgetting factor. For the k-th degree of freedom, we obtain the

following iteration

Pj =
1

λ

(
Pj−1 −

Pj−1xjx
T
j Pj−1

λ+ xT
j Pj−1xj

)
, (3.45)

wk,j = wk,j−1 + (Fk,j − xT
j wk,j−1)Pjxj, (3.46)

where j is the iteration index, wk,j = [w1,j, . . . , wN,j]
T ∈ RN and Pj ∈∈ RN×N are the cur-

rent estimates for the shape parameters and auxiliary covariance matrix P, respectively,

with the initial estimates P0 = I, wk,0 = 0. Note that the covariance matrix only depends

on the choice of basis functions and is independent of the measurements {yd(tj), tj}Tj=0.

It is therefore the same for all robot degrees of freedom. The desired forcing term values

Fk,j are as in Eq. (3.39), xj is the M dimensional column vector associated with the

corresponding row of the system matrix X from Eq. (3.44), 0 < λ ≤ 1 is the forgetting

factor, and the final weights are given as w = wT . The forgetting factor should be set

to 1 if only one period of example motion is available, but in such cases the standard

least-squares solution is preferable.

The recursive formulation is typically used when learning periodic movements online,

i. e. when estimating the DMP parameters while the human demonstrates the desired

periodic motion. If in parallel the robot executes the current estimate of the periodic

DMP, the human demonstrator can observe its performance and continue demonstrating

until a satisfactory performance has been achieved.

3.2.1 Adaptive frequency oscillators

Unlike the time duration τ in the case of discrete movements, the frequency of oscillation

is not directly observable in the data. To estimate the frequency, Righetti et al. [29]

suggested to replace the constant speed assumption (3.17) by a system

ϕ̇i = Ωi −Ke (t) sin (ϕi) , (3.47)

Ω̇i = −Ke (t) sin (ϕi) , (3.48)

α̇i = η cos (ϕi) e (t) , (3.49)

where e (t) = yd(t) − ŷ(t) and ŷ(t) =
∑L

i=1 αi cos (ϕi). Note that if e (t) = 0, the system

(3.47) – (3.49) becomes equivalent to (3.17). It has been shown that by integrating this

system, the frequencies Ωi contained in the observed motion trajectory can be estimated.

The most significant frequency is selected as the base or fundamental frequency Ω for the

DMP (see [8] for the integration of adaptive frequency oscillators with DMPs).

Alternatively, Petrič et al. [27] suggested to extract the motion frequency based on an

adaptive frequency oscillator combined with an adaptive Fourier series. This results in a

58 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

second order system of differential equations

Ω̇ = −Ke sin (ϕ) , (3.50)

ϕ̇ = Ω−Ke sin (ϕ) , (3.51)

where Ω is the extracted frequency, ϕ is the phase, K is the coupling constant and

e (t) = yd(t)− ŷ(t) is the difference between the actual control value y and the estimated

control value ŷ, where ŷ is given by

ŷ(t) =
m∑
c=0

(αc cos(cϕ(t)) + βc sin(cϕ(t))). (3.52)

Here,m denotes the size of the Fourier series. The weights αc and βc are updated according

to the following learning rule

α̇c = η cos(cϕ)e, (3.53)

β̇c = η sin(cϕ)e, (3.54)

where η is the learning constant (see [27] for more details). The size of the Fourier series

is normally set to a low value such as m = 10.

3.2.2 Integration of DMPs for robot control

To control the robot, we need to integrate the DMP equations (3.10), (3.11), and (3.6) for

discrete movements or (3.15), (3.16), and (3.17), for periodic movements. The simplest

method to implement the integration is the Euler’s method, which is a first-order numeri-

cal technique for approximating solutions to ordinary differential equations by iteratively

advancing the solution using the derivative at each step. Beginning with an initial value,

it estimates the next point based on the current value and its derivative. This procedure

is repeated over the desired interval to construct an approximate solution. For discrete

DMPs, we obtain the following integration formulae

zj+1 = zj +
1

τ
(αz(βz(g − yj)− zj) + f(xj))∆t, (3.55)

yj+1 = yj +
1

τ
zj∆t, (3.56)

xj+1 = xj −
αx

τ
xj∆t, (3.57)

where ∆t > 0 is the integration step. For the initial values we set x0 = 1, y0 should

be set to the robot’s initial configuration, while z0 = τv0, where v0 is the initial robot

velocity. Usually the initial velocity is equal to 0. The integration step ∆t can be set

to the servo rate of the robot controller. If the integration accuracy at this rate is not

sufficient, ∆t can be set to a smaller value, with the robot’s servo rate being a multiple

3.2. COMPUTING DMP PARAMETERS FROM A SINGLE DEMONSTRATION 59

of the integration rate. In this case, only the integrated values computed at the robot

controller’s servo rate are used to control the robot.

For periodic DMPs, we obtain similar integration formulae:

zj+1 = zj + Ω(αz(βz(g − yj)− zj) + f(ϕj))∆t, (3.58)

yj+1 = yj + Ωzj∆t, (3.59)

xj+1 = xj + Ω∆t. (3.60)

In this case, the initial phase value is set to ϕ0 = 0, whereas y0 and z0 are initialized in

the same way as for discrete DMPs.

Besides decreasing the integration step, the accuracy of integration can also be im-

proved by replacing Euler’s method with one of the Runge-Kutta methods, which im-

prove upon Euler’s method by using multiple intermediate evaluations of the derivative

to achieve higher accuracy without reducing the step size. While Euler’s method is a

first-order method (linear error reduction with step size), the Runge-Kutta methods, such

as the commonly used fourth-order Runge-Kutta (RK4), achieve higher-order accuracy

(quartic error reduction with step size) by considering the derivative at multiple points

within the step interval. This results in better approximations of the true DMP.

An important property of DMPs is that they form a control policy, which means that

even if the current state of the robot is not close to the trajectory used for training,

the DMP system generates motor commands that smoothly move the robot towards the

trained motion. For every phase x, an attractor field is generated that moves the robot

D
ynam

icalM
ovem

entPrim
itives

335

0 0.2 0.4 0.6 0.8 1
0.5

0

0.5

1

1.5

Time [s]

y1

1 0 1 2 3
1

0.5

1
1

1
1

0.5 0.5

1
1

0.5

1
1

1
1

0.5 0.5

0

0.5

1

1.5

2

2.5

3

y1

y2

x = 1.00

0 1 2 3

0

0.5

1

1.5

2

2.5

3

y1

y2

x = 0.43

0 1 2 3

0

0.5

1

1.5

2

2.5

3

y1

y2

x = 0.19

0 0.2 0.4 0.6 0.8 1
0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

y2

0 1 2 3

0

0.5

1

1.5

2

2.5

3

y1

y2

x = 0.08

0 1 2 3

0

0.5

1

1.5

2

2.5

3

y1

y2

x = 0.04

0 1 2 3

0

0.5

1

1.5

2

2.5

3

y1

y2

x = 0.02

Figure 2: Vector plot for a 2D trajectory where y1 (top left) fits the trajectory of Figure 1 and y2 (bottom left) fits a minimum jerk
trajectory, both toward a goal g = (g1, g2) = (1, 1). The vector plots show (ż1, ż2) at different values of (y1, y2), assuming that only
y1 and y2 have changed compared to the unperturbed trajectory (continuous line) and that x1, x2, ẏ1, and ẏ2 are not perturbed. In
other words, it shows only slices of the full vector plot (ż1, ż2, ẏ1, ẏ2, ẋ1, ẋ2) for clarity. The vector plots are shown for successive
values of x = x1 = x2 from 1.0 to 0.02 (i.e., from successive steps in time). Since τ ẏi = zi, such a graph illustrates the instantaneous
accelerations (ÿ1, ÿ2) of the 2D trajectory if the states (y1, y2) were pushed somewhere else in state space. Note how the system
evolves to a spring-damper model with all arrows pointing to the goal g = (1, 1) when x converges to 0.

Figure 3.2: Attractor landscape generated by a DMP (from [12])

60 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

towards the correct part of the trajectory. This is illustrated in Fig. 3.2 for a system with

two degrees of freedom.

3.3 Cartesian Space DMPs

As explained in Section 1.2, all minimal, i.e. 3-D representations of orientation contain

singularities and are therefore not suitable for representing orientation trajectories. Non-

minimal representations of SO(3) should be used instead. This makes it more difficult to

integrate differential equations on SO(3) because general integration methods do not have

any information about the structure of SO(3) and can cause the integrated parameters

to depart from the constraint manifold. A different approach should therefore be used to

formulate and integrate DMPs for Cartesian space trajectories [36].

While positions are represented as vectors and involve linear operations, orienta-

tions are typically represented using quaternions, which require non-linear operations

like quaternion multiplication. This difference necessitates using quaternion algebra in

the transformation system to ensure valid and smooth rotational trajectories.

3.3.1 Quaternion based DMPs

As explained in Section 1.2.2, orientations can be represented by unit quaternions q = v+

u ∈ S3, where S3 is a unit sphere in R4, v ∈ R, u ∈ R3. Quaternions provide a singularity-

free, non minimal representation of orientation with only four parameters. They have been

utilized to represent orientation in various contexts including robot control [3] and vision-

based tracking [34]. This representation is not unique because unit quaternions q and

−q represent the same orientation. We can thus fully specify orientation trajectories by

specifying unit quaternions q at all times t.

To fully describe a movement of the robot’s end effector in Cartesian space, we can

specify its position trajectory p(t) ∈ R3 and orientation trajectory q(t) ∈ S3. Each of

the 4 quaternion parameters could be represented by its own DMP system (3.8) – (3.9).

However, the coefficients of the orientation trajectory q(t) are not independent of each

other, thus if we integrate them independently, the integrated quaternion will gradually

start deviating from the unit quaternion space. Instead, we transform the standard DMP

equations (3.10) – (3.11) into the quaternion form as follows

τη̇ηη = αz (βz2 log (go ∗ q)− ηηη) + fo(x), (3.61)

τ q̇ =
1

2
ηηη ∗ q, (3.62)

where go ∈ S3 denotes the goal quaternion orientation, while the time constant τ > 0 and

the control gains αz, βz > 0 have the same role as in standard DMPs specified by (3.10)

– (3.11). x is again the phase variable defined by Eq. (3.6). See Section 1.2.2 for the

definition of quaternion conjugation (1.22), quaternion product (1.20), and quaternion

3.3. CARTESIAN SPACE DMPS 61

logarithm (1.41). The auxiliary variable ηηη ∈ R3 is treated as quaternion with 0 scalar

part in (3.62). The motivation for equation (3.61) is provided by observing that g− y in

Eq. (3.10) can be interpreted as linear velocity that takes y to g within unit time, just

like 2 log (go ∗ q) is the angular velocity that takes orientation q to orientation go within

unit time, as shown in (1.42). Equation (3.62) is motivated by the relationship between

quaternion derivative q̇ and angular velocity ωωω, q̇ = 1/2ωωω ∗ q, as shown in Eq. (1.47).

From (3.62) and (1.47) we can thus derive that the auxiliary variable ηηη is a scaled angular

velocity,

ηηη = τωωω. (3.63)

The nonlinear forcing term

fo(x) = Do

∑N
i=1w

o
iΨi(x)∑N

i=1Ψi(x)
x (3.64)

contains free parameters wo
i ∈ R3, which need to be determined to follow any given

orientation trajectory. Do = diag(2 log(go ∗ q0)) ∈ R3×3 is a diagonal matrix with scaling

factors 2 log(go ∗q0) on the diagonal, where q0 is the initial orientation on the trajectory.

The modulation by Do leads to useful scaling properties of the DMP system when the

goal configuration go and consequently the amplitude of the movement change (see also

Section 3.3.4).

Note that the logarithmic map defined on S3 is largely singularity-free except for

the singularity at a single quaternion q = −1 + [0, 0, 0]T, which corresponds to unlikely

rotation by a full angle 2π. As full rotations are rare in orientation trajectories, this

singularity usually does not cause any issues when specifying orientation trajectories in

unit quaternion space.

The data for computing a Cartesian space DMP can be gathered through programming

by demonstration, which involves mapping the demonstrated motion to the positions and

orientations of the end-effector

{pd(tj), qd(tj), tj}Tj=0. (3.65)

Here pd(tj) ∈ R3 are the desired positions of the end-effector and qd(tj) ∈ S3 the desired

orientations specified by unit quaternions. The linear velocitoes ṗd(tj) and accelerations

p̈d(tj) can be obtained by numerical differentiation as explained in Section 3.2. To com-

pute also the desired angular velocities ωωωd(tj) and angular accelerations ω̇ωωd(tj), we first

numerically differentiate qd(tj) using central difference formula

q̇d(tj) =
(tj − tj−1)(qd(tj+1)− qd(tj) + (tj+1 − tj)(qd(tj)− qd(tj−1))

(tj+1 − tj−1)(tj+1 − tj)
. (3.66)

These formulas are valid for 1 ≤ j ≤ T − 1. If the angular velocity is 0 at the beginning

and the end of the motion, we can set q̇d(t0) = q̇d(tT) = 0, otherwise we have to use left

62 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

and right finite differences like in Eq. (3.24) and (3.25) to compute q̇d(t0) and q̇d(tT).

Using Eq. (1.47), we can now compute the desired angular velocities

ωωωd(tj) = 2 q̇d(tj) ∗ qd(tj). (3.67)

The desired angular accelerations ω̇ωωd(tj) are then obtained using the same central dif-

ference formula like in (3.20) and (3.66). This way we obtain all of the data needed to

compute a quaternion DMP

{qd(tj), ωωωd(tj), ω̇ωωd(tj), tj}Tj=0. (3.68)

To compute the parameters wo
i , we first rewrite Eq. (3.61)

τ 2ω̇ωω − αz (βz2 log (go ∗ q)− τωωω) = fo(x), (3.69)

The parameters wo
i can then be computed by solving the following system of linear equa-

tions∑N
i=1w

o
iΨi(x(tj))∑N

i=1Ψi(x(tj))
x(tj) = D−1

o

(
τ 2 ω̇ωωd(tj)− αz (βz2 log (go ∗ qd(tj))− τωωωd(tj))

)
, (3.70)

where phases x(tj) are obtained as in (3.83). Similarly as for the standard DMPs, we can

compute the goal orientation go = qd(tT) and time constant τ = tT − t0 directly from the

data.

Pastor et al. [26] used in Eq. (3.61) just the vector part of the quaternion product

v+u = go ∗q, i. e. u ∈ R3, instead of 2 log (go ∗ q). A similar type of error was used also

in [38]. Defining u = vec (go ∗ q), their system can be written as

τη̇ηη = αz (βzvec (go ∗ q)− ηηη) + fo(x). (3.71)

While this is equivalent as far as the direction of change is concerned, such a formulation

does not fully take into account the geometry of SO(3). By considering Eq. (1.42), we

can see that only the logarithmic map multiplied by 2 can provide proper mapping of the

quaternion product go ∗ q onto the angular velocity. Another difference is that there is

no scaling factor Do in [26]. See Section 3.3.4 for the analysis of differences between the

two approaches.

For the integration of (3.61), (3.62), and (3.6), we can use the formulae

ηηη(t+∆t) = ηηη(t) +
1

τ

(
αz

(
βz2 log

(
go ∗ q(t)

)
− ηηη(t)

)
+ fo(x(t))

)
∆t, (3.72)

q(t+∆t) = exp

(
∆t

2

ηηη(t)

τ

)
∗ q(t), (3.73)

x(t+∆t) = x(t)− αx

τ
x(t)∆t, (3.74)

3.3. CARTESIAN SPACE DMPS 63

where the quaternion exponential is defined as in Eq. (1.39), i.e. exp(θn) = cos(θ) +

sin(θ)n and quaternion logarithm as in Eq. (1.41). ∆t > 0 is the integration interval.

3.3.2 Position trajectories

For the sake of completeness we also rewrite DMP equations (3.10) – (3.11), which are

used to encode the positional part of the trajectory, in variable p

τ ż = αz(βz(gp − p)− z) + fp(x), (3.75)

τ ṗ = z, (3.76)

where gp ∈ R3 denotes the final position on the recorded trajectory. The forcing term fp
is defined as

fp(x) = Dp

∑N
i=1w

p
iΨi(x)∑N

i=1Ψi(x)
x, (3.77)

where Dp = diag (gp − p0) ∈ R3×3. As mentioned above, the diagonal matrices Dp in

(3.77) and Do in (3.64) are used to scale the movement amplitude if the goal configura-

tion gp and/or go change. To track the desired Cartesian space trajectories, we need to

integrate (3.75) – (3.76) and (3.79) – (3.80) along with the common phase (3.6).

Given the robot tool center point trajectory {pj, ṗj, p̈j, tj}Tj=0, the free parameters

can be calculated in a similar way as in (3.82), i. e. by first rewriting (3.75) – (3.76) as

one second order differential equation [12] and then solving the resulting system of linear

equations∑N
i=1w

p
iΨi(x(tj))∑N

i=1Ψi(x(tj))
x(tj) = D−1

p

(
τ 2 p̈d(tj) + αzτ ṗd(tj)− αzβz (gp − pd(tj))

)
, (3.78)

where the phases x(tj) are calculated as in (3.83).

3.3.3 Rotation matrix based DMPs

Rotation matrices offer an alternative, singularity-free representation of SO(3). We can

easily rewrite Eq. (3.61) – (3.62) in rotation matrix form

τη̇ηη = αz(βz log(RgR
T)− ηηη) + fo(x). (3.79)

τṘ = [ηηη]×R, (3.80)

where Rg denotes the goal orientation and all other parameters are just like in (3.61) –

(3.62). The matrix logarithm log(RgR
T) has the same role as 2 log(go ∗ q) in Eq. (3.61),

as shown by Eq. (1.37) in Section 1.2.3. Equation (3.80) is motivated by (1.8). Again we

have ηηη = τωωω, as can be easily deduced from (3.80) and (1.8). Thus ηηη is the scaled angular

velocity. The nonlinear forcing term is defined as in (3.64) and contains free parameters

wo
i ∈ R3, which need to be determined to follow any given rotation matrix trajectory.

64 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

The data for computing them is usually given as

{Rd(tj), ωωωd(tj), ω̇ωωd(tj), tj}Tj=0, (3.81)

where ,ωωωd(tj), ω̇ωωd(tj) are computed by numerical differentiation in a similar way as in the

case of quaternion DMPs in Sec. 3.3.1. The parameters wo
i are calculated by solving the

following system of linear equations, which we obtain from (3.79)∑N
i=1w

o
iΨi(x(tj))∑N

i=1Ψi(x(tj))
x(tj) = D−1

o

(
τ 2 ω̇ωωd(tj) + αzτωωωd(tj)− αzβz log

(
RgRd(tj)

T
))

, (3.82)

where phases x(tj) are calculated by integrating (3.6), i.e.

x(tj) = exp
(
−αx

τ
tj

)
(3.83)

and j = 0, . . . , T . The scaling factorDo = diag
(
log
(
RgR

T
0

))
∈ R3×3 is a diagonal matrix.

Standard Euler formulas can be applied to integrate (3.79). To integrate (3.80) we use

the expression

R(t+∆t) = exp

(
∆t

[ηηη]×
τ

)
R(t), (3.84)

which is guaranteed to generate a rotation matrix because the matrix exponential map

exp (∆t[ηηη]×/τ) results in a rotation matrix and the product of two rotation matrices is

a rotation matrix. Note that the matrix exponential is defined in a similar way as the

quaternion exponential (1.40), i.e. as a rotation matrix corresponding to the rotation by

angle θ about rotation axis n.

3.3.4 Comparison of DMPs defined on SO(3)

Figure 3.3 and 3.4 show that quaternion-based DMPs, which use the term 2 log (go ∗ q)
(3.61), and rotation matrix-based DMPs generate better responses in terms of angular ve-

locities than quaternion difference vector vec (go ∗ q) DMP as in (3.71). Both quaternion-

and rotation-matrix-based DMPs converge to the attractor point much faster than the

approach proposed in [26], which is the desired characteristics of the linear part of the

DMP system that should ensure convergence to the attractor point. Part of the reason

for this is the lack of multiplication by 2 in (3.71). If we modify (3.71) to

τη̇ηη = αz (βz2vec (go ∗ q)− ηηη) + fo(x), (3.85)

the DMP system (3.61) – (3.62) still generates a significantly quicker response than (3.85),

(3.62), and converges faster, but the difference is smaller, as we can see by comparing Fig.

3.3 and 3.6. Nevertheless, the response of (3.61) – (3.62) is clearly preferable. Fig. 3.3 and

3.4 show that as expected, the quaternion based DMP (3.61) – (3.62) and the rotation

matrix based DMP (3.79) – (3.80) generate exactly the same response in terms of angular

3.3. CARTESIAN SPACE DMPS 65

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.3: Response of the quaternion-
based DMP system (3.61) – (3.62) with-
out nonlinear term fo. The upper graph
shows the time trajectories of the four
unit quaternion components, and the lower
graph the time trajectories of the three
components of the angular velocity.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

R
ot

at
io

n
m

at
rix

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.4: Response of the rotation matrix
based DMP system (3.79) – (3.80) without
nonlinear term fo. The upper graph shows
the time trajectories of the nine rotation
matrix components, and the lower graph
the time trajectories of the three compo-
nents of the angular velocity.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.5: Response of the DMP system
(3.71), (3.62) with quaternion difference in-
stead of the logarithmic map (as proposed
in [26]) and without nonlinear term fo.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.6: Response of the DMP system
(3.85), (3.62) with double quaternion dif-
ference instead of the logarithmic map and
without nonlinear term fo.

66 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

0 0.5 1 1.5
−1

−0.5

0

0.5

1
R

ot
at

io
n

m
at

rix

Time (seconds)

0 0.5 1 1.5

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.7: Reproduction of the desired
minimum jerk polynomial with the rotation
matrix based DMP system (3.79) – (3.80).

0 0.5 1 1.5
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.5 1 1.5

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.8: Reproduction of the desired
minimum jerk polynomial with the quater-
nion based DMP system (3.61) – (3.62).

velocity. The starting orientation was set to q0 = 0.3717 + [−0.4993,−0.6162, 0.4825]T

and the goal orientation to go = 0.2471+ [0.1797, 0.3182,−0.8974]T. The other constants

were specified as follows: αx = 2, αz = 48, βz = 12, τ = 3.5.

We have thus seen theoretically and experimentally that the proposed systems (3.79)

– (3.80) and (3.61) – (3.62) are significantly better than (3.85), (3.62), even though the

multiplication by 2 has been added compared to the system (3.71), (3.62) from [26]. Note

that 2 is the correct multiplier to obtain a critically damped system in (3.61) – (3.62). If

we further increase the multiplier, the resulting system is not critically damped but starts

oscillating towards the goal orientation, which is suboptimal for robot control.

Next, we evaluate the performance of orientation trajectory approximation using both

quaternion- and rotation-matrix-based DMPs. For this experimental evaluation, the same

parameters as above were used, except for τ , which was set to 1.5. To generate an ex-

ample orientation trajectory, we sampled a minimum jerk polynomial between the start

quaternion q0 and the goal quaternion go, and then normalized the resulting quaternion

trajectory. The results shown in Fig. 3.7 and 3.8 demonstrate that both approaches can

accurately reproduce the desired trajectories. However, this experiment also revealed a

subtle issue that should be considered when using rotation-matrix-based DMPs. Specif-

ically, the rotation matrix logarithm, as defined in (1.37), exhibits a discontinuity at

| log(R)| = π. This occurs because, when an object is rotated by 180 degrees, the final

orientation is the same regardless of the rotation direction. This discontinuity can cause

problems when estimating DMPs through the system of equations (3.82), as fo can become

discontinuous when this boundary is crossed, even if the movement itself is smooth. While

this issue can be resolved by adding appropriate constants to ensure the continuity of fo
in (3.79), such an approach requires the user to implement a cumbersome bookkeeping

procedure. On the other hand, quaternion-based DMPs do not encounter this problem

because there is no discontinuity boundary in the quaternion logarithm (1.41) on the unit

3.4. THIRD-ORDER DMPS AND SEQUENCING 67

sphere S3. The only singularity occurs at q = −1 + [0, 0, 0]T, which is rarely encountered

in practice and can be easily handled (for example, by assuming the previous direction

vector in the logarithm when −1+ [0, 0, 0]T is reached on the trajectory). For this reason,

we prefer to use quaternion representation to avoid the tedious bookkeeping associated

with rotation-matrix-based DMPs.

3.4 Third-order DMPs and Sequencing

High performance robot control systems, which can take into account robot dynamics,

utilize the desired positions, velocities, and accelerations to generate motor commands.

The second order system (3.8) – (3.9) ensures only continuous positions and velocities if

the goal g suddenly changes during robot motion. This problem can be alleviated by

instead using a third-order system [32]

τ ż = αz(βz(r − y)− z) + f(x), (3.86)

τ ẏ = z, (3.87)

τ ṙ = αg(g − r), (3.88)

The phase x is again given by Eq. (3.6). It is easy to see that the general solution of the

linear part of equation system (3.86) – (3.88), i. e. the above expression without f(x), is

given by z(t)

y(t)

r(t)

 =

 0

g

g

+ exp (At) c, A =
1

τ

 −αz −αzβz αzβz

1 0 0

0 0 −αg

 . (3.89)

Matrix A has eigenvalues at λ1 = −αg/τ , λ2,3 =
(
−αz ±

√
α2
z − 4αzβz

)
/(2τ), which all

have negative real parts if τ , αz, βz, αg > 0. Thus for such parameters the system is

guaranteed to converge to its unique attractor point [0, g, g]T . Just like before, the system

is critically damped if αz = 4βz, in which case λ2,3 = −αz/(2τ). Also like before, since

f(x) vanishes as t → ∞, the nonlinear system (3.86) – (3.88) is guaranteed to converge to

this same attractor point.

Note that by setting r(t) = g, the third-order system (3.86) – (3.88) becomes equivalent

to the second order system (3.8) – (3.9). Therefore we can (and should) use the original

second-order system when learning DMP parameters from a single demonstration. The

third-order system should only be used at execution time. If the final destination g

suddenly changes, the third order system ensures that r gradually transitions to the new

goal position and the robot acceleration, which is defined by Eq. (3.86) and ÿ = ż/τ ,

remains continuous.

The third-order system (3.86) – (3.88) is also useful to continuously transition from

68 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4
MOTION PRIMITIVES

m

y1
y2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4
joined DMP position

m

DMP2
DMP3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.6

−0.4

−0.2

0

0.2
joined DMP velocity

m
/s

DMP2
DMP3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5
joined DMP acceleration

m
/s

2

TIME (sec)

DMP2
DMP3

Figure 1: Sequencing of dynamic movement primitives: the output of the sec-

ond and third order DMP. Panel 1 shows output of each motion primitive,

panel 2 shows joined position, panel 3 shows resulting velocity of joined mo-

tion primitives and panel 4 shows resulting accelerations of the joined motion

primitives. Label DMP2 and DMP3 denotes second and third order DMP

respectively

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4
MOTION PRIMITIVES

m

y1
y2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

0.2

0.4
joined DMP position

m

DMP2
DMP3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.6

−0.4

−0.2

0

0.2
joined DMP velocity

m
/s

DMP2
DMP3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5
joined DMP acceleration

m
/s

2

TIME (sec)

DMP2
DMP3

Figure 1: Sequencing of dynamic movement primitives: the output of the sec-

ond and third order DMP. Panel 1 shows output of each motion primitive,

panel 2 shows joined position, panel 3 shows resulting velocity of joined mo-

tion primitives and panel 4 shows resulting accelerations of the joined motion

primitives. Label DMP2 and DMP3 denotes second and third order DMP

respectively

Figure 3.9: Sequencing of movement primitives. The application of third order DMPs (red
full line) prevents the jump in acceleration, which can be observed when using second-
order DMPs (blue dashed line).

one DMP to another. From (3.86) and (3.87) we obtain

r =
τ 2ÿ + ταzẏ + αzβzy − f(x)

αzβz

. (3.90)

Thus if the robot position, velocity, and acceleration at transition time are given by yc,

ẏc, and ÿc, the next DMP should be initialized to

y(0) = yc, z(0) = τ ẏc, r(0) =
τ 2ÿc + ταzẏc + αzβzyc − f(1)

αzβz

, x(0) = 1. (3.91)

In this way the positions, velocities, and accelerations remain continuous as the robot

transitions from one DMP to another.

3.4.1 Third-order DMPs in Cartesian space

For quaternion based DMPs, we can define the following third-order system

τη̇ηη = αz (βz2 log (r ∗ q)− ηηη) + fo(x), (3.92)

τ q̇ =
1

2
ηηη ∗ q, (3.93)

τ ṙ = αr2 log(go ∗ r) ∗ r. (3.94)

Equivalently to r in (3.86), r in (3.92) is now a variable that should continuously tran-

sitions to the goal go, even if it suddenly changes. Equation (3.94) should be integrated

together with (3.61) – (3.62) using formula (3.73).

3.5 Modulation of DMPs

Modulation of DMPs is a powerful technique that enhances the flexibility and adaptability

of robotic motion. By modulating the parameters of the DMPs, such as the goal position,

3.5. MODULATION OF DMPS 69

0 0.5 1 1.5
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.5 1 1.5

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

0 0.5 1 1.5
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.5 1 1.5

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
ec

)

Time (seconds)

Figure 3.10: Response of the DMP system (3.61), (3.62), (3.94) to the switching of goal
orientation during the movement. The goal of the movement was changed at 0.4 seconds.
The change of goal orientation corresponded to a rotation of 30.4 degrees. The original
movement is shown in Fig. 3.8.

trajectory shape, or even the speed of movement, robots can dynamically adjust their

actions in response to changes in the environment or the task at hand. This capability

is crucial for tasks that require adaptation to unforeseen obstacles, variations in object

placement, or changes in task requirements. For instance, modulation can be used to scale

a movement trajectory to reach a new goal location, modify the trajectory to avoid an

obstacle, or adjust the speed of execution to meet timing constraints. This adaptability

makes DMPs particularly useful in real-world applications where conditions can change

rapidly and unpredictably, allowing robots to perform complex tasks with a level of au-

tonomy and robustness that would be difficult to achieve with static, pre-programmed

movements.

3.5.1 Phase stopping

Normally, Eq. (3.6) is not analytically integrated to (3.7). Instead, at execution time

(3.6) and (3.9) are modified to

τ ẋ = − αxx

1 + αpx|ỹ − y|
, (3.95)

τ ẏ = z + αpy(ỹ − y), (3.96)

where y and ỹ respectively denote the desired and the actual robot position. Note that

if the robot cannot follow the desired motion, αpx|ỹ − y| becomes large, which in turn

makes the phase change ẋ small. Thus the phase evolution is stopped until the robot

catches up with the desired configuration y (see Fig. 3.97). On the other hand, if the

robot follows the desired movement precisely, Eq. (3.95) and (3.96) are no different from

(3.6) and (3.9), respectively.

We can also define this behavior for Cartesian-space DMPs. In this case the original

equation for phase (3.6) is replaced with

τ ẋ = − αxx

1 + αpx (∥p̃− p∥+ γ d(q̃,q))
, (3.97)

70 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1
Q

ua
te

rn
io

n

Time (seconds)

0 0.5 1 1.5 2 2.5 3
−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/se
c)

Time (seconds)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Ph
as

e

Time (seconds)

Figure 3.11: The effects of phase stopping on quaternion based DMPs defined by (3.97)
and (3.99). The original, unperturbed trajectory is indicated with the dashed lines, and
the perturbed movement, which was stopped between 0.9 and 1.4 seconds, with full lines.
Note that the robot can smoothly resume its movement once the perturbation has been
removed.

where ∥p̃−p∥+ γ d(q̃,q) is the trajectory tracking error, p̃ and q̃ are the actual position

and orientation of the tool center point, respectively, and p and q the corresponding

DMP control outputs. Note that in the case of large tracking errors, the error value

∥p̃ − p∥ + γ d(q̃,q) becomes large which in turn makes the phase change ẋ small. Thus

the phase evolution is stopped until the robot reduces the tracking error.

In the context of Cartesian space DMPs, Eq. (3.96) becomes different for the positional

and orientational part of the trajectory, which are respectively encoded by Eq. (3.76) and

(3.62). We obtain

τ ṗ = z+ αpp(p̃− p), (3.98)

τ q̇ =
1

2
(ηηη + αpr2 log (q̃ ∗ q)) ∗ q, (3.99)

Eq. (3.99) is integrated using a formula analog to (3.73).

3.5.2 Robustness to perturbations through coupling of DMPs

Another advantage of DMPs is that they are robust against perturbations [12], e. g. when

a robot is physically pushed away from the desired motion trajectory while moving. The

standard approach to perturbations is – in case of Cartesian space DMPs – to simply

continue integrating Eq. (3.6), (3.75) – (3.76), (3.61) – (3.62), (3.6) after the perturbation

3.5. MODULATION OF DMPS 71

has arisen. This way the robot gradually returns to the desired trajectory. However, this

approach does not ensure that the complete movement is reproduced, just that the robot

returns to the original movement. The phase stopping mechanism can be used if it is

necessary to execute the complete movement. For this purpose, we enhance Eq. (3.97),

(3.98), (3.99) as follows

τ ẋ = − αxx

1 + αpxε(p̃,pd,p, q̃,qd,q)
, (3.100)

τ ṗ = z+ αpp(p̃+ pd − 2p), (3.101)

τ q̇ =
1

2
(ηηη + αpr2 (log (q̃ ∗ q) + log (qd ∗ q))) ∗ q,

(3.102)

where

ε = ∥p̃− p∥+ ∥pd − p∥+ γ (d(q̃,q) + d(qd,q)) ,

pd and qd are the desired position and orientation, respectively, and all other variables and

constants are as in (3.97), (3.98), (3.99). The unit quaternion distance metric d defined

in (1.43) can be used here. The complete approach to control the robot is specified by

the following coupled DMP system

• A DMP system constructed from (3.61), (3.75), (3.101), (3.102), and (3.6). Its

outputs are used to generate motor commands.

• A separate DMP that uses standard DMP equations (3.61) – (3.62) and (3.75)

– (3.76) with the same constants and variables as the above system. This DMP

generates the desired position and orientation for (3.101) – (3.102).

• The coupling of both DMP systems occurs through the phase equation (3.100),

which is used by both.

The described coupled system halts the phase evolution whenever the robot controller

is unable to track the commanded position and orientation or whenever the commanded

position and orientation deviate from the desired values. The second term in (3.101),

(3.102) ensures that the system can recover once the perturbation is removed. After

recovery the robot continues to perform the movement at the spot on the trajectory

where it was before the onset of perturbation. Note that the original DMP system is

equivalent to the one proposed in this section if the robot tracks the desired trajectory

perfectly and there are no unexpected perturbations.

3.5.3 Obstacle avoidance

To realize obstacle avoidance in Cartesian space, the trajectory should be planned in this

space as well. Let’s assume that we have a three degree-of-freedom discrete DMP that

models point-to-point reaching in Cartesian space. We denote the 3-D position vector of

72 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

Q
ua

te
rn

io
n

Time (seconds)

0 0.5 1 1.5 2 2.5

−5

0

5

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/se
c)

Time (seconds)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Ph
as

e

Time (seconds)

Figure 3.12: Response of the DMP system (3.61), (3.62) to a perturbation. Here the
orientation trajectory was perturbed by rotation of 28.3 degrees. The angular velocity
was simultaneously set to 0. The graph shows the convergence of the perturbed movement
to the final goal orientation.

the 3 DOF discrete dynamical system by p = [px, p2, px]
T . The objective is to generate a

reaching movement to the goal state g = [gx, gy, gx]
T without hitting obstacles . On the

way to the goal state, an obstacle is positioned at o = [ox, oy, oy]
T . The goal is to avoid

this obstacle. A suitable coupling term Ct = [Ct,x, Ct,y, Ct,z]
T for obstacle avoidance can

be formulated as follows:

Ct(y, ẏ) = γ sig (∥o− y∥) Rẏ (π − φ) exp (−βφ) , (3.103)

where

φ = arccos

(
(o− y)T ẏ

∥o− y∥∥ẏ∥

)
, (3.104)

sig(x) =
1

1 + eη(x−d)
, (3.105)

R = exp
((π

2
− φ

)
n
)
, (3.106)

n =
(o− y)× ẏ

∥o− y∥∥ẏ∥
. (3.107)

3.6. LEARNING OF DMPS FROM MULTIPLE DEMONSTRATIONS 73

Figure 3.13: Obstacle avoidance: In both graphs, the obstacle is represented by a yellow
sphere located on the trajectory that starts at a red circle. The left graph shows two
scenarios: one where the DMP trajectory passes through the point obstacle when there is
no coupling term for obstacle avoidance, and another where a 2D DMP successfully avoids
the obstacle using a coupling term. The right graph illustrates DMP paths in 3D. Without
a coupling term for obstacle avoidance, the DMP trajectory passes through the point
obstacle. However, when the same DMP starts from multiple random positions with the
coupling term activated, all resulting paths successfully avoid the obstacle, demonstrating
the effectiveness of the obstacle avoidance mechanism.

γ, β, and η are the scaling factors and d is the distance at which the obstacle should start

affecting the robot motion. The above coupling term generates a velocity component that

lies in a plane defined by vectors o−y and ẏ. It is orthogonal to the line o−y connecting

the robot tip and the obstacle.

We can ensure that the robot tip avoids the obstacle by adding the coupling term Ct

to Eq. (3.9)

τ ż = αz(βz(g − y)− z) + f(x) +Ct(y, z/τ). (3.108)

The resulting behavior is shown in Fig. 3.13. Note that in this way we can only ensure

that the robot tip avoids the obstacle. However, the rest of the robot could still collide

with it.

3.6 Learning of DMPs fromMultiple Demonstrations

Since DMPs have not been designed to represent whole classes of movements, a standard

DMP typically reproduces a specific movement, which can be modulated like described in

Section 3.5. However, it is not possible to encode multiple trajectories within one DMP.

It turns out, however, that by computing local task models, it is possible to generate a

specific DMP that is adapted to the current configuration of the external world [35]. This

74 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

approach has the advantage that the generalized DMPs are computed by local regression

methods, which apply local, linear optimization as compared to some other approaches,

which apply global, nonlinear optimization methods to compute more complex motion

representations [9].

3.6.1 Action generalization using dynamic movement primitives

and local weighting

Next we describe a methodology for generalizing multiple example trajectories to new,

previously unobserved situations. This approach differs from the scenario in Section 3.2,

where only a single example trajectory is available. In this context, we assume that each

example trajectory is associated with parameters that describe the key characteristics

of the task, typically its goal. These parameters act as query points into an example

database.

To illustrate this, consider the problem of throwing a ball towards a specific target.

Suppose we have a set of example robot trajectories that resulted in successful ball throws

toward various targets. The goal of generalization is to generate a trajectory that will

accurately direct the ball toward any given target in space. In this case, the parameters

defining the goal of the task are the target positions.

We begin with a set of example trajectories, each accompanied by parameters that

characterize the task:

Z = {yi
d(ti,j), ẏ

i
d(ti,j), ÿ

i
d(ti,j);qi| i = 1, . . . ,M,

j = 0, . . . , Ti},
(3.109)

where yi
d(ti,j), ẏi

d(ti,j), ÿi
d(ti,j) represent the measured positions, velocities, and acceler-

ations along the i-th trajectory, M is the number of example trajectories, and Ti + 1 is

the number of sampling points on each trajectory. The parameters qi ∈ Rm describe the

task in each example scenario and are typically related to the goal of the action. They

serve as query points into a database of example trajectories. This type of data can be

obtained by any of the data collection methodologies described in Section 1.4.

To explain the concept of query points, let’s consider tasks such as reaching, ball

throwing, and drumming. In the case of reaching movements, the goal of an action (or

query point) is described by the final reaching destination in the Cartesian space, whereas

the trajectories and consequently the attractor points of the DMPs can be defined in joint

space. Thus the query and attractor points are connected through the robot kinematics.

In other cases, the queries are less directly associated with the parameters of the DMP.

For example, in the case of ball throwing, the goal is characterized by the position of the

basket into which the ball should be thrown. This position is not directly encoded in the

parameters of the discrete DMP as given by Eqs. (3.10) – (3.11). As example of periodic

movements, we consider drumming, where the height at which the drum is mounted can

vary. In this case the robot needs to adapt its drumming motion to the varying height

3.6. LEARNING OF DMPS FROM MULTIPLE DEMONSTRATIONS 75

of the drum, which is used as query point not directly encoded in the periodic DMP

Eqs. (3.15) – (3.16). In summary, the query points normally originate from an intuitive

characterization of the task, but the functional relationship between them and the DMP

parameters may not be straightforward.

Thus the challenge is to generate new DMPs that specify optimal movements for any

new query point q, which typically does not coincide with one of the example queries qk.

As explained in Section 3.1, DMPs are generally defined by the parameters w, τ (or r

and Ω = 1/τ in the case of periodic movements), and g. Therefore, it is necessary to learn

a function that maps query points to these parameters

G (Z) : q 7−→ [[wT
1 , . . . ,w

T
n],g

T, τ]T (3.110)

or

G (Z) : q 7−→ [[wT
1 , . . . ,w

T
n],g

T, r,Ω]T (3.111)

Examples Z specified in (3.109) are the data that can be used to learn this function.

Note that G(Z) becomes a function only by constraining the solution trajectory to be

as similar as possible to the example trajectories. For example, there are many different

ways of how to throw a ball into a basket at a certain location. The relationship between

the basket positions (query points) and DMP parameters as given in Eq. (3.110) becomes

a function only by requesting that the generalized throwing movements are similar to

the example throws. This similarity criterion should in practice be embedded into the

optimization process.

In general, the functional relationship between q and DMP parameters is unknown.

It is often not feasible to identify a global model that provides a good approximation

for the function G(Z). To avoid global model identification, weighted averaging and

Locally Weighted Regression (LWR) can be applied. These methods are motivated by the

observation that some data points are more relevant than the others. Control policies

that solve the task in situations that are very different from the current one do not carry

much information about the optimal policy in the current situation. LWR is a regression

method that fits local models to nearby data [1] and has a lower computational complexity

than many other nonparametric regression methods such as Gaussian process regression

(GPR) [23]. With LWR there is no global optimization step; instead, training data is

stored and utilized when local models need to be computed. Such approaches are also

denoted as lazy learning because processing of training data is deferred until a query needs

to be answered.

To fully specify a DMP that defines the motion at a new query point, we need to

estimate the shape parameters w, goal g, and time constant τ in case of discrete move-

ments and the shape parameters w, center point g, amplitude r and frequency of motion

Ω in case of periodic movements. In Section 3.2 we have already explained the generation

of DMPs using only one training trajectory. Here we consider the estimation of these

parameters from multiple demonstrations. The rest of the DMP parameters (αz, βz, and

76 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

αx) remain fixed and are determined so that the convergence of the underlying dynamic

system is guaranteed.

Generalization of goal, timing, amplitude, and frequency

The goal parameter g, time constant τ , amplitude r, and frequency Ω are either directly

measured or estimated from the data. They have a clear physical interpretation. From

the data (3.109), we thus obtain a sequence of measurements for discrete and periodic

movements, respectively

{gi, τi}Mi=1, and {gi, ri,Ωi}Mi=1. (3.112)

For every new query point q, the new parameters g, τ , r, and Ω can be estimated using

locally weighted distance function by putting higher weight on example queries qi that

are close to the current query q. The distance weighting error criterion is in this case

given by

C(q) =
M∑
i=1

(z − zi)
2K(d(q,qi)), (3.113)

where z is one of gk, k = 1, . . . , n, τ , r, and Ω. The solutions are given by

g =
1∑M

i=1K(d(q,qi))

M∑
i=1

K(d(q,qi))gi, (3.114)

y0 =
1∑M

i=1K(d(q,qi))

M∑
i=1

K(d(q,qi))y
i
d(ti,0), (3.115)

τ =
1∑M

i=1 K(d(q,qi))

M∑
i=1

K(d(q,qi))τi, (3.116)

r =
1∑M

i=1 K(d(q,qi))

M∑
i=1

K(d(q,qi))ri, (3.117)

Ω =
1∑M

i=1 K(d(q,qi))

M∑
i=1

K(d(q,qi))Ωi. (3.118)

There are many possibilities to select the weighting kernel K and distance d [1]. One

possible choice is the tricube kernel

K(d) =

{
(1− |d|3)3 if |d| < 1

0 otherwise
, (3.119)

and the weighted Euclidean distance

d(q,qi) = ∥D(q− qi)∥, D = diag(1/al) ∈ Rm×m, al > 0. (3.120)

3.6. LEARNING OF DMPS FROM MULTIPLE DEMONSTRATIONS 77

The tricube kernel K has finite extent and a continuous first and second derivative, which

means that the first two derivatives of the prediction (as a function of query points)

are also continuous. The finite support of K is useful because it can help reducing the

computational complexity of different optimization problems. As discussed in [1], the

choice of weighting function is rarely critical for the performance of locally weighted

regression.

Generalization of weights by locally weighted regression

The synthesis of shape parameters w is more complex because these parameters are

not directly measurable and do not have any physical interpretation. This makes their

computation using a simple weighting approach problematic.

It is therefore better to estimate them using locally weighted regression. Based on Eq.

(3.32), we can formulate a locally weighted regression problem to compute the optimal

parameters wi for the given query point q. We first compute the target values for all

example trajectories

F i
k,j = τ 2ÿid,k(ti,j) + αzτ ẏ

i
d,k(ti,j)− αzβz(gk − yid,k(ti,j)), (3.121)

where i = 1, . . . ,M , j = 0, . . . , Ti and k = 1, . . . ,M . Writing

f ik = [F i
k,0, F

i
k,1, . . . , F

i
k,N]

T (3.122)

we can formulate the following optimization problems (for all degrees of freedom)

min
wk∈RN

M∑
i=1

∥∥∥∥Xiwk −
1

gk − yk,0
f ik

∥∥∥∥2K(d(q,qi)), (3.123)

where 1 ≤ k ≤ n is the k-th degree of freedom and wk ∈ RN are the DMP weights

associated with the k-th degree of freedom. Note that the above criterion includes the

goal parameter gk, the initial configuration yk,0 on the trajectory, and the timing constant

τ . The generalized g, y0 and τ as respectively computed in (3.114), (3.115), and (3.116)

should be used here.

K and distance d in the space of query points determine how much influence each of the

example movements has on the final estimate of the control policy. The influence of each

example movement should diminish with the distance of the query point q from the data

point qk. Ideally, D should be determined so that the error in the execution of the task is

as small as possible. To reduce the resulting problem to a one dimensional optimization

problem while still accounting for the possibly varying spacing across dimensions of the

query point space, we can define

ai = c ∗ max
j=1,...,M

min
k=1,...,M

{|qj,i − qk,i|}. (3.124)

78 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

In this way, D is fully specified by a parameter c ∈ R. For regularly spaced data, c ≈ 2.2

often gives good results. With such c the number of example trajectories with nonzero

K(d(q,qk)) is about 4m, where m is the dimensionality of the query point. Automatic

methods for determining c are also possible. Atkeson et al. [1] suggested to minimize

validation set error, which evaluates the difference between the predicted output and the

observed value in the validation set, where the data in the validation set are not used for

training.

This is a linear least squares problems that is further simplified because the example

trajectories for which K vanishes do not influence generalization. Thus the size of the

system matrix associated with the objective function (3.123).

The computational complexity of solving the least squares system (3.123) is O(N2T),

T =
∑M

k=1 Tk, and thus increases linearly with the number of data points considered by

LWR and quadratically with the number of radial basis functions used in (3.5) and (3.14),

respectively. Due to our choice of weighting kernel K, we normally have K(d(q,qk)) = 0

for many k. Moreover, by cutting the support of basis functions (3.5) and (3.14) once their

value falls below a certain threshold, matrices Xk become sparse as well. The quadratic

dependence on the number of basis functions is not a problem because this number is

generally much lower than the number of data points. In most practical examples, one

can expect around 10000−50000 data points and 25−50 basis functions for DMPs. These

facts make computational complexity sufficiently low to resolve the least-squares problem

(3.123) on the fly using standard methods from sparse matrix algebra.

The calculation of weights for periodic movements is very similar. Instead of Eq.

(3.32), the derivation of locally weighted regression problem should be based on Eq.

(3.43). To generalize the learned movements to new situations, we store the estimated

amplitudes and frequencies and the sampled movements from the last few movement

periods, e.g. five, which produced a good movement on the robot as judged by the human

teacher. We can now compute the target values for all trajectories

F i
k,j =

1

Ω2
ÿid,k(ti,j) +

αz

Ω
ẏid,k(ti,j)− αzβz(gk − yid,k(ti,j)), (3.125)

where i = 1, . . . ,M , j = 0, . . . , Ti and k = 1, . . . ,M . Writing

f ik = [F i
k,0, F

i
k,1, . . . , F

i
k,N]

T (3.126)

we can formulate the optimization problems (for all degrees of freedom)

min
wk∈RN

M∑
i=1

∥∥Xiwk − f ik
∥∥2K(d(q,qi)), (3.127)

where 1 ≤ k ≤ n is the k-th degree of freedom and wk ∈ RN are the DMP weights

associated with the k-th degree of freedom. Similar as for discrete DMPs, the above

criterion includes the goal parameter gk, the amplitude r and the frequency Ω. The

3.7. SUMMARY 79

procedure CollectTrainingData
acquire trajectory points {ykd(tk,j), ẏkd(tk,j), ÿkd(tk,j)|k = 1, . . . ,M, j = 1, . . . , Tk},

e. g. by kinesthetic guiding or direct imitation;
extract the attractor points {gk}, starting points {y0,k} and time constants {τk} or

amplitudes {rk} and frequencies {Ωk}, k = 1, . . . ,M ;
associate the acquired trajectories with query points {qk};

procedure GeneralizeTrajectory
for a given query point q∗

estimate the attractor point g∗, starting point y∗
0, and time constant τ ∗

or amplitude r∗ and frequency Ω∗ using (3.114), (3.115) and (3.116)
or (3.117) and (3.118), respectively;

minimize (3.123) or (3.127) to estimate the parameters w∗ ∈ RN ;
output the generalized DMP {g∗,y∗

o, τ
∗, {w∗

k}} or {g∗, r∗,Ω∗, {w∗
k}} for query q∗;

Figure 3.14: Training and generalization of goal-directed actions

generalized g, r and Ω as respectively computed by (3.114), (3.117), and (3.118) should

be used.

3.7 Summary

Dynamic Movement Primitives (DMPs) represent a powerful and flexible framework for

the specification and execution of robot control policies. This chapter introduced the the-

oretical foundations of DMPs and demonstrated their utility in representing and learning

robot motions through a comprehensive approach grounded in dynamic systems theory.

By relying on autonomous, nonlinear differential equations, DMPs ensure smooth kine-

matic trajectories and allow for robust performance across a wide range of tasks and

conditions.

DMPs offer a unified framework to model both discrete (point-to-point) and peri-

odic (repetitive) movements, making them suitable for different applications in robotics.

They incorporate adjustable parameters that enable the encoding of diverse trajectories

while maintaining the stability of the underlying system. This ensures that robots can

adapt their movements dynamically without compromising the smoothness or reliability

of motion execution.

A distinguishing feature of DMPs is their modular design, which separates the tem-

poral progression of movements (handled by a canonical system) from the spatial shaping

of trajectories (handled by transformation systems). This separation allows for time-

independent motion representation and facilitates adaptation to varying task durations.

Additionally, DMPs integrate nonlinear forcing terms that can be learned from demon-

strations using techniques such as locally weighted regression. This capability enables

robots to generalize learned trajectories to new scenarios and goals, even in unstructured

environments.

80 CHAPTER 3. DYNAMIC MOVEMENT PRIMITIVES

The chapter also explored advanced capabilities of DMPs, such as modulation and

adaptation. Modulation techniques allow for dynamic adjustments of motion parameters

like goal position, trajectory amplitude, and movement frequency. Furthermore, DMPs

can incorporate coupling terms to account for sensory feedback, enabling real-time re-

sponses to environmental changes. For example, mechanisms like phase stopping and

trajectory coupling enhance the robustness of DMPs against perturbations and ensure

smooth recovery from disturbances.

Another significant advantage of DMPs is their compatibility with learning from

demonstration (LfD) methodologies. DMPs can be initialized from a single demonstration

or synthesized from multiple examples to generalize across task variations. This makes

them particularly suitable for tasks that require both precision and adaptability, such as

object manipulation, assembly, and human-robot collaboration.

The chapter also introduced extensions of DMPs to Cartesian space, where both po-

sition and orientation trajectories are represented seamlessly. Quaternion-based formula-

tions provide a singularity-free representation of rotational trajectories, ensuring smooth

and robust orientation control. Similarly, periodic DMPs enable the encoding of rhythmic

motions, with applications ranging from locomotion to repetitive industrial tasks.

Evaluations of DMPs demonstrated their effectiveness in learning and reproducing

complex motion patterns while ensuring stability and robustness. The ability to adapt

trajectories in real time based on sensory feedback further underscores their suitability

for dynamic and uncertain environments. The integration of DMPs with online learn-

ing methods, such as reinforcement learning and statistical modeling, holds promise for

extending their capabilities in real-world applications.

In conclusion, DMPs provide a comprehensive and practical framework for robotic

motion generation and control. Their blend of stability, flexibility, and adaptability makes

them a valuable tool for addressing the challenges of modern robotics.

Chapter 4

Dynamic Systems and Gaussian

Mixture Regression

4.1 Robot Motion Representation and Dynamical

Systems

DMPs are not the only type of dynamical system that can be used for robot control.

An alternative approach also based on dynamical systems has been developed in [9] and

[15]. This approach models robot motion as a dynamical system whose evolution encodes

the desired robot motion in each robot state. Let’s denote the robot’s state by y ∈ Rn,

where y typically represents the robot’s position (and sometimes velocity) and n is the

number of degrees of freedom. With this approach, the motion is modeled as a first-order

autonomous dynamical system:

ẏ = f(y), (4.1)

where f : Rn 7→ Rn is a continuous and differentiable vector field that defines the rate of

change of the state.

To represent the desired motions, functions f(y) should be designed such that the

system converges to a desired attractor point. For a point-to-point motion, the attractor

is typically a fixed point y∗, and the goal is to ensure that:

lim
t→∞

y(t) = y∗ for all y(0) ∈ Rn. (4.2)

The stability of dynamical systems is a critical property in ensuring the desired be-

havior of robotic motion. For a fixed point y∗ to act as an attractor, the vector field f(y)

must be designed such that the equilibrium point y∗ is globally asymptotically stable.

This means that for any initial state y(0), the state trajectories y(t) converge to y∗ over

time, and small perturbations do not lead to diverging trajectories. The SEDS frame-

work ensures this property by embedding stability guarantees into its design. It leverages

Lyapunov theory to ensure that the system’s energy-like function decreases monotoni-

81

82 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

cally as the state evolves, enabling robust recovery from perturbations and changes in the

environment.

While DMPs are a widely used and powerful approach for motion representation in

robotics, the SEDS approach provides a complementary framework with unique strengths.

DMPs excel at replicating specific demonstrated trajectories using second-order dynamics

with constant coefficients, ensuring inherent stability as the phase variable approaches

zero. This stability, combined with their computational efficiency and the ability to

adapt to different start and goal configurations, makes DMPs particularly effective for

tasks requiring fast, reliable, and precise trajectory reproduction. Moreover, DMPs often

require only a single demonstration to encode a trajectory, making them well-suited for

applications where simplicity and speed are paramount.

The SEDS approach, however, offers significant advantages in scenarios requiring

adaptability and generalization across diverse conditions. Unlike DMPs, which are fo-

cused on a single trajectory, SEDS represents motion as a continuous vector field over

the state space. This enables SEDS to capture an entire class of trajectories, providing

robust responses to perturbations, varying initial conditions, and dynamic environmen-

tal changes. By directly encoding attractor dynamics within the representation, SEDS

eliminates the need for replanning when deviations occur—a feature shared with DMPs.

In the rest of this chapter, we explain how to design functions f with stable attractor

dynamics and how to learn such functions from human demonstrations using the SEDS

framework.

4.2 Lyapunov Stability Theory and Conditions

To design functions f with stable attractor dynamics, we first introduce the Lyapunov

stability theory. The Lyapunov theory provides a framework to analyze the stability

of dynamical systems. A system described by ẏ = f(y) is said to be stable if small

perturbations in the initial state y(0) result in bounded deviations of y(t) for all future

times. The stability conditions are assessed using a Lyapunov function V (y) : Rn → R,
which acts as an energy-like measure of the system’s state.

The key concepts are as follows:

1. Stability: The attractor point y∗ is stable if, for every ϵ > 0, there exists a δ > 0

such that ∥y(0)− y∗∥ < δ implies ∥y(t)− y∗∥ < ϵ for all t ≥ 0.

2. Asymptotic Stability: The attractor point y∗ is asymptotically stable if it is

stable and, in addition, limt→∞ y(t) = y∗ for all y(0) in a neighborhood of y∗.

3. Global Asymptotic Stability: The equilibrium point y∗ is globally asymptoti-

cally stable if limt→∞ y(t) = y∗ for all y(0) ∈ Rn.

The Lyapunov function V (y) must satisfy the following conditions to prove stability:

4.3. DESIGN OF DYNAMIC SYSTEMS BY PBD 83

• V (y) > 0 for all y ̸= y∗ and V (y∗) = 0 (positive definiteness),

• V̇ (y) = ∇V (y)⊤f(y) ≤ 0 (negative semi-definiteness),

• For asymptotic stability, V̇ (y) < 0 for all y ̸= y∗,

• For global asymptotic stability, V (y) → ∞ as ∥y∥ → ∞ (radially unboundedness).

An example of a candidate Lyapunov function is the quadratic function:

V (y) =
1

2
∥y − y∗∥2, (4.3)

which ensures that the system’s trajectories converge to y∗ if V̇ (y) < 0.

By analyzing the above conditions, we can prove the stability of an attractor without

computing an explicit solution to the system’s differential equations. This is in contrast to

indirect methods, which rely on analyzing the solutions of the system. The direct method

evaluates stability by constructing a Lyapunov function and examining its behavior along

the system’s trajectories. This makes it particularly powerful for analyzing nonlinear sys-

tems where explicit solutions are often infeasible. Stability of the attractor is guaranteed

if a Lyapunov function V (y) exist such that:

1. V (y) > 0 for all y ̸= y∗ and V (y∗) = 0,

2. V̇ (y) = ∇V (y)⊤f(y) < 0 for all y ̸= y∗.

Its time derivative along the trajectories of the system is:

V̇ (y) = (y − y∗)⊤f(y). (4.4)

To ensure stability, f(y) must be designed such that V̇ (y) < 0 for y ̸= y∗.

4.3 Design of Dynamic Systems by PBD

The desired motion is often learned from user demonstrations. Given a dataset of tra-

jectories D = {(yi, ẏi)}Ni=1, the goal is to fit a function f(y) that replicates the observed

behavior and fulfills the Lyapunov stability criteria. This can be achieved using proba-

bilistic models, e.g. Gaussian Mixture Models (GMM) combined with Gaussian Mixture

Regression (GMR).

4.3.1 Data Collection

A human demonstrates the desired behavior multiple times. From each trajectory we

sample the recorded states and their corresponding velocities:

D = {{(yn,t, ẏn,t)}Tn
t=0}Nn=1, (4.5)

84 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

where n indexes the user demonstrations and t the recorded positions and velocities on the

demonstrated motion. The number of demonstrations needed depends on the complexity

of the task and the variability of the trajectories. For tasks with low variability, a few

demonstrations (e.g., 3-5) may suffice to capture the key characteristics of the motion. For

tasks with higher variability or complex dynamics, more demonstrations are required to

accurately compute the dynamical system. It is crucial to ensure that the demonstrations

cover the entire state space relevant to the task to prevent poor generalization.

4.3.2 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) is a probabilistic model used to represent data as a

mixture of multiple Gaussian distributions. It is particularly effective for modeling com-

plex data distributions and is widely used in tasks such as clustering, density estimation,

and trajectory modeling in robotics. It is defined as follows:

p(x) =
K∑
k=1

πkN (x;µk,Σk), (4.6)

where:

• K is the number of Gaussian components,

• πk are the mixing coefficients, with
∑K

k=1 πk = 1 and πk ≥ 0,

• N (x;µk,Σk) is the k-th Gaussian component with mean vector µk and covariance

matrix Σk.

Each Gaussian component is expressed as:

N (x;µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(x− µk)

⊤Σ−1
k (x− µk)

)
, (4.7)

where d is the dimensionality of x and |Σk| is the determinant of Σk. The parameters of

a GMM include:

• mixing coefficients πk,

• means µk,

• covariance matrices Σk.

These parameters are typically estimated using the Expectation-Maximization (EM) al-

gorithm, which iteratively maximizes the likelihood of the data under the model.

In robotics, GMMs are often used to model trajectory distributions. Given a set of

demonstrated trajectories, GMMs can encode the variability and correlations in the data.

This way we provide a compact representation for learning and reproducing motion.

4.3. DESIGN OF DYNAMIC SYSTEMS BY PBD 85

To derive the velocity field function f from (4.1), we model the dataset D defined in

Eq. (4.5) using a Gaussian Mixture Model (GMM):

p(y, ẏ) =
K∑
k=1

πkN (y, ẏ;µk,Σk), (4.8)

where p(y, ẏ) is the joint probability of position y and velocity ẏ, πk are the mixing

coefficients,
∑K

k=1 πk = 1 and µk ∈ R2n, Σk ∈ R2n×2n are the mean and covariance of the

k-th component

N (y, ẏ;µk,Σk) =
1

(2π)n|Σk|1/2
exp

−1

2

([
y

ẏ

]
− µk

)⊤

Σ−1
k

([
y

ẏ

]
− µk

) . (4.9)

Model (4.8) can also be interpreted as

p(y, ẏ) =
K∑
k=1

P (k)p(y, ẏ|k), (4.10)

where P (k) = πk denotes the probability of picking the k-th component and p(y, ẏ|k) =
N (y, ẏ;µk,Σk) is the conditional probability that the datapoint [y⊤, ẏ⊤]⊤ belongs to the

k-th component.

The likelihood of the data under the GMM is given by

L =
N∏

n=1

Tn∏
t=0

K∑
k=1

πkN

([
yn,t

ẏn,t

]
;µk,Σk

)
, (4.11)

and the log-likelihood, which is typically maximized, is given by:

ln(L) =
N∑

n=1

Tn∑
t=0

ln

(
K∑
k=1

πkN

([
yn,t

ẏn,t

]
;µk,Σk

))
. (4.12)

The number of mixture components K is a critical parameter that affects the model’s

ability to represent the underlying data. In the context of threjectory representation by

DS, K determines the resolution at which the trajectory dynamics are modeled. Each

Gaussian component corresponds to a region of the state space, capturing the local be-

havior of the system. Thus, selecting K has direct implications for the fidelity of the

learned motion. A concrete procedure for determining K is provided in Section 4.3.5.

4.3.3 Gaussian Mixture Regression (GMR)

Gaussian Mixture Regression (GMR) is a technique derived from a Gaussian Mixture

Model (GMM) to model the conditional distribution of output variables given input vari-

ables. We start by assuming that the joint probability distribution of [y⊤, ẏ⊤]⊤ is modeled

86 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

by a GMM as in (4.8). Let’s write

µk =

[
µk,y

µk,ẏ

]
, (4.13)

Σk =

[
Σk,y Σk,y,ẏ

Σk,ẏ,y Σk,ẏ

]
. (4.14)

The conditional distribution p(ẏ|y) for each component is then given as:

p(ẏ|y, k) = N (y; µ̂k,y, Σ̂k,y), (4.15)

where:

µ̂k = µk,ẏ +Σk,ẏ,yΣ
−1
k,y(y − µk,y), (4.16)

Σ̂k = Σk,ẏ −Σk,ẏ,yΣ
−1
k,yΣk,y,ẏ. (4.17)

The overall conditional distribution p(ẏ|y) is a mixture of the conditional distributions

for all components:

p(ẏ|y) =
K∑
k=1

hk(y)N (y; µ̂k, Σ̂k), (4.18)

where hk(y) are the responsibilities:

hk(y) =
P (k)p(y|k)∑K
i=1 P (i)p(y|i)

=
πkN (y;µk,y,Σk,y)∑K
i=1 πiN (y;µi,y,Σi,y)

, (4.19)

The expected value of ẏ is then computed as follows:

ẏ = f(y) = E[ẏ|y] =
K∑
k=1

hk(y)µ̂k. (4.20)

Writing

Ak = Σk,ẏ,yΣ
−1
k,y, (4.21)

bk = µk,ẏ −Σk,ẏ,yΣ
−1
k,yµk,y = µk,ẏ −Akµk,y, (4.22)

we can rewrite Eq. (4.16) as

µ̂k = µk,ẏ +Ak(y − µk,y) = Aky + bk. (4.23)

4.3. DESIGN OF DYNAMIC SYSTEMS BY PBD 87

We obtain the following expression for the velocity field ẏ

ẏ = f(y) =
K∑
k=1

hk(y)(Aky + bk). (4.24)

GMR provides a smooth and probabilistic mapping from y to ẏ, making it ideal for

tasks like trajectory learning and motion planning in robotics.

4.3.4 Stable Estimator of Dynamical Systems (SEDS)

The SEDS framework is a powerful approach for learning stable motion dynamics from

demonstrations. By leveraging principles from Lyapunov stability theory, SEDS ensures

that the resulting dynamical system converges to a desired attractor point while reproduc-

ing the demonstrated motion. This makes it particularly suitable for robotics applications

where robustness and adaptability are critical, such as trajectory planning, manipulation,

and navigation tasks.

SEDS models the motion as a mixture of Gaussians, where each component captures a

segment of the observed behavior. The framework enforces global asymptotic stability by

constraining the parameters of the learned dynamical system. These stability guarantees

are achieved through a Lyapunov function, which ensures that the system’s trajectories

converge to the desired attractor from any initial condition within the state space.

A key strength of SEDS lies in its ability to balance accurate reproduction of demon-

strated motions with mathematical stability guarantees. This dual objective is formu-

lated as an optimization problem, where the parameters of the Gaussian Mixture Model

(GMM) are estimated while satisfying stability constraints. The following sections present

the mathematical formulation of this optimization problem and its variants.

Next we explain how the unknown parameters πk,µk,Σk forming the Gaussian mixture

model (4.8) are computed in SEDS. The standard approach of applying an expectation-

maximization algorithm to estimate these parameters is insufficient because with a classic

EM-algorithm it is not possible to guarantee that the resulting system (4.24) is asymp-

totically stable. Thus in the following we derive sufficient conditions for the estimation of

parameters πk,µk,Σk that guarantee the asymptotic stability of (4.24).

To prove stability we utilize Lyapunov function

V (y) =
1

2
(y − y∗)⊤(y − y∗). (4.25)

88 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

Its derivative is given by

V̇ (y) =
dV

dy

dy

dt
=

1

2

(
d

dy
((y − y∗)⊤(y − y∗))

)
ẏ = (y − y∗)⊤ẏ

= (y − y∗)⊤
K∑
k=1

hk(y)(Aky + bk)

= (y − y∗)⊤
K∑
k=1

hk(y)(Ak(y − y∗) +Aky
∗ + bk)

=
K∑
k=1

hk(y)
(
(y − y∗)⊤Ak(y − y∗) + (y − y∗)⊤(Aky

∗ + bk)
)

(4.26)

The definition of responsibilities (4.19) guarantees that hk(y) > 0. Note also that

(y − y∗)⊤Ak(y − y∗) = (y − y∗)⊤
(
1

2
(Ak +A⊤

k) +
1

2
(Ak −A⊤

k))

)
(y − y∗)

=
1

2
(y − y∗)⊤(Ak +A⊤

k)(y − y∗). (4.27)

We can thus guarantee that V̇ (y) < 0 ∀y if symmetric matrices Ak +A⊤
k are negative-

definite, i.e. Ak + A⊤
k ≺ 0, and if Aky

∗ + bk = 0. Note that these are sufficient, not

necessary conditions. As explained in Section 4.2, it follows from the Lyapunov theory that

an arbitrary differential equation system (4.24) with negative definite matrices Ak +A⊤
k

and fulfilling Aky
∗ + bk = 0 is asymptotically stable at target y∗.

We can now finally define an optimization problem to compute the unknown param-

eters πk,µk,Σk. Two different optimization problems have been proposed in [15]. The

Stable Estimator of Dynamical Systems (SEDS) Likelihood framework optimizes a log-

likelihood function while ensuring global asymptotic stability. This results in the following

optimization problem:

min
πk,µk,Σk

L(θ) = 1

T

N∑
n=1

Tn∑
t=0

log

(
K∑
k=1

πkN (yn,t, ẏn,t;µk,Σk)

)
,

subject to: Aky
∗ + bk = 0,∀k

Ak +A⊤
k ≺ 0, ∀k

Σk ≻ 0, ∀k
0 < πk < 1, ∀k
K∑
k=1

πk = 1

(4.28)

Here T is the overall number of datapoints in (4.5). Alternatively, SEDS Mean Squared

4.3. DESIGN OF DYNAMIC SYSTEMS BY PBD 89

Error framework optimizes

min
πk,µk,Σk

J (θ) =
1

2T

N∑
n=1

Tn∑
t=0

∥ẏn,t − f(yn,t)∥2,

subject to: Aky
∗ + bk = 0,∀k

Ak +A⊤
k ≺ 0, ∀k

Σk ≻ 0, ∀k
0 < πk < 1, ∀k
K∑
k=1

πk = 1

(4.29)

SEDS-Likelihood and SEDS-MSE optimization problems can be solved using standard

libraries for nonlinear programming.

The SEDS-likelihood approach optimizes the probability of the observed data under

the Gaussian Mixture Model (GMM) used to represent the dynamics. It seeks to find

the parameters that maximize the likelihood of the data, leveraging the probabilistic na-

ture of GMM. It provides a robust probabilistic framework, making it well-suited for

tasks involving uncertainty or noisy demonstrations. By capturing the underlying data

distribution, it can effectively handle complex or multimodal trajectory patterns. It is

particularly valuable in applications where uncertainty quantification is important, as

the probabilistic nature allows for modeling the variance in trajectories. However, the

resulting optimization process can be computationally expensive due to the need to cal-

culate the likelihood for multiple components and enforce stability constraints. It may

be less intuitive for users focused on direct trajectory reproduction, as the emphasis is on

probability rather than error minimization.

The SEDS-MSE approach, on the other hand, directly minimizes the error between

the velocities predicted by the learned model and those observed in the demonstrations. It

focuses on accurate trajectory reproduction by reducing the Euclidean distance between

predicted and observed values. The objective is straightforward and intuitive, as it di-

rectly minimizes the mismatch between the demonstrated and reproduced velocities.It is

computationally efficient as it avoids the probabilistic calculations required by the SEDS-

likelihood approach. This approach is easier to interpret and validate in terms of achieving

precise trajectory reproduction. However, unlike the likelihood approach, it does not ex-

plicitly account for uncertainty or variability in the data, which can be a limitation in

tasks with noisy or multimodal data. It may be less robust to outliers or variations in the

demonstrations, as it focuses solely on minimizing the deterministic error.

In summary, the SEDS-likelihood approach is probabilistic, focusing on capturing the

underlying distribution of the data and ensuring robustness to noise. It is computation-

ally intensive but better suited for tasks that involve significant variability or require

modeling uncertainty. In contrast, the SEDS-MSE approach prioritizes accuracy and

90 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

simplicity, directly targeting the precise reproduction of demonstrated trajectories. It is

computationally lighter and more intuitive but less equipped to handle variability and

noise.

4.3.5 Selecting Optimal Number of Mixture Components for

SEDS

In the SEDS framework, the choice of K must also account for the stability constraints

imposed during parameter estimation. A larger K provides greater flexibility to model

complex dynamics but may introduce challenges in satisfying the Lyapunov stability con-

ditions. Conversely, a smaller K simplifies stability enforcement but may lack the resolu-

tion to accurately capture the demonstrated trajectories.

To ensure a balance, the designer must ensure that K is sufficient to capture the vari-

ability in the demonstration data, including transitions between different regions of the

state space. On the other hand, K should not be too large to such that the optimiza-

tion problem remains computationally tractable while satisfying the stability constraints.

A smaller K often results in a more interpretable model, which can be beneficial for

understanding the learned dynamics.

In practice, K is usually determined experimentally, starting with a smaller number

and increasing it until the model adequately captures the variability in the demonstrated

trajectories. The selection process should also account for the trade-offs between accuracy,

stability, and computational complexity inherent to the SEDS framework:

Initial Selection Based on Data Complexity Start with a small value of K (e.g.,

2-3) to capture the basic structure of the data. Increase K iteratively, adding

components as necessary to capture finer details in the trajectories.

Evaluation Metrics Use model selection criteria such as the Akaike Information Cri-

terion (AIC) or Bayesian Information Criterion (BIC) to balance model fit and

complexity. These criteria are defined as:

AIC = 2m− 2 ln(L̂), (4.30)

BIC = m ln(T)− 2 ln(L̂), (4.31)

wherem is the number of estimated parameters (πk,µk,Σk), T is the number of data

points, and ln(L̂) is the maximized log-likelihood of the model as specified in (4.12).

Lower AIC or BIC scores indicate better trade-offs between model complexity and

data fit.

Cross-Validation : Divide the data into training and validation sets. Fit the GMM with

different values of K and evaluate the performance on the validation set. Select the

K that minimizes error on the validation set while avoiding overfitting.

4.3. DESIGN OF DYNAMIC SYSTEMS BY PBD 91

Stability Analysis : Ensure that the chosenK allows the model to satisfy the Lyapunov

stability constraints in the SEDS framework. Test the model’s ability to converge

to the attractor for a range of initial conditions.

4.3.6 Accuracy of Motion Reproduction with SEDS

To evaluate the performance of Stable Estimator of Dynamical Systems (SEDS) frame-

work, we analyze its performance in reproducing demonstrated trajectories and its ability

to handle perturbations. While the accuracy of motion reproduction with SEDS is usually

not as high as what can be achieved with Dynamic Movement Primitives (DMPs), the

system reliably converges to the desired attractor. This convergence ensures robustness

and adaptability in dynamic environments, a key advantage of the SEDS framework over

methods focusing solely on trajectory accuracy.

Increasing the number of mixture components K in the Gaussian Mixture Model

(GMM) used by SEDS could improve the accuracy of motion reproduction. A larger K

allows the system to capture finer details in the demonstrated trajectories. However, this

improvement in accuracy comes at the cost of increased complexity in the optimization

problem. As K grows, ensuring that the stability constraints are satisfied becomes more

computationally challenging, and the resulting system may be harder to interpret.

Figure 4.2 illustrates how Gaussian Mixture Models (GMM) within the SEDS frame-

work approximate demonstrated 2-D movements by displaying the mean values and co-

variance matrices of the Gaussians alongside the reproduced trajectories. Each Gaussian

is represented as an ellipse, where the center denotes the mean and the shape and size re-

flect the covariance matrix, indicating the variance and orientation of the Gaussian. The

trajectories pass through these ellipses, demonstrating how the means act as attractors

that guide the motion while the covariance influences the spread and variability around

the mean. The number of components determines the level of detail captured: with

more Gaussians, finer details of the motion are preserved, while fewer Gaussians yield

a smoother but less precise approximation. As the trajectory progresses, it transitions

smoothly between regions dominated by different Gaussians, blending their influences

based on proximity and variance. This ensures a continuous and stable motion. The

visual representation in both position and phase planes highlights how each Gaussian

shapes specific segments of the trajectory, creating a dynamic interplay that accurately

and stably replicates the demonstrated movement.

Figure 4.3 illustrates the global asymptotic stability of the SEDS framework through

streamlines that visualize the system’s behavior. Each streamline represents the trajectory

of the system as it evolves from a different initial position within the state space. The

graphs highlight that, regardless of the initial starting position, all trajectories converge

to the desired attractor point. This behavior demonstrates the stability of the learned

dynamical system and validates its ability to generalize across diverse initial conditions.

The streamlines underscore the core strength of SEDS in embedding stability directly

92 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

-150 -100 -50 0 50 100

-200

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100

-60

-40

-20

0

20

40

60

80

-200 -150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

0 50 100 150

-100

-50

0

50

100

0 50 100 150

-50

-40

-30

-20

-10

0

10

20

-100 -50 0 50 100

-40

-30

-20

-10

0

10

20

30

-40 -30 -20 -10 0 10

0

20

40

60

80

100

120

-40 -30 -20 -10 0 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 20 40 60 80 100 120

-15

-10

-5

0

Figure 4.1: Each row in the figure shows the reproduction of demonstrated 2-D movements
with a single dynamic system. The red dotted lines show the demonstrated trajectories
and the full colored lines the trajectories reproduced by the computed dynamic system.
The figures show trajectories in (y1, y2) position plane and (y1, ẏ1) and (y2, ẏ2) phase
planes.

within the learned model. Unlike approaches that rely on external control mechanisms

to recover from perturbations, the SEDS framework inherently returns to the desired

trajectory due to its attractor dynamics. This feature makes it particularly suitable for

applications requiring consistent convergence to target points in dynamic or uncertain

environments.

Beyond accuracy, a key strength of SEDS is its inherent robustness to perturbations.

The dynamic system, governed by Lyapunov stability principles, ensures that the system

trajectories naturally return to the desired motion even when subjected to disturbances,

as demonstrated in Fig. 4.4.

4.4. SUMMARY 93

Figure 4.2: Each column in the figure shows the Gaussian mixture models used to repre-
sent the demonstrated movements. The means and covariance matrices in (y1, y2) position
plane and phase spaces (y1, ẏ1) and (y2, ẏ2) are shown. The same data as in Fig. 4.1 was
used to train the models.

4.4 Summary

The Stable Estimator of Dynamical Systems (SEDS) framework offers a robust, flexible,

and mathematically grounded approach to learning stable dynamical systems for robot

motion representation. This chapter has explored the foundational principles, design, and

evaluation of SEDS, emphasizing its unique advantages and limitations when compared

to other methods such as Dynamic Movement Primitives (DMPs).

SEDS leverages Gaussian Mixture Models (GMM) and Gaussian Mixture Regression

(GMR) to encode the variability in demonstrated motions while ensuring stability through

Lyapunov theory [15, 16]. This guarantees that the system converges to the desired at-

tractor point under all initial conditions. This built-in stability is a significant advantage,

allowing SEDS to respond adaptively to perturbations and environmental variations with-

out requiring external stabilization mechanisms.

A key strength of SEDS lies in its ability to balance motion reproduction accuracy

-150 -100 -50 0 50 100

-200

-150

-100

-50

0

50

100

150

0 50 100 150

-100

-50

0

50

100

-40 -30 -20 -10 0 10

0

20

40

60

80

100

120

Figure 4.3: Convergence towards the attractor point for different starting positions. The
same data as in Fig. 4.1 was used to train the models.

94 CHAPTER 4. DYNAMIC SYSTEMS AND GAUSSIAN MIXTURE REGRESSION

Figure 4.4: Robustness of the learned models to perturbations. The same data as in Fig.
4.1 was used to train the models. During motion reproduction, the robot’s end-effector
at t = 1 second with the displacement vector [−30; 30] mm.

with stability guarantees. While its accuracy in reproducing individual trajectories may

not match that of DMPs, SEDS excels in tasks requiring generalization and adaptability.

Its ability to recover from perturbations and return to the desired trajectory makes it

particularly suitable for dynamic and uncertain environments [9]. However, the choice of

the number of mixture components, K, in the GMM significantly impacts performance.

A larger K can improve the fidelity of motion reproduction by capturing finer details in

trajectories but adds complexity to the optimization process, potentially affecting com-

putational efficiency.

Unlike DMPs, which prioritize simplicity and efficient trajectory reproduction, SEDS’s

strength lies in its broader applicability to tasks that demand adaptability and inherent

stability. While well-suited for continuous state spaces, one limitation of SEDS is that en-

suring stability for complex trajectories with many attractors may require careful tuning

or domain-specific heuristics, which can increase implementation complexity. Recent ad-

vancements, such as learning Lyapunov functions alongside policies using neural networks,

further extend the capabilities of SEDS [4].

Compared to other trajectory planning techniques, such as polynomials and splines,

SEDS benefits from its dynamic nature. Splines, while optimized for smoothness and

precision in predefined paths, are static representations that require external intervention

to handle perturbations. In contrast, SEDS inherently adapts through its vector field

dynamics, making it more robust to disturbances and better suited for complex, changing

environments [30].

In summary, SEDS provides a powerful framework for designing dynamic systems

that are accurate in reproducing demonstrated motions while being inherently stable and

robust. Its applicability extends to various robotics tasks, including manipulation, naviga-

tion, and interaction, where adaptability and stability are paramount. Despite requiring

careful parameter selection and computational resources for complex tasks, SEDS remains

a cornerstone method for learning and representing stable dynamical systems in robotics.

Chapter 5

Probabilistic Movement Primitives

(ProMPs)

Probabilistic Movement Primitives (ProMPs) provide a powerful approach to learning

and reproducing motion in robotics, extending the versatility and adaptability of pre-

vious frameworks like Dynamic Movement Primitives (DMPs) and Stable Estimator of

Dynamical Systems (SEDS) with some unique features. Unlike DMPs, which focus on de-

terministic trajectory generation, or SEDS, which emphasizes stability through Lyapunov

functions, ProMPs employ a probabilistic formulation to capture the variability and un-

certainty inherent in motion demonstrations. This chapter explores the foundations of

ProMPs, their mathematical formulation, and their comparative advantages over DMPs

and SEDS.

5.1 Mathematical Formulation of ProMPs

At the core of ProMPs lies the assumption that trajectories can be represented as a

linear combination of basis functions with weights drawn from a multivariate Gaussian

distribution. Formally, for a single degree of freedom (DoF), a trajectory y(t), which now

includes both position y(t) and velocity ẏ(t), is expressed as:

y(t) = Φ(t)w + ϵ, (5.1)

whereΦ(t) is a 2×nmatrix of time-dependent basis functions, w ∈ Rn is an n-dimensional

vector of weights, and ϵ ∼ N (0,Σϵ) is Gaussian noise capturing trajectory variability,

with Σϵ =

[
σ2
y 0

0 σ2
ẏ

]
to account for different noise levels in position and velocity.

The state vector y(t) is given by:

y(t) =

[
y(t)

ẏ(t)

]
, (5.2)

95

96 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

which ensures that both position and velocity are included in the representation.

Each row of the basis function matrix Φ(t) is defined as:

Φ(t) =

[
ϕ(t)

ϕ̇(t)

]
, (5.3)

where ϕ(t) is an n × 1 vector of basis functions for position, and ϕ̇(t) is its derivative

with respect to time, representing the basis functions for velocity. Each element of ϕ(t)

is defined as:

ϕi(t) = exp

(
−(t− ci)

2

2h2
i

)
, (5.4)

where ci and hi are the center and width of the i-th basis function, respectively. These

parameters determine the temporal placement and scale of the basis functions, enabling

flexible representation of trajectories. The complete vector of basis functions is then given

by:

ϕ(t) =
[
ϕ1(t) ϕ2(t) . . . ϕn(t)

]
, (5.5)

where n is the number of Gaussian basis functions.

The coefficients of the matrix Φ(t) are defined as:

Φ(t) =

[
ϕ1(t) ϕ2(t) . . . ϕn(t)

ϕ̇1(t) ϕ̇2(t) . . . ϕ̇n(t)

]
, (5.6)

where ϕi(t) is the i-th basis function evaluated at time t, and ϕ̇i(t) is its time derivative.

This formulation ensures that Φ(t) encapsulates both position and velocity contributions

for all basis functions.

The weights w are modeled probabilistically:

w ∼ N (µw,Σw), (5.7)

where µw ∈ Rn and Σw ∈ Rn×n are the mean and covariance matrix of the weight

distribution, respectively. This probabilistic modeling enables ProMPs to capture both

the mean behavior and the variability of motion across multiple demonstrations.

5.1.1 Using Phase Variables Instead of Time

While the primary formulation of ProMPs uses time t to index the basis functions, it

is often advantageous to use a phase variable s instead. The phase variable provides

a normalized representation of progress through the trajectory, independent of absolute

time. The phase variable s(t) is defined as:

s(t) =
t

T
, (5.8)

5.1. MATHEMATICAL FORMULATION OF PROMPS 97

where T is the total duration of the trajectory. This normalization maps t ∈ [0, T] to

s ∈ [0, 1].

The basis functions are then parameterized by s rather than t:

ϕi(s) = exp

(
−(s− ci)

2

2h2
i

)
, (5.9)

ϕ̇i(s) = ṡ(t)

(
−s− ci

h2
i

ϕi(s)

)
, (5.10)

where ṡ(t) = 1
T
is the time derivative of the phase variable.

Using the phase variable allows for time-scaling invariance, which is particularly useful

when trajectories of varying durations need to be compared or reproduced. The trajectory

representation is then expressed as:

y(s) = Φ(s)w + ϵ, (5.11)

where Φ(s) replaces Φ(t), and the structure of Φ(s) remains consistent with the definition

above.

5.1.2 Marginalizing Over Weights to Compute Likelihoods

Let’s assume now that we observe trajectory y(t). Assuming model (5.7), its likelihood

at each time t is computed by marginalizing over the weights:

p(y(t)) =

∫
p(y(t)|w)p(w)dw. (5.12)

This integral can be solved efficiently due to the Gaussian assumptions, yielding:

p(y(t)) = N (y(t);Φ(t)µw,Φ(t)ΣwΦ(t)⊤ +Σϵ), (5.13)

where Φ(t) is a matrix of basis functions evaluated at all time steps. To transition

from Eq. (5.12) to Eq. (5.13), we exploit the fact that both p(y(t)|w) and p(w) are

Gaussian distributions, which makes the integral tractable. The likelihood of observing

the trajectory y(t) given the weights w is Gaussian, expressed as:

p(y(t)|w) = N (y(t);Φ(t)w,Σϵ), (5.14)

where Φ(t) is the matrix of basis functions evaluated at all time steps, Σϵ is the covariance

matrix representing independent Gaussian noise, and Φ(t)w represents the mean of this

conditional Gaussian. Similarly, the prior distribution over weights is also Gaussian:

p(w) = N (w;µw,Σw), (5.15)

98 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

where µw and Σw are the mean and covariance of the weights, respectively.

Substituting these into Eq. (5.12), the marginalization integral becomes:

p(y(t)) =

∫
N (y(t);Φ(t)w,Σϵ)N (w;µw,Σw)dw. (5.16)

The product of these two Gaussian distributions yields another Gaussian distribution. As

explained below (see Section 5.1.3), the marginal distribution of y(t) has a mean given

by Φ(t)µw and a covariance given by Φ(t)ΣwΦ(t)⊤ + Σϵ. Consequently, the integral

simplifies directly to:

p(y(t)) = N (y(t);Φ(t)µw,Φ(t)ΣwΦ(t)⊤ +Σϵ). (5.17)

This result leverages the properties of Gaussian distributions, specifically their closed-

form solutions for convolution (marginalization in this case) and combination. By carefully

handling the mean and covariance terms, we arrive at the desired probabilistic description

of y(t) in Eq. (5.17).

The above formulation highlights the elegance of ProMPs in combining probabilistic

reasoning with basis function representation. Each basis function contributes to the overall

trajectory generation, while the covariance Σw captures the uncertainty and variability

in motion.

5.1.3 Product of Gaussian Distributions

The integral in Eq. (5.12) involves the product of two Gaussian distributions:

p(y(t)) =

∫
N (y(t);Φ(t)w,Σϵ)N (w;µw,Σw)dw. (5.18)

To compute this integral, we use the fact that the product of two Gaussian distributions

yields another Gaussian distribution, scaled by a normalization factor. This enables the

integral to be solved in closed form.

The conditional likelihood p(y(t)|w) is given as:

p(y(t)|w) = N (y(t);Φ(t)w,Σϵ), (5.19)

while the prior on weights is given by:

p(w) = N (w;µw,Σw). (5.20)

The product of these distributions is:

p(y(t),w) = N (y(t);Φ(t)w,Σϵ)N (w;µw,Σw). (5.21)

5.2. LEARNING THE PARAMETERS OF THE WEIGHT DISTRIBUTION 99

To compute p(y(t)), we marginalize over w:

p(y(t)) =

∫
p(y(t),w)dw. (5.22)

Substituting the product form:

p(y(t)) =

∫
N (y(t);Φ(t)w,Σϵ)N (w;µw,Σw)dw. (5.23)

This integral can be evaluated directly because the product of Gaussians is Gaussian.

Specifically, the marginal distribution of y(t) is another Gaussian with:

• Mean: Φ(t)µw,

• Covariance: Φ(t)ΣwΦ(t)⊤ +Σϵ.

Eq. (5.17) is then obtained using this mean and covariance.

This result captures both the mean and variance of the observed trajectory y(t), com-

bining contributions from the weight distribution and the noise model. The term Φ(t)µw

represents the mean trajectory, while Φ(t)ΣwΦ(t)⊤ +Σϵ encapsulates the variability due

to weight uncertainty and measurement noise.

5.2 Learning the Parameters of the Weight Distribu-

tion

In general, ProMPs are learned from multiple demonstrations. The diversity of demon-

strations should reveal the variance of the task and the uncertainty of the execution.

The parameters of the weight distribution, µw and Σw, are learned from a set of

N demonstrated trajectories {yi}Ni=1. Each trajectory yi(t), including both position

and velocity, is represented as a set of observations {yi(tj)}Ti
j=1 over discrete time steps

t1, t2, . . . , tTi
. Each observation yi(tj) is defined as:

yi(tj) =

[
yi(tj)

ẏi(tj)

]
, (5.24)

where yi(tj) and ẏi(tj) are the position and velocity at time tj, respectively. Note that

the durations of the demonstrations, Ti, are not necessarily constant.

For each demonstration, yi(t) is vectorized into Yi:

Yi =

yi(t1)

yi(t2)
...

yi(tTi
)

 , (5.25)

100 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

where Yi ∈ R2Ti . This vectorization enables a consistent formulation for parameter

estimation, incorporating both position and velocity at each time step.

The basis function matrix Φ(t) incorporates both position and velocity contributions.

Its 2× n structure is defined as:

Φ(t) =

[
ϕ1(t) ϕ2(t) . . . ϕn(t)

ϕ̇1(t) ϕ̇2(t) . . . ϕ̇n(t)

]
, (5.26)

where ϕi(t) is the i-th Gaussian basis function evaluated at time t and ϕ̇i(t) is its time

derivative. To concatenate these basis functions over all time steps of a demonstration,

the full concatenated matrix Φ is constructed as:

Φ =

Φ(t1)

Φ(t2)
...

Φ(tTi
)

 , (5.27)

where Φ ∈ R2Ti×n represents the basis function contributions for all positions and veloci-

ties across the entire demonstration.

To estimate µw and Σw, we first compute the weights for each demonstration by

solving the regularized least-squares problem:

wi = argmin
w

Ti∑
j=1

∥yi(tj)−Φ(tj)w∥2 + λ∥w∥2, (5.28)

where λ is a regularization parameter. The closed-form solution is given by:

wi = (Φ⊤Φ+ λI)−1Φ⊤Yi, (5.29)

where Φ is the concatenated matrix of basis functions evaluated at all time steps, and

Yi is the vectorized trajectory for the i-th demonstration, including both position and

velocity.

During this process, it is often necessary to normalize the trajectories to ensure a con-

sistent time scale across demonstrations. This normalization adjusts each demonstration

to a common duration Tnorm using a mapping from the original time scale [0, Ti] to the

normalized time scale [0, Tnorm]. The normalized time parameter τ(t) is defined as:

τ(t) =
t

Ti

Tnorm, (5.30)

where t ∈ [0, Ti] represents the original time scale. The normalized basis functions and

their derivatives are then computed using τ(t) to ensure compatibility across varying

durations.

5.2. LEARNING THE PARAMETERS OF THE WEIGHT DISTRIBUTION 101

Once the weights {wi}Ni=1 are computed, the mean and covariance are estimated as:

µw =
1

N

N∑
i=1

wi, (5.31)

Σw =
1

N

N∑
i=1

(wi − µw)(wi − µw)
⊤. (5.32)

5.2.1 Motion Reproduction

During reproduction, a new trajectory is generated by sampling weights from the learned

distribution:

wsampled ∼ N (µw,Σw). (5.33)

The trajectory is then computed as:

y(t) = Φ(t)wsampled, (5.34)

where Φ(t) accounts for both position and velocity contributions.

Fig. 5.1 shows how the ProMP model captures and reproduces motion trajectories

based on the training data. The training data highlights the variability across multiple

demonstrations, showing the inherent differences in the motion. The reproduced ProMPs

illustrate the model’s ability to learn the central tendency of the motion, depicted as

the mean trajectory, while simultaneously encoding the variability through the 1-sigma

interval. This probabilistic representation not only captures the typical motion pattern

Figure 5.1: The upper row graphs show the data for training a ProMP and the lower row
the reproduced ProMPs (red curves) with 1-sigma interval (green curves).

102 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

Figure 5.2: The left graph shows the position obtained by integrating mean velocity of a
ProMP and the variance of training data. The right graph shows the mean velocity and
its variance computed by the ProMP.

but also provides a clear understanding of the uncertainty, showcasing the model’s strength

in generalizing to similar trajectories while maintaining robustness to variability in the

data. The graphs confirm that the ProMP implementation accurately reflects the desired

probabilistic properties of the motion.

ProMPs are designed to encode and reproduce not only position trajectories but also

velocity profiles, ensuring a comprehensive representation of motion dynamics, as shown in

Figure 5.2. By capturing both the mean velocity and its variability, ProMPs enable robots

to replicate the nuances of demonstrated motions with greater accuracy. This ability to

model velocity alongside position is crucial for tasks that require precise dynamic exe-

cution, such as manipulation or interaction in variable environments, where both spatial

and temporal aspects of motion are essential for success. This and the previous example

were generated using the code from [7].

To ensure that the reproduced trajectory conforms to the desired duration Treproduction,

we align the time scaling with the normalized duration Tnorm. The time parameter t for

reproduction is scaled as:

t = τ−1(τ(t)), (5.35)

where τ(t) = t
Treproduction

Tnorm is the normalized time scale. The basis functions and their

derivatives are then evaluated as:

ϕi(τ(t)) = exp

(
−(τ(t)− ci)

2

2h2
i

)
, (5.36)

ϕ̇i(τ(t)) = τ̇(t)

(
−τ(t)− ci

h2
i

ϕi(τ(t))

)
, (5.37)

where τ̇(t) = Tnorm

Treproduction
is the scaling factor for the time derivative. This ensures that

the reproduced trajectory adheres to the desired temporal constraints while retaining the

learned variability and central tendencies of the demonstrations.

5.3. ENSURING SPECIFIC CONFIGURATION AT A GIVEN TIME 103

5.3 Ensuring Specific Configuration at a Given Time

In robotic applications, it is often required for the trajectory to achieve a specific config-

uration yg (e.g., a goal or intermediate state) at a given time tg. ProMPs enable this by

conditioning the weight distribution on the desired configuration.

5.3.1 Conditioning on a Specific Configuration

To enforce a specific configuration yg at time tg, we impose a probabilistic constraint

within the ProMP framework. The conditioned distribution over the weights w is com-

puted as (see also Section 5.3.4):

p(w|y(tg) = yg) ∝ p(y(tg) = yg|w)p(w). (5.38)

The likelihood of the desired configuration given the weights is Gaussian:

p(y(tg) = yg|w) = N (yg;Φ(tg)w,Σϵ), (5.39)

where Φ(tg) is the basis function matrix evaluated at tg, and Σϵ represents the observation

noise.

Combining this with the prior distribution over weights, p(w) = N (w;µw,Σw), the

conditioned distribution p(w|y(tg) = yg) is Gaussian with:

µcond
w = µw +G(yg −Φ(tg)µw), (5.40)

Σcond
w = Σw −GΦ(tg)Σw, (5.41)

where the gain matrix G is defined as:

G = ΣwΦ(tg)
⊤(Φ(tg)ΣwΦ(tg)

⊤ +Σϵ)
−1. (5.42)

5.3.2 Detailed Derivation of Conditioned Mean and Covariance

The conditioning process in ProMPs leverages properties of multivariate Gaussian distri-

butions. Given a prior Gaussian distribution over weights:

p(w) = N (w;µw,Σw), (5.43)

and a probabilistic observation model:

p(y(tg) = yg|w) = N (yg;Φ(tg)w,Σϵ), (5.44)

the posterior distribution p(w|y(tg) = yg) can be derived using the Gaussian conditioning

formula.

104 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

To compute the posterior distribution p(w|y(tg) = yg), we use the fact that the

product of two Gaussian distributions is another Gaussian, up to a normalization factor.

Specifically:

p(w|y(tg) = yg) ∝ p(y(tg) = yg|w)p(w). (5.45)

Substituting the Gaussian forms:

p(y(tg) = yg|w) = N (yg;Φ(tg)w,Σϵ), (5.46)

p(w) = N (w;µw,Σw), (5.47)

the product of these distributions yields:

p(w|y(tg) = yg) = N (w;µcond
w ,Σcond

w), (5.48)

where the conditioned mean and covariance are given by:

µcond
w = µw +G(yg −Φ(tg)µw), (5.49)

Σcond
w = Σw −GΦ(tg)Σw. (5.50)

The conditioned mean µcond
w is a combination of the prior mean µw and a correction

term. This correction term adjusts the prior mean based on the discrepancy between

the desired configuration yg and the predicted configuration Φ(tg)µw, weighted by the

uncertainties in the prior and observation models. The conditioned covariance Σcond
w is

the prior covariance Σw reduced by a term proportional to the information gain from

the observation at tg. This reflects the fact that the uncertainty in w decreases as more

constraints are added.

5.3.3 Reproducing the Conditioned Trajectory

Once the conditioned distribution p(w|y(tg) = yg) is computed, a new trajectory can be

generated. A sample of weights wsampled is drawn from the conditioned distribution:

wsampled ∼ N (µcond
w ,Σcond

w). (5.51)

The trajectory is then computed as:

y(t) = Φ(t)wsampled, (5.52)

where the reproduced trajectory respects the specified configuration yg at time tg while

maintaining the natural variability of the learned ProMP.

Fig. 5.3 shows trajectory generation with ProMPs given different initial conditions

for the beginning of motion. On the left, the training data consists of multiple trajec-

tory demonstrations highlighting the variability in execution. The demonstrations exhibit

5.3. ENSURING SPECIFIC CONFIGURATION AT A GIVEN TIME 105

significant variance, particularly in the middle and end segments of the trajectories, illus-

trating the inherent variability in human or robot motion. On the right, the generated

trajectories represent the mean trajectories computed by conditioning ProMPs on the

specified initial points.

ProMPs enable such conditioning by leveraging their probabilistic nature, where the

underlying distribution of trajectory weights is updated based on the given initial con-

ditions. This process ensures that the generated trajectories not only start from the

specified points but also conform to the variability and patterns observed in the training

data. The conditioned trajectories smoothly transition from the specified initial states,

reflecting the probabilistic correlations encoded in the learned model.

The ability to condition trajectories makes ProMPs particularly useful for tasks requir-

ing adaptability to changes in the starting configuration. For example, in applications like

pick-and-place operations, where the robot’s initial position might vary due to dynamic

workspace constraints, ProMPs can generate appropriate motion plans that adhere to the

statistical properties of the demonstrated trajectories. This adaptability is achieved with-

out the need for re-learning or extensive recalibration, which is a significant advantage

over deterministic approaches.

Moreover, the right-hand plot demonstrates the smoothness and consistency of the

conditioned trajectories, ensuring that the robot’s motion remains natural and feasible.

This smooth adaptation is crucial in collaborative scenarios, such as human-robot inter-

action, where the robot must seamlessly adjust its actions based on the human partner’s

behavior. The probabilistic framework of ProMPs enables such adaptability while pre-

serving the natural variability and robustness of the learned motion.

Overall, Fig. 5.3 illustrates the core strengths of ProMPs: their ability to capture

Figure 5.3: The left graph shows the training data, the mean trajectory and the variance
in the training data. The right graph shows the computed mean trajectories given the
initial condition and the associated variances.

106 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

the variability of demonstrated motions, adapt to task-specific constraints, and generate

trajectories that balance naturalness and task requirements. This capability underscores

ProMPs’ suitability for dynamic and uncertain environments where flexibility and robust-

ness are paramount.

5.3.4 Bayesian Basis for Conditioning

The conditioning operation described above is rooted in Bayes’ theorem. Bayes’ theorem

states that:

p(w|y(tg) = yg) ∝ p(y(tg) = yg|w)p(w). (5.53)

Here, p(w) is the prior distribution over the weights, representing what has been learned

from demonstrations, and p(y(tg) = yg|w) is the likelihood of the desired configuration

yg given these weights. The posterior distribution p(w|y(tg) = yg) combines these terms

to yield a new distribution over weights that respects both the prior knowledge and the

imposed constraint. This Bayesian formulation ensures consistency between the learned

ProMP and the specified configuration, allowing the system to balance prior variability

with task-specific requirements.

5.4 Summary and Discussion

Probabilistic Movement Primitives (ProMPs) offer a versatile and robust framework for

learning, modeling, and reproducing motion trajectories in robotics. By employing a

probabilistic representation, ProMPs capture the variability and uncertainty inherent in

motion demonstrations, making them particularly suitable for tasks requiring adaptability

and multimodal trajectory representations. The foundational work by Paraschos et al.

[24, 25] laid the theoretical groundwork for ProMPs, introducing a probabilistic extension

of traditional movement primitives that enables both deterministic reproduction of mean

trajectories and stochastic sampling for diverse trajectory generation.

Compared to other frameworks such as Dynamic Movement Primitives (DMPs) and

the Stable Estimator of Dynamical Systems (SEDS), ProMPs excel in capturing proba-

bilistic variations and ensuring adaptability. DMPs combine accurate trajectory reproduc-

tion with attractor dynamics, ensuring convergence to a desired goal even in the presence

of perturbations, but rely on fixed attractor points and deterministic formulations. SEDS

emphasizes stability and robustness through Lyapunov functions, guaranteeing global con-

vergence to attractors but often lacks explicit modeling of variability. ProMPs, on the

other hand, prioritize capturing the probabilistic nature of motion, making them ideal for

tasks requiring flexibility and the ability to encode multimodal trajectory distributions.

However, ProMPs do not inherently ensure stability, which might require additional con-

straints or mechanisms in specific applications.

The probabilistic framework of ProMPs leverages a Gaussian weight distribution to

encode variability observed in demonstrations. Using a weighted combination of basis

5.4. SUMMARY AND DISCUSSION 107

functions parameterized by either time or a phase variable, ProMPs provide a robust

mechanism for modeling trajectories of varying durations while maintaining consistency.

Learning involves estimating the mean and covariance of the weight distribution from

multiple demonstrations, capturing both the central tendency and variability in the ob-

served data. The use of Bayesian conditioning enables task-specific constraints, such as

achieving specific configurations, while preserving the natural variability of motion.

ProMPs have demonstrated significant potential in human-robot interaction and col-

laborative tasks, as highlighted in the works of Maeda et al. [21, 20]. These extensions,

referred to as interaction primitives, leverage the probabilistic framework to model and

predict the motion of interacting agents. ProMPs have been successfully applied to co-

ordinate multiple human-robot tasks, enabling robots to anticipate human actions and

adjust their behavior in real-time. Similarly, they have shown promise in robot-directed

imitation learning tasks [19], reproducing complex behaviors demonstrated by humans

and generalizing from limited examples.

The choice between ProMPs, DMPs, and SEDS depends on the specific requirements

of the task. For applications demanding deterministic and stable motion generation,

DMPs or SEDS may be preferred. However, for tasks requiring adaptability, probabilistic

reasoning, and the ability to model multimodal distributions, ProMPs provide a com-

pelling solution. Furthermore, ProMPs’ extension to interaction primitives highlights

their versatility in multi-agent and collaborative scenarios, enabling coordinated motion

and real-time adaptability.

In summary, ProMPs provide a powerful tool for modern robotic motion generation,

combining flexibility, adaptability, and the ability to represent probabilistic variations.

Their applicability extends to various robotics tasks, including human-robot collaboration,

manipulation, and complex task planning, making them a cornerstone in robotic motion

representation methodologies.

108 CHAPTER 5. PROBABILISTIC MOVEMENT PRIMITIVES (PROMPS)

Chapter 6

Motion Representations and Robot

Learning

Robot motion representation stands at the core of both control and learning in robotics.

In conclusion, we reflect on the major representations discussed in this textbook – splines,

Dynamic Movement Primitives (DMPs), Stable Estimator of Dynamical Systems (SEDS),

and Probabilistic Movement Primitives (ProMPs) – and examine their significance in

imitation learning, robot learning, especially in reinforcement learning (RL) and deep

reinforcement learning (DRL).

Modern robotics demands flexible, adaptive, and robust representations that can ac-

commodate the diverse requirements of robot motion. Polynomials and splines, as dis-

cussed, form the foundation of trajectory planning. Their ability to model smooth, con-

tinuous trajectories with explicit control over derivatives makes them an excellent tool

for precision tasks like pick-and-place operations or industrial machining. However, their

static nature poses challenges in dynamic and uncertain environments. While spline-

based representations excel in predefined settings, they lack the adaptability required for

tasks that involve external perturbations or unstructured interactions. The advancements

in robot control and machine learning have necessitated motion representations that go

beyond such static paradigms.

DMPs emerged to address challenges in robot motion generation by introducing a

dynamic, goal-oriented framework that encodes trajectories as solutions to differential

equations with attractor dynamics. This ensures robust convergence to a desired goal,

making DMPs ideal for tasks requiring resilience to disturbances or variations in start-

ing and end conditions. Their simplicity and scalability to high-dimensional tasks have

solidified their role in robotic control. However, their deterministic formulation, while

advantageous for precise goal-oriented applications, limits their capacity to represent and

generalize the variability inherent in real-world demonstrations.

To address this limitation, extensions to DMPs have integrated statistical learning

techniques, enabling them to capture trajectory variability and generalize across the train-

ing data. Using statistical learning techniques such as locally weighted regression, DMPs

109

110 CHAPTER 6. MOTION REPRESENTATIONS AND ROBOT LEARNING

can interpolate or extrapolate to generate trajectories for unseen queries, thus adapting to

novel configurations or task conditions. This approach also supports probabilistic reason-

ing, allowing robots to account for uncertainty in trajectory execution. Such capabilities

are particularly beneficial in dynamic environments, including human-robot collabora-

tion, where DMPs enhanced by statistical learning can adaptively and robustly respond

to variability in human actions or task requirements, bridging classical control with mod-

ern data-driven frameworks [2, 17].

SEDS offers an alternative by emphasizing global stability through Lyapunov func-

tions. This framework is rooted in the mathematical rigor of stability theory. They ensure

convergence to attractors across a wide range of initial conditions. SEDS is particularly

well-suited for tasks where safety and reliability are paramount, such as human-robot

interaction or autonomous navigation in cluttered environments. The use of Gaussian

Mixture Models (GMMs) enables SEDS to capture the variability of demonstrated mo-

tions while maintaining stability. However, the trade-off between stability and motion

reproduction fidelity can constrain its use in tasks requiring precise trajectory matching.

Furthermore, the computational complexity associated with ensuring Lyapunov stability

can be a limiting factor in high-dimensional settings.

ProMPs represent a significant evolution in motion representation, prioritizing the

probabilistic nature of trajectories. By modeling motion as a distribution over trajecto-

ries, ProMPs capture both the central tendency and the variability of demonstrations.

This capability makes them particularly suitable for tasks requiring adaptability, such

as human-robot collaboration or manipulation under uncertainty. The use of Bayesian

inference allows ProMPs to incorporate task-specific constraints seamlessly, enabling ap-

plications in dynamic and multimodal environments. Their flexibility and probabilistic

foundation position them as a versatile tool in modern robotics.

The broader context of robot control and learning places these representations within

the frameworks of reinforcement learning (RL) and deep reinforcement learning (DRL).

RL, with its emphasis on optimizing policies through trial-and-error interactions, benefits

significantly from representations like DMPs and ProMPs. DMPs provide a structured

way to initialize RL policies, leveraging their dynamic attractor properties to explore goal-

oriented behaviors effectively. ProMPs, on the other hand, enable RL agents to model

uncertainty and adapt policies to stochastic environments. Their probabilistic nature

aligns well with the exploration-exploitation trade-offs inherent in RL. For example, the

structured representations provided by ProMPs can reduce the sample complexity of

learning policies in tasks requiring generalization across varying conditions [28].

In DRL, where the focus shifts to high-dimensional state and action spaces, motion

representations play an even more crucial role. DMPs and SEDS, with their ability to

encode complex trajectories and ensure stability, respectively, serve as valuable tools for

embedding domain knowledge into neural network architectures. Moreover, incorporat-

ing ProMP-based priors into DRL models can accelerate convergence by guiding policy

exploration towards regions of the state space with high demonstration density. Similarly,

111

SEDS-inspired stability constraints can enhance the robustness of DRL policies, ensuring

safe interactions in physical environments [18, 10].

Furthermore, motion representations can serve as a bridge between model-based and

model-free approaches in RL. While model-free methods rely on data-driven exploration,

model-based methods benefit from the structured representations offered by DMPs, SEDS,

and ProMPs. These representations provide a way to encode prior knowledge about dy-

namics, reducing the sample complexity of learning. For example, in robot manipulation

tasks, ProMPs can represent a family of feasible trajectories, allowing RL algorithms to

focus on fine-tuning policies rather than discovering them from scratch.

The interplay between motion representations and learning extends to imitation learn-

ing and policy transfer. Techniques like guided policy search and behavior cloning rely

on theoretically sound motion representations to encode demonstration data. The ability

to transfer knowledge across tasks and environments depends on the expressiveness and

adaptability of the chosen representation.

In conclusion, the trajectory representations discussed in this textbook offer a wide

spectrum of tools for addressing the diverse challenges of robot motion. From the precision

of splines to the adaptability of ProMPs, each framework contributes unique strengths

to the broader landscape of robotics. The integration of these representations with im-

itation learning, reinforcement learning, and deep learning paradigms underscores their

relevance in advancing robot autonomy. As robotics continues to evolve, the synergy be-

tween control, learning, and motion representation will play a pivotal role in shaping the

capabilities of future robotic systems.

112 CHAPTER 6. MOTION REPRESENTATIONS AND ROBOT LEARNING

Bibliography

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. AI Review,

11:11–73, 1997.

[2] S. Chernova and A. Thomaz. Robot learning from human teachers. Synthesis Lectures

on Artificial Intelligence and Machine Learning, 8(3):1–121, 2014.

[3] S. Chiaverini and B. Siciliano. The unit quaternion: A useful tool for inverse kine-

matics of robot manipulators. System Analysis, Modelling and Simulation, 35:45–60,

1999.

[4] A. Coulombe and H.-C. Lin. Generating stable and collision-free policies through

Lyapunov function learning. In IEEE International Conference on Robotics and

Automation (ICRA), pages 3037–3043, London, UK, 2023.

[5] C. de Boor. A Practical Guide to Splines; Revised Edition. Applied Mathematical

Sciences 27. Springer, New York, 2001.

[6] R. L. Eubank. Spline Smoothing and Nonparametric Regression. Marcel Dekker,

New York, 1988.

[7] A. Fabisch. movement primitives: Imitation learning of cartesian motion with move-

ment primitives. Journal of Open Source Software, 9(97):6695, 2024.

[8] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič. On-line learning and modula-

tion of periodic movements with nonlinear dynamical systems. Autonomous Robots,

27(1):3–23, 2009.

[9] E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard. Learning non-linear multi-

variate dynamics of motion in robotic manipulators. The International Journal of

Robotics Research, 30(1):80–117, 2011.

[10] A. Gupta, K. Zhang, and H.-C. Lin. Stability-aware reinforcement learning for robotic

systems. IEEE Transactions on Robotics, 39(3):567–589, 2023.

[11] C. L. Hu and L. L. Schumaker. Univariate complete smoothing. Numerische Math-

ematik, 49(1):1–10, 1986.

113

114 BIBLIOGRAPHY

[12] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical move-

ment primitives: learning attractor models for motor behaviors. Neural Computation,

25(2):328–373, 2013.

[13] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic movements by demon-

stration using nonlinear oscillators. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots

and Systems, pages 958–963, Lausanne, Switzerland, 2002.

[14] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear

dynamical systems in humanoid robots. In Proc. IEEE Int. Conf. Robotics and

Automation, pages 1398–1403, Washington, DC, 2002.

[15] S. M. Khansari-Zadeh and A. Billard. Learning stable non-linear dynamical systems

with gaussian mixture models. IEEE Transactions on Robotics, 27(5):943–957, 2011.

[16] S. M. Khansari-Zadeh and A. Billard. Learning control Lyapunov function to en-

sure stability of dynamical system-based robot reaching motions. Robotics and Au-

tonomous Systems, 62(6):752–765, 2014.

[17] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey.

The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[18] P. Kormushev, S. Calinon, and D. G. Caldwell. Learning adaptive motor skills: A

survey of techniques for robotics. Advanced Robotics, 34(9):555–573, 2020.

[19] G. J. Maeda, M. Ewerton, M. Goldhoorn, J. Krüger, and J. Peters. Probabilis-

tic movement primitives for robot-directed imitation learning. Autonomous Robots,

41(3):593–612, 2017.

[20] G. J. Maeda, M. Ewerton, D. Koert, and J. Peters. Probabilistic movement primi-

tives for coordination of multiple human-robot collaborative tasks. In ACM/IEEE

International Conference on Human-Robot Interaction (HRI), pages 276–284, 2017.

[21] G. J. Maeda, M. Ewerton, and J. Peters. Learning interaction for collaborative tasks

with probabilistic movement primitives. In Robotics: Science and Systems (RSS),

2016.

[22] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic

Manipulation. CRC Press, Boca Raton, New York, 1994.

[23] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model learning with local Gaussian

process regression. Advanced Robotics, 23:2015–2034, 2009.

[24] A. Paraschos, C. Daniel, J. Peters, and G. Neumann. Probabilistic movement prim-

itives. In Advances in Neural Information Processing Systems (NeurIPS), pages

2616–2624. Curran Associates, Inc., 2013.

BIBLIOGRAPHY 115

[25] A. Paraschos, C. Daniel, J. Peters, and G. Neumann. Using probabilistic movement

primitives in robotics. Autonomous Robots, 42(3):529–551, 2018.

[26] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Probabilistic movement

primitives. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 365–371, San Francisco, California, 2013.

[27] T. Petrič, A. Gams, A. J. Ijspeert, and L. Žlajpah. On-line frequency adaptation

and movement imitation for rhythmic robotic tasks. The International Journal of

Robotics Research, 30(14):1775–1788, 2011.

[28] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard. Recent advances

in robot learning from demonstration. Annual Review of Control, Robotics, and

Autonomous Systems, 3(1):297–330, 2020.

[29] L. Righetti, J. Buchli, and A. J. Ijspeert. Dynamic Hebbian learning in adaptive

frequency oscillators. Physica D, 216:269–281, 2006.

[30] L. Rozo, J. Silvério, S. Calinon, and D. G. Caldwell. Learning controllers for reactive

and proactive behaviors in human-robot collaboration. Frontiers in Robotics and AI,

3:30, 2016.

[31] S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control – a

unifying view. Progress in Brain Research, 165(6):425–445, 2007.

[32] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement primitives.

In P. Dario and R. Chatila, editors, Robotics Research: The Eleventh International

Symposium, pages 561–572, Berlin, Heidelberg, 2005. Springer.

[33] S. E. Thompson and R. V. Patel. Formulation of joint trajectories for industrial

robots using B-splines. IEEE Trans. Industrial Electronics, 34(2):192–199, May 1987.

[34] A. Ude. Filtering in a unit quaternion space for model-based object tracking. Robotics

and Autonomous Systems, 28(2-3):163–172, 1999.

[35] A. Ude, A. Gams, T. Asfour, and J. Morimoto. Task-specific generalization of dis-

crete and periodic dynamic movement primitives. IEEE Transactions on Robotics,

26(5):800–815, 2010.

[36] A. Ude, B. Nemec, T. Petrič, and J. Morimoto. Orientation in cartesian space

dynamic movement primitives. In IEEE International Conference on Robotics and

Automation (ICRA), pages 2997–3004, Hong Kong, 2014.

[37] G. Wahba. Spline Models for Observational Data. SIAM, Philadelphia, 1990.

[38] J. Yuan. Closed-loop manipulator control using quaternion feedback. IEEE Journal

of Robotics and Automation, 4(4):434 –440, 1988.

	Prazna stran

