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ADAM, An Offspring Journal is Here!

In view of an increased flow of submitted manuscripts the Editors are often faced with a
dilemma: should we consider articles that belong to pure graph theory with no connection
to other branches of discrete mathematics? At the other extreme, some submissions are very
applied, a lot like those from mathematical chemistry or chemical graph theory. Sometimes
the topics of submitted manuscripts are somewhat far from the scope of the journal. Should
they undergo a refereeing procedure anyway? And finally, the journal is experiencing a very
fast growth. While In 2008 only 20 articles were published, eight years later the number
of articles has increased to 61 with a backlog of about 100 papers. We are at a crossroads,
something needs to be done.

We decided to launch an offspring, a purely electronic journal and we named it: The
Art of Discrete and Applied Mathematics (ADAM). In the preparation stage it is run by
the same editorial board as AMC, on the same OJS platform. We are starting considering
papers for ADAM as of now. Until the first articles are reviewed by MathSciNet and
Zentralblatt, we will give authors a choice as to which of the two journals they want to
consider for their publication. When the first articles from ADAM are listed in the Web of
Science, however, the Editors will decide which journal is more appropriate for a particular
accepted paper. There is no doubt that initially ADAM will have lower visibility than AMC
but the back-log will be much, much lower. In the long run both journals will benefit.

ADAM will be published by the University of Primorska and by the Slovenian Society
for Discrete and Applied Mathematics, with the first volume appearing in 2018. Gradually
the structure of its editorial board will be adjusted to the submitted topics. Nevertheless we
would like to reiterate that our main goal remains the same. We are committed to publishing
excellent contemporary mathematics.

Dragan Marušič and Tomaž Pisanski
Editors In Chief
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Abstract

In this paper we give a proof that the largest set of perfect matchings, in which any two
contain a common edge, is the set of all perfect matchings that contain a fixed edge. This
is a version of the famous Erdős-Ko-Rado theorem for perfect matchings. The proof given
in this paper is algebraic, we first determine the least eigenvalue of the perfect matching
derangement graph and then use properties of the perfect matching polytope to prove the
result.

Keywords: Perfect matching derangement graph, independent sets, Erdős-Ko-Rado theorem.

Math. Subj. Class.: 05C35, 05C69

1 Introduction
A perfect matching in the complete graph K2k is a set of k vertex disjoint edges. Two per-
fect matchings intersect if they contain a common edge. In this paper we use an algebraic
method to prove that the natural version of the Erdős-Ko-Rado (EKR) theorem holds for
perfect matchings. This theorem shows that the largest set of perfect matchings, with the
property that any two intersect, is the set of the all perfect matchings that contain a specific
edge.
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The algebraic method in this paper is similar to the proof that the natural version of
the EKR theorem holds for permutations in [4]. In this paper we determine the least eigen-
value for the perfect matching derangement graph. This, with the Delsarte-Hoffman bound,
implies that a maximum intersecting set of perfect matchings corresponds to a facet in the
perfect matching polytope. The characterization of the maximum set of intersecting perfect
matchings follows from the characterization of the facets of this polytope.

Meagher and Moura [8] proved a version of the EKR theorem holds for intersecting
uniform partitions using a counting argument [8]. This result includes the EKR theorem
for perfect matchings. It is interesting that the counting argument in [8] is straight-forward,
except for the case of perfect matchings; in this case a more difficult form of the counting
method is necessary.

2 Perfect matchings
A perfect matching is a set of vertex disjoint edges in the complete graph K2k. This is
equivalent to a partition of a set of size 2k into k-disjoint classes, each of size 2. The
number of perfect matchings in K2k is

1

k!

(
2k

2

)(
2k − 2

2

)
· · ·
(
2

2

)
= (2k − 1)(2k − 3) · · · 1.

For an odd integer n define

n!! = n(n− 2)(n− 4) · · · 1.

With this notation, there are (2k − 1)!! perfect matchings.
We say that two perfect matchings are intersecting if they both contain a common edge.

Further, a set of perfect matchings is intersecting if the perfect matchings in the set are
pairwise intersecting. If e represents a pair from {1, . . . , 2k}, then e is an edge of K2k.
Define Se to be the set of all perfect matchings that include the edge e. For any edge e, the
set Se is intersecting. Any set Se, where e is a pair from {1, . . . , 2k}, is called a canonically
intersecting set of perfect matchings. For every e

|Se| = (2k − 3)!! = (2k − 3)(2k − 5) · · · 1.

The main result of this paper can be stated as follows.

Theorem 2.1. The largest set of intersecting perfect matchings in K2k has size (2k− 3)!!.
The only sets that meet this bound are the canonically intersecting sets of perfect matchings.

3 Perfect matching derangement graph
One approach to proving EKR theorems for different objects is to define a graph where the
vertices are the objects and two objects are adjacent if and only if they are not intersecting
(see [4, 9, 15] for just a few examples of where this is done). This is the approach that we
take with the perfect matchings.

We use the standard graph notation. A clique in a graph is a set of vertices in which
any two are adjacent; a coclique is a set of vertices in which no two are adjacent. If X is a
graph, then ω(X) denotes the size of the largest clique, and α(X) is the size of the largest
coclique. A graph is vertex transitive if its automorphism group is transitive on the vertices.
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For a vertex-transitive graph, there is a relationship between the maximum clique size and
maximum coclique size known as the clique-coclique bound. The next result is this bound.

Theorem 3.1. Let X be a vertex-transitive graph, then

α(X)ω(X) ≤ |V (X)|.

The eigenvalues of a graph are the eigenvalues of the adjacency matrix of the graph.
Similarly, the eigenvectors and eigenspaces of the graph are the eigenvectors and eigenspa-
ces of the adjacency matrix.

Define the perfect matching derangement graph M(2k) to be the graph whose vertices
are all perfect matchings on K2k and vertices are adjacent if and only if they have no
common edges. Theorem 2.1 is equivalent to the statement that the size of the maximum
coclique in M(2k) is (2k − 3)!! and that only the canonically intersecting sets meet this
bound.

The number of vertices in M(2k) is (2k − 1)!!. The degree of M(2k), denoted by
d(2k), is the number of perfect matchings that do not contain any the edges from some
fixed perfect matching. This number can be calculated using the principle of inclusion-
exclusion:

d(2k) =

k−1∑
i=0

(−1)i
(
k

i

)
(2k−2i−1)!!. (3.1)

In practice, this formula can be tricky to use, but we will make use the following simple
lower bound on d(2k).

Lemma 3.2. For any k

d(2k) > (2k − 1)!!−
(
k

1

)
(2k − 3)!!.

Proof. For any i ∈ {0, . . . , k − 1}(
k

i

)
(2k − 2i− 1)!! =

i+ 1

k − i

(
k

i+ 1

)
(2k − 2i− 1)(2k − 2(i+ 1)− 1)!!

>

(
k

i+ 1

)
(2k − 2(i+ 1)− 1)!!

(since i+1
k−i (2k−2i−1) > 1 for these values of i). This implies that the terms in Equation 3.1

are strictly decreasing in absolute value. Since it is an alternating sequence, the first two
terms give a lower bound on d(2k).

Next we give some simple properties of the perfect matching derangement graph, in-
cluding a simple proof of the bound in Theorem 2.1 that uses the clique-coclique bound.

Theorem 3.3. Let M(2k) be the perfect matching derangement graph.

1. The graph M(2k) is vertex transitive, and Sym(2k) is a subgroup of the automor-
phism group of M(2k).

2. The size of a maximum clique in M(2k) is 2k − 1.
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3. The size of a maximum coclique in M(2k) is (2k − 3)!!.

Proof. It is clear that the group Sym(2k) acts transitively on the perfect matchings and,
though this action, each permutation in Sym(2k) gives an automorphism of M(2k).

Let C be a clique in M(2k). For every perfect matching in C, the element 1 is matched
with a different element of {2, 3, . . . , 2k}. Thus the size of C is no more than 2k − 1. A
1-factorization of the complete graph on 2k vertices is a clique of size 1

k

(
2k
2

)
in M(2k).

Since a 1-factorization of K2k exists for every k, the size of the maximum clique is exactly
1
k

(
2k
2

)
= 2k − 1.

Since M(2k) is vertex transitive, the clique-coclique bound, Theorem 3.1, holds so

α(M(2k)) ≤ (2k − 1)!!
1
k

(
2k
2

) = (2k − 3)!!.

Since the size of any canonically intersecting set meets this bound, we have that

α(M(2k)) = (2k − 3)!!.

4 Perfect matching association scheme
We have noted that the group Sym(2k) acts on the set of perfect matchings. Under this
action, the stabilizer of a single perfect matching is isomorphic to the wreath product of
Sym(2) and Sym(k). This is a subgroup of Sym(2k) and is denoted by Sym(2) o Sym(k).
Thus the set of perfect matchings in K2k correspond to the set of cosets

Sym(2k)/(Sym(2) o Sym(k)).

This implies that the action of Sym(2k) on the perfect matchings is equivalent to the ac-
tion of Sym(2k) on the cosets Sym(2k)/(Sym(2) o Sym(k)). This action produces a per-
mutation representation of Sym(2k). We will not give much detail on the representation
theory of the symmetric group, rather we will simply state the results that we need a refer
the reader to any standard text on the representation theory of the symmetric group, such
as [1, 3, 7, 12].

Each irreducible representation of Sym(2k) corresponds to an integer partition λ ` 2k;
these representations will be written as χλ and the character will be denoted by χλ. The
Sym(2k)-module will be denoted by Vλ. Information about the representation is contained
in the partition. For example, the dimension of the representation can be found just from
the partition using the hook length formula.

For any group G, the trivial representation of G is denoted by 1G (and the character
by 1G). If χ is a representation of a group H ≤ Sym(n), then indSym(n)(χ) is the rep-
resentation of Sym(n) induced by χ. Similarly, if χ is a representation of Sym(n), then
resH(χ) is the restriction of χ to H . The permutation representation of Sym(2k) acting
on Sym(2k)/(Sym(2) o Sym(k)) is the representation induced on Sym(2k) by the trivial
representation on Sym(2) o Sym(k) which is denoted by indSym(2k)(1Sym(2)oSym(k)) (see
[5, Chapter 13] for more details).

For an integer partition λ ` k with λ = (λ1, λ2, . . . , λ`), let 2λ denote the partition
(2λ1, 2λ2, . . . , 2λ`) of 2k. It is well-known (see, for example, [13, Example 2.2]) that
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decomposition of the permutation representation of Sym(2k) from its action on the perfect
matchings is

indSym(2k)(1Sym(2)oSym(k)) =
∑
λ`k

χ2λ.

The multiplicity of each irreducible representation in this decomposition is one, this
implies that indSym(2k)(1Sym(2)oSym(k)) is a multiplicity-free representation. This im-
plies that the adjacency matrices of the orbitals from the action of Sym(2k) on the cosets
Sym(2k)/(Sym(2) o Sym(k)) defines an association scheme on the perfect matchings (see
[5, Section 13.4] for more details and a proof of this result). This association scheme is
known as the perfect matching scheme. Each class in this scheme is labelled with a parti-
tion 2λ = (2λ1, 2λ2, . . . , 2λ`). Two perfect matchings are adjacent in a class if their union
forms a set of ` cycles with lengths 2λ1, 2λ2, . . . , 2λ` (this association scheme is described
in more detail in [5, Section 15.4] and [10]).

The graph M(2k) is the union of all the classes in this association scheme in which
the corresponding partition contains no part of size two. This means that each eigenspace
of M(2k) is the union of modules of Sym(2k); each module in this union is a Sym(2k)-
module V2λwhere λ ` k. If ξ is an eigenvalue of M(2k), and its eigenspace includes the
Sym(2k)-module V2λ, then we say that ξ is the eigenvalue for V2λ. Conversely, we denote
the eigenvalue for V2λ by ξ2λ.

The next lemma contains a formula to calculate the eigenvalue for the Sym(2k)-module
V2λ. This gives considerable information about the eigenvalues of M(2k). For a proof the
general form of this formula see [5, Section 13.8], we only state the version specific to
perfect matchings. If M denotes a perfect matching and σ ∈ Sym(2k), we will use Mσ to
denote the matching formed by the action of σ on M .

Lemma 4.1. Let M be a fixed perfect matching in K2k. Let H ⊆ Sym(2k) be the set of
all elements σ ∈ Sym(2k) such that M and Mσ are not intersecting. The eigenvalue of
M(2k) for the Sym(2k)-module V2λ is

ξ2λ =
d(2k)

2k k!

∑
x∈H

χ2λ(x).

The Sym(2k)-module V2λ is a subspace of the ξ2λ-eigenspace and the dimension of this
subspace is χ2λ(1).

This formula can be used to calculate the eigenvalue corresponding to a module for the
matching derangement graph, but it is not effective to determine all the eigenvalues for a
general matching derangement graph. In Section 6 we will show another way to find some
of the eigenvalues.

5 Delsarte-Hoffman bound
In Section 6, we will give an alternate proof of the bound in Theorem 2.1 that uses the eigen-
values of the matching derangement graph. This proof is based on the Delsarte-Hoffman
bound, which is also known as the ratio bound. The advantage of this bound is that when
equality holds we get additional information about the cocliques of maximum size. This
information can be used to characterize all the sets that meet the bound. The Delsarte-
Hoffman bound is well-known and there are many references, we offer [5, Theorem 2.4.1]
for a proof.
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Theorem 5.1. Let X be a k-regular graph with v vertices and let τ be the least eigenvalue
of A(X). Then

α(X) ≤ v

1− k
τ

.

If equality holds for some coclique S with characteristic vector vS , then

vS −
|S|
|V (X)|

1

is an eigenvector with eigenvalue τ .

If equality holds in the Delsarte-Hoffman bound, we say that the maximum cocliques
are ratio tight.

The Delsarte-Hoffman bound can be used to prove the EKR theorem for sets. Si-
milar to the situation for the perfect matchings, the group Sym(n) acts on the subsets
of {1, . . . , n} of size k. This action is equivalent to the action of Sym(n) on the cosets
Sym(n)/(Sym(n−k)×Sym(k)). This action corresponds to a permutation representation,
namely

indSym(n)(1Sym(n−k)×Sym(k)) =

k∑
i=0

χ[n−i,i]. (5.1)

(Details can be found in any standard text on the representation theory of the symmetric
group.) This representation is multiplicity free and the orbital schemes from this action is
an association scheme better known as the Johnson scheme.

The Kneser graphK(n, k) is the graph whose vertices are all the k-sets from {1, . . . , n}
and two vertices are adjacent if and only if they are disjoint. The Kneser graph is a graph
in the Johnson scheme, it is the graph that corresponds to the orbitals of pairs of sets that
do not intersect. A coclique in K(n, k) is a set of intersecting k-sets. The Kneser graph
is very well-studied and all of its eigenvalues are known (see [6, Chapter 7] or [5, Section
6.6] for a proof).

Proposition 5.2. The eigenvalues of K(n, k) are

(−1)i
(
n− k − i
r − i

)
with multiplicities

(
n
i

)
−
(
n
i−1
)

for i ∈ {0, . . . , k}.

If we apply the Delsarte-Hoffman bound to K(n, k) we get the following theorem
which is equivalent to the standard EKR theorem. The characterization follows from the
second statement in the Delsarte-Hoffman bound, see [5, Section 6.6] for details.

Theorem 5.3. Assume that n > 2k. The size of the largest coclique in K(n, k) is
(
n−1
k−1
)
,

and the only cocliques of this size consist of all k-sets that contain a common fixed ele-
ment.

To apply the Delsarte-Hoffman bound to M(2k), we first need to determine the value
of the least eigenvalue of M(2k). We do not calculate all the eigenvalues of M(2k), rather
we calculate the two eigenvalues with the largest absolute value and then show that all other
eigenvalues have smaller absolute value.
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6 Eigenvalues of the matching derangement graph
In this section we determine the largest and the least eigenvalue of the matching derange-
ment graph. Further, we identify the modules that the eigenvalues are for. First we will use
a simple method to show that these two values are eigenvalues of M(2k).

For any edge e in K2k, the partition π = {Se, V (M(2k))/Se} is an equitable partition
of the vertices in M(2k). In fact, π is the orbit partition formed by the stabilizer of the
edge e in Sym(2k) (this subgroup is isomorphic to Sym(2) × Sym(2k − 2)) acting on
the set of all vertices of M(2k). Each vertex in Se is adjacent to no other vertices in
Se (since it is a coclique), and is adjacent to exactly d(2k) vertices in V (M(2k))/Se. A
straight-forward counting argument shows that each vertex in V (M(2k))/Se is adjacent to
exactly d(2k)/(2k−2) vertices in Se, and thus to d(2k)−d(2k)/(2k−2) other vertices in
V (M(2k))/Se. This implies that the quotient graph of M(2k) with respect to the partition
π is

M(2k)/π =

(
0 d(2k)

1
2k−2 d(2k)

2k−3
2k−2 d(2k)

)
.

The eigenvalues for the quotient graph M(2k)/π are

d(2k), − d(2k)

2k − 2
.

Since π is equitable, these are also eigenvalues of M(2k). The next result identifies the
modules which the eigenvalues are for.

Lemma 6.1. The eigenvalue of M(2k) for the Sym(2k)-module V[2k] is d(2k), and the
eigenvalue of M(2k) for the Sym(2k)-module V[2k−2,2] is −d(2k)/(2k − 2).

Proof. The first statement is clear using the formula in Lemma 4.1.
To prove the second statement, we will consider the equitable partition π defined above.

The partition π is the orbit partition of Sym(2)×Sym(2k−2) acting on the perfect match-
ings. Let H = Sym(2) × Sym(2k − 2) and denote the cosets of H in Sym(2k) by
{x0H = H,x1H, . . . , x2k2−k−1H}.

The −d(2k)/(2k − 2)-eigenvector of M(2k)/π lifts to an eigenvector v of M(2k). A
simple calculation shows that the entries of v are 1 − 1

2k−1 or − 1
2k−1 , depending on if

the index of the entry is in Se, or not. This means that v = ve − 1
2k−11, where ve is the

characteristic vector of Se.
The group Sym(2k) acts on the edges of K2k, and for each σ ∈ Sym(2k), we can

define
vσ = veσ −

1

2k − 1
1.

Under this action, the vector v is fixed by any permutation in H . If we define

V = span{vσ : σ ∈ Sym(2k)},

then V is a subspace of the −d(2k)/(2k − 2)-eigenspace. Moreover, V is invariant under
the action of Sym(2k), so it is also a Sym(2k)-module. To prove this lemma we need to
show that V is isomorphic to the Sym(2k)-module V[2k−2,2].

Let W be the Sym(2k)-module for the induced representation indSym(2k)(1H). By
Equation 5.1, W is the sum of irreducible modules of Sym(2k) that are isomorphic to
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M[2k], M[2k−1,1] and M[2k−2,2]. The vector space W is isomorphic to the vector space of
functions f ∈ L(Sym(2k)) that are constant on H . For each coset xH , let δxH(σ) be the
characteristic function for xH; so δxH(σ) is defined to be equal to 1 if σ is in xH , and
0 otherwise. Since W is the Sym(2k)-module for the representation induced by 1H , the
functions δxH form a basis for W (see [5, Section 11.13] for details).

Define the map f : V →W so that

f(vσ) = δσH −
1

2k − 1

2k2−k−1∑
i=0

δxiH .

Since vσ = vπ if and only if σH = πH , this function is well-defined. Further, it is a
Sym(2k)-module homomorphism. Thus V is isomorphic to a submodule ofW . Since V is
not trivial, it must be the Sym(2k)-module V[2k−2,2], since it is the only module (other than
the trivial) that is common to both indSym(2k)(1H) and indSym(2k)(1Sym(2)oSym(k)).

We have found two of the eigenvalues of M(2k), next we will show that all the re-
maining eigenvalues are smaller in absolute value. We need the following theorem by
Rasala [11] that gives bounds on the dimension of the irreducible representations of
Sym(n).

Theorem 6.2. For n ≥ 15, the irreducible representations with the seven smallest degrees
are given in the following table.

Representations Degree

[n], [1n] 1

[n− 1, 1], [2, 1n−2] n− 1

[n− 2, 2], [2, 2, 1n−4] 1
2n(n− 3)

[n− 2, 1, 1], [3, 1n−3] 1
2 (n− 1)(n− 2)

[n− 3, 3], [2, 2, 2, 1n−6] 1
6n(n− 1)(n− 5)

[n− 3, 1, 1, 1], [4, 1n−4] 1
6 (n− 1)(n− 2)(n− 3)

[n− 3, 2, 1], [3, 2, 1n−5] 1
3n(n− 2)(n− 4)

Next we will bound the size of the other eigenvalues. This bound follows from the
straightforward fact that ifA is the adjacency matrix of a graph, then the trace of the square
of A is equal to both the sum of the squares of the eigenvalues of A, and to twice the
number of edges in the graph. The proof of this result closely follows the proof of the least
eigenvalue of the derangement graph of the symmetric group by Ellis [2].

Theorem 6.3. For λ ` k, the absolute value of the eigenvalue of M(2k) for the Sym(2k)-
module V2λ is strictly less than d(2k)/(2k − 2), unless λ = [k] or λ = [k − 1, 1].

Proof. If 2k < 15, this theorem can be checked by directly calculating all the eigenvalues
(this can easily be done using a computational algebra program such as GAP [16]), so we
will assume that 2k ≥ 16.

Let A be the adjacency matrix of M(2k) and use ξ2λ to denote the eigenvalue for the
Sym(2k)-module V2λ. The sum of the eigenvalues of A2 is twice the number of edges in
M(2k), that is ∑

λ`k

χ2λ(1)ξ
2
2λ = (2k − 1)!! d(2k).
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From Lemma 6.1 we know the eigenvalues for two of the modules, so this bound can be
expressed as∑

λ`k
λ6=[k],[k−1,1]

χ2λ(1)ξ
2
2λ = (2k−1)!! d(2k)− d(2k)2 − (2k2−3k)

(
d(2k)

2k−2

)2

.

Since all the terms in left-hand side of the above summation are positive, any single term
is less than the sum. Thus

χ2λ(1)ξ
2
2λ ≤ (2k−1)!! d(2k)− d(2k)2 − (2k2−3k)

(
d(2k)

2k−2

)2

,

(where λ ` k and λ 6= [k], [k − 1, 1]). If |ξ2λ| ≥ d(2k)/(2k − 2), then this reduces to

χλ(1) ≤
(2k − 1)!!(2k − 2)2

d(2k)
− 6k2 + 11k − 4.

Using the bound in Lemma 3.2, this implies that

χλ(1) < 2k2 − k =
(2k)2 − (2k)

2
.

If |ξ2λ| ≥ d(2k)/(2k − 2), then 2λ must be one of the first four representations in the
table of Theorem 6.2. Thus 2λmust be either [2k] or [2k−2, 2], which proves the result.

We restate this result in terms of the least eigenvalue of the matching derangement
graph; noting that Theorem 6.3 implies that V[2k−2,2] is the only Sym(2k)-module that has
−d(2k)/(2k − 2) as its eigenvalue.

Corollary 6.4. The smallest eigenvalue of M(2k) is−d(2k)/(2k−2) and the multiplicity
of this eigenvalue is 2k2 − 3k.

7 The Sym(2k)-module V [2k−2,2]

Applying the Delsarte-Hoffman bound with the fact that −d(2k)/(2k − 2) is the least
eigenvalue of M(2k), proves that any canonical coclique is ratio tight since

|V (M(2k))|
1− d

τ

=
(2k − 1)!!

1− d(2k)

− d(2k)2k−2

= (2k − 3)!!.

For S a maximum coclique in M(2k) we will use vS to denote the characteristic vector
of S. The ratio bound implies that |S| = (2k − 3)!! and, further, that

vs −
1

2k − 1
1

is a −d(2k)/(2k − 2)-eigenvector. This vector is called the balanced characteristic vector
of S, since is it orthogonal to the all ones vector. Since the Sym(2k)-module V[2k−2,2] is the
only module for which the corresponding eigenvalue is the least (this follows directly from
Theorem 6.3) we have the following result which will be used to determine the structure of
the maximum cocliques in M(2k).

Lemma 7.1. The characteristic vector for any maximum coclique inM(2k) is in the direct
sum of the Sym(2k)-modules V[2k] and V[2k−2,2].
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A perfect matching is a subset of the edges in the complete graph, and thus can be
represented as a characteristic vector; this is a vector in R(

2k
2 ). Define the incidence matrix

for the perfect matchings in K2k to be the matrix U whose rows are the characteristic
vectors of the perfect matchings of K2k. The columns of U are indexed by the edges in
the complete graph and the rows are indexed by the perfect matchings. The column of U
corresponding to the edge e is the characteristic vector of Se.

We will show that the characteristic vector of any maximum coclique of M(2k) is a
linear combination of the columns of U .

Lemma 7.2. The characteristic vectors of the canonical cocliques of M(2k) span the
direct sum of the Sym(2k)-modules V[2k] and V[2k−2,2].

Proof. Let ve be the characteristic vector of Se. From Lemma 7.1, the vector ve − 1
2k−11

is in the Sym(2k)-module V[2k−2,2], and ve is in the direct sum of the Sym(2k)-modules
V[2k] and V[2k−2,2]. So all that needs to be shown is that the span of all the vectors ve has
dimension 2k2 − 3k + 1, or equivalently, that the rank of U is 2k2 − 3k + 1.

Let I denote the
(
k
2

)
×
(
k
2

)
identity matrix and A(2k, 2) the adjacency matrix of the

Kneser graph K(2k, 2). Then

UTU = (2k − 3)!!I + (2k − 5)!!A(2k, 2).

By Proposition 5.2, 0 is an eigenvalue of this matrix with multiplicity 2k − 1. Thus the
rank of UTU (and hence U ) is

(
2k
2

)
− (2k − 1) = 2k2 − 3k + 1.

This result, and the comments at the beginning of this section, imply the following
corollary.

Corollary 7.3. The characteristic vector of a maximum coclique in the perfect matching
derangement graph is in the column space of U .

Next we will show that this implies that any maximum coclique is a canonical inter-
secting set. To do this we will consider a polytope based on the perfect matchings.

8 The perfect matching polytope
The convex hull of the set of characteristic vectors for all the perfect matchings of a graph
K2k is called the perfect matching polytope of K2k. Let U be the incidence matrix defined
in the previous section, then the perfect matching polytope is the convex hull of the rows
of U . A face of the perfect matching polytope is the convex hull of the rows where Uh
achieves its maximum for some vector h. A facet is a maximal proper face of a polytope.

If S is a maximum coclique inM(2k), then from Corollary 7.3, we know that Uh = vs
for some vector h. If a vertex of K2k is in S, then the corresponding row of Uh is equal
to 1; conversely, if a vertex of K2k is not in S, then the corresponding row of Uh is
equal to 0. Thus a maximum intersecting set of perfect matchings is a facet of the perfect
matching polytope. In this section, we will give a characterization of the facets of the
perfect matching polytope for the complete graph.

Let S be a subset of the vertices of K2k and define the boundary of S to be the set of
edges that join a vertex in S to a vertex not in S. The boundary is denoted by ∂S and is
also known as an edge cut. If S is a subset of the vertices of K2k of odd size, then any
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perfect matching in K2k must contain at least one edge from ∂S. If S is a single vertex,
then any perfect matching contains exactly one element of ∂S. It is an amazing classical
result of Edmonds that these two constraints characterize the perfect matching polytope for
any graph. For a proof of this result see Schrijver [14].

Theorem 8.1. Let X be a graph. A vector x in R|E(X)| lies in the perfect matching poly-
tope of X if and only if:

(a) x ≥ 0;

(b) if S = {u} for some u ∈ V (X), then
∑
e∈∂S x(e) = 1;

(c) if S is an odd subset of V (X) with |S| ≥ 3, then
∑
e∈∂S x(e) ≥ 1.

If X is bipartite, then x lies in the perfect matching polytope if and only if the first two
conditions hold.

The constraints in Equation (b) define an affine subspace of R|E(X)|. The perfect
matching polytope is the intersection of this subspace with affine half-spaces defined by
the conditions in Equation (a) and Equation (c); hence the points in a proper face of the
polytope must satisfy at least one of these conditions with equality.

For any graph X (that is not bipartite) the vertices of a facet are either the perfect
matchings that miss a given edge, or the perfect matchings that contain exactly one edge
from ∂S for some odd subset S.

It follows from Theorem 8.1 that every perfect matching inK2k is a vertex in the perfect
matching polytope for the complete graph. But we can also determine the vertices of every
facet in this polytope.

Lemma 8.2. In the matching polytope of K2k, the vertices of a facet of maximum size are
the perfect matchings that do not contain a given edge.

Proof. Let F be a facet of the polytope of maximum size. From the above comments,
equality holds in at least one of equations∑

e∈∂S

x(e) ≥ 1

for all x ∈ F . Suppose S is the subset that defines such an equation, then S is an odd
subset of the vertices in K2k for which

∑
e∈∂S x(e) = 1 for all x ∈ F .

Let s be the size of S. Each perfect matching with exactly one edge in ∂S consists
of the following: a matching of size (s − 1)/2 covering all but one vertex of S; an edge
joining this missed vertex of S to a vertex in S; and a matching of size (2k − s − 1)/2
covering all but one vertex in S. Hence there are

(s− 2)!! s(2k − s) (2k − s− 2)!! = s!!(2k − s)!!

such perfect matchings. We denote this number by N(s) and observe that

N(s− 2)

N(s)
=

2k − s+ 2

s
.
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Hence for all s such that 3 ≤ s ≤ k we see that the values N(s) are strictly decreasing, so
the maximum size of a set of such vertices is N(3) = 3(2k − 3)!!.

On the other hand, the number of perfect matchings in K2k that do not contain a given
edge is

(2k − 1)!!− (2k − 3)!! = (2k − 2)(2k − 3)!!.

Since this is always larger than N(3), the lemma follows.

We now have all the tools to show that any maximum intersecting set of perfect match-
ings is the set of all matchings that contain a fixed edge.

Theorem 8.3. The largest coclique in M(2k) has size (2k − 3)!!. The only cocliques that
meet this bound are the canonically intersecting sets of perfect matchings.

Proof. Let S be a maximum coclique in M(2k) and let vS be the characteristic vector of
S. Then |S| = (2k−3)!!, by the Delsarte-Hoffman bound and Corollary 6.4. The Delsarte-
Hoffman bound, along with Theorem 6.3, further imply that the vector vS − 1

2k−11 is in
the Sym(2k)-module V[2k−2,2].

By Lemma 7.2, vS − 1
2k−11 is a linear combination of the balanced characteristic

vectors of the canonical cocliques. This also implies that vS is a linear combination of
the characteristic vectors of the canonical cocliques. So there exists a vector x such that
Ux = vS (where U is the matrix defined in Section 7).

Finally, by Lemma 8.2, S is a face of maximal size an it consists of all the perfect
matching that avoid a fixed edge. This implies that S is a canonical coclique of M(2k).
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Abstract

In this paper, we present a complete solution to the existence problem for a cyclic
hamiltonian cycle system for the complete multipartite graph with an even number of parts
all of the same cardinality. We also give necessary and sufficient conditions for the system
to be symmetric as well.

Keywords: Hamiltonian cycle, cyclic cycle system, symmetric hamiltonian cycle system, complete
multipartite graph.
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1 Introduction
Throughout this paper, Kv will denote the complete graph on v vertices and, if v is even,
Kv − I will denote the cocktail party graph of order v, namely the graph obtained from
Kv by removing a 1-factor I , that is, a set of v

2 pairwise disjoint edges. Also Km×n will
denote the complete multipartite graph with m parts of same cardinality n; if n = 1, we
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may identifyKm×1 withKm, while if n = 2,Km×2 is nothing but the cocktail party graph
K2m − I .

For any graph Γ we write V (Γ) for the set of its vertices and E(Γ) for the set of
its edges. We denote by C = (c0, c1, . . . , c`−1) the cycle of length ` whose edges are
[c0, c1], [c1, c2], . . . , [c`−1, c0]. An `-cycle system of a graph Γ is a set B of cycles of length
` whose edges partition E(Γ); clearly a graph may admit a cycle system only if the de-
gree of each vertex is even. For general background on cycle systems we refer to the
surveys [7, 8]. An `-cycle system B of Γ is said to be hamiltonian if ` = |V (Γ)|, and
it is said to be cyclic if we may identify V (Γ) with the cyclic group Zv , and if for any
C = (c0, c1, . . . , c`−1) ∈ B, we have also C + 1 = (c0 + 1, c1 + 1, . . . , c`−1 + 1) ∈ B.
The existence problem for cyclic cycle systems ofKv has generated a considerable amount
of interest. Many authors have contributed to give a complete answer in the case v ≡ 1 or
` (mod 2`) (see [10, 11, 19, 20, 21, 22, 26]). We point out in particular that the existence
problem of a cyclic hamiltonian cycle system (HCS, for short) for Kv has been solved by
Buratti and Del Fra in [11], and that for Kv − I it has been solved by Jordon and Morris
[17].

The existence problem for cycle systems of the complete multipartite graph has not
been solved yet, but we have many interesting recent results on this topic (see for instance
[4, 5, 24, 25]). Still, very little is known about the same problem with the additional con-
straint that the system be cyclic. We have a complete solution in the following very special
cases: the length of the cycles is equal to the cardinality of the parts [12]; the cycles are
hamiltonian and the parts have cardinality two [14, 17]. We have also some partial results
in [3].

Hamiltonian cycle systems of Km×n have been shown to exist ([18]) whenever the
degree of each vertex of the graph, that is (m − 1)n, is even; in this paper we start inves-
tigating the existence of cyclic hamiltonian cycle systems of Km×n, and completely solve
the problem when m is even.

We also consider the existence of a symmetric HCS for Km×n with n > 1, a concept
recently introduced by Schroeder in [23] generalizing the notion of symmetry given in [6]
for cocktail party graphs: in this definition, an HCS for Km×n is n-symmetric if each cycle
in the system is invariant under a fixed-point-free automorphism of order n. We will show
that the cycle systems we shall construct in will turn out to be symmetric in this sense.

The paper is organized as follows: after some preliminary notes in Section 2 on the
methods we shall use, in Section 3 we establish a necessary condition in the case n even
for the existence of a cyclic cycle system (not necessarily hamiltonian) of Km×n from
which we derive a necessary condition for the existence of a cyclic HCS of Km×n. Then
in Section 4 we give a complete solution to the existence problem of a cyclic HCS with
an even number of parts, proving that in this case the necessary condition we found is also
sufficient. The main result of this paper is the following.

Theorem 1.1. Let m be even; a cyclic and n-symmetric HCS for Km×n exists if and only
if

(a) n ≡ 0 (mod 4), or

(b) n ≡ m ≡ 2 (mod 4).

The proof of Theorem 1.1 will follow from the various results proved in Sections 3 and
4. First, in Corollary 3.4 we give the necessary condition for the existence of a cyclic HCS
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of Km×n. Then, in Proposition 4.2 we study the bipartite case, finally in Theorem 4.3 and
in Theorem 4.7 we deal with the case n ≡ 0 (mod 4), and n ≡ 2 (mod 4), respectively.

2 Preliminaries
The main results of this paper will be obtained by using the method of partial differences
introduced by Marco Buratti and used in many papers, see for instance [2, 9, 10, 11, 13,
14, 27]. Here we recall some definitions and results useful in the rest of the paper.

Definition 2.1. Let C = (c0, c1, . . . , c`−1) be an `-cycle with vertices in an abelian group
G and let d be the order of the stabilizer of C under the natural action of G, that is, d =
|{g ∈ G : C + g = C}|. The multisets

∆C = {±(ch+1 − ch) | 0 ≤ h < `},
∂C = {±(ch+1 − ch) | 0 ≤ h < `/d},

where the subscripts are taken modulo `, are called the list of differences from C and the
list of partial differences from C, respectively.

More generally, given a set B of `-cycles with vertices in G, by ∆B and ∂B one means
the union (counting multiplicities) of all multisets ∆C and ∂C respectively, where C ∈ B.

We recall the definition of a Cayley graph on a group G with connection set Ω, denoted
by Cay[G : Ω]. Let G be an additive group and let Ω ⊆ G \ {0} such that for every ω ∈ Ω
we also have −ω ∈ Ω. The Cayley graph Cay[G : Ω] is the graph whose vertices are the
elements of G and in which two vertices are adjacent if and only if their difference is an
element of Ω (an analogous definition can be given in multiplicative notation). Note that
Km×n can be interpreted as the Cayley graph Cay[Zmn : Zmn \mZmn], where bymZmn
we mean the subgroup of order n of Zmn. The vertices ofKm×n will be always understood
as elements of Zmn and the parts of Km×n are the cosets of mZmn in Zmn. We consider
the natural action of Zmn on the cycles of Km×n: given a cycle C = (c0, c1, . . . , c`−1) of
Km×n we defineC+t as the cycle (c0+t, c1+t, . . . , c`−1+t), where c0, c1, . . . , c`−1, t are
elements of Zmn. The stabilizer and the orbit of any cycle C of Km×n will be understood
with respect to this action and will be denoted by Stab(C) and Orb(C), respectively. A
cyclic HCS of Km×n is completely determined by a set of base cycles, namely, a complete
system of representatives for the orbits of its cycles under the action of Zmn. The next the-
orem, which is a consequence of the theory of partial differences, will play a fundamental
role in this paper.

Theorem 2.2. A set B of mn-cycles is a set of base cycles of a cyclic HCS of Km×n if and
only if ∂B = Zmn \mZmn.

In Example 2.4 we will show how to construct a cyclic HCS of K10×6 applying Theo-
rem 2.2.

For our purposes the following notation will be useful. Let c0, c1, . . . , cr−1, x be ele-
ments of an additive group G, with x of order d. The closed trail

[c0, c1, c2, . . . , cr−1,

c0 + x, c1 + x, c2 + x, . . . , cr−1 + x, . . . ,

c0 + (d− 1)x, c1 + (d− 1)x, c2 + (d− 1)x, . . . , cr−1 + (d− 1)x]
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will be denoted by
[c0, c1, . . . , cr−1]x.

For brevity, given P = [c0, c1, . . . , cr−1], we write [P ]x for the closed trail [c0, c1, . . . ,
cr−1]x. For instance in Z12 [0, 5, 1]9 represents the closed trail (a cycle in this case)
(0, 5, 1, 9, 2, 10, 6, 11, 7, 3, 8, 4).

Remark 2.3. Note that [c0, c1, . . . , cr−1]x is a (dr)-cycle if and only if the elements ci,
for i = 0, . . . , r − 1, belong to pairwise distinct cosets of the subgroup 〈x〉 in G. Also, if
C = [c0, c1, . . . , cr−1]x is a (dr)-cycle, then

∂C = {±(ci − ci−1) | i = 1, . . . , r − 1} ∪ {±(c0 + x− cr−1)}.

We point out that in the case of cyclic HCS of Km×n we have that dr = mn. Hence,
if the list ∂C has no repeated elements, the order of Stab(C) is d, and the length of the
Zmn-orbit of C is r.

Example 2.4. Here we present the construction of a cyclic HCS of K10×6. Consider the
following cycles with vertices in Z60:

C1 = [0, 19, 1, 17, 3, 15, 6, 14, 8, 12]10, C2 = [0, 29, 1, 28, 2, 27, 3, 26, 4, 25]10,

C3 = [0, 3]2, C4 = [0, 7]2, C5 = [0, 13]2, C6 = [0]17.

One can easily check that B = {C1, . . . , C6} is a set of hamiltonian cycles of K10×6 and
that:

∂C1 = ±{19, 18, 16, 14, 12, 9, 8, 6, 4, 2},
∂C2 = ±{29, 28, 27, 26, 25, 24, 23, 22, 21, 15},

∂C3 = ±{3, 1}, ∂C4 = ±{7, 5}, ∂C5 = ±{13, 11}, ∂C6 = ±{17}.

Hence ∂B = Z60 \ 10Z60. So, in view of Theorem 2.2, we can conclude that B is a set of
base cycles of a cyclic HCS of K10×6.
Explicitly the required system consists of the following 27 cycles:

{C1 + i, C2 + i | i = 0, . . . , 9} ∪ {C3 + i, C4 + i, C5 + i | i = 0, 1} ∪ {C6}.

An HCS of the complete graph Kv , v odd, is said to be symmetric if there is an invo-
lutory permutation φ of the vertices of Kv fixing all its cycles; in the case v is even, an
HCS of the cocktail party graph Kv − I is symmetric if all its cycles are fixed by the invo-
lution switching all pairs of endpoints of the edges of I . This definition is due to Akiyama,
Kobayashi and Nakamura [1] in the case v odd, and to Brualdi and Schroeder [6] in the case
v even. Symmetric hamiltonian cycle systems always exist in the odd case: an example is
the well-known Walecki construction, and more generally, any 1-rotational HCS is clearly
symmetric (an HCS is called 1-rotational if it has an automorphism group G acting sharply
transitively on all but one vertex). It was recently proved that the number of nonisomorphic
1-rotational HCSs of order v = 2n+ 1 > 9 is bounded below by 2d3n/4e ([16]), so that in
the case v odd symmetric HCSs are quite common.

In the case v even we have the following result.



F. Merola et al.: Cyclic and symmetric hamiltonian cycle systems. . . 223

Theorem 2.5 (Brualdi and Schroeder [6]). A symmetric HCS of Kv − I exists if and only
if v2 ≡ 1 or 2 (mod 4).

In [14], the authors study the case of an HCS ofKv which is both cyclic and symmetric;
their result in the case v even is that there exists a cyclic and symmetric HCS of Kv for all
values for which a cyclic HCS exists, that is, for v

2 ≡ 1 or 2 (mod 4) and v
2 not a prime

power.
Very recently Michael Schroeder [23] studied hamiltonian cycle systems for a graph Γ

in which each cycle is fixed by a fixed-point-free automorphism φ of Γ of order n > 2, so
that V (Γ) = mn for some m; we shall call such an HCS n-symmetric.
To admit an n-symmetric HCS, Γ must be a subgraph of Km×n, and in [23] the existence
problem of an n-symmetric HCS for Km×n is completely solved in the following result.

Theorem 2.6 (Schroeder [23]). Let m ≥ 2 and n ≥ 1 be integers such that (m − 1)n is
even. An n-symmetric HCS for Km×n always exists except when we have, simultaneously,
n ≡ 2 (mod 4) and m ≡ 0 or 3 (mod 4).

Note that we shall see the same non-existence condition later on in Corollary 3.4. It
makes sense therefore to study, as done in [14] for the cocktail party graph, hamiltonian
cycle systems for the complete multipartite graph that are both cyclic and symmetric. As
noted above,Km×n is the Cayley graph Cay[Zmn : Zmn\mZmn]. Let γ be the morphism
x 7→ x + 1 (mod mn) and set φ = γm. We have the following condition for a cycle in a
cyclic cycle system to be φ-invariant.

Lemma 2.7. A cycle C in a cyclic HCS of Km×n is φ-invariant if and only if n divides
|Stab(C)| - or equivalently, if |Orb(C)| divides mn

n = m.

Example 2.8. Let us consider once more the cycles we used in Example 2.4; we can easily
see that the cycle system is also 6-symmetric, since the length of the orbit is 10 for cycles
C1 and C2, 2 for cycles C3, C4, C5 and 1 for C6.

3 Non-existence results
In this section we shall present some non-existence results for cycle systems of the complete
multipartite graph Km×n; the methods used here will be closely related to those used in
[15], where the case of the cocktail party graph is considered. The results will concern
general cycle systems; we will then apply these results to the hamiltonian case.

The following lemma is an immediate generalization of Lemma 2.1 of [15], hence we
omit the proof.

Lemma 3.1. Let C = (c0, c1, . . . , c`−1) be a cycle belonging to a cyclic cycle system of
Km×n and let d be the order of Stab(C). ThenOrb(C) is an `-cycle system of Cay[Zmn :
{±(ci−1 − ci) | 1 ≤ i ≤ `

d}].

The next result generalizes Theorem 2.2 of [15].

Proposition 3.2. Let n be an even integer. The number of cycle orbits of odd length in a
cyclic cycle decomposition of Km×n has the same parity of m(m−1)n2

8 .
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Proof. Let B be a cyclic cycle system of Km×n. For every `-cycle C = (c0, c1, . . . , c`−1)
of B set

σ(C) =

`/d∑
i=1

(ci−1 − ci) = (c0 − c1) + (c1 − c2) + . . .+ (c`/d−1 − c`/d) = c0 − c`/d,

where d is the order of Stab(C). It is easy to see that c`/d = c0 + ρ where ρ is an element
of Zmn of order d and hence we have

σ(C) =
mnx

d
with gcd(x, d) = 1.

Since n is even, we have that σ(C) is even if and only if d is a divisor of mn2 ; on the other
hand, since the length of Orb(C) is mn

d , also |Orb(C)| is even if and only if d is a divisor
of mn2 . For any cycle C ∈ B, we thus have that

σ(C) ≡ |Orb(C)| (mod 2). (3.1)

Let S = {C1, . . . , Cs} be a set of base cycles of B, that is, a complete system of represen-
tatives for the orbits of the cycles of B, so that we have

B = Orb(C1) ∪Orb(C2) ∪ . . . ∪Orb(Cs).

By Lemma 3.1, the cycles of Orb(Ci) form a cycle system of Cay[Zmn : ∂Ci]. Hence it
follows that

Cay[Zmn : Zmn \mZmn] =
s
∪
i=1

Cay[Zmn : ∂Ci] = Cay [Zmn : ∂S]

so that we obtain
∂S = Zmn \mZmn. (3.2)

Note that ∂Ci is a disjoint union of the set of summands of σ(Ci) and the set of their
additive inverses. Hence, by (3.2), it follows that Zmn \mZmn is a disjoint union of the
set of all summands of the sum

∑s
i=1 σ(Ci) and the set of their additive inverses. Then,

considering that additive inverses elements have the same parity and that Zmn \mZmn =
±({1, 2, . . . , mn2 − 1} \ {m, 2m, . . . , (n2 − 1)m}) we can write:

s∑
i=1

σ(Ci) ≡
mn
2 −1∑
i=1

i−m
n
2−1∑
i=1

i (mod 2)

and then
s∑
i=1

σ(Ci) ≡
m(m− 1)n2

8
(mod 2).

From (3.1) we have

s∑
i=1

|Orb(Ci)| ≡
m(m− 1)n2

8
(mod 2).

Hence the number of cycles Ci of S whose orbit has odd length has the same parity as
m(m−1)n2

8 , and the assertion follows.
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Now we are ready to prove the main non-existence result. In the following given a
positive integer x by |x|2 we will denote the largest e for which 2e divides x.

Theorem 3.3. Let n be an even integer. A cyclic `-cycle system of Km×n cannot exist in
each of the following cases:

(a) m ≡ 0 (mod 4) and |`|2 = |m|2 + 2|n|2 − 1;

(b) m ≡ 1 (mod 4) and |`|2 = |m− 1|2 + 2|n|2 − 1;

(c) m ≡ 2, 3 (mod 4), n ≡ 2 (mod 4) and ` 6≡ 0 (mod 4); or

(d) m ≡ 2, 3 (mod 4), n ≡ 0 (mod 4) and |`|2 = 2|n|2.

Proof. If B is an `-cycle system of Km×n, then |B| = |E(Km×n)|/` = mn2(m− 1)/2`.
Hence the number of cycle orbits of odd length of a cyclic `-cycle system of Km×n has
the same parity as mn2(m − 1)/2`. By Proposition 3.2, we have that mn2(m − 1)/2` ≡
mn2(m − 1)/8 (mod 2). Now the conclusion can be easily proved distinguishing four
cases according to the congruence class of m modulo 4.

If the cycles of the system are hamiltonian, that is if ` = mn, we obtain the following
corollary.

Corollary 3.4. Let n be an even integer. A cyclic HCS of Km×n cannot exist if both
m ≡ 0, 3 (mod 4) and n ≡ 2 (mod 4).

4 Existence of a cyclic and symmetric HCS of Km×n, m even
In this section we present direct constructions of a cyclic and symmetric HCS of the com-
plete multipartite graph with an even number of parts. Since (m− 1)n must be even, if m
is even then n is even too; the condition in Corollary 3.4 tells us that when n ≡ 2 (mod 4),
m should also be congruent to 2 modulo 4. If these two requirements are met, we will show
that a cyclic and symmetric HCS of Km×n always exists, and therefore we prove Theorem
1.1.

As observed in the Introduction, Km×2 = K2m − I is the cocktail party graph; thus
we can suppose n > 2, since for n = 2 we can rely on the following result.

Theorem 4.1 (Jordon, Morris [17]; Buratti, Merola [14]). For an even integer v ≥ 4 there
exists a cyclic and symmetric HCS ofKv− I if and only if v ≡ 2, 4 (mod 8) and v 6= 2pα,
where p is an odd prime and α ≥ 1.

We start by considering the complete bipartite graph.

Proposition 4.2. For any even integer n there exists a cyclic and n-symmetric HCS of
K2×n.

Proof. For n = 2` we need a set B of base cycles such that ∂B = ±{1, 3, . . . , 2` − 1}.
Let us first assume ` even. For i = 0, 1, . . . , `/2 − 1 consider the cycle Ci = [0, 4i +
3]2. We have ∂Ci = ±{4i + 1, 4i + 3}, and thus B = {C0, C1, . . . , C`/2−1} is a set of
hamiltonian cycles of K2×n such that ∂B = Z2n \ 2Z2n. Now assume that ` is odd. For
i = 0, 1, . . . , b`/2c − 1 take Ci = [0, 4i + 3]2 as above, and add the cycle C ′ = [0]2`−1.
Now B = {C0, C1, . . . , Cb`/2c−1, C

′} is a set of base cycles for a cyclic HCS of K2×n.
This cycle system is also n-symmetric by Lemma 2.7 since each cycle belongs to an orbit
of length 1 or 2.
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Now we tackle the case n ≡ 0 (mod 4).

Theorem 4.3. Let m be an even integer and n ≡ 0 (mod 4). Then there exists a cyclic
and n-symmetric HCS of Km×n.

Proof. We may assumem ≥ 4, since ifm = 2, the statement follows from Proposition 4.2.
We shall first give a construction for m a power of 2. Let m = 2a and n = 4t with a > 1
and t ≥ 1. We will build a set of a · t base cycles. For all b = 1, . . . , a and i = 0, . . . , t− 1
consider the following path:

Pi,b = [0, 2mi+ (2b+1 − 1), 1, 2mi+ (2b+1 − 2), 2, 2mi+ (2b+1 − 3), . . . ,

(2b−1 − 1), 2mi+ (2b+1 − 2b−1)].

Note that the elements of Pi,b are pairwise distinct modulo 2b: hence Ai,b = [Pi,b]2b is a
hamiltonian cycle of Km×n. It is straightforward to check that

∂Ai,b = ±({2mi+ 2b−1} ∪ {2mi+ (2b + 1), 2mi+ (2b + 2), . . . , 2mi+ (2b+1 − 1)}).

Thus ∪(∂Ai,b) = Zmn \mZmn, and the existence of a cyclic HCS of Km×n follows from
Theorem 2.2.

Now assume m = 2am with a ≥ 1 and m > 1 odd. Take n = 4t with t ≥ 1. We start
constructing for all i = 0, . . . , t− 1 the following paths:

Pi,j =

{
[0, 2mi+ (4j − 1)] if j = 1, . . . , m−12

[0, 2mi+ (4j + 1)] if j = m+1
2 , . . . ,m− 1

. (4.1)

Since 2mi+ (4j− 1) and 2mi+ (4j + 1) are odd, Ai,j = [Pi,j ]2 is a hamiltonian cycle of
Km×n for any i, j. Clearly ∂Ai,j = ±{2mi+(4j−3), 2mi+(4j−1)} for j = 1, . . . , m−12

and ∂Ai,j = ±{2mi+ (4j− 1), 2mi+ (4j+ 1)} for j = m+1
2 , . . . ,m− 1. Hence for any

fixed i we have
m−1
∪
j=1

∂Ai,j = ±
(
{2mi+ 1, 2mi+ 3, 2mi+ 5, . . . , 2mi+ (2m− 3)}∪

{2mi+ (2m+ 1), 2mi+ (2m+ 3), 2mi+ (2m+ 5), . . . , 2mi+ (4m− 3)}
)
.

Now for i = 0, . . . , t− 1 consider the paths

Qi,1 = [0, 2mi+ (4m− 1), 1, 2mi+ (4m− 3), 3, . . . ,m− 2, 2mi+ 3m, (4.2)
m+ 1, 2mi+ (3m− 1),m+ 3, 2mi+ (3m− 3), . . . , 2m− 2,

2mi+ (2m+ 2)];

and finally, if a ≥ 2, for all b = 2, . . . , a consider also

Qi,b = [0, 2mi+ (2b+1m− 1), 1, 2mi+ (2b+1m− 2), 2, . . . , (2b−1m− 1),

2mi+ (2b+1m− 2b−1m)].

Notice that the elements of Qi,b are pairwise distinct modulo 2bm and hence Bi,b =
[Qi,b]2bm is a hamiltonian cycle of Km×n for any i = 0, . . . , t − 1 and b = 1, . . . , a.
Also,

∂Bi,1 = ±({2mi+ 2, 2mi+ 4, 2mi+ 6, . . . , 2mi+ 2m− 2} ∪
{2mi+ 2m+ 2, 2mi+ 2m+ 4, 2mi+ 2m+ 6, . . . , 2mi+ 4m− 2} ∪
{2mi+ 2m− 1, 2mi+ 4m− 1})
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and for b = 2, . . . , a

∂Bi,b = ±({2mi+ 2b−1m} ∪ {2mi+ (2bm+ 1), 2mi+ (2bm+ 2), . . . ,

2mi+ (2b+1m− 1)}).

It turns out that for every fixed i we have

a
∪
b=1

∂Bi,b = ±
(
{2mi+ 2, 2mi+ 4, 2mi+ 6, . . . , 2mi+ 4m}∪

{2mi+ (4m+ 1), 2mi+ (4m+ 2), 2mi+ (4m+ 3), . . . , 2mi+ (m− 1)}∪

{2mi+ (m+ 1), 2mi+ (m+ 2), 2mi+ (m+ 3), . . . , 2mi+ (2m− 1)}
)
.

Let B = {Ai,j | 0 ≤ i < t, 1 ≤ j < m} ∪ {Bi,b | 0 ≤ i < t, 1 ≤ b ≤ a}. From what we
have seen above, for every fixed i we have(
m−1
∪
j=1

∂Ai,j

)
∪
(

a
∪
b=1

∂Bi,b

)
= ±

(
{2mi+ 1, 2mi+ 2, 2mi+ 3, . . . , 2mi+ (m− 1)}∪

{2mi+ (m+ 1), 2mi+ (m+ 2), 2mi+ (m+ 3), . . . , 2mi+ (2m− 1)}
)

and so ∂B = Zmn \mZmn. We conclude that B is a set of base cycles of a cyclic HCS of
Km×n.

It is easily seen from Lemma 2.7 that these cycle systems are also n-symmetric, since
in all cases the length of the orbit of each cycle divides m.

Example 4.4. Following the proof of Theorem 4.3 we give here the construction of a set
of base cycles of a cyclic and 4-symmetric HCS of K18×4. In the notation of the Theorem,
a = 1, m = 9 and t = 1. Take the following cycles:

A0,1 = [0, 3]2, A0,2 = [0, 7]2, A0,3 = [0, 11]2, A0,4 = [0, 15]2,

A0,5 = [0, 21]2, A0,6 = [0, 25]2, A0,7 = [0, 29]2, A0,8 = [0, 33]2,

B0,1 = [0, 35, 1, 33, 3, 31, 5, 29, 7, 27, 10, 26, 12, 24, 14, 22, 16, 20]18.

We have
8
∪
j=1

∂A0,j = ± ({1, 3, 5, . . . , 15} ∪ {19, 21, 23, . . . , 33})

and
∂B0,1 = ± ({2, 4, 6, . . . , 16} ∪ {20, 22, 24, . . . , 34} ∪ {17, 35}) .

So, given B = {A0,1, A0,2, . . . , A0,8, B0,1}, we have ∂B = Z72 \ 18Z72.

Now, we give the construction of a set of base cycles of a cyclic and 8-symmetric HCS
of K72×8. Notice that m = 9 as before, but a = 3 and t = 1, so we need to construct a
larger number of cycles. For i = 0 we take

A0,1 = [0, 3]2, A0,2 = [0, 7]2, A0,3 = [0, 11]2, A0,4 = [0, 15]2,

A0,5 = [0, 21]2, A0,6 = [0, 25]2, A0,7 = [0, 29]2, A0,8 = [0, 33]2,
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B0,1 = [0, 35, 1, 33, 3, 31, 5, 29, 7, 27, 10, 26, 12, 24, 14, 22, 16, 20]18,

B0,2 = [0, 71, 1, 70, 2, 69, 3, 68, . . . , 17, 54]36,

B0,3 = [0, 143, 1, 142, 2, 141, 3, 140, . . . , 35, 108]72.

We have(
8
∪
j=1

∂A0,j

)
∪
(

3
∪
b=1

∂B0,b

)
= ± ({1, 2, 3, . . . , 71} ∪ {73, 74, 75, . . . , 143}) .

Furthermore, for i = 1:

A1,1 = [0, 147]2, A1,2 = [0, 151]2, A1,3 = [0, 155]2, A1,4 = [0, 159]2,

A1,5 = [0, 165]2, A1,6 = [0, 169]2, A1,7 = [0, 173]2, A1,8 = [0, 177]2,

B1,1 = [0, 179, 1, 177, 3, 175, 5, 173, 7, 171, 10, 170, 12, 168, 14, 166, 16, 164]18,

B1,2 = [0, 215, 1, 214, 2, 213, 3, 212, . . . , 17, 198]36,

B1,3 = [0, 287, 1, 286, 2, 285, 3, 284, . . . , 35, 252]72.

We have(
8
∪
j=1

∂A1,j

)
∪
(

3
∪
b=1

∂B1,b

)
= ±({145, 146, 147, . . . , 215}∪{217, 218, 219, . . . , 287}).

So, given B = {Ai,j | i = 0, 1, j = 1, . . . , 8} ∪ {Bi,b | i = 0, 1, b = 1, 2, 3}, we have
∂B = Z576 \ 72Z576.

The following definition and lemma are instrumental in proving Theorem 4.7, where
we shall settle the case n ≡ 2 (mod 4).

Definition 4.5. For all positive integers s, d and all odd integers w ≥ 3, set

S(s, d, w) =

{
s+ id | 0 ≤ i ≤ w − 3

2

}
and

ϕ(s, d, w) = |{x ∈ S(s, d, w) : gcd(x,w) = 1}| .

Lemma 4.6. Assume gcd(s, d, w) = 1. If 3 - s when w = 3, then ϕ(s, d, w) > 0.

Proof. Ifw = 3 then ϕ(s, d, 3) = 1, since S(s, d, 3) = {s} and 3 - s. Suppose noww ≥ 5.
The assertion is trivial for gcd(s, w) = 1, since s ∈ S(s, d, w). If gcd(s, w) 6= 1, consider
the set T = {p prime : p | w, p - s} and let x =

∏
p∈T

p (with the usual convention that

x = 1 if T = ∅). Since w ≥ 5 and x < w, we have that s + dx ∈ S(s, d, w): we claim
that that gcd(s + dx,w) = 1. Note that no prime factor of gcd(s, w) divides d, otherwise
we would have gcd(s, d, w) 6= 1. Let p be any prime divisor of w. By definition of x, p
divides either s or x, but not both. So, we have that p divides one summand of s + dx but
not both: thus s+ dx is coprime with w.
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Theorem 4.7. Letm,n be integers withm,n ≡ 2 (mod 4). Then there exists a cyclic and
n-symmetric HCS of Km×n.

Proof. In view of Propositions 4.2 and Theorem 4.1 we may assume m = 2m > 2 and
n = 4t+ 2 > 2. Using the notation of Definition 4.5 take

s =

{
3m+ 2 if m ≡ 2 (mod 8)
3m− 2 if m ≡ 6 (mod 8)

,

d = 4m andw = n
2 . Now Lemma 4.6 guarantees that the set S(3m±2, 4m, n2 ) contains an

element ν = s+ 2mκ coprime with n
2 , where 0 ≤ κ ≤ n−6

4 . It is useful for the following
to observe that gcd(ν,mn) = 1, as gcd(3m± 2,m) = 1.

For all i = 0, . . . , κ consider the paths Qi,1 as in (4.2) and, if κ ≥ 1, for all i =
0, . . . , κ − 1 consider the paths Pi,j as in (4.1). As we have seen in Theorem 4.3, Ai,j =
[Pi,j ]2 and Bi = [Qi,1]m are hamiltonian cycles of Km×n for any i, j.

If t ≥ κ+ 2, for all i = κ+ 1, . . . , t− 1, take also the following paths:

P̃i,j =

{
[0, (2i+ 1)m+ (4j − 1)] if j = 1, . . . , m−12

[0, (2i+ 1)m+ (4j + 1)] if j = m+1
2 , . . . ,m− 1

;

Q̃i = [0, (2i+ 1)m+ (4m− 1), 1, (2i+ 1)m+ (4m− 3), 3, . . . ,m− 2,

(2i+ 1)m+ 3m,m+ 1, (2i+ 1)m+ (3m− 1),m+ 3,

(2i+ 1)m+ (3m− 3), . . . , 2m− 2, (2i+ 1)m+ (2m+ 2)].

We define

u =

{
3m+1

4 if m ≡ 2 (mod 8)
3m−1

4 if m ≡ 6 (mod 8)

and take the paths:

R̃j =

{
[0, 2mκ+ (4j − 1)] if j = 1, . . . , m−12

[0, 2mκ+ (4j + 1)] if j = m+1
2 , . . . ,m− 1 and j 6= u

;

S̃ = [0, (2κ+ 1)m+ (4m− 1), 1, (2κ+ 1)m+ (4m− 2), 2, . . . ,

m− 1, (2κ+ 1)m+ 3m].

Now set Ci,j = [P̃i,j ]2, Di = [Q̃i]m, Ej = [R̃j ]2, F = [S̃]m and G = [0]ν : these are all
hamiltonian cycles of Km×n, and we have that for j = 1, . . . , m−12

∂Ci,j = ±{(2i+ 1)m+ (4j − 3), (2i+ 1)m+ (4j − 1)}

and for j = m+1
2 , . . . ,m− 1

∂Ci,j = ±{(2i+ 1)m+ (4j − 1), (2i+ 1)m+ (4j + 1)}.

Also,

∂Di = ±({(2i+ 1)m+ 2, (2i+ 1)m+ 4, (2i+ 1)m+ 6, . . . , (2i+ 1)m+

+2m− 2} ∪ {(2i+ 1)m+ 2m+ 2, (2i+ 1)m+ 2m+ 4, . . . , (2i+ 1)m+

+4m− 2} ∪ {(2i+ 1)m+ 2m− 1, (2i+ 1)m+ 4m− 1});
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moreover, for j = 1, . . . , m−12

∂Ej = ±{2mκ+ (4j − 3), 2mκ+ (4j − 1)}

and for j = m+1
2 , . . . ,m− 1 with j 6= u

∂Ej = ±{2mκ+ (4j − 1), 2mκ+ (4j + 1)}.

Finally,

∂F = ±({(2κ+ 2)m+ 1, (2κ+ 2)m+ 2, . . . , (2κ+ 3)m− 1} ∪ {2mκ+ 3m})

and ∂G = ±{ν}.
Let B = {Ai,j | 0 ≤ i < κ, 1 ≤ j < m} ∪ {Bi | 0 ≤ i ≤ κ} ∪ {Ci,j | κ < i < t, 1 ≤

j < m} ∪ {Di | κ < i < t} ∪ {Ej | 1 ≤ j < m, j 6= u} ∪ {F,G}. It is routine to check
that ∂B = Zmn \mZmn, hence we conclude that B is a set of base cycles of a cyclic HCS
of Km×n. Once more, it is easily checked using Lemma 2.7 that this cycle system is also
n-symmetric, since in all cases the length of the orbit of each cycle divides m.

We point out that the base cycles used in Example 2.4 were constructed following the
proof of Theorem 4.7. In particular, according to the notation of the theorem we have

C1 = B0, C2 = F, C3 = E1, C4 = E2, C5 = E3, C6 = G.

Example 4.8. Here we present a set of base cycles of a cyclic and 14-symmetric HCS of
K6×14. In the notation of Theorem 4.7, m = t = 3 and we choose κ = 1 and ν = 19
which is coprime with 6 · 14. Following the proof of the theorem we have to take the
following cycles:

A0,1 = [0, 3]2, A0,2 = [0, 9]2, B0 = [0, 11, 1, 9, 4, 8]6, B1 = [0, 23, 1, 21, 4, 20]6,

C2,1 = [0, 33]2, C2,2 = [0, 39]2, D2 = [0, 41, 1, 39, 4, 38]6, E1 = [0, 15]2,

F = [0, 29, 1, 28, 2, 27]6, G = [0]19.

It follows that

∂{A0,1, A0,2} = ±{1, 3, 7, 9}, ∂{B0, B1} = ±{2, 4, 5, 8, 10, 11, 14, 16, 17, 20, 22, 23},

∂{C2,1, C2,2} = ±{31, 33, 37, 39}, ∂D2 = ±{32, 34, 35, 38, 40, 41},

∂E1 = ±{13, 15}, ∂F = ±{21, 25, 26, 27, 28, 29}, ∂G = ±{19}.

So, letting B be the set of the constructed cycles, we have ∂B = Z84 \ 6Z84.
Now, we give a set of base cycles of a cyclic and 10-symmetric HCS of K10×10. In the

notation of Theorem 4.7, m = 5, t = 2 and we choose κ = 1 and ν = 37 which is coprime
with 100. We have to take the following cycles:

A0,1 = [0, 3]2, A0,2 = [0, 7]2, A0,3 = [0, 13]2, A0,4 = [0, 17]2,

B0 = [0, 19, 1, 17, 3, 15, 6, 14, 8, 12]10, B1 = [0, 39, 1, 37, 3, 35, 6, 34, 8, 32]10,

E1 = [0, 23]2, E2 = [0, 27]2, E3 = [0, 33]2,
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F = [0, 49, 1, 48, 2, 47, 3, 46, 4, 45]10, G = [0]37.

We have:
4
∪
i=1

∂A0,i = ±{1, 3, 5, 7, 11, 13, 15, 17},

∂{B0, B1} = ±{2, 4, 6, 8, 9, 12, 14, 16, 18, 19, 22, 24, 26, 28, 29, 32, 34, 36, 38, 39},

3
∪
j=1

∂Ej = ±{21, 23, 25, 27, 31, 33},

∂F = ±{35, 41, 42, 43, 44, 45, 46, 47, 48, 49}, ∂G = ±{37}.

Hence, letting B be the set of the constructed cycles, we have ∂B = Z100 \ 10Z100.
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Abstract

A Langford sequence of order m and defect d can be identified with a labeling of the
vertices of a path of order 2m in which each label from d up to d + m − 1 appears twice
and in which the vertices that have been labeled with k are at distance k. In this paper, we
introduce two generalizations of this labeling that are related to distances. The basic idea
is to assign nonnegative integers to vertices in such a way that if n vertices (n > 1) have
been labeled with k then they are mutually at distance k. We study these labelings for some
well known families of graphs. We also study the existence of these labelings in general.
Finally, given a sequence or a set of nonnegative integers, we study the existence of graphs
that can be labeled according to this sequence or set.
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1 Introduction
For the graph terminology not introduced in this paper we refer the reader to [14, 15]. For
m ≤ n, we denote the set {m,m + 1, . . . , n} by [m,n]. A Skolem sequence [8, 12] of
order m is a sequence of 2m numbers (s1, s2, . . . , s2m) such that (i) for every k ∈ [1,m]
there exist exactly two subscripts i, j ∈ [1, 2m] with si = sj = k, (ii) the subscripts i and
j satisfy the condition |i − j| = k. The sequence (4, 2, 3, 2, 4, 3, 1, 1) is an example of a
Skolem sequence of order 4. It is well known that Skolem sequences of order m exist if
and only if m ≡ 0 or 1 (mod 4).

Skolem introduced in [13] what is now called a hooked Skolem sequence of order m,
where there exists a zero at the second to last position of the sequence containing 2m + 1
elements. Later on, in 1981, Abrham and Kotzig [1] introduced the concept of extended
Skolem sequence, where the zero is allowed to appear in any position of the sequence. An
extended Skolem sequence of order m exists for every m. The following construction was
given in [1]:

(pm, pm−2, . . . , 2, 0, 2, . . . , pm−2, pm, qm, qm−2, . . . , 3, 1, 1, 3, . . . , qm−2, qm), (1.1)

where pm and qm are the largest even and odd numbers not exceeding m, respectively. No-
tice that from every Skolem sequence we can obtain two trivial extended Skolem sequences
just by adding a zero either in the first or in the last position.

Let d be a positive integer. A Langford sequence of order m and defect d [11] is a
sequence (l1, l2, . . . , l2m) of 2m numbers such that (i) for every k ∈ [d, d + m − 1] there
exist exactly two subscripts i, j ∈ [1, 2m] with li = lj = k, (ii) the subscripts i and j
satisfy the condition |i − j| = k. Langford sequences, for d = 2, were introduced in [4]
and they are referred to as perfect Langford sequences. Notice that, a Langford sequence of
order m and defect d = 1 is a Skolem sequence of order m. Bermond, Brower and Germa
on one side [2], and Simpson on the other side [11] characterized the existence of Langford
sequences for every order m and defect d.

Theorem 1.1. [2, 11] A Langford sequence of orderm and defect d exists if and only if the
following conditions hold: (i) m ≥ 2d− 1, and (ii) m ≡ 0 or 1 (mod 4) if d is odd; m ≡ 0
or 3 (mod 4) if d is even.

For a complete survey on Skolem-type sequences we refer the reader to [3]. For differ-
ent constructions and applications of Langford type sequences we also refer the reader to
[5, 6, 7, 9, 10].

1.1 Distance labelings

Let L = (l1, l2, . . . , l2m) be a Langford sequence of order m and defect d. Consider a
path P with V (P ) = {vi : i = 1, 2, . . . , 2m} and E(P ) = {vivi+1 : i = 1, 2, 2m − 1}.
Then, we can identify L with a labeling f : V (P ) → [d, d + m − 1] in such a way that,
(i) for every k ∈ [d, d + m − 1] there exist exactly two vertices vi, vj ∈ [1, 2m] with
f(vi) = f(vj) = k, (ii) the distance d(vi, vj) = k. Motivated by this fact, we introduce
two notions of distance labelings, one of them associated with a positive integer l and the
other one associated with a set of positive integers J .

Let G be a graph and let l be a nonnegative integer. Consider any function f : V (G)→
[0, l]. We say that f is a distance labeling of length l (or distance l-labeling) of G if the
following two conditions hold, (i) either f(V (G)) = [0, l] or f(V (G)) = [1, l] and (ii)
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if there exist two vertices vi, vj with f(vi) = f(vj) = k then d(vi, vj) = k. Clearly, a
graph can have many different distance labelings. We denote by λ(G), the labeling length
of G, the minimum l for which a distance l-labeling of G exists. We say that a distance
l-labeling of G is proper if for every k ∈ [1, l] there exist at least two vertices vi, vj of G
with f(vi) = f(vj) = k. We also say that a proper distance l-labeling of G is regular of
degree r (for short r-regular) if for every k ∈ [1, l] there exist exactly r vertices vi1 , vi2 ,
. . . , vir with f(vi1) = f(vi2) = . . . = f(vir ) = k. Clearly, if a graph G admits a proper
distance l-labeling then l ≤ D(G), where D(G) is the diameter of G.

Let G be a graph and let J be a set of nonnegative integers. Consider any function
f : V (G)→ J . We say that f is a distance J-labeling of G if the following two conditions
hold, (i) f(V (G)) = J and (ii) for any pair of vertices vi, vj with f(vi) = f(vj) = k we
have that d(vi, vj) = k. We say that a distance J-labeling is proper if for every k ∈ J \{0}
there exist at least two vertices vi, vj with f(vi) = f(vj) = k. We also say that a proper
distance J-labeling ofG is regular of degree r (for short r-regular) if for every k ∈ J \{0}
there exist exactly r vertices vi1 , vi2 , . . . , vir with f(vi1) = f(vi2) = . . . = f(vir ) = k.
Clearly, a distance l-labeling is a distance J-labeling in which either J = [0, l] or J = [1, l].
Thus, the notion of a J-labeling is more general than the notion of a l-labeling.

In this paper, we provide the labeling length of some well known families of graphs.
We also study the inverse problem, that is, for a given pair of positive integers l and r we
ask for the existence of a graph of order lr with a regular l-labeling of degree r. Finally,
we study a similar question when we deal with J-labelings. The organization of the paper
is as follows. Section 2 is devoted to l-labelings; we start calculating the labeling length of
complete graphs, paths, cycles and some others families. The inverse problem is studied in
the second part of the section. Section 3 is devoted to the inverse problem in J-labelings.
There are many open problems that remain to be solved, we end the paper by presenting
some of them.

2 Distance l-labelings
We start this section by providing the labeling length of some well-known families of
graphs. By definition, λ(K1) = 0. In what follows, we only consider graphs of order
at least 2.

Proposition 2.1. Let n ≥ 2. The complete graph Kn has λ(Kn) = 1.

Proof. By assigning the label 1 to all vertices of Kn, we obtain a distance 1-labeling of
it.

Proposition 2.2. Let n ≥ 2. The path Pn has λ(Pn) = bn/2c.

Proof. By a previous comment, we know that a Skolem sequence of order m exists if
m ≡ 0 or 1 (mod 4). This fact together with (1.1) guarantees the existence of a proper
distance bn/2c-labeling when n 6≡ 4, 6 (mod 8). By removing one of the end labels of
(1.1), we obtain a (non proper) distance labeling of length bn/2c. Thus, we have that
λ(Pn) ≤ bn/2c. Since there are no three vertices in the path which are at the same distance,
this lower bound turns out to be an equality.

The sequence that appears in (1.1) also works for constructing proper distance labelings
of cycles. Thus, we obtain the next result.
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Proposition 2.3. Let n ≥ 3. The cycle Cn has

λ(Cn) =

{
(n− 2)/2, n 6= 6, n is divisible by 6,
bn/2c, otherwise.

Proof. Since, except for n divisible by 3, there are no three vertices in the cycle Cn which
are at the same distance, we have that λ(Cn) ≥ bn/2c. The sequence that appears in (1.1)
allows us to construct a (proper) distance bn/2c-labeling ofCn when n is odd. Moreover, if
n even not divisible by 3 we can obtain a distance bn/2c-labeling of Cn from the sequence
that appears in (1.1) just by removing the end odd label. Suppose now that n is divisible
by 3. If n is odd or n = 6, at least bn/2c labels are needed to obtain a distance labeling of
Cn. Thus, λ(Cn) = bn/2c.

So, in what follows we will assume that n is divisible by 6. Since there are three
vertices in the cycle which are at the same distance, we have that λ(Cn) ≥ (n− 2)/2. Let
pm and qm be the largest even and odd numbers, respectively, not exceeding (n− 2)/2. If
n ≡ 0, 4 (mod 8) then the sequence (pm, pm − 2, . . . , 2, qm, 2, . . . , pm − 2, pm, 0, qm −
2, qm − 4, . . . , 3, qm, n/3, 3, 5, . . . , qm − 2, 1, 1) defines a (proper) distance (n − 2)/2-
labeling of Cn. If n ≡ 6 (mod 8) then (pm − 2, pm − 4, . . . , 2, pm, 2, . . . , pm − 4, pm −
2, 0, qm, qm−2, . . . , 3, pm, n/3, 3, 5, . . . , qm−2, qm, 1, 1) defines a (proper) distance (n−
2)/2-labeling ofCn. Finally, if n ≡ 2 (mod 8), then the sequence (pm, pm−2, . . . , 2, n/6+
dn/12e, 2, . . . , pm, n/6 + dn/12e, qm, qm − 2, . . . , n/6 + dn/12e + 2, n/6 + dn/12e −
2, n/6+dn/12e−4, . . . , 3, 0, n/3, 3, 5, . . . , n/6+dn/12e−2, 1, 1, n/6+dn/12e+2, n/6+
dn/12e+ 4, . . . , qm) defines a (proper) distance (n− 2)/2-labeling of Cn.

Proposition 2.4. The starK1,k has λ(K1,k) = 2 when k ≥ 3, and λ(K1,k) = 1 otherwise.

Proof. For k ≥ 3, consider a labeling f that assigns the label 1 to the central vertex and to
one of its leaves, and that assigns label 2 to the other vertices. Then f is a (proper) distance
2-labeling of K1,k. For 1 ≤ k ≤ 2, the sequences 1− 1 and 0− 1− 1, where 0 is assigned
to a leaf, give a (proper) distance 1-labeling of K1,1 and K1,2, respectively.

Proposition 2.5. Let m and n be integers with 2 ≤ m ≤ n. Then, λ(Km,n) = m. In
particular, the graph Km,n admits a proper distance l-labeling if and only if m ∈ {1, 2}.

Proof. Let X and Y be the stable sets of Km,n, with |X| = m and |Y | = n. We have that
D(Km,n) = 2, however the maximum number of vertices that are mutually at distance 2
is n. Thus, by assigning label 2 to all vertices, except one, in Y , 1 to the remaining vertex
in Y and to one vertex in X , 0 to another vertex of X we still have left m − 2 vertices in
X to label.

Proposition 2.6. Let n and k be positive integers with n ≥ 2 and k ≥ 3. Let Sn
k be the

graph obtained from K1,k by replacing each edge with a path of n edges. Then

λ(Sn
k ) =

 2(n− 1), if k = n− 1,
2n− 1, if k = n,
2n, if k > n.

Moreover, for k < n − 1, the graph Sn
k admits an l-distance labeling, where 2(n − o) ≤

l ≤ 2(n− o) + 1, and b(2n− 1)/(2k + 1)c ≤ o ≤ b(2n+ 2)/(2k + 1)c.
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Proof. Suppose that Sn
k admits a distance l-labeling with l < 2n. Then, all the labels

assigned to leaves should be different and they appear at most twice. Moreover, although
each even label could appear k-times, one for each of the k paths that are joined to the
star K1,k, odd labels also appear at most twice (either in the same or in two of the original
forming paths). Thus, once we fix the labels of leaves, we still have to assign a label to at
least (k − 2)(n − 2) + 1 vertices. Thus, at least 2n − 2 labels are needed for obtaining a
distance labeling of Sn

k , when k ≥ n − 1. The following construction provides a distance
2(n − 1)-labeling of Sn

k , when k = n − 1. Suppose that we label the central vertices of
each path using the pattern 2 − 4 − . . . − 2(n − 1). Then, add odd labels to the leaves.
For the case k = n, we need to introduce a new odd label, which corresponds to 2n − 1.
Finally, when k > n, we cannot complete a distance l-labeling without using 2n labels.
Fig. 1 provides a proper 2n-labeling that can be generalized in that case.

The case k < n−1 requires a more detailed study. Consider the labeling of Sn
k obtained

by assigning the labels in the sequence 0− 2− 4− . . .− 2(n− o)− si1 − si2 − . . .− sio to
the vertices of the path P i, i = 1, . . . , k, where 0 is the label assigned to the central vertex
of Sn

k , and {sij}
j=1,...,o
i=1,...,k is the (multi)set of odd labels, if necessary, we replace some of the

even labels by the remaining odd labels. By considering the patern 1 − 1, 3 − 1 − 1 − 3,
5− 3− 1− 1− 3− 5 to the vertices of one of the paths, it can be checked that, the graph
Sn
k admits an l-distance labeling with l ∈ {2(n− o), 2(n− o) + 1} and⌊

2n− 1

2k + 1

⌋
≤ o ≤ b2n+ 2

2k + 1
c.

More specifically, if b(2n − 1)/(2k + 1)c = b(2n + 2)/(2k + 1)c then o = b(2n −
1)/(2k + 1)c and l = 2(n− o). If b(2n− 1)/(2k + 1)c+ 1 = b(2n)/(2k + 1)c then o =
b(2n)/(2k+1)c and l = 2(n−o)+1. Finally, if b(2n)/(2k+1)c+1 = b(2n+1)/(2k+1)c
then o = b(2n+ 1)/(2k + 1)c and l = 2(n− o) + 1.

Fig. 2 and Fig. 3 show proper distance labelings of S5
4 and S5

5 , respectively, that have
been obtained by using the above constructions, and then, combining pairs of paths (whose
end odd labels sum up to 8) for obtaining a proper distance 8-labeling and 9-labeling,
respectively.
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Figure 1: A proper distance 10-labeling of S5
6 .

Proposition 2.7. For n ≥ 3, let Wn be the wheel of order n+ 1. Then λ(Wn) = dn/2e.

Proof. Except for W3, all wheels have D(Wn) = 2. The maximum number of vertices
that are mutually at distance 2 is bn/2c and all of them are in the cycle. Thus, by assigning
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Figure 2: A proper distance 8-labeling of S5
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Figure 3: A proper distance 9-labeling of S5
5 .

label 2 to all these vertices, 0 to one vertex of the cycle and 1 to the central vertex and to
one vertex of the cycle, we still have to label dn/2e − 2 vertices.

Proposition 2.8. For n ≥ 2, let Fn be the fan of order n+ 1. Then λ(Fn) = bn/2c.

Proof. Except for F2, all fans have D(Fn) = 2. The maximum number of vertices that are
mutually at distance 2 is dn/2e and all of them are in the path. Thus, by assigning label 2
to all these vertices, 0 to one vertex of the path, 1 to the central vertex and to one vertex of
the path when n is even and to two vertices when n is odd, we still have to label bn/2c− 2
vertices.

2.1 The inverse problem

For every positive integer l, there exists a graph G of order l with a trivial l-labeling that
assigns a different label in [1, l] to each vertex. In this section, we are interested in the
existence of a graph G that admits a proper distance l-labeling.

We are now ready to state and prove the next result.

Theorem 2.9. For every pair of positive integers l and r, r ≥ 2, there exists a graph G of
order lr with a regular l-labeling of degree r.

Proof. We give a constructive proof. Assume first that l is odd. LetG be the graph obtained
from the complete graphKr by identifying r−1 vertices ofKr with one of the end vertices
of a path of length bl/2c and the remaining vertex ofKr with the central vertex of the graph
S
bl/2c
r+1 . That is, G is obtained from Kr by attaching 2r paths of length bl/2c to its vertices,
r+ 1 to a particular vertex v1 of Kr and exactly one path to each of the remaining vertices
F = {v2, v3, . . . , vr} of Kr. Now, consider the labeling f of G that assigns 1 to the
vertices of Kr, the sequence 1− 3− . . .− l to the vertices of the paths attached to F and
one of the paths attached to v1, and the sequence 1− 2− 4− . . .− (l− 1) to the remaining
paths. Then f is a regular l-labeling of degree r of G. Assume now that l is even. Let G
be the graph obtained in the above construction for l − 1. Then, by adding a leaf to each
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vertex of G labeled with l− 2 we obtain a new graph G′ that admits a regular l-labeling f ′

of degree r. The labeling f ′ can be obtained from the labeling f of G, defined above, just
by assigning the label l to the new vertices.
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Figure 4: A regular 5-labeling of degree 4 of a graph G.
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Figure 5: A regular 6-labeling of degree 4 of a graph G′.

Notice that, the graph provided in the proof of Theorem 2.9 also has λ(G) = l. Figs 4
and 5 show examples for the above construction. The pattern provided in the proof of the
above theorem, for r = 2, can be modified in order to obtain the following lower bound for
the size of a graph G as in Theorem 2.9.

Proposition 2.10. For every positive integer l there exists a graph of order 2l and size
(l + 2)(l + 1)/2− 2 that admits a regular distance l-labeling of degree 2.

Proof. Let G be the graph of order 2l and size (l+ 1)l/2 + l− 1, obtained from Kl+1 and
the path Pl by identifying one of the end vertices u of Pl with a vertex v of Kl+1. Let f
be the labeling of G that assigns the sequence 1− 2− 3− . . .− l to the vertices of Pl and
1 − 1 − 2 − . . . − l to the verticalces of Kl+1 in such a way that the vertex obtained by
identifying u and v is labeled 1. Then, f is a 2-regular l-labeling of G.

Thus, a natural question appears.
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Question 2.11. Can we find graphs that admit a regular distance l-labeling of degree 2
which have bigger density (where by density we refer the number of edges in relation to
the number of vertices) than the one of Proposition 2.10?

We end this section by introducing an open question related to complexity.

Question 2.12. What is the algorithmic complexity of computing λ(G) for a general graph
G? What about for a tree?

3 Distance J-labelings
It is clear from the definition that to say that a graph admits a (proper) distance l-labeling
is the same as to say that the graph admits either a (proper) distance [0, l]-labeling or a
(proper) distance [1, l]-labeling. That is, we relax the condition on the labels, the set of
labels is not necessarily a set of consecutive integers. In this section, we study which kind
of sets J can appear as the set of labels of a graph that admits a distance J-labeling.

The following easy fact is obtained from the definition.

Lemma 3.1. Let G be a graph with a proper distance J-labeling f . Then J ⊂ [0, D(G)],
where D(G) is the diameter of G.

3.1 The inverse problem: distance J-labelings obtained from sequences.

We start with a definition. Let S = (s1, s1, . . . , s1, s2, . . . , s2, . . . , sl, . . . , sl) be a se-
quence of nonnegative integers where, (i) si < sj whenever i < j and (ii) each number si
appears ki times, for i = 1, 2, . . . , l. We say that S is a δ-sequence if there is a simple graph
G that admits a partition of the vertices V (G) = ∪li=1Vi such that, for all i ∈ {1, 2, . . . , l},
|Vi| = ki, and if u, v ∈ Vi then dG(u, v) = si. The graph G is said to realize the sequence
S.

Let Σ = {s1 < s2 < . . . < sl} be a set of nonnegative integers. We say that Σ
is a δ-set with n degrees of freedom or a δn-set if there is a δ-sequence S of the form
S = (s1, s1, . . . , s1, s2, . . . , s2, . . . , sl, . . . , sl), in which the following conditions hold: (i)
all, except n numbers different from zero, appear at least twice, and (ii) if s1 = 0 then 0
appears exactly once in S. We say that any graph realizing S also realizes Σ. If n = 0
we simply say that Σ is a δ-set. Let us notice that an equivalent definition for a δ-set is the
following: Σ is a δ-set if there exists a graph G that admits a proper distance Σ-labeling.

Proposition 3.2. Let Σ = {1 = s1 < s2 < . . . < sl} be a set such that si − si−1 ≤ 2,
for i = 1, 2, . . . , l. Then Σ is a δ-set. Furthermore, there is a caterpillar of order 2l that
realizes Σ.

Proof. We claim that for each set Σ = {1 = s1 < s2 < . . . < sl} such that si − si−1 ≤ 2
there is a caterpillar of order 2l that admits a 2-regular distance Σ-labeling in which the
label sl is assigned to exactly two leaves. The proof is by induction on l. For l = 1,
the path P2 admits a 2-regular distance {1}-labeling, and for l = 2, the star K1,3 and the
path P4 admit a 2-regular distance {1, 2}-labeling and a 2-regular distance {1, 3}-labeling,
respectively. Assume that the claim is true for l and let Σ = {1 = s1 < s2 < . . . < sl+1}
such that si − si−1 ≤ 2. Let Σ′ = Σ \ {sl+1}. By the induction hypothesis, there is a
caterpillar G′ of order 2l that admits a regular distance Σ′-labeling of degree 2 in which
the label sl is assigned to leaves, namely, u1 and u2. Let u ∈ V (G′) be the (unique) vertex
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in G′ adjacent to u1. Then, if sl+1 − sl = 2, the caterpillar obtained from G′ by adding
two new vertices v1 and v2 and the edges uivi, for i = 1, 2, admits a regular distance
Σ-labeling of degree 2 in which the label sl+1 is assigned to leaves {v1, v2}. Otherwise, if
sl+1 − sl = 1 then the caterpillar obtained from G′ by adding two new vertices v1 and v2

and the edges uv1 and u2v2 admits a regular distance Σ-labeling of degree 2 in which the
label sl+1 is assigned to leaves {v1, v2}. This proves the claim. To complete the proof, we
only have to consider the vertex partition of G defined by the vertices that receive the same
label.

Proposition 3.2 provides us with a family of δ-sets, in which, if we order the elements
of each δ-set, we get that the differences between consecutive elements are at most 2. This
fact may lead us to get the idea that the differences between consecutive elements in δ-sets
cannot be too large. This is not true in general and we show it in the next result.

Theorem 3.3. Let {k1, k2, . . . , kn} be a set of positive integers. Then there exists a δ-set
Σ = {s1 < s2 < . . . < sl} and a set of indices {1 ≤ j1 < j2 < . . . < jn}, with jn < l−1,
such that

sj1+1 − sj1 = k1, sj2+1 − sj2 = k2, . . . , sjn+1 − sjn = kn.

Moreover, s1 can be chosen to be any positive integer.

Proof. Choose any number d1 ∈ N and choose any Langford sequence of defect d1 (such a
sequence exists by Theorem 1.1. We let d1 = s1. (Notice that if d1 = 1 then the sequence
is actually a Skolem sequence). Let this Langford sequence beL1. Next, choose a Langford
sequence L2 with defect maxL1 + k1. Next, choose a Langford sequence L3 with defect
maxL2 + k2. Continue this procedure until we have used all the values k1, k2, . . . , kn. At
this point create a new sequence L, where L is the concatenation of L1, L2, . . . , Ln+1 and
label the vertices of the path Pr, r =

∑n+1
i=1 |Li|, with the elements of L keeping the order

in the labeling induced by the sequence L. This shows the result.

The next result shows that there are sets that are not δ-sets.

Proposition 3.4. The set Σ = {2, 3} is not a δ-set.

Proof. The proof is by contradiction. Assume to the contrary that Σ = {2, 3} is a δ-set.
That is to say, we assume that there exists a sequence S consisting of k1 copies of 2 and k2

copies of 3 that is a δ-sequence. Let G be a graph that realizes S and V1 ∪ V2 the partition
of V (G) defined as follows: if u, v ∈ Vi then dG(u, v) = i + 1, for i = 1, 2. It is clear
that V1 must be formed by the leaves of a star with center some vertex a ∈ V . Since a is at
distance 1 of any vertex in V1, it follows that a must be in V2 and furthermore, all vertices
adjacent to a must be in V1. Thus, there are no two adjacent vertices in the neighborhood
of a. At this point, let b ∈ V2 \ {a}. Then, there is a path of the form a, u1, u2, b, where
u1 ∈ V1 and hence, u2, b ∈ V2. This contradicts the fact that dG(u2, b) = 1.

The above proof works for any set of the form Σ = {2, n}, for n ≥ 3. Thus, in fact,
Proposition 3.4 can be generalized as follows.

Proposition 3.5. The set Σ = {2, n} is not a δ-set.
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Notice that, although Σ = {2, n} is not a δ-set, it is a δ1-set, since we can consider a
star in which the center is labeled with n and the leaves with 2.

The next result gives a lower bound on the size of δ-sets in terms of the maximum of
the set.

Theorem 3.6. Let Σ be a δ-set with s = max Σ. Then, |Σ| ≥ d(s+ 1)/2e.

Proof. Let G be a graph that realizes Σ and let V (G) = ∪i∈ΣVi be the partition defined
as follows: if u, v ∈ Vi then dG(u, v) = i. Let a1, a2 ∈ Vs. At this point, let P =
b1b2 . . . bs+1 be a path of length s starting at a1 and ending at a2. We claim that there are
no three vertices in V (P ) belonging to the same set Vj , j ∈ Σ. Assume to the contrary
that there exist vertices u, v and w ∈ V (P ) such that dG(u, v) = dG(u,w) = dG(v, w).
Then, we also obtain that dP (u, v) = dP (v, w) = dP (v, w) (since they are on a shortest
path between two points), a contradiction. Hence, each set in the partition of V (G) can
contain at most two vertices of P . Since |V (P )| = s + 1, it follows that we need at least
d(s+1)/2e sets in the partition of V (G). Therefore, we obtain that |Σ| ≥ d(s+1)/2e.

It is clear that the above proof cannot be improved in general, since from Proposition 3.2
we get that the any set of the form {1, 3, 5, . . . , 2n + 1} is a δ-set and |{1, 3, 5, . . . , 2n +
1}| = d(2n+ 2)/2e. Furthermore, Proposition 3.5 for n ≥ 4 is an immediate consequence
of the above result. It is also worth to mention that there are sets which meet the bound pro-
vided in Theorem 3.6, however they are not δ-sets. For instance, the set {2, 3} considered
in Proposition 3.4. From this fact, it seems that we cannot characterize δ-sets just from a
density point of view. Next we want to propose the following open problem.

Problem 3.7. Characterize δ-sets.

Let Σ be a set. By construction, a path of order |Σ| in which each vertex receives a
different labeling of Σ defines a distance |Σ|-labeling. That is, every set is a δ|Σ|-set. So,
according to that, we propose the next problem.

Problem 3.8. Given a set Σ is there a construction that provides the minimum r such that
Σ is a δr-set?

Thus, the above problem is a bit more general than Open problem 3.7.
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35–38.
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Abstract

The number of independent sets is equivalent to the partition function of the hard-
core lattice gas model with nearest-neighbor exclusion and unit activity. In this article,
we mainly study the number of independent sets i(Hn) on the Tower of Hanoi graph Hn

at stage n, and derive the recursion relations for the numbers of independent sets. Upper
and lower bounds for the asymptotic growth constant µ on the Towers of Hanoi graphs
are derived in terms of the numbers at a certain stage, where µ = limv→∞

ln i(G)
v(G) and

v(G) is the number of vertices in a graph G. Furthermore, we also consider the number of
independent sets on the Sierpiński graphs which contain the Towers of Hanoi graphs as a
special case.

Keywords: Independent sets, the Tower of Hanoi graph, Sierpiński graph, recursion relation, asymp-
totic growth constant, asymptotic enumeration.
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1 Introduction
Counting sets satisfying a fixed property in graphs ranges among the classical tasks of
combinatorics. There is a vast amount of literatures on this kind of combinatorial problems
for various classes of graphs, especially for Sierpiński graphs, by different authors. We
note that the set counting problems such as the number of independent sets and the number
of matchings have been studied in the past [2, 4, 9, 10, 11, 26, 35, 36].

On one hand, all these graph invariants reflect the structure of a graph in some way,
and therefore, some of them are even of interest in theoretical chemistry for the study of
molecular graphs (see [32, 38]). For example, the number of independent sets is called
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Merrifield-Simmons index, the number of matchings is known as Hosoya index in chem-
istry. It was shown that both correlate well with physicochemical properties of the corre-
sponding molecules (see [23, 30]).

On the other hand, the number of independent sets is equivalent to the partition function
of the hard-core lattice gas model with nearest-neighbor exclusion and unit activity. The
lattice gas with repulsive pair interaction is an important model in statistical mechanics
[3, 13, 16, 33]. For the special case with hard-core nearest-neighbor exclusion such that
each site can be occupied by at most one particle and no pair of adjacent sites can be simul-
taneously occupied, the partition function of the lattice gas coincides with the independence
polynomial in combinatorics [14, 34]. This model is a problem of interest in mathematics
[39, 15, 24]. The growth of the number of independent sets in the m × n grid graph is of
interest in statistical physics (see [1]). It is known that the number of independent sets in
the m × n grid graph grows with αmn, where α = 1.503048082 · · · is the so-called hard
square entropy constant. The bound for this constant was successively improved by Weber
[40], Engel [9] and Calkin and Wilf [4].

The number of independent sets and its bounds had been considered on various graphs
[27, 29, 41]. It is of interest to consider independent sets on self-similar fractal lattices
which have scaling invariance rather than translational invariance [35]. The recursion rela-
tions for the numbers of independent sets on the Sierpiński gasket were derived by Chang,
Chen and Yan [6]. A special type of self-similar graph that has been of interest is the Hanoi
graph, which has been extensively studied in several contexts [5, 7, 8, 12, 17, 18, 19, 20,
22, 25, 28, 31]. This graph, which is also known as the Tower of Hanoi graph, came from
the well known Tower of Hanoi puzzle, as the graph is associated to the allowed moves in
this puzzle. We shall derive the recursion relations for the numbers of independent sets on
the Towers of Hanoi graphs. Upper and lower bounds for the asymptotic growth constant µ
on the Tower of Hanoi graphs are derived in terms of the numbers at a certain stage, where
µ = limv→∞

ln i(G)
v(G) , i(G) and v(G) are the number of independent sets and the number

of vertices in a graph G, respectively. Furthermore, we also consider the Sierpiński graphs
which include the Towers of Hanoi graphs as a special case.

2 Preliminaries
We recall some basic definitions about graphs. A graph G = (V,E) with vertex set V and
edge set E is always supposed to be undirected, without loops or multiple edges. Vertices
x and y are adjacent if xy is an edge in E. Let v(G) = |V | be the number of vertices and
e(G) = |E| the number of edges in G. An independent set is a subset of the vertices such
that any two of them are not adjacent. When the number i(G) of independent sets in G
grows exponentially with v(G) as v(G) → ∞, let us define a constant µ describing this
exponential growth:

µ = lim
v(G)→∞

ln i(G)

v(G)
.

We will see that the limit exists for the Towers of Hanoi graphs and some other Sierpiński
graphs considered in this paper.

There are many different approaches to construct self-similar graphs. A construction
that is specifically geared to be used in the context of enumeration was described in [35], it
is no restated and we will also make use of it here. Some examples can be seen in [37].

The Tower of Hanoi graph (or the Hanoi graph), invented in 1883 by the French math-
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H0

Hn−1

Hn−1 Hn−1

H2H1 Hn

Figure 1: The Towers of Hanoi graphs H0, H1, H2 and the construction of Hn.

ematician Edouard Lucas, has become a classic example in the analysis of algorithms and
discrete mathematical structures. There exists an abundant literature on the properties of
the Hanoi graph, which includes the study of shortest paths, average eccentricity, to name
a few, see [21] and references therein. The Hanoi graph Hn is derived from the Tower of
Hanoi puzzle with n discs. The vertices of the graph Hn in this sequence correspond to
all possible configurations of the game Tower with n + 1 disks and three rods, whereas
the edges describe transitions between configurations, see [17], and these graphs are finite
Schreier graphs of the Hanoi tower group in [12]. Note that the Tower of Hanoi graph can
be constructed by the following recursive-modular method. For n = 0, H0 is the complete
graph K3 (also called a 3-clique or triangle). For n ≥ 1, Hn is obtained from three copies
of Hn−1 joined by three new edges, each one connecting a pair of vertices from two differ-
ent replicas of Hn−1, as show in Figure 1. From the construction rule, we can find that the
number of vertices of Hn is 3n+1 while the number of edges is 3n+2−3

2 .

3 The number of independent sets on Hn

In this section, we will derive the asymptotic growth constant for the number of independent
sets on the Tower of Hanoi graph Hn in detail.

For the Tower of Hanoi graph Hn, in is its number of independent sets, fn is its num-
ber of independent sets such that all three outmost vertices are not in the vertex subset,
gn is its number of independent sets such that only one specified vertex of three outmost
vertices is in the vertex subset, hn is its number of independent sets such that exact two
specified vertices of the three outmost vertices are in the vertex subset, pn is its number
of independent sets such that all three outmost vertices are in the vertex subset. They are
illustrated in Figures 2–5, where only the outmost vertices are shown and a solid circle is
in the independent set and an open circle is not. Because of rotational symmetry, there are
three possible gn and three possible hn such that

in = fn + 3gn + 3hn + pn

and f0 = g0 = 1, h0 = p0 = 0, i0 = f0 + 3g0 + 3h0 + p0 = 4.
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Lemma 3.1. For any nonnegative integer n, we have

fn+1 =f3n + 6f2ngn + 3f2nhn + 9fng
2
n + 6fngnhn + 2g3n,

gn+1 =f2ngn + 2f2nhn + f2npn + 4fng
2
n + 8fngnhn + 2fngnpn + 2fnh

2
n + 3g3n

+ 4g2nhn,

hn+1 =fng
2
n + 4fngnhn + 2fngnpn + 3fnh

2
n + 2fnhnpn + 2g3n + 7g2nhn + 2g2npn

+ 4gnh
2
n,

pn+1 =g3n + 6g2nhn + 3g2npn + 9gnh
2
n + 6gnhnpn + 2h3n.

Proof. Note that the number fn+1 consists of (i) one configuration where all three Hn be-
long to the class that enumerated by fn; (ii) six configurations where one of theHn belongs
to the class that enumerated by gn and the other two belong to the class that enumerated
by fn; (iii) three configurations where one of the Hn belongs to the class that enumerated
by hn and the other two belong to the class that enumerated by fn; (iv) nine configurations
where one of the Hn belongs to the class that enumerated by fn and the other two belong
to the class that enumerated by gn; (v) six configurations where all three Hn belong to
the class that enumerated by fn, gn and hn, respectively; (vi) two configurations where all
three Hn belong to the class that enumerated by gn as illustrated in Figure 2. And

fn+1 = f3n + 6f2ngn + 3f2nhn + 9fng
2
n + 6fngnhn + 2g3n

is verified by adding these configurations.
Similarly, the expressions of gn+1, hn+1 and pn+1 can be obtained with appropriate

configurations of its three Hn as illustrated in Figures 3–5.

fn+1 = + ×6 + ×6 + ×3 + ×3 + ×2 + ×6

Figure 2: Illustration for the expression of fn+1. The multiplication of three on the right-
hand-side corresponds to the three possible orientations of Hn+1, the multiplication of
two on the right-hand-side corresponds to reflection symmetry with respect to the central
vertical axis and the multiplication of six on the right-hand-side corresponds to the six
possible of considering both orientations and reflection symmetry.

In the following, we will estimate the value µ = limv→∞
ln i(Hn)
v(Hn)

of the asymptotic
growth constant for the Tower of Hanoi graph Hn. The values of fn, gn, hn, pn for small n
are listed in Table 1 by Lemma 3.1, and grow exponentially. For the Tower of Hanoi graph
Hn, define the ratios

αn =
gn
fn
, βn =

hn
gn
, γn =

pn
hn

where n is a positive integer. Their values for small n are listed in Table 2. From the
initial values of fn, gn, hn, pn, it is easy to see that fn > gn > hn > pn for all positive
integer n by induction. Alternatively, these inequalities can be obtained by an injection.
For instance, if one of the independent sets enumerated by gn is given, one can remove
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gn+1 = + ×2 + ×2 + ×2 + ×2 + ×2 + +

×2 + ×2 + + ×2 + ×2 + ×2 + ×2 + ×2

Figure 3: Illustration for the expression of gn+1. The multiplication of two on the right-
hand-side are corresponds to the reflection symmetry with respect to the central vertical
axis.

hn+1 = + ×2 + ×2 + ×2 + ×2 + ×2 + +

×2 + ×2 + + ×2 + ×2 + ×2 + ×2 + ×2

Figure 4: Illustration for the expression of hn+1. The multiplication of two on the right-
hand-side are corresponds to the reflection symmetry with respect to the central vertical
axis.

pn+1 = + ×6 + ×6 + ×3 + ×3 + ×2 + ×6

Figure 5: Illustration for the expression of pn+1. The multiplication of three on the right-
hand-side corresponds to the three possible orientations of Hn+1, the multiplication of
two on the right-hand-side corresponds to reflection symmetry with respect to the central
vertical axis and the multiplication of six on the right-hand-side corresponds to the six
possible of considering both orientations and reflection symmetry.

Table 1: The first few values of fn, gn, hn, pn and in on Hn.
n 0 1 2 3
fn 1 18 38284 342408411795232
gn 1 8 15840 141595222762112
hn 0 3 6546 58553484583728
pn 0 1 2702 24213460330512
in 4 52 108144 967067994163264

the corner vertex to obtain another independent set that are enumerated by fn such that
fn > gn is established. Similarly, other two inequalities can be established. It follows that
αn, βn, γn ∈ (0, 1).
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Table 2: The first few values of αn, βn, γn on Hn.
n 1 2 3
αn 0.444444444444444 0.413749869397137 0.413527290465016
βn 0.375 0.413257575757575 0.413527260606109
γn 0.333333333333333 0.412771157959058 0.413527230747269

Lemma 3.2. For any positive integer n, the ratios satisfy

αn > βn > γn.

When n increases, the ratio αn decreases monotonically while γn increases monotonically.
The three ratios in the large n limit are equal to each other

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn.

Proof. By the definition of αn, βn, γn, we have

αn+1 = αn
Bn
An

, βn+1 = αn
Cn
Bn

, γn+1 = αn
Dn

Cn

for a positive integer n, where
An = 1 + 6αn + 3αnβn + 9α2

n + 6α2
nβn + 2α3

n,

Bn = 1 + 2βn + βnγn + 4αn + 8αnβn + 2αnβnγn + 2αnβ
2
n + 3α2

n + 4α2
nβn,

Cn = 1 + 4βn + 2βnγn + 3β2
n + 2β2

nγn + 2αn + 7αnβn + 2αnβnγn + 4αnβ
2
n,

Dn = 1 + 6βn + 3βnγn + 9β2
n + 6β2

nγn + 2β3
n.

In the following, we show that 1
3 ≤ γn < βn < αn ≤ 4

9 by induction on n. It is true
for n = 1, 2, 3, 4 from Table 2. Suppose that 1

3 ≤ γn < βn < αn ≤ 4
9 for n ≥ 4.

Let εn = αn − γn. Then εn > αn − βn, εn > βn − γn and εn ∈ (0, 19 ). Now,

αn − αn+1 =αn − αn
Bn
An

=
αn(An −Bn)

An

=
αn
An

[(2 + 6αn + 4αnβn + 2α2
n + βn)(αn − βn)

+ (2αnβn + βn)(βn − γn)] > 0,

αn+1 − βn+1 =
αn(B

2
n −AnCn)
AnBn

> 0,

where

B2
n−AnCn =(10α2

nβn + 5α2
n + αnβn + 4αn + β2

n + 1)(αn − βn)2+(4α2
nβ

2
n + 2αnβ

2
n

+ 6αnβn + 2βn)(αn − βn)(αn − γn) + (4α3
nβn + 10α2

nβn + 2αnβ
2
n

+ 2αnβn + β2
n)(βn − γn)(αn − βn)+(2αnβ

2
n + β2

n)(αn − γn)(βn − γn)
+ (4α2

nβ
2
n + 2αnβ

2
n)(βn − γn)2 > 0,
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AnBn =10αn + 2βn + 23αnβn + βnγn + 8αnβ
2
n + 88α2

nβn + 133α3
nβn + 70α4

nβn

+ 8α5
nβn + 36α2

n + 56α3
n + 35α4

n + 6α5
n + 48α2

nβ
2
n + 6α2

nβ
3
n + 78α3

nβ
2
n

+ 12α3
nβ

3
n + 12α3

nβ
2
nγn + 28α4

nβ
2
n + 12α2

nβ
2
nγn + 8αnβnγn + 3αnβ

2
nγn

+ 21α2
nβnγn + 20α3

nβnγn + 4α4
nβnγn + 1

>4α4
nβn + 8α3

nβ
2
n + 20α3

nβn + 5α3
n + 8α2

nβ
2
n + 9α2

nβn + 4α2
n + 3αnβ

2
n

+ 2αnβn + αn.

Then

αn+1 − βn+1 =
αn(B

2
n −AnCn)
AnBn

<
ε2n

AnBn
[4α4

nβn + 8α3
nβ

2
n + 20α3

nβn + 5α3
n + 8α2

nβ
2
n + 9α2

nβn + 4α2
n

+ 3αnβ
2
n + 2αnβn + αn]

<ε2n,

since εn > αn − βn and εn > βn − γn.

Similarly, we have βn+1 − γn+1 =
αn(C

2
n−BnDn)
BnCn

> 0, where

C2
n −BnDn =[(10β3

n + 4β2
nγ

2
n + 4β2

n + 4βn + 1)(αn − βn) + (2β3
n + 9β2

n

+ 2βn)(αn − γn) + (2αnβ
2
n + αnβn)(βn − γn)](αn − βn)

+ [(4αnβ
3
n + 10β3

n)(αn − βn) + (4αnβ
3
n + 2β3

n)(αn − γn)
+ (2αnβ

2
n + β2

n)(βn − γn)](βn − γn) > 0,

BnCn =16α3
nβ

3
n + 8α3

nβ
2
nγn + 40α3

nβ
2
n + 6α3

nβnγn + 29α3
nβn + 6α3

n + 8α2
nβ

4
n

+ 20α2
nβ

3
nγn + 58α2

nβ
3
n + 4α2

nβ
2
nγ

2
n + 44α2

nβ
2
nγn + 101α2

nβ
2
n + 18α2

nβnγn

+ 60α2
nβn + 11α2

n + 4αnβ
4
nγn + 6αnβ

4
n + 4αnβ

3
nγ

2
n + 30αnβ

3
nγn + 40αnβ

3
n

+ 6αnβ
2
nγ

2
n + 43αnβ

2
nγn + 64αnβ

2
n + 14αnβnγn + 35αnβn + 6αn + 2β3

nγ
2
n

+ 7β3
nγn + 6β3

n + 2β2
nγ

2
n + 10β2

nγn + 11β2
n + 3βnγn + 6βn + 1.

Thus, we have

βn+1 − γn+1 =
αn(C

2
n −BnDn)

BnCn

<
ε2n

BnCn
[8α2

nβ
3
n + 4α2

nβ
2
n + α2

nβn + 24αnβ
3
n + 4αnβ

2
nγ

2
n + 14αnβ

2
n

+ 6αnβn + αn] < ε2n.
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And

γn+1 − γn =
1

Cn
(αnDn − γnCn)

=
1

Cn
[(1 + 4βn + 2β2

n + 2β2
nγn)(αn − γn) + (2αn + 7αnβn + 2βnγn

+ 2αnβnγn + 2αnβ
2
n)(βn − γn) + 3βnγn(αn − βn)] > 0.

So, we have (i) αn−αn+1 > 0, (ii) 0 < αn+1−βn+1 < ε2n, (iii) 0 < βn+1−γn+1 < ε2n
and (iv) γn+1 − γn > 0.

From (ii) and (iii), we can obtain that εn+1 = αn+1−γn+1 < 2ε2n <
2
81 for all positive

integer n by induction. It follows that for any positive integer m ≤ n,

εn < 2ε2n−1 < 2[2ε2n−2]
2 < · · · < 1

2
[2εm]2

n−m

.

Since εm ∈ (0, 19 ) for any positive integer m, we have that the values of αn, βn, γn are
close to each other when n becomes large.

Numerically, we can find

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn = 0.4135272769487595999 · · ·

From the lemmas above, we get the bounds for the number of independent sets.

Theorem 3.3. For any positive integer m ≤ n,

f3
n−m

m (1 + 2γm)
3(3n−m−1)

2 (1 + γn)
3 < in < f3

n−m

m (1 + 2αm)
3(3n−m−1)

2 (1 + αn)
3

Proof. By Lemmas 3.1 and 3.2 and the definition of αn, βn, γn, we have

fn =f3n−1(1 + 6αn−1 + 3αn−1βn−1 + 9α2
n−1 + 6α2

n−1βn−1 + 2α3
n−1)

<f3n−1(1 + 6αn−1 + 12α2
n−1 + 8α3

n−1)

=[fn−1(1 + 2αn−1)]
3 < [f3n−2(1 + 2αn−2)

3]3(1 + 2αn−1)
3

<f3
2

n−2(1 + 2αn−2)
32+31

< · · · < f3
n−m

m (1 + 2αm)
3(3n−m−1)

2 .

And

in =fn + 3gn + 3hn + pn = fn(1 + 3αn + 3αnβn + αnβnγn)

<fn(1 + 3αn + 3α2
n + α3

n) = fn(1 + αn)
3 < f3

n−m

m (1 + 2αm)
3(3n−m−1)

2 (1 + αn)
3.

Similarly, the lower bound for in can be derived.

Theorem 3.4. The asymptotic growth constant for the number of independent sets in Hn

is bounded by

ln fm
3m+1

+
ln(1 + 2γm)

2× 3m
≤ µ ≤ ln fm

3m+1
+

ln(1 + 2αm)

2× 3m

where m is a positive integer.
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Proof. Note that the number of vertices of Hn is v(Hn) = 3n+1, by Theorem 3.3, we have

ln in
v(Hn)

<
ln fm
3m+1

+
ln(1 + 2αm)

2× 3m
− ln(1 + 2αm)

2× 3n
+

ln(1 + αn)

3n

and

ln in
v(Hn)

>
ln fm
3m+1

+
ln(1 + 2γm)

2× 3m
− ln(1 + 2γm)

2× 3n
+

ln(1 + γn)

3n

So, the bounds for µ = limv(Hn)→∞
ln in
v(Hn)

follow.

As m increases, the difference between the upper and lower bounder in Theorem 3.4
becomes small and the convergence is rapid. Numerically, the asymptotic growth constant
for the number of independent sets of the Tower of Hanoi graph Hn in the large n limit
is µ = 0.42433435855938823 · · · . In fact, the numerical value of µ can be obtained with
more than a hundred significant figures accurate when m is equal to seven.

4 The number of independent sets on graphs Sk,n

The Sierpiński graphs Sk,n were introduced by Klavz̆ar and Milutinović in 1997 in [25].
The graph Sk,0 is simply the complete graph on k vertices, Sk,n is constructed from Sk,n−1
by copying k times Sk,n−1 and adding exactly one edge between each pair of copies. For
the construction, one can easily derive that the total number of vertices and edges in Sk,n
are v(Sk,n) = kn+1 and e(Sk,n) = 1

2 (k
n+2 − k), respectively. In particularly, we can see

those graphs are exactly the graphs of the Tower of Hanoi problem for k = 3 and another
case as shown in Figure 6 for k = 4.

S4,0 S4,1 S4,2

S4,n−1 S4,n−1

S4,n−1 S4,n−1

S4,n

Figure 6: The graphs S4,0, S4,1, S4,2 and the construction of S4,n.

The method given in the previous section can be applied to enumeration the number
of independent sets on this Sierpiński graphs with k ≥ 4, but the items of the recursion
relations will become larger and larger with the increase of k.

To seek the number of independent sets on S4,n, we use the following definitions: (i)
Define f4,n as the number of independent sets such that all four outmost vertices are not in
the vertex sets. (ii) Define g4,n as the number of independent sets such that only one certain
outmost vertex are in the vertex sets. (iii) Define h4,n as the number of independent sets
such that exactly two certain outmost vertex are in the vertex sets. (iv) Define p4,n as the
number of independent sets such that exactly three certain outmost vertex are in the vertex
sets. (v) Define q4,n as the number of independent sets such that all four outmost vertex are
in the vertex sets.
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Table 3: The first few values of f4,n, g4,n, h4,n, p4,n, q4,n and i4,n on S4,n.
n 1 2 3

f4,n 163 13064274739 497661511371512614009322138806617451967507
g4,n 52 3951119257 150487045809089786329485928937399858428184
h4,n 15 1194624638 45505530112368879421817904248654649805971
p4,n 4 361093492 13760342318790991781550553074012255470504
q4,n 1 109115158 4160967243331065589513567798163834387921
i4,n 478 37589988721 1431845211800580068573889060142357640786006

Table 4: The first few values of α4,n, β4,n, γ4,n and δ4,n on S4,n.
n 1 2 3

α4,n 0.319018404907975 0.302436938592921 0.302388355077651
β4,n 0.288461538461538 0.302350944199809 0.302388354211550
γ4,n 0.266666666666666 0.302265230863252 0.302388353345449
δ4,n 0.25 0.302179796693760 0.302388352479348

The quantities f4,n, g4,n, h4,n, p4,n, q4,n of S4,n are lengthy and given in the appendix.
Some values of f4,n, g4,n, h4,n, p4,n, q4,n, i4,n are listed in Table 3. These numbers
grow exponentially, and have no integer factorizations. There are four equivalent g4,n, six
equivalent h4,n, and four equivalent pn. By definition, we have

i4,n = f4,n + 4g4,n + 6h4,n + 4p4,n + q4,n.

The initial values at stage zero are f4,0 = g4,0 = 1, h4,0 = p4,0 = q4,0 = 0 and i4,0 = 5.
Define ratios α4,n = g4,n/f4,n, β4,n = h4,n/g4,n,γ4,n = p4,n/h4,n, δ4,n = q4,n/p4,n.

As n increases, we find α4,n decrease monotonically while β4,n, γ4,n and δ4,n increase
monotonically with the relation α4,n > β4,n > γ4,n > δ4,n. The values of these ratios for
small n are listed in Table 4. Numerically, we can find

lim
n→∞

α4,n = lim
n→∞

β4,n = lim
n→∞

γ4,n = lim
n→∞

δ4,n = 0.30238835458805297767 · · ·

By a similar argument as the Tower of Hanoi graph Hn in the last section, the asymp-
totic growth constant for the number of independent sets on S4,n is bounded by

ln f4,m
4m+1

+
ln(1 + 2δ4,m)

2× 4m
≤ µ4 ≤

ln f4,m
4m+1

+
ln(1 + 2α4,m)

2× 4m

where µ4 = limv(S4,n)→∞
ln i4,n
v(S4,n)

and m is a positive integer.
Then, we can obtain the asymptotic growth constant for the number of independent sets

on the Sierpińsk graph S4,n in the large n limit is µ = 0.378737140730676994823835 · · · .

We can also continue verify a similarly bound for the asymptotic growth constant on
S5,n, in order to avoid verbosity, we are not to describe here. However, the recursion
relations of the number of independent sets for general k are difficult to obtain. From what
has been discussed above, we have the following conjecture for the Sierpiński graphs Sk,n
with positive integers k and m.
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Conjecture 4.1. The asymptotic growth constant for the number of independent sets on the
Sierpińsk graph S4,n is bounded by

ln fk,m
km+1

+
ln(1 + 2φk,m)

2× km
≤ µk ≤

ln fk,m
km+1

+
ln(1 + 2αk,m)

2× km

where the ratios are defined as αk,n = gk,n/fk,n, φk,n = wk,n/yk,n, fk,n is the number
of independent sets such that all k outmost vertices are not in the vertex subset, gk,n is the
number of independent sets such that one certain outmost vertex is in the vertex subset,
yk,n is number of independent sets such that all but one certain outmost vertex are in the
vertex subset, and wk,n is the number of independent sets such that all k outmost vertices
are in the vertex subset.

Appendix: Recursion relation for S4,n

We give the recursive relation for the Siepiński graph S4,n here. Since the subscript is
k = 4 for all the quantities throughout this section, we will use the simplified notation
fn+1 to denote f4,n+1 and similar notations for other quantities. For any non-negative in-
teger n, we have

fn+1 = f4n+12f3ngn+12f3nhn+48f2ng
2
n+4f3npn+84f2ngnhn+72fng

3
n+24f2ngnpn+

30f2nh
2
n + 156fng

2
nhn + 30g4n + 12f2nhnpn + 36fng

2
npn + 84fngnh

2
n + 60g3nhn +

24fngnhnpn + 8g3npn + 8fnh
3
n + 24g2nh

2
n,

gn+1 = f3ngn+3f3nhn+9f2ng
2
n+3f3npn+33f2ngnhn+24fng

3
n+f

3
nqn+24f2ngnpn+

21f2nh
2
n+96fng

2
nhn+18g4n+6f2ngnqn+21f2nhnpn+51fng

2
npn+93fngnh

2
n+69g3nhn+

3f2nhnqn+9fng
2
nqn+3f2np

2
n+66fngnhnpn+24g3npn+21fnh

3
n+66g2nh

2
n+6fngnhnqn+

2g3nqn + 6fngnp
2
n + 12fnh

2
npn + 24g2nhnpn + 14gnh

3
n,

hn+1 = f2ng
2
n+6f2ngnhn+6fng

3
n+6f2ngnpn+8f2nh

2
n+38fng

2
nhn+8g4n+2f2ngnqn+

14f2nhnpn + 30fng
2
npn + 64fngnh

2
n + 50g3nhn + 4f2nhnqn + 8fng

2
nqn + 5f2np

2
n +

80fngnhnpn + 30g3npn + 26fnh
3
n + 87g2nh

2
n + 2f2npnqn + 16fngnhnqn + 6g3nqn +

18fngnp
2
n + 34fnh

2
npn + 72g2nhnpn + 44gnh

3
n + 4fngnpnqn + 4fnh

2
nqn + 8g2nhnqn +

8fnhnp
2
n + 8g2np

2
n + 28gnh

2
npn + 4h4n,

pn+1 = fng
3
n + 9fng

2
nhn + 3g4n + 9fng

2
npn + 24fngnh

2
n + 27g3nhn + 3fng

2
nqn +

42fngnhnpn + 22g3npn + 18fnh
3
n + 75g2nh

2
n + 12fngnhnqn + 6g3nqn + 15fngnp

2
n +

39fnh
2
npn + 99g2nhnpn + 69gnh

3
n + 6fngnpnqn + 9fnh

2
nqn + 21g2nhnqn + 21fnhnp

2
n +

24g2np
2
n+96gnh

2
npn+15h4n+6fnhnpnqn+6g2npnqn+12gnh

2
nqn+2fnp

3
n+24gnhnp

2
n+

14h3npn,

qn+1 = g4n+12g3nhn+12g3npn+48g2nh
2
n+4g3nqn+84g2nhnpn+72gnh

3
n+24g2nhnqn+

30g2np
2
n + 156gnh

2
npn + 30h4n + 12g2npnqn + 36gnh

2
nqn + 84gnhnp

2
n + 60h3npn +

24gnhnpnqn + 8h3nqn + 8gnp
3
n + 24h2np

2
n.

There are always 729 = 36 terms in these equations.
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[15] O. Häggström, Ergodicity of the hard-core model on Z2 with parity-dependent activities, Ark.
Mat. 35 (1997), 171–184, doi:10.1007/BF02559597, http://dx.doi.org/10.1007/
BF02559597.
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Abstract

We introduce a new edge centrality measure - relative edge betweenness γ(uv) =
b(uv)/
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c(u)c(v), where b(uv) is the standard edge betweenness and c(u) is the adjusted

vertex betweenness. In this alternative definition, the importance of an edge is normalized
with respect to the importance of its end-vertices. This gives a better presentation of the
”local” importance of an edge, i.e. its importance in the near neighborhood. We present
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1 Introduction
One of the fundamental problems in network analysis is to determine the importance (or the
centrality) of a particular vertex or an edge in a network. Since the 1950’s many centrality
indices have evolved, each with specific application and based on a different concept of
what makes a vertex or an edge central to a network. One of the most common measures
of the importance of an edge is its betweenness, i.e. the number of shortest paths passing
through that edge (normalized in the case where multiple shortest paths between some
vertices occur). More precisely, betweenness of an edge e, b(e), is given by

b(e) =
∑

{k,l}∈(V
2)

σk,l(e)

σk,l
,

where σk,l denotes the number of shortest paths between vertices k and l, and σk,l(e)
denotes the number of shortest paths connecting k and l that pass through the edge e.
Caporossi at. al [1] defined adjusted vertex betweenness of a vertex u, c(u), as the sum of
the betweennesses of all edges incident to the vertex u, i.e.

c (u) =
∑

v∈N(u)

b (uv) ,

where N(u) is the set of neighbors of the vertex u. In the original definition given by
Freeman [2], betweenness of a vertex u, b(u), was defined as the number of the shortest
paths that contain the vertex u as an interior vertex. It can be shown that it holds

c(u) = 2b(u) + n− 1.

Some centrality indices, e.g., degree centrality, reflect local properties of the underlying
graph, while others, like betweenness centrality, give information about the global net-
work structure, as they are based on shortest path computation and counting [7]. In [3]
extremal graphs with respect to vertex betweenness for certain graph families were con-
sidered. Some recent applications of betweenness centrality include analyzing social and
protein interaction networks [6, 4, 5] and traffic flow optimization [8, 9].

Note that betweenness of an edge measures only importance of a link to the entire
network, and that link of the highest betweenness may be completely unimportant to some
vertex such that no shortest (or even reasonably short) path from that vertex passes through
this link. Hence, on the level of individuals the same link can be observed in completely
different way. If we observe a social network, the existence of an edge depends on the
level of importance attributed to this edge by its adjacent vertices. These vertices (actors)
are the ones that create, sustain and destroy this edge (relationship). Namely, they decide
how much they want to invest in their friendship. Obviously, edges with high betweenness
should be valuable to both vertices considering that many information circulate through
such edges.

In this paper, we are interested in measuring the relative importance of an edge to its
end-vertices. To clarify the notion of the relative importance, one can use also analogy with
a business venture. It is important to partners in this venture if the size of a deal is large
comparing to the sizes of the companies involved. While a thousand dollars deal might be
extremely important to (say) individual building contractor, it is a very small job to a large
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corporation. Hence, in order to estimate the value of the edge to its end vertices, one needs
to normalize it using their adjusted betweennesses. We define the relative betweenness as

γ(uv) =
b(uv)√
c(u)c(v)

. (1.1)

Note that we use the geometric mean between c(u) and c(v). The reason why we use
the geometric mean and not the arithmetic is that the geometric mean is much lower than the
arithmetic mean when there is a large difference between c(u) and c(v), say c(u)� c(v).
Hence in this case, γ(uv) is significantly larger compared to the usage of the arithmetic
mean. This corresponds to the relationship between persons with large difference in the
influence. We may assume that this relationship is of great value to the actor u and hence
he will put significant effort in sustaining this relationship. Therefore, we give to such edge
high relative betweenness.

The aim of this paper is to measure how weak can be the weakest link and how strong
may be the strongest link in the (social) network. In other words, we are interested in find-
ing extremal values for relative edge betweenness and in analyzing distribution of relative
betweenness values on edges of graphs. In Section 2 we give sharp upper and lower bound
for relative betweenness in the case of general graphs, and characterize graphs for which
these bounds are attained. In Section 3 the bounds for various graphs classes are discussed.
We conclude the paper by stating some open problems.

2 Bounds for general graphs
LetBn be the graph obtained from the complete bipartite graphK2,n−2 by adding the edge
that connects two vertices in the part of cardinality 2, see Fig. 1. Let this edge be denoted
as e∗.

Figure 1: Graph Bn and the edge e∗.

Theorem 2.1. Let uv be an edge of a connected graph G with n ≥ 3 vertices. Then,

γ(uv) ≥ 2

n2 − 3n+ 4
. (2.1)

Moreover, equality holds if and only if G is isomorphic to Bn and uv corresponds to e∗.
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Proof. Let us denote by α(u) the sum of all edge betweennesses of edges incident to u (but
not to v), and by α(v) the sum of all edge betweennesses of edges incident to v (but not to
u). In other words, α(u) = c(u)− b(uv) and α(v) = c(v)− b(uv). Note that α(u) +α(v)
consists of three types of contributions:

(a) those from shortest paths not having neither u nor v as an end-vertex. They contribute

in total at most 2

(
n− 2

2

)
= n2 − 5n+ 6.

(b) those from the shortest path with an end-vertex u, but not v. They contribute all to-
gether at most n− 2.

(c) those from the shortest path with an end-vertex v, but not u. They contribute all to-
gether at most n− 2.

By (a)-(c), it holds α(u) + α(v) ≤ n2 − 3n+ 2. Note that c(u) + c(v) = α(u) + α(v) +
2b(uv). Now, as b(uv) ≥ 1, we have

γ(uv) =
b(uv)√
c(u)c(v)

≥ 2b(uv)

c(u) + c(v)
=

2b(uv)

α(u) + α(v) + 2b(uv)

≥ 2b(uv)

n2 − 3n+ 2 + 2b(uv)
≥ 2

n2 − 3n+ 4
,

(2.2)

which establishes inequality (2.1). Note that equality in (2.1) holds if and only c(u) = c(v),
b(uv) = 1 and α(u) + α(v) = n2 − 3n + 2. The latter implies that the numbers given
in (a), (b) and (c) are in fact the exact values of contributions to α(u) + α(v) of the paths
described in (a), (b) and (c), respectively.

To assure that the shortest paths having neither u nor v as an end-vertex contribute
exactly n2−5n+6, the contribution has to be 2 for each pair of vertices from V (G)\{u, v}.
But this is not the case if there exists an edge xy for x, y ∈ V (G) \ {u, v}. Since G is
connected we have V (G) \ {u, v} = N(u) ∪ N(v). Moreover, since b(uv) = 1, every
vertex from N(u) ∪N(v) is adjacent to both u and v. We infer that if for an edge uv of a
graph G equality holds in (2.1), then G is isomorphic to Bn and uv corresponds to e∗.

Now we establish the upper bound for γ(uv). To prove its sharpness we will consider
graphs containing an edge with certain properties. An edge uv of a graph is called a handle
if u is a pendant vertex and the set N(v) \ {u} induces a clique. We will denote the edge
uv by h∗, see Fig. 2. Note that the path Pn contains two handles.

Theorem 2.2. Let uv be an edge of a connected graph G with n ≥ 3 vertices. Then,

γ(uv) ≤
√

n− 1

3n− 5
.

Moreover, equality holds if and only if G contains a handle.

Proof. Let us introduce the following notation:

(a) pu (resp. pv) denotes the contribution to c(u) (resp. c(v)) of all shortest paths for
which both end-vertices are different from u and v, and which do not pass through the
edge uv;
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Figure 2: A handle h∗ in a graph.

(b) puv is the contribution to b(uv) of all the shortest paths for which both end-vertices
are different from u and v;

(c) quv (resp. qvu) is the contribution to b(uv) of all paths that start in u (resp. v) and pass
through the edge uv, but do not finish in v (u, respectively).

Note that quv + qvu ≤ n − 2 and c(u) = pu + 2puv + 2qvu + n − 1. In c(u), the
second and the third summand appear with factor 2 since each contributing path passes
through the edge uv and another edge incident with u, and the last summand corresponds
to all paths that start in u. Analogously, c(v) = pv + 2puv + 2quv + n − 1. Further,
b(uv) = puv + quv + qvu + 1. Hence,

γ(uv) =
b(uv)√
c(u)c(v)

≤ puv + quv + qvu + 1√
(2puv + 2qvu + n− 1)(2puv + 2quv + n− 1)

. (2.3)

We need to prove that

puv + quv + qvu + 1√
(2puv + 2qvu + n− 1)(2puv + 2quv + n− 1)

≤
√

n− 1

3n− 5
.

This is equivalent to

(puv +quv +qvu +1)2(3n−5)− (2puv +2qvu +n−1)(2puv +2quv +n−1)(n−1) ≤ 0,

which is further equivalent to

(−1− n)p2uv +
(
−2 + 4n− 2n2 + (6− 2n)(n− 2− quv − qvu)

)
puv

+
(
(quv + qvu + 1)2(3n− 5)− (2qvu + n− 1)(2quv + n− 1)(n− 1)

)
≤ 0. (2.4)

It is obvious that−n−1 ≤ 0, −2 + 4n−2n2 < 0, 6−2n ≤ 0 and n−2− quv− qvu ≥ 0.
Hence, it is sufficient to prove that

(quv + qvu + 1)2(3n− 5)− (2qvu + n− 1)(2quv + n− 1)(n− 1) ≤ 0. (2.5)
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Without loss of generality (because of the symmetry of the last equation), we may assume
that quv ≥ qvu. Let us denote s = quv + qvu and d = quv − qvu. Obviously, 0 ≤ d ≤ s ≤
n− 2. Inequality (2.5) reduces to

(s+ 1)2(3n− 5)− (s− d+ n− 1)(s+ d+ n− 1)(n− 1) ≤ 0,

and further to

(s+ 1)2(3n− 5)−
(
(s+ n− 1)2 − d2

)
(n− 1) ≤ 0.

Since 0 ≤ d ≤ s, it is sufficient to prove that:

(s+ 1)2(3n− 5)−
(
(s+ n− 1)2 − s2

)
(n− 1) ≤ 0. (2.6)

On the left-hand side we have a quadratic function in s,

f(s) = s2(3n− 5) + (−2n2 + 10n− 12)s− n3 + 3n2 − 4, (2.7)

with quadratic coefficient 3n − 5 > 0 and roots n − 2 and −n
2+n+2
3n−5 . Hence, in order

to prove (2.6), it is sufficient to show that −n
2+n+2
3n−5 ≤ 0. A simple check shows that

the numerator is negative and the denominator is positive. This completes the proof that

γ(uv) ≤
√

n−1
3n−5 .

Let h∗ = uv be an edge in a graph Ln such that d(u) = 1 and N(v) \ {u} induces a
clique. Then clearly pu = pv = puv = qvu = 0 and quv = n − 2, hence the upper bound

for γ is attained, i.e. γ(h∗) =
√

n−1
3n−5 .

To prove the converse, assume G is a connected graph of order at least 3 with an edge

uv such that γ(uv) =
√

n−1
3n−5 . This implies equality in (2.3) and (2.4). From equality

in (2.3) follows pu = pv = 0, and form equality in (2.4) we obtain that puv = 0 and
that equality holds in (2.5). The latter is equivalent to the fact that (s + 1)2(3n − 5) −(
(s+ n− 1)2 − d2

)
(n − 1) = 0. As a consequence (since 0 ≤ d ≤ s) we have also

equality in (2.6). Now, it follows that s and d coincide, and hence s = quv and qvu = 0.
Equality in (2.6) implies also that s is a (positive) root of the quadratic function in (2.7), so
s = n− 2 = quv .

To summarize, for uv ∈ E(G) we have pu = pv = puv = qvu = 0 and quv = n − 2.
From this, observe that there is no vertex w ∈ V (G) \ {u, v} such that uw ∈ E(G) and
vw /∈ E(G), otherwise we obtain a contradiction with qvu = 0. The fact that quv = n− 2
implies that every shortest path from u to any other vertex in V (G) \ {u, v} passes through
the edge uv. Thus v is the only neighbor of u. Since G is connected and of order at least
3, N(v) \ {u} is nonempty and induces a clique, otherwise we obtain a contradiction with
pv = 0. Thus, we infer that uv is a handle in G.

Corollary 2.3. For any edge e of a graph with n ≥ 3 vertices, it holds that

2

n2 − 3n+ 4
≤ γ(e) ≤

√
n− 1

3n− 5
.

3 Bounds for some graph classes
In this section, the bounds of Corollary 2.3 for various graph classes are considered.
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Graphs with higher connectivity. The graphs containing handles, for which the upper
bound in Corollary 2.3 is attained, belong to the class of graphs with bridges. Thus, one
might wonder whether this bound can be improved if we forbid them. But it turns out that
even in the case of k-connected graphs the leading term in upper bound remains essentially
1√
3

. To illustrate this, consider the graph Cn,k, constructed as follows: take a complete
graph on n − k vertices, k ≥ 2, n > 2k, choose k of its vertices, make a copy of each
chosen vertex and join it with the original one, and finally add edges so that copied vertices
induce a clique (see Fig. 3 where general situation is presented on the left, while the right
graph is isomorphic to C10,3). Let v be one of k chosen vertices and u its copy in the above
construction of Cn,k. Then we have b(uv) = n−k, c(u) = n+k−2, c(v) = 3n−3k−2,
and thus γ(uv) = n−k√

(n+k−2)(3n−3k−2)
.

Figure 3: A k-connected graph Cn,k (left) and the graph C10,3 (right).

In what follows, we discuss the bounds of the above corollary in a various interesting
graph classes.

Bipartite graphs. The upper bound in Corollary 3.2 is clearly attained also when re-
stricted to two-mode data networks (bipartite graphs). We now give an example of a bipar-
tite graph and an edge of it that achieves asymptotically the lower bound Θ(n−2).

Proposition 3.1. There exist bipartite graphs on n vertices containing an edge e with
γ(e) ∈ Θ(n−2).

Proof. To prove the claim consider the graph G from Fig. 4 constructed in the following
way. Take eight independent sets A0, A1,. . . , A7, each of size k, connect each vertex of
Ai with each vertex of Ai+1, index being taken modulo 8. Finally, take two new adjacent
vertices a0 and a1, and connect each vertex of Ai with ai (mod 2), for i = 0, . . . , 7. Now,
we will show that

b(a0a1) ∈ Θ(1) and c(a0), c(a1) ∈ Θ(n2),

which immediately implies that γ(a0a1) ∈ Θ(1/n2).
First, we evaluate b(a0a1). Consider the contribution to b(a0a1) of shortest paths that

contain a0a1 according to their length. The edge a0a1 is the only path of length 1 that
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contains a0a1, and it contributes 1 to b(a0a1). There are 8k paths of length 2 containing
a0a1 and each of them contributes 1/(2k + 1) to b(a0a1). Notice that there are 8k2 paths
of length 3 that contain a0a1, and each of them contributes 1/(k2 + 4k + 1) to b(a0a1).
Observe that no shortest path of length 4 or more contains a0a1 as the diameter of this
graph is 3. Summing up all together, we obtain that b(a0a1) is slightly less than 13.

Now, we evaluate c(a0). Note that any shortest path from a vertex in A0 to a vertex
in A4 is of length 2 and it contributes 2 to c(a0). As these paths are k2, it follows that
c(a0) ∈ Θ(k2) = Θ(n2). Similarly, we evaluate c(a1).

Figure 4: A bipartite graph from the proof of Proposition 3.1.

Trees. As the trees are bipartite graphs the same upper bound holds but regarding the
lower bound we get slightly different result.

Theorem 3.2. For any edge e of a tree with n ≥ 3 vertices, it holds that

1√
n− 1

≤ γ(e) ≤
√

n− 1

3n− 5
, (3.1)

and the lower bound is attained at an edge of the n-star unless n = 4 and e is the middle
edge of a 4-path, in which case γ(e) = 4

7 .

Proof. Obviously, the upper bound holds by Corollary 2.3, and is attained at any edge
incident to a leaf and to a vertex of degree 2, e.g. such an edge is an end-edge of a path on
n-vertices.

Now, we argue the lower bound. In its proof we use the following notation: for an edge
f = w1w2, as T − f has two components, we name them by Tf (w1) and Tf (w2), where
the first one contains w1 and the second contains w2.

Let T be a tree and e = xy its edge with minimum γ. Suppose Te(x) has a vertices,
and Te(y) has b vertices; hence n = a+ b.
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We claim that x is of degree a. Suppose to the contrary that it is of degree strictly less
than a. Then there is a leaf u of T that belongs to Te(x) and is not adjacent to x. Let
f = xv be the edge the removal of which from T , separates x and u. Then u belongs to
the component Tf (v), and let this component have s vertices. As u and v belong to Tf (v),
we have s ≥ 2.

Let T ∗ be the tree obtained from T by first removing u from T and then reattaching it
to x. Notice that

cT∗(x)− cT (x) = (s− 1)(n− s+ 1) + 1 · (n− 1)− s(n− s) = 2s− 2 > 0.

So, we have cT (x) < cT∗(x). Notice that bT (e) = bT∗(e) = ab, and cT (y) = cT∗(y).
Thus, γT∗(e) < γT (e), which is a contradiction. This establishes the claim.

Similarly we prove that y is of degree b, and hence T is a double star. Now, notice that

γ(e) =
ab√

ab+ (a− 1)(n− 1)
√
ab+ (b− 1)(n− 1)

.

We want to prove that

γ(e) ≥ 1√
n− 1

,

(unless the exceptional case) and this is equivalent to

(n− 1)a2b2 ≥ (ab+ (a− 1)(n− 1))(ab+ (b− 1)(n− 1)).

As n = a+ b, this equality can be rewritten into

((ab− a− b)(a+ b− 2)− 1)(a− 1)(b− 1) ≥ 0 . (3.2)

Notice that this inequality does not hold only if a = b = 2, but then G is a 4-path and e is
its middle edge, which is the exceptional case. In all other cases, it is easy to see that (3.2)
holds. Also notice that equation holds in (3.2) if a = 1 or b = 1 but in that case G is a
star.

In the classes of graphs with girth 3 and 4 the lower bound of γ is asymptotically
Θ(n−2), for the trees which are class of graphs of girth infinity, it is Θ(1/

√
n). We expect

that at girth 5 the following change happens.

Conjecture 3.3. In graphsG on n ≥ 3 vertices and with girth≥ 5 it holds γ(e) ∈ Ω(n−1)
for every edge e.

Regarding the lower bound for trees we wonder if some finite girth may occur.

Problem 3.4. Is there any finite number g such that for graphsGwith girth at least g, every
edge e has γ(e) ∈ Ω(1/

√
n)?
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Abstract

In this paper we characterize all graphs with exactly two non-negative eigenvalues. As
a consequence we obtain all graphs G such that λ3(G) < 0, where λ3(G) is the third
largest eigenvalue of G.
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1 Introduction
Throughout this paper all graphs are simple, that is finite and undirected without loops and
multiple edges. Let G be a graph with vertex set {v1, . . . , vn}. The adjacency matrix of
G, A(G) = [aij ], is an n × n matrix such that aij = 1 if vi and vj are adjacent, and
aij = 0, otherwise. Thus A(G) is a symmetric matrix with zeros on the diagonal and all
the eigenvalues of A(G) are real. By the eigenvalues of G we mean those of its adjacency
matrix. We denote the eigenvalues of G by λ1(G) ≥ · · · ≥ λn(G). By the spectrum of G
that is denoted by Spec(G), we mean the multiset of eigenvalues of G. The characteristic
polynomial of G, det(λI − A(G)), is denoted by P (G,λ). Studying the eigenvalues of
graphs, the roots of characteristic polynomials of graphs, has always been of great interest
to researchers, for instance see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein.

It is well known that λ1(G)+ · · ·+λn(G) = 0 and λ21(G)+ · · ·+λ2n(G) = 2m, where
m is the number of edges of G. Thus if G has at least one edge, then G has at least one
positive eigenvalue. One of the attractive problems is the characterization of graphs with a
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few non-zero eigenvalues. In [5] all bipartite graphs with at most six non-zero eigenvalues
have been characterized. The another interesting problem is the characterization of graphs
with a few positive eigenvalues. In [10] Smith characterized all graphs with exactly one
positive eigenvalue. In fact, a graph has exactly one positive eigenvalue if and only if its
non-isolated vertices form a complete multipartite graph. In [9] Petrović has studied the
characterization of graphs with exactly two non-negative eigenvalues. In this paper with
a different proof we state a new characterization of all graphs G with exactly two non-
negative eigenvalues. In other words we find the graphs G with λ1(G) ≥ 0, λ2(G) ≥ 0
and λ3(G) < 0.

For a graphG, V (G) andE(G) denote the vertex set and the edge set ofG, respectively;
G denotes the complement of G. The order of G denotes the number of vertices of G.
The closed neighborhood of a vertex v of G which is denoted by N [v], is the set {u ∈
V (G) : uv ∈ E(G)} ∪ {v}. For every vertex v ∈ V (G), the degree of v is the number of
edges incident with v and is denoted by degG(v) (for simplicity we use deg(v) instead of
degG(v)). By δ(G) we mean the minimum degree of vertices of G. A set S ⊆ V (G) is an
independent set if there is no edge between the vertices of S. The independence number of
G, α(G), is the maximum cardinality of an independent set of G. For two graphs G and H
with disjoint vertex sets, G + H denotes the graph with the vertex set V (G) ∪ V (H) and
the edge set E(G) ∪ E(H), i.e. the disjoint union of two graphs G and H . In particular,
nG denotes the disjoint union of n copies of G. The complete product (join) G ∨ H of
graphs G and H is the graph obtained from G+H by joining every vertex of G with every
vertex of H . For positive integers n1, . . . , n`, Kn1,...,n`

denotes the complete multipartite
graph with ` parts of sizes n1, . . . , n`. Let Kn, nK1 = Kn, Cn and Pn be the complete
graph, the null graph, the cycle and the path on n vertices, respectively.

2 The structure of graphs with exactly two positive eigenvalues
In this section we obtain a characterization of graphs that have exactly two positive eigen-
values. We need the Interlacing Theorem.

Theorem 2.1. ([4, Theorem 9.1.1]) Let G be a graph of order n and H be an induced
subgraph of G with order m. Suppose that λ1(G) ≥ · · · ≥ λn(G) and λ1(H) ≥ · · · ≥
λm(H) are the eigenvalues of G and H , respectively. Then for every i, 1 ≤ i ≤ m,
λi(G) ≥ λi(H) ≥ λn−m+i(G).

Theorem 2.2. ([10], see also [3, Theorem 6.7]) A graph has exactly one positive eigen-
value if and only if its non-isolated vertices form a complete multipartite graph.

First we characterize all graphs with exactly one non-negative eigenvalue.

Theorem 2.3. Let G be a graph of order n ≥ 2 with eigenvalues λ1 ≥ · · · ≥ λn. Then
λ2 < 0 if and only if G ∼= Kn.

Proof. If G ∼= Kn and n ≥ 2, then λ2 = −1. Now suppose that λ2 < 0. We show that
G ∼= Kn. Suppose thatG 6∼= Kn. Thus 2K1 is an induced subgraph ofG. So by Interlacing
Theorem 2.1, λ2 ≥ λ2(2K1) = 0, a contradiction. Hence G ∼= Kn.

Lemma 2.4. Let G be a graph of order n ≥ 3 with eigenvalues λ1 ≥ · · · ≥ λn. Suppose
that λ1 ≥ 0, λ2 ≥ 0 and λ3 < 0. Then the following hold:
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1. If G is disconnected, then G ∼= Kr + Kn−r, for some positive integer r, where
r ≤ n− 1.

2. If G is connected and λ2 = 0, then G ∼= Kn \ e for an edge e of Kn.

Proof. 1. Let G be disconnected. Assume that G1, . . . , Gk are the connected components
of G, where k ≥ 2. Since λ1(G1) ≥ 0, . . . , λ1(Gk) ≥ 0 are k eigenvalues of G and
λ3 < 0 we obtain that k = 2. In other words G has exactly two connected components.
Thus G = G1 + G2. We prove that G1 and G2 are complete graphs. First we show that
G1 is a complete graph. If G1

∼= K1, there is nothing to prove. Assume that |V (G1)| ≥ 2
(equivalently G1 � K1). We claim that λ2(G1) < 0. By contradiction suppose that
λ2(G1) ≥ 0. Since λ1(G1) ≥ 0, λ2(G1) ≥ 0 and λ1(G2) ≥ 0 are three eigenvalues of G
we obtain that λ3 ≥ 0, a contradiction (since λ3 < 0). Hence the claim is proved. In other
words λ2(G1) < 0. So by Theorem 2.3, G1 is a complete graph. Similarly we obtain that
G2 is a complete graph. Hence G is a disjoint union of two complete graphs.

2. Suppose that G is connected and λ2 = 0. Since λ3 < 0, G 6∼= nK1. Thus λ1 > 0.
Hence G has exactly one positive eigenvalue. By Theorem 2.2 there are some positive
integers t and n1 ≥ · · · ≥ nt ≥ 1, so that n1 + · · · + nt = n and G ∼= Kn1,...,nt . If
t = 1, then G ∼= nK1, a contradiction (since G is connected). Thus t ≥ 2. If n1 = 1,
then G ∼= Kn and so λ2 = −1, a contradiction. Therefore n1 ≥ 2. If n2 ≥ 2, then C4

is an induced subgraph of G. Using Interlacing Theorem 2.1 we get λ3 ≥ λ3(C4) = 0, a
contradiction. Thus n2 = · · · = nt = 1. Now if n1 ≥ 3, then K1,3 is an induced subgraph
ofG. Similarly by Interlacing Theorem 2.1 we obtain λ3 ≥ λ3(K1,3) = 0, a contradiction.
So n1 = 2. Thus G ∼= K2,1,...,1. In other words G ∼= Kn \ e, for an edge e of Kn. We note
that

Spec(Kn \ e) = {n− 3 +
√
n2 + 2n− 7

2
, 0,−1, . . . ,−1︸ ︷︷ ︸

n−3

,
n− 3−

√
n2 + 2n− 7

2
}.

The proof is complete.

In [2] all graphs G with λ1 > 0, λ2 ≤ 0 and λ3 < 0 have been characterized.

Remark 2.5. Let n1, . . . , nt be some positive integers and G = Kn1,...,nt
. Similar to

the proof of the second part of Lemma 2.4 by Interlacing Theorem 2.1 one can see that
λ2(G) < 0 if and only if n1 = · · · = nt = 1. On the other hand by Theorem 2.2,
λ2(Kn1,...,nt) ≤ 0. Thus λ2(Kn1,...,nt) = 0 if and only if nk > 1 for some k. In other
words, the second largest eigenvalue of any complete multipartite graph except complete
graph is zero.

Remark 2.6. Let G be a graph of order n ≥ 3 with eigenvalues λ1 ≥ · · · ≥ λn. Assume
that G has exactly two non-negative eigenvalues. In other words, λ1 ≥ 0, λ2 ≥ 0 and
λ3 < 0. Since λ3 < 0, G 6∼= nK1. Thus λ1 > 0. Hence λ1 > 0, λ2 ≥ 0 and λ3 < 0. If
G is disconnected, then by the first part of Lemma 2.4, G ∼= Kr +Kn−r for some positive
integer r ≤ n − 1. If G is connected and λ2 = 0, then by the second part of Lemma 2.4,
G ∼= Kn \ e, where e is an edge of Kn. Thus to characterize all graphs with exactly
two non-negative eigenvalues it remains to find connected graphs G such that λ1(G) > 0,
λ2(G) > 0 and λ3(G) < 0. In sequel we find this characterization.
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Definition 2.7. A graph G is called semi-complete if G is a disjoint union of two complete
graphs or is obtained by adding some new edges to disjoint union of two complete graphs
(see Figure 1).

H1 H2 H3

Figure 1: The graphs H1, H2 and H3 are semi-complete that are obtained from K3 +K4.

Now we prove one of the main results of this section.

Lemma 2.8. Let G be a connected graph of order n ≥ 3 and with eigenvalues λ1 ≥ · · · ≥
λn. If λ2 > 0 and λ3 < 0, then for every vertex v ∈ V (G) with degree δ(G) we have
N [v] ∼= Kδ(G)+1 and G \N [v] ∼= Kn−δ(G)−1. In particular, G is semi-complete.

Proof. Let λ2 > 0 and λ3 < 0. Since λ2 > 0, G is not complete graph. Therefore
α(G) ≥ 2. If α(G) ≥ 3, then 3K1 is an induced subgraph of G. Thus by Interlacing
Theorem 2.1, λ3(G) ≥ λ3(3K1) = 0, a contradiction. Therefore α(G) = 2. Thus for
every vertex u ∈ V (G), G \N [u] is a complete graph. In fact, G \N [u] ∼= Kn−deg(u)−1.

Let v0 be a vertex of G with degree δ(G), that is v0 has the minimum degree among all
vertices of G. Since G 6∼= Kn, deg(v0) ≤ n − 2. Since G \N [v0] is a complete graph, to
complete the proof it is sufficient to show that the induced subgraph on the set N [v0] is a
complete graph, that is every two vertices of N [v0] are adjacent. This also shows that G is
obtained by adding some edges to the complete graphs N [v0] and G \ N [v0] and so G is
semi-complete.

Now we show that N [v0] is a complete graph. By contradiction, suppose that w and
z are two non-adjacent vertices of N [v0]. Let a be an arbitrary vertex of V (G) \ N [v0].
The induced subgraph on {v0, w, z, a} in G is one of the graphs, A1, A2, A3 or A4 (see
Figure 2). Since λ3(A1) = λ3(A4) = 0 and λ3 < 0, Interlacing Theorem 2.1 shows that

v0

w z

a

A1

v0

w z

a

A2

v0

w z

a

A3

v0

w z

a

A4

Figure 2: The subgraphs A1, A2, A3 and A4.

the induced subgraph on {v0, w, z, a} is A2 or A3. In other words any vertex of G \N [v0]
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has exactly one neighbor in {w, z}. Without losing the generality assume that a is adjacent
to w. Now we show that every vertex of G \ N [v0] is adjacent to w. By contradiction
suppose that b 6= a is a vertex of G \ N [v0] such that b is adjacent to z. Since G \ N [v0]
is complete and a, b ∈ V (G) \ N [v0], the vertices a and b are adjacent. Thus the induced
subgraph on {v0, w, z, a, b} is isomorphic to the cycle C5. Since λ3(C5) ' .618 > 0, by
Interlacing Theorem 2.1, we have λ3 > 0, a contradiction. This contradiction shows that
all vertices of G \N [v0] are adjacent only to w. This implies that deg(z) ≤ deg(v0)− 1, a
contradiction, since v0 has minimum degree. This contradiction completes the proof.

Claim 2.9. Let G be a connected graph of order n ≥ 3 and with eigenvalues λ1 ≥ · · · ≥
λn such that λ2 > 0 and λ3 < 0. Let X = N [v0] and Y = G \N [v0], where v0 is a vertex
of G with degree δ(G). Then for every two vertices a and b in X (also for a and b in Y )
N [a] ⊆ N [b] or N [b] ⊆ N [a].

Proof. Let a and b be two vertices of X . We show that N [a] ⊆ N [b] or N [b] ⊆ N [a].
First note that by Lemma 2.8, X is a complete graph. This implies that N [a] ∩ X =
N [b] ∩ X = X . Now by contradiction suppose that there are some vertices c and d in Y
such that c ∈ N [a]\N [b] and d ∈ N [b]\N [a]. Thus the induced subgraph on {a, b, c, d} is
isomorphic toC4. Using Interlacing Theorem 2.1 we get λ3 ≥ λ3(C4) = 0, a contradiction
(since λ3 < 0). Thus the result follows. Similarly one can prove that for any two vertices
v and w in Y , N [v] ⊆ N [w] or N [w] ⊆ N [v].

As an example we find an infinite family of connected graphs with positive second
largest eigenvalue and negative third largest eigenvalue.

Corollary 2.10. Let n ≥ 4 be an integer. Let K(n, t) be the graph obtained by deleting
t edges incident to one vertex of Kn, where 2 ≤ t ≤ n − 2. Then λ2(K(n, t)) > 0 and
λ3(K(n, t)) < 0.

Proof. Let λ1 ≥ · · · ≥ λn be the eigenvalues of K(n, t). Since Kn−1 is an induced
subgraph of K(n, t), by Interlacing Theorem 2.1, λ1 ≥ n − 2 ≥ λ2 ≥ −1 ≥ λ3. Thus
λ3 < 0. On the other, since K(n, t) is not a complete multipartite, by Theorem 2.2,
λ2 > 0.

Definition 2.11. A graph G is called quasi-reduced if for every two vertices u and v of G,
N [u] 6= N [v].

As an example of quasi-reduced graphs, we define the graphs Gn that have important
role for characterizing graphs with λ2 > 0 and λ3 < 0.

Definition 2.12. For every integer n ≥ 2, let Gn be the graph of order n such that Gn
is obtained from disjoint complete graphs Kdn2 e and Kbn2 c as following: Let V (Kdn2 e) =
{v1, . . . , vdn2 e} and V (Kbn2 c) = {w1, . . . , wbn2 c}. Then add some new edges to Kdn2 e +
Kbn2 c such that the following hold:

(i) N [v1] ⊂ · · · ⊂ N [vdn2 e] and N [w1] ⊂ · · · ⊂ N [wbn2 c].

(ii)
∣∣N [vi] ∩ V (Kbn2 c)

∣∣ = i− 1 for i = 1, . . . , dn2 e.

(iii)
∣∣N [wj ] ∩ V (Kdn2 e)

∣∣ =

{
j − 1, if n is even;
j, if n is odd for j = 1, . . . , bn2 c.
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In Figure 3, the graphsG2, G3, G4, G5 andG6 have been shown. In addition in Figure 4
one can see the complement of G7, . . . , G12. We note that G2k = B2k(1, . . . , 1; 1, . . . , 1)
and G2k+1 = B2k+1(1, . . . , 1; 1, . . . , 1; 1), where B2k and B2k+1 are the graphs that have
been defined in [9].

Remark 2.13. For every n ≥ 2,Gn is semi-complete and quasi-reduced. In addition if n ≥
3, thenGn is connected. We note that for every n ≥ 3,Gn is an induced subgraph ofGn+1.
In fact if n is even, then Gn+1

∼= K1 ∨ Gn and if n is odd, then Gn+1 is obtained from
Gn by adding a new vertex w such that w is adjacent to any vertex of {w1, . . . , wbn2 c} =
V (Kbn2 c), where Kbn2 c is one of the parts of Gn (see Definition 2.12).

Remark 2.14. We note that for every n ≥ 2, the group of all automorphisms of the graph
Gn, Aut(Gn), has exactly two elements.

G2

v1

w1

G3

v1

v2

w1

G4

v1

v2

w2w1

G5

v1

v2v3

w2w1

G6

v1

v2v3

w3w2

w1

Figure 3: The graphs G2,G3, G4, G5 and G6 are semi-complete and quasi-reduced.

The next result shows that there is only one connected quasi-reduced graph with λ2 > 0
and λ3 < 0.

Lemma 2.15. Let G be a connected graph of order n ≥ 3. If G is quasi-reduced and
λ2(G) > 0 and λ3(G) < 0, then G ∼= Gn.

Proof. Assume that λ2(G) > 0 and λ3(G) < 0. Since G is connected, by Lemma 2.8, G
is semi-complete. Let δ(G) = t and v′1 be a vertex of G with degree t. By Lemma 2.8,
N [v′1] ∼= Kt+1 and G \N [v′1] ∼= Kn−t−1. In fact G is obtained from the disjoint complete
graphs Kt+1 and Kn−t−1 by adding some new edges (see the proof of Lemma 2.8). Let
V (Kt+1) = {v′1, v′2, . . . , v′t+1} and V (Kn−t−1) = {w′1, . . . , w′n−t−1}. By Claim 2.9, for
every two vertices v′i and v′j in Kt+1, N [v′i] ⊆ N [v′j ] or N [v′j ] ⊆ N [v′i]. Also for every
two vertices w′i and w′j in Kn−t−1, N [w′i] ⊆ N [w′j ] or N [w′j ] ⊆ N [w′i]. So without losing
the generality assume that N [v′1] ⊆ · · · ⊆ N [v′t+1] and N [w′1] ⊆ · · · ⊆ N [w′n−t−1] (note
that N [v′1] = V (Kt+1) and for every 1 ≤ i ≤ t+ 1, N [v′1] ⊆ N [v′i]). Now suppose that G
is quasi-reduced. Therefore we find that

0 = |N [v′1] ∩ V (Kn−t−1)| < · · · < |N [v′t+1] ∩ V (Kn−t−1)| ≤ n− t− 1, (2.1)

and
0 ≤ |N [w′1] ∩ V (Kt+1)| < · · · < |N [w′n−t−1] ∩ V (Kt+1)| ≤ t. (2.2)
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G7

v1v2v3v4

w1w2w3

G8

v1v2v3v4

w1w2w3w4

G9

v1v2v3v4v5

w1w2w3w4

G10

v1v2v3v4v5

w1w2w3w4w5

G11

v1v2v3v4v5v6

w1w2w3w4w5

G12

v1v2v3v4v5v6

w1w2w3w4w5w6

Figure 4: The complement graphs of G7, G8, G9, G10, G11 and G12.

Since |N [v′1]∩V (Kn−t−1)|, . . . , |N [v′t+1]∩V (Kn−t−1)| are t+1 distinct integers between
0 and n− t− 1, the Equation (2.1) shows that t ≤ n− t− 1. Similarly, the Equation (2.2)
implies that n− t− 2 ≤ t. Hence n− 2 ≤ 2t ≤ n− 1. So t = dn2 e − 1.

If n is even, then the Equation (2.2) shows that |N [w′j ] ∩ V (Kt+1)| = j − 1, for
j = 1, . . . , n − t − 1. So w′1 has no neighbor in Kt+1. Thus for any 1 ≤ i ≤ t + 1,
|N [v′i] ∩ V (Kn−t−1)| ≤ n − t − 2. Using Equation (2.1) we conclude that |N [v′i] ∩
V (Kn−t−1)| = i− 1, for i = 1, . . . , t+ 1. Hence G ∼= Gn.

Similarly, for odd n we obtain that |N [v′i]∩ V (Kn−t−1)| = i− 1, for i = 1, . . . , t+ 1.
Thus v′t+1 is adjacent to every vertex of V (Kn−t−1). Hence 1 ≤ |N [w′1] ∩ V (Kt+1)|.
Using inequality (2.2) we find that |N [w′j ]∩V (Kt+1)| = j, for j = 1, . . . , n− t−1. Thus
G ∼= Gn.

Lemma 2.16. Let Gn be the semi-complete and quasi-reduced graph as mentioned above.
Then λ2(Gn) > 0 and λ3(Gn) < 0 if and only if 4 ≤ n ≤ 12.

Proof. One can see that λ2(G3) = 0 and for every 4 ≤ n ≤ 12, λ2(Gn) > 0 and
λ3(Gn) < 0. Now assume that n ≥ 13. Since λ3(G13) = 0 and G13 is an induced
subgraph of Gn (by Remark 2.13), by Interlacing Theorem 2.1 we find that λ3(Gn) ≥
λ3(G13) = 0. This completes the proof.

Definition 2.17. Let G be a graph with vertex set {v1, . . . , vn}. By G[Kt1 , . . . ,Ktn ]
we mean the graph obtained by replacing the vertex vj by the complete graph Ktj for



278 Ars Math. Contemp. 12 (2017) 271–286

1 ≤ j ≤ n, where every vertex of Kti is adjacent to every vertex of Ktj if and only if vi is
adjacent to vj (in G). For example K2[Kp,Kq] ∼= Kp+q and K2[Kp,Kq] ∼= Kp +Kq .

Now we prove one of the main results of the paper.

Theorem 2.18. LetG be a connected graph of order n ≥ 3. If λ2(G) > 0 and λ3(G) < 0,
then there exist some positive integers s and t1, . . . , ts so that 3 ≤ s ≤ 12 and t1+· · ·+ts =
n and G ∼= Gs[Kt1 , . . . ,Kts ].

Proof. Suppose that λ2(G) > 0 and λ3(G) < 0. By Lemma 2.8, G is semi-complete. If
G is quasi-reduced, then by Lemma 2.15, G ∼= Gn ∼= Gn[K1, . . . ,K1]. So λ2(Gn) =
λ2(G) > 0 and λ3(Gn) = λ3(G) < 0. Hence by Lemma 2.16, 4 ≤ n ≤ 12.

Now assume that G is not quasi-reduced. Thus there exists a connected induced sub-
graph of G, say H , such that H is quasi-reduced and G = H[Kt1 , . . . ,Kts ], where s is the
order of H and t1, . . . , ts are some positive integers. Thus t1 + · · ·+ ts = n. If H ∼= Ks,
then G ∼= Kn, a contradiction (since λ2(Kn) = −1 < 0 while λ2(G) > 0). Thus H is
not a complete graph. On the other hand H is a connected graph of order s. Thus s ≥ 3.
Since H is obtained from G by removing some vertices and G is semi-complete, H is also
semi-complete. Suppose that C4 is an induced subgraph of H . Since H is an induced sub-
graph of G, by Interlacing Theorem 2.1 we conclude that λ3(G) ≥ λ3(H) ≥ λ3(C4) = 0,
a contradiction. Thus H has no induced cycle C4.

Now we show thatH ∼= Gs. SinceH is semi-complete,H is obtained from the disjoint
union of two complete graphs, say Kp and Kq , for some positive integers p and q. Let
X = Kp and Y = Kq . We claim that for every two vertices a, b ∈ V (X), N [a] ⊆ N [b]
or N [b] ⊆ N [a]. By contradiction assume that N [a] * N [b] and N [b] * N [a]. Thus
there are two vertices c and d such that c ∈ N [a] \ N [b] and d ∈ N [b] \ N [a]. Since
V (X) ⊆ N [a] ∩ N [b], we find that c and d are two vertices of Y . Now we remark that
the induced subgraph on the vertices a, b, c, d is isomorphic to C4. It is a contradiction,
since H has no induced cycle C4. So the claim holds. Similarly for every two vertices
z, w ∈ V (Y ), N [z] ⊆ N [w] or N [w] ⊆ N [z]. On the other hand H is quasi-reduced, thus
similar to the proof of Lemma 2.15 one can see that H ∼= Gs.

If s ≥ 13, then by Remark 2.13, G13 is an induced subgraph of H and so is an induced
subgraph of G. Thus by Interlacing Theorem 2.1, λ3(G) ≥ λ3(G13) = 0, a contradiction,
since λ3(G) < 0. Hence s ≤ 12. The proof is complete.

We end this section by characterization the graphs with λ3 < 0. We note that if G
is a graph with λ3(G) < 0, then G is not the null graph. Thus λ1(G) > 0. Using
Remark 2.5, the second part of Lemma 2.4 and Theorems 2.2, 2.3 and 2.18 we obtain this
characterization.

Theorem 2.19. Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn. Assume that λ3 < 0.
Then the following hold:

1. If λ1 > 0 and λ2 > 0, then G ∼= Kp + Kq for some integers p, q ≥ 2 or there exist
some positive integers s and t1, . . . , ts so that 3 ≤ s ≤ 12 and t1 + · · ·+ ts = n and
G ∼= Gs[Kt1 , . . . ,Kts ].

2. If λ1 > 0 and λ2 = 0, then G ∼= K1 +Kn−1 or G ∼= Kn \ e, where e is an edge of
Kn.

3. If λ1 > 0 and λ2 < 0, then G ∼= Kn.
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Since Kn \ e ∼= G3[K1,K1,Kn−2] and Kp + Kq
∼= K2[Kp,Kq], we can rewrite

Theorem 2.19 as following:

Theorem 2.20. Let G be a graph. If λ3(G) < 0, then G ∼= Kn or there exist some
positive integers s and t1, . . . , ts such that 2 ≤ s ≤ 12 and t1 + · · · + ts = n and
G ∼= Gs[Kt1 , . . . ,Kts ].

In the next section we investigate the converse of Theorem 2.20. In other words we
obtain all values of t1, . . . , ts (for 2 ≤ s ≤ 12) such that λ3(Gs[Kt1 , . . . ,Kts ]) < 0.
We need the following important result for computing the characteristic polynomial of
Gs[Kt1 , . . . ,Kts ], the polynomial P (Gn[Kt1 , . . . ,Ktn ], λ).

Theorem 2.21. [7] Let n ≥ 2. Suppose that {v1, . . . , vn} is the vertex set of Gn and
A = [aij ] is the adjacency matrix of Gn with respect to {v1, . . . , vn} (aij = 1 if and only
if vi and vj are adjacent and aij = 0, otherwise). Let t1, . . . , tn be some positive integers
and M = [mij ] be a n× n matrix, where

mij :=

{
ti − 1, if i = j;
aijtj , if i 6= j.

Then
P (Gn[Kt1 , . . . ,Ktn ], λ) = (λ+ 1)t1+···+tn−n g(λ),

where g(λ) = det(λI − M). In addition, the multiplicity of −1 as an eigenvalue of
Gn[Kt1 , . . . ,Ktn ] is equal to t1 + · · ·+ tn − n.

3 The list of all connected graphs with λ2 > 0 and λ3 < 0

In this section we investigate the converse of Theorem 2.20. We use Petrović’s notation [9]
that is very similar to the notation of Definition 2.17. We note that in Definition 2.17,
the graph G[H1, . . . ,Hn] is dependent to the labeling of the vertices of G while in the
next definition first we fix a labeling for the vertices of Gn (see Definition 2.12), and then
use the operation of Definition 2.17. For instance we consider the labeling v1, . . . , vs and
w1, . . . , ws for the vertices of G2s and then apply the operation of Definition 2.17.

Definition 3.1. Let s ≥ 1 be an integer and n1, . . . , n2s+1 be some positive integers.
Let B2s(n1, . . . , ns;ns+1, . . . , n2s) denote the graph obtained from G2s by replacing the
vertices v1 by Kn1

, v2 by Kn2
,. . ., and vs by Kns

and w1 by Kns+1
, w2 by Kns+2

, . . .,
and ws by Kn2s

(see Definition 2.12). In other words

B2s(n1, . . . , ns;ns+1, . . . , n2s) = G2s[Kn1
, . . . ,Kn2s

],

where the ordering of the vertices of G2s is V (G2s) = {v1, . . . , vs, w1, . . . , ws}.
Similarly, by B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1) we mean

B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1) = G2s+1[Kn1
, . . . ,Kn2s+1

],

where the ordering of the vertices ofG2s+1 is V (G2s+1) = {v1, . . . , vs, w1, . . . , ws, vs+1},
(see Figure 5).
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Remark 3.2. For every positive integers s and n1, . . . , n2s+1, one can easily see that

B2s(n1, . . . , ns;ns+1, . . . , n2s) ∼= B2s(ns+1, . . . , n2s;n1, . . . , ns),

and

B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1) ∼= B2s+1(ns+1, . . . , n2s;n1, . . . , ns;n2s+1).

For avoiding the repeating, using the dictionary ordering on (n1, . . . , ns) and (ns+1, . . . ,
n2s) we just cite one of the graphs B2s(n1, . . . , ns;ns+1, . . . , n2s) or B2s(ns+1, . . . , n2s;
n1, . . . , ns) in our characterization. Similarly for the graphs B2s+1(n1, . . . , ns;ns+1, . . . ,
n2s;n2s+1) and B2s+1(ns+1, . . . , n2s;n1, . . . , ns;n2s+1) we only consider one of them.
For example since by dictionary ordering (4, 3, 2) ≥ (4, 3, 1) we use B6(4, 3, 2; 4, 3, 1)
instead of B6(4, 3, 1; 4, 3, 2). As another example we use B7(5, 3, 2; 5, 2, 4; 8) instead of
B7(5, 2, 4; 5, 3, 2; 8), since (5, 3, 2) ≥ (5, 2, 4).

B3(2; 2; 4) B4(1, 2; 4, 2)

Figure 5: The graphs B3(2; 2; 4) and B4(1, 2; 4, 2).

The following theorem is the main result of [9].

Theorem 3.3. [9] GraphG has the property λ3 < 0 if and only ifG is an induced subgraph
of one of the following graphs:

1. B4(3, 2; 2, r),

2. B5(1, r; 2, 3; 1),

3. B5(r, 1; 2, 3; 1),

4. B5(3, 2; 2, 1; r),

5. B5(r, 2; 1, 2; 2),

6. B6(r, 1, s; 1, 2, 2),

7. B6(2, 1, r; 2, 1, s),

8. B6(1, 2, 2; 1, r, 1),

9. B6(2, 2, 1; 1, 1, r),

10. B7(2, 1, 1; 2, 1, 1; r),
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11. B7(r, 1, 2; 1, s, 1; 1),

12. B7(r, 1, 1; 1, 1, 2; 1),

13. B7(2, 2, 1; 1, r, 1; s),

14. B8(r, 1, 1, s; 1, 1, t, 1),

15. B9(1, r, 1, 1; 1, s, 1, 1; t),

where r, s and t are some positive integers or G is an induced subgraph of one of the
323 graphs with 12 vertices belonging respectively to the classes B4 (10 graphs), B5 (25
graphs),B6 (69 graphs),B7 (74 graphs),B8 (80 graphs),B9 (40 graphs),B10 (20 graphs),
B11 (4 graphs) and B12 (1 graph).

Now we give a nicer characterization for graphs with λ3 < 0. Note that the Petrović’s
result shows that any graph with exactly two non-negative eigenvalues is an induced sub-
graph of one the graphs described by Theorem 3.3. Since finding the structure of induced
subgraphs of a graph is complicated, it is better to find the exact structure of all graphs
with λ3 < 0. In sequel we find this structure. To find our characterization, first we note
that by Theorem 2.20 every graph with exactly two non-negative eigenvalues is isomor-
phic to Gs[Kt1 , . . . ,Kts ] for some positive integers t1, . . . , ts, where 2 ≤ s ≤ 12. In
this section we find all values of t1, . . . , ts such that Gs[Kt1 , . . . ,Kts ] has exactly two
non-negative eigenvalues. In other words we solve the converse of Theorem 2.20. We
note that by Remark 2.6 it suffices to find all connected graphs with λ1 > 0, λ2 > 0
and λ3 < 0. In other words we find all connected graphs Gs[Kt1 , . . . ,Kts ] such that
3 ≤ s ≤ 12 and λ1 > 0, λ2 > 0 and λ3 < 0. We obtain these graphs in ten theorems
(for every s, 3 ≤ s ≤ 12, we consider a theorem). First we prove the case s = 3. Since
the cases s = 4, . . . , s = 9 similarly are proved, we just prove the case s = 6. In addition
the proofs of the cases s = 10, 11, 12 are similar and we only prove the case s = 10.
Our proofs are based on three theorems, Theorem 2.21 for computing the characteristic
polynomials of Gs[Kt1 , . . . ,Kts ], Descartes’ Sign Rule for polynomials and Interlacing
Theorem 2.1. Since Gs[Kt1 , . . . ,Kts ] = Bs(t1, . . . , ts), in sequel we use Bs(t1, . . . , ts)
instead of Gs[Kt1 , . . . ,Kts ].

Theorem 3.4. LetG = B3(a; b; c), where a, b, c are some positive integers. Then λ2(G) >
0 and λ3(G) < 0 if and only if ab 6= 1.

Proof. Let g(λ) = P (B3(a; b; c), λ). By Theorem 2.21 we obtain that

g(λ) = (λ+ 1)a+b+c−3 f(λ), (3.1)

where

f(λ) = λ3− (a+b+c−3)λ2 +(ab−2a−2b−2c+3)λ+ac(b−1)+(a−1)(b+c−1).

If ab = 1, that is a = b = 1, then g(λ) = λ(λ + 1)c−1(λ2 − (c − 1)λ − 2c). This shows
that λ1(G) > 0 and λ2(G) = 0. Now suppose that ab ≥ 2. Let z1 ≥ z2 ≥ z3 be all roots
of f . Hence f(λ) = (λ− z1)(λ− z2)(λ− z3). Therefore z1 + z2 + z3 = a+ b+ c−3 > 0
and z1z2z3 = −f(0) = −(ac(b − 1) + (a − 1)(b + c − 1)) < 0. These equalities show
that z1 > 0, z2 > 0 and z3 < 0. On the other hand by the Equation (3.1), the eigenvalues
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of B3(a; b; c) are z1, z2, z3,−1, . . . ,−1 (the multiplicity of −1 is a + b + c − 3). Hence
λ1(G) = z1 > 0, λ2(G) = z2 > 0 and λ3(G) = max{z3,−1} < 0. The proof is
complete.

Theorem 3.5. Let G = B4(a1, a2; a3, a4), where a1, a2, a3, a4 are some positive integers.
Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the following
graphs:

1. B4(a, b; 1, d), B4(a, x; y, 1), B4(a, 1; c, 1), B4(a, 1;w, x),

2. B4(a, 1;x, d), B4(w, b;x, 1), B4(w, x; y, d), B4(x, b; y, d),

3. 25 specific graphs: 5 graphs of order 10, 10 graphs of order 11, and 10 graphs of
order 12,

where a, b, c, d, x, y, w are some positive integers such that x ≤ 2, y ≤ 2 and w ≤ 3.

Theorem 3.6. Let G = B5(a1, a2; a3, a4; a5), where a1, a2, a3, a4, a5 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

1. B5(a,w; 1, 1; 1), B5(a, x; 1, d; 1), B5(a, x; 1, y; z), B5(a, x; 1, 1; e),

2. B5(a, 1; c, 1; e), B5(a, 1;x,w; 1), B5(a, 1;x, y; e), B5(a, 1; 1, d; e),

3. B5(w, x; y, 1; e), B5(x, b; 1, 1; 1), B5(x,w; 1, d; 1), B5(x,w; 1, 1; e),

4. B5(1, b; 1, d; 1), B5(1, b; 1, x; y), B5(1, x; 1, y; e),

5. 63 specific graphs: 13 graphs of order 10, 25 graphs of order 11, and 25 graphs of
order 12,

where a, b, c, d, e, x, y, z, w are some positive integers such that x ≤ 2, y ≤ 2, z ≤ 2 and
w ≤ 3.

Theorem 3.7. LetG = B6(a1, a2, a3; a4, a5, a6), where a1, . . . , a6 are some positive inte-
gers. Then λ2(G) > 0 and λ3(G) < 0 if and only ifG is isomorphic to one of the following
graphs:

1. B6(a, x, c; 1, 1, 1), B6(a, 1, c; 1, e, 1), B6(a, 1, c; 1, x, y), B6(a, 1, c; 1, 1, f),

2. B6(a, 1, 1;x, e, 1), B6(x, b, 1; y, 1, 1), B6(x, y, 1; 1, e, 1),

3. B6(x, y, 1; 1, 1, f), B6(x, 1, c; y, 1, f), B6(1, b, x; 1, 1, 1),

4. B6(1, b, 1; 1, e, 1), B6(1, b, 1; 1, x, y), B6(1, x, y; 1, 1, f),

5. 145 specific graphs: 22 graphs of order 10, 54 graphs of order 11, and 69 graphs of
order 12,

where a, b, c, d, e, f, x, y are some positive integers such that x ≤ 2 and y ≤ 2.
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Proof. Let Ω6 be the set of all 13 above types of graphs. In other words,

Ω6 =
{
B6(a, x, c; 1, 1, 1), B6(a, 1, c; 1, e, 1), . . . , B6(1, b, 1; 1, x, y), B6(1, x, y; 1, 1, f)

}
,

where a, b, c, d, e, f are arbitrary positive integers and x, y ∈ {1, 2}. First we prove that ev-
ery graph of Ω6 has positive second largest eigenvalue and negative third largest eigenvalue.
For instance we show that for any positive integers a, c and f , λ2(B6(a, 1, c; 1, 1, f)) > 0
and λ3(B6(a, 1, c; 1, 1, f)) < 0. The others are proved similarly.

First we note that G6 is an induced subgraph of B6(a, 1, c; 1, 1, f). Thus by Inter-
lacing Theorem 2.1, λ2(B6(a, 1, c; 1, 1, f)) ≥ λ2(G6) > 0. On the other hand, if m =
max{a, c, f}, then B6(a, 1, c; 1, 1, f) is an induced subgraph of B6(m, 1,m; 1, 1,m). So
by Interlacing Theorem 2.1, λ3(B6(a, 1, c; 1, 1, f)) ≤ λ3(B6(m, 1,m; 1, 1,m)). Thus to
show that the inequality λ3(B6(a, 1, c; 1, 1, f)) < 0, it is sufficient to prove that λ3(B6(m,
1,m; 1, 1,m)) < 0. Now we show that for every positive integer m, λ3(B6(m, 1,m; 1, 1,
m)) < 0.

Let M and m be two positive integers. If M ≥ m, then by Interlacing Theorem 2.1,
λ3(B6(M, 1,M ; 1, 1,M)) ≥ λ3(B6(m, 1,m; 1, 1,m)). This shows that if for m ≥ 12,
λ3(B6(m, 1,m; 1, 1,m)) < 0, then for all m, λ3(B6(m, 1,m; 1, 1,m)) < 0. Hence
suppose that m ≥ 12. By Theorem 2.21 we can obtain the characteristic polynomial of
B6(m, 1,m; 1, 1,m). Let Φm(λ) = P (B6(m, 1,m; 1, 1,m), λ). By Theorem 2.21

Φm(λ) = (λ+ 1)3m−3 Ψm(λ), (3.2)

where

Ψm(λ) = 3m+ (6m2 + 7m− 1)λ+ (2m3 + 12m2 −m− 3)λ2+

(m3 + 7m2 − 14m− 2)λ3 + (m2 − 12m+ 2)λ4 + (3− 3m)λ5 + λ6.

Since m ≥ 12, all coefficients of Ψm(λ) are positive except the coefficient of λ5. In fact
the coefficient of λ5 is negative. Now by Descartes’ Sign Rule we conclude that the number
of positive roots of Ψm(λ) is 0 or 2 and the number of negative roots is 0 or 2 or 4. Since
Ψm(0) = 3m 6= 0, every root of Ψm(λ) is non-zero. On the other hand by Equation (3.2)
the roots of Ψm(λ) with many numbers −1 are the eigenvalues of B6(m, 1,m; 1, 1,m).
Hence every root of Ψm(λ) is real. Since B6(1, 1, 1; 1, 1, 1) ∼= G6 is an induced sub-
graph of B6(m, 1,m; 1, 1,m), by Interlacing Theorem 2.1 and Lemma 2.16 we find that
λ1(B6(m, 1,m; 1, 1,m)) ≥ λ1(G6) > 0 and λ2(B6(m, 1,m; 1, 1,m)) ≥ λ2(G6) > 0.
Therefore by Equation (3.2), λ1(B6(m, 1,m; 1, 1,m)) and λ2(B6(m, 1,m; 1, 1,m)) are
two roots of Ψm(λ). Hence Ψm(λ) has exactly two positive roots. Since the degree of
Ψm(λ) is six and Ψm(λ) has exactly two positive roots and Ψm(0) 6= 0, the number
of negative roots of Ψm(λ) is four. Therefore by Equation (3.2), B6(m, 1,m; 1, 1,m)
has exactly two positive eigenvalues and 3m + 1 negative eigenvalues. This shows that
λ3(B6(m, 1,m; 1, 1,m)) < 0. Now we prove the necessity.

Claim 1. Let H = B6(a′, b′, c′; d′, e′, f ′) be a graph with at least 19 vertices, that is
a′ + · · ·+ f ′ ≥ 19. If H 6∈ Ω6, then one of the graphs H1 = B6(a′ − 1, b′, c′; d′, e′, f ′) or
H2 = B6(a′, b′−1, c′; d′, e′, f ′) orH3 = B6(a′, b′, c′−1; d′, e′, f ′) orH4 = B6(a′, b′, c′;
d′ − 1, e′, f ′) or H5 = B6(a′, b′, c′; d′, e′ − 1, f ′) or B6(a′, b′, c′; d′, e′, f ′ − 1) is not in
Ω6. Note that these graphs are all induced subgraphs of H of order |V (H)| − 1.
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Proof of Claim 1. Suppose that H 6∈ Ω6. By contradiction assume that all graphs
H1, . . . ,H6 are in Ω6. Now we consider H1. If H1 = B6(a, x, c; 1, 1, 1) for some positive
integers a, c and x ≤ 2, thenH ∈ Ω6, a contradiction. IfH1 = B6(a, 1, c; 1, e, 1), for some
positive integers a, c and e, then H ∈ Ω6, a contradiction. Similarly one can see that H1 6=
B6(a, 1, c; 1, x, y), B6(a, 1, c; 1, 1, f), B6(a, 1, 1;x, e, 1). So H1 = B6(x, b, 1; y, 1, 1) or
B6(x, y, 1; 1, e, 1) or B6(x, y, 1; 1, 1, f) or B6(x, 1, c; y, 1, f) or B6(1, b, x; 1, 1, 1) or
B6(1, b, 1; 1, e, 1) or B6(1, b, 1; 1, x, y) or B6(1, x, y; 1, 1, f), for some positive integers
b, c, e, f and x, y ≤ 2. Since x ≤ 2, we find that a′ − 1 ≤ 2. Thus a′ ≤ 3. Similarly
if H2, . . . ,H6 ∈ Ω6, we obtain that b′, . . . , f ′ ≤ 3. Therefore a′ + · · · + f ′ ≤ 18, a
contradiction. Thus the claim is proved.

Claim 2. Let K = B6(a′′, b′′, c′′; d′′, e′′, f ′′) be a graph with at least 13 vertices. If
K 6∈ Ω6, then λ3(K) ≥ 0.

Proof of Claim 2. Assume that K 6∈ Ω6. We prove the claim by induction on n =
|V (K)|. By computer one can check the validity for n = 13, . . . , 18. Hence let n ≥ 19.
By Claim 1, K has an induced subgraph, say L, of order n − 1 such that L 6∈ Ω6. Since
n − 1 ≥ 18, by the induction hypothesis λ3(L) ≥ 0. Thus by Interlacing Theorem 2.1,
λ3(K) ≥ λ3(L) ≥ 0. Thus the claim is proved.

Now let W = B6(a′′′, b′′′, c′′′; d′′′, e′′′, f ′′′) be a graph of order n. Assume that
λ2(W ) > 0 and λ3(W ) < 0. If W 6∈ Ω6, then by Claim 2, n ≤ 12. By computer
we find that there are only 145 graphs with this property. More precisely there are 22
graphs of order 10, 54 graphs of order 11 and 69 graphs of order 12 such that they are not
in Ω6 while their second eigenvalues are positive and third eigenvalues are negative. The
proof is complete.

Theorem 3.8. Let G = B7(a1, a2, a3; a4, a5, a6; a7), where a1, . . . , a7 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

1. B7(a, 1, x; 1, e, 1; 1), B7(a, 1, 1; 1, e, 1; g), B7(a, 1, 1; 1, 1, x; 1),

2. B7(x, y, 1; 1, e, 1; g), B7(x, 1, 1; y, 1, 1; g), B7(1, b, x; 1, 1, 1; g),

3. B7(1, b, 1; 1, e, 1; g), B7(1, 1, c; 1, 1, f ; 1),

4. 143 specific graphs: 18 graphs of order 10, 52 graphs of order 11, and 73 graphs of
order 12,

where a, b, c, d, e, f, g, x, y are some positive integers such that x ≤ 2 and y ≤ 2.

Theorem 3.9. Let G = B8(a1, a2, a3, a4; a5, a6, a7, a8), where a1, . . . , a8 are some posi-
tive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

1. B8(a, 1, 1, d; 1, 1, g, 1), B8(1, b, 1, 1; 1, f, 1, 1),

2. 134 specific graphs: 12 graphs of order 10, 42 graphs of order 11, and 80 graphs of
order 12,

where a, b, d, f, g are some positive integers.
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Theorem 3.10. Let G = B9(a1, a2, a3, a4; a5, a6, a7, a8; a9), where a1, . . . , a9 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

1. B9(1, b, 1, 1; 1, f, 1, 1; k),

2. 59 specific graphs: 3 graphs of order 10, 17 graphs of order 11, and 39 graphs of
order 12,

where b, f, k are some positive integers.

Remark 3.11. The complete list of the mentioned 25 graphs in Theorem 3.5, 63 graphs
in Theorem 3.6, 145 graphs in Theorem 3.7, 143 graphs in Theorem 3.8, 134 graphs in
Theorem 3.9 and 59 graphs in Theorem 3.10 can be obtained from the author upon request.

Theorem 3.12. Let G = B10(a1, a2, a3, a4, a5; a6, a7, a8, a9, a10), where a1, . . . , a10 are
some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to
one of the following 26 graphs:

1. B10(1, 1, 1, 1, 1; 1, 1, 1, 1, 1),

2. B10(1, 1, 1, 1, 2; 1, 1, 1, 1, 1), B10(1, 1, 1, 2, 1; 1, 1, 1, 1, 1),

3. B10(1, 1, 2, 1, 1; 1, 1, 1, 1, 1), B10(1, 2, 1, 1, 1; 1, 1, 1, 1, 1),

4. B10(2, 1, 1, 1, 1; 1, 1, 1, 1, 1),

5. B10(1, 1, 1, 1, 3; 1, 1, 1, 1, 1), B10(1, 1, 1, 2, 1; 1, 1, 1, 1, 2),

6. B10(1, 1, 1, 2, 1; 1, 1, 1, 2, 1), B10(1, 1, 1, 2, 2; 1, 1, 1, 1, 1),

7. B10(1, 1, 1, 3, 1; 1, 1, 1, 1, 1), B10(1, 1, 2, 1, 1; 1, 1, 1, 1, 2),

8. B10(1, 1, 2, 2, 1; 1, 1, 1, 1, 1), B10(1, 1, 3, 1, 1; 1, 1, 1, 1, 1),

9. B10(1, 2, 1, 1, 1; 1, 1, 2, 1, 1), B10(1, 2, 1, 1, 1; 1, 2, 1, 1, 1),

10. B10(1, 2, 1, 1, 2; 1, 1, 1, 1, 1), B10(1, 2, 2, 1, 1; 1, 1, 1, 1, 1),

11. B10(1, 3, 1, 1, 1; 1, 1, 1, 1, 1), B10(2, 1, 1, 1, 1; 1, 1, 1, 2, 1),

12. B10(2, 1, 1, 1, 1; 1, 1, 2, 1, 1), B10(2, 1, 1, 1, 1; 2, 1, 1, 1, 1),

13. B10(2, 1, 1, 1, 2; 1, 1, 1, 1, 1), B10(2, 1, 1, 2, 1; 1, 1, 1, 1, 1),

14. B10(2, 2, 1, 1, 1; 1, 1, 1, 1, 1), B10(3, 1, 1, 1, 1; 1, 1, 1, 1, 1).

Proof. One can see that all of the above graphs have positive second largest eigenvalue and
negative third largest eigenvalue. Now we prove the necessity. LetG = B10(a1, . . . , a5; a6,
. . . , a10) such that λ2(G) > 0 and λ3(G) < 0. We show that for i = 1, . . . , 10, ai ≤ 3. For
example by contradiction suppose that a1 ≥ 4. Thus H = B10(4, 1, 1, 1, 1; 1, 1, 1, 1, 1) is
an induced subgraph of G. So by Interlacing Theorem 2.1, λ3(G) ≥ λ3(H). On the other
hand λ3(H) > 0, a contradiction. Similarly we obtain a2, . . . , a10 ≤ 3. Also one can
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see that at most one of the numbers a1, . . . , a10 is 3. For example if a1 = 3 and a2 = 3,
then K = B10(3, 3, 1, 1, 1; 1, 1, 1, 1, 1) is an induced subgraph of G. So by Interlacing
Theorem 2.1, λ3(G) ≥ λ3(K) while λ3(K) > 0, a contradiction. Since a1, . . . , a10 ≤ 3
and at most one of them is 3, a1 + · · ·+ a10 ≤ 21. Thus the order of G is at most 21. Now
by computer one can check the result.

Theorem 3.13. LetG = B11(a1, a2, a3, a4, a5; a6, a7, a8, a9, a10; a11), where a1, . . . , a11
are some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic
to one of the following 5 graphs:

1. B11(1, 1, 1, 1, 1; 1, 1, 1, 1, 1; 1),

2. B11(1, 1, 1, 1, 1; 1, 1, 1, 1, 1; 2), B11(1, 1, 1, 1, 2; 1, 1, 1, 1, 1; 1),

3. B11(1, 2, 1, 1, 1; 1, 1, 1, 1, 1; 1), B11(1, 1, 2, 1, 1; 1, 1, 1, 1, 1; 1).

Theorem 3.14. LetG=B12(a1, a2, a3, a4, a5, a6; a7, a8, a9, a10, a11, a12), where a1, . . . ,
a12 are some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G ∼=
B12(1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1).
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Abstract

Using a standard technique sometimes (inaccurately) known as Burnside’s Lemma, it
is shown that the Veldkamp space of the near hexagon L3×GQ(2, 2) features 156 different
types of lines. We also give an explicit description of each type of a line by listing the types
of the three geometric hyperplanes it consists of and describing the properties of its core
set, that is the subset of points of L3×GQ(2, 2) shared by the three geometric hyperplanes
in question.

Keywords: Near hexagons, Geometric hyperplanes, Veldkamp spaces.
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1 Introduction
Brouwer et al. [1] proved that there are eleven isomorphism types of slim dense near
hexagons. Of these eleven, the near hexagons of sizes 27, 45 and 81 are the most promising
for physical applications. This paper is devoted to a study of the second of these three
examples and its Veldkamp space. The first of the three examples was described in our
paper [4], and we plan to study the third case in a future work. The 45 point space we study
here is the product L3×GQ(2, 2), where L3 is the line containing three points and GQ(2, 2)
is the generalized quadrangle of order two.

∗Corresponding author.
E-mail addresses: rmg@euclid.colorado.edu (Richard M. Green), msaniga@astro.sk (Metod Saniga)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



288 Ars Math. Contemp. 12 (2017) 287–299

2 Near polygons, quads, geometric hyperplanes and Veldkamp spaces
In this section we gather all the basic notions and well-established theoretical results that
will be needed in the sequel.

A near polygon (see, e. g., [3] and references therein) is a connected partial linear space
S = (P,L, I), I ⊂ P ×L, with the property that given a point x and a line L, there always
exists a unique point on L nearest to x. (Here distances are measured in the point graph,
or collinearity graph of the geometry.) If the maximal distance between two points of S
is equal to d, then the near polygon is called a near 2d-gon. A near 0-gon is a point and a
near 2-gon is a line; the class of near quadrangles coincides with the class of generalized
quadrangles.

A nonempty set X of points in a near polygon S = (P,L, I) is called a subspace if
every line meeting X in at least two points is completely contained in X . A subspace
X is called geodetically closed if every point on a shortest path between two points of
X is contained in X . Given a subspace X , one can define a sub-geometry SX of S by
considering only those points and lines of S that are completely contained in X . If X is
geodetically closed, then SX clearly is a sub-near-polygon of S. If a geodetically closed
sub-near-polygon SX is a non-degenerate generalized quadrangle, then X (and often also
SX ) is called a quad.

A near polygon is said to have order (s, t) if every line is incident with precisely s + 1
points and if every point is on precisely t + 1 lines. If s = t, then the near polygon is
said to have order s. A near polygon is called dense if every line is incident with at least
three points and if every two points at distance two have at least two common neighbours.
A near polygon is called slim if every line is incident with precisely three points. It is
well known (see, e. g., [6]) that there are, up to isomorphism, three slim non-degenerate
generalized quadrangles. The (3 × 3)-grid is the unique generalized quadrangle of order
(2, 1), GQ(2, 1). The unique generalized quadrangle of order 2, GQ(2, 2), is the general-
ized quadrangle of the points and lines of PG(3, 2) that are totally isotropic with respect to
a given symplectic form. The points and lines lying on a given nonsingular elliptic quadric
of PG(5, 2) define the unique generalized quadrangle of order (2, 4), GQ(2, 4). Any slim
dense near polygon contains quads, which are necessarily isomorphic to either GQ(2, 1),
GQ(2, 2) or GQ(2, 4).

Next, a geometric hyperplane of a partial linear space is a proper subspace meeting
each line (necessarily in a unique point or the whole line). The set of points at non-maximal
distance from a given point x of a dense near polygon S is a hyperplane of S, usually called
the singular hyperplane (or perp-set) with deepest point x. Given a hyperplane H (or any
subset of points C) of S, one defines the order of any of its points as the number of lines
through the point that are fully contained in H (C); a point of H (C) is called deep if all the
lines passing through it are fully contained in H (C). If H is a hyperplane of a dense near
polygon S and if Q is a quad of S, then precisely one of the following possibilities occurs:
(1) Q ⊆ H; (2) Q ∩H = x⊥ ∩ Q for some point x of Q; (3) Q ∩H is a sub-quadrangle
of Q; and (4) Q ∩ H is an ovoid of Q. If case (1), case (2), case (3), or case (4) occurs,
then Q is called, respectively, deep, singular, sub-quadrangular, or ovoidal with respect
to H . If S is slim and H1 and H2 are its two distinct hyperplanes, then the complement
of symmetric difference of H1 and H2, H1∆H2, is again a hyperplane; this means that
the totality of hyperplanes of a slim near polygon form a vector space over the Galois field
with two elements, F2. In what follows, we shall put H1∆H2 ≡ H1 ⊕H2 and call it the
(Veldkamp) sum of the two hyperplanes.
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Finally, we shall introduce the notion of the Veldkamp space, V(Γ), of a point-line
incidence geometry Γ(P,L) [2]. Here, V(Γ) is the space in which (i) a point is a geometric
hyperplane of Γ and (ii) a line is the collection H ′H ′′ of all geometric hyperplanes H of Γ
such that H ′ ∩H ′′ = H ′ ∩H = H ′′ ∩H or H = H ′, H ′′, where H ′ and H ′′ are distinct
points of V(Γ). Following [10, 8], we adopt also here the definition of Veldkamp space
given by Buekenhout and Cohen [2] instead of that of Shult [11], as the latter is much too
restrictive by requiring any three distinct hyperplanes H ′, H ′′ and H ′′′ of Γ to satisfy the
following two conditions: i) H ′ is not properly contained in H ′′ and ii) H ′ ∩ H ′′ ⊆ H ′′′

implies H ′ ⊂ H ′′′ or H ′ ∩ H ′′ = H ′ ∩ H ′′′. The two definitions differ in the crucial
fact that whereas the Veldkamp space in the sense of Shult is always a linear space, that of
Buekenhout and Cohen needs not be so; in other words, Shult’s Veldkamp lines are always
of the form {H ∈ V(Γ) | H ⊇ H ′ ∩H ′′} for certain geometric hyperplanes H ′ and H ′′.

3 The near hexagon L3×GQ(2, 2)
The near hexagon L3× GQ(2, 2) has recently [9] caught an attention of theoretical physi-
cists due to the fact that its main constituent, the generalized quadrangle GQ(2, 2), repro-
duces the commutation relations of the 15 elements of the two-qubit Pauli group (see, e. g.,
[7]), with each of its ten embedded copies of GQ(2, 1) playing, remarkably, the role of the
so-called Mermin magic square [5] — the smallest configuration of two-qubit observables
furnishing a very important proof of contextuality of quantum mechanics. A well-known
construction of GQ(2, 2) identifies the points with two-element subsets of {1, 2, 3, 4, 5, 6},
with two points being collinear if and only if they are equal or disjoint. The natural action
of S6 on this set of size 6 induces automorphisms of GQ(2, 2). In fact, when considered in
this way, S6 turns out to be the full automorphism group.

It is known that every geometric hyperplane of a slim dense near polygon arises from
its universal embedding. It can be shown from this that, equipped with the operation of
Veldkamp sum, the Veldkamp space VGQ(2,2) is isomorphic to PG(4, 2), the projective
space obtained from a 5-dimensional space over F2 (see also [10]). It follows that GQ(2, 2)
has 25 − 1 = 31 geometric hyperplanes, which turn out to be of three types:

(i) 15 perp-sets, with 7 points each;

(ii) 10 grids (copies of GQ(2, 1)), with 9 points each;

(iii) 6 ovoids, with 5 points each.

In other words, there are three orbits of geometric hyperplanes under the action of S6.
Identifying the points of GQ(2, 2) with two-element subsets of the set {1, 2, 3, 4, 5, 6}

as described earlier, we find that an example of an ovoid is the set

e1 := {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}}.

The other ovoids, e2, e3, . . . , e6 are obtained from e1 by acting by the transposition (1, i)
for i = 2, 3, . . . , 6 respectively.

The Veldkamp sum ei + ej (for 1 ≤ i < j ≤ 6) is the perp-set of the point {i, j}. If we
have

{1, 2, 3, 4, 5, 6} = {i, j, k, l,m, n}
in some order, then the sum ei + ej + ek is the grid whose elements are the nine points

{{a, b} : a ∈ {i, j, k} and b ∈ {l,m, n}}.
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It follows that the six ovoids are a spanning set for VGQ(2,2). Since each point of GQ(2, 2)
lies in precisely two ovoids, it follows that we have the relation

e1 + e2 + e3 + e4 + e5 + e6 = 0,

where 0 denotes the subset of GQ(2, 2) consisting of all 15 points. Since we have an
isomorphism VGQ(2,2)

∼= PG(4, 2), it follows by a counting argument that this is the only
nontrivial dependence relation between the ei, and thus that the ovoids e1, . . . , e5 form a
basis for VGQ(2,2).

The points of the near hexagon L3× GQ(2, 2) are simply the 45 ordered pairs (p, q)
where p is a point of L3 and q is a point of GQ(2, 2). We call a collection of 15 points (p, q)
sharing the same value of p a layer of the near hexagon. A layer is an example of a quad
in the sense of §2. We imagine that the points of L3 are arranged vertically, and we will
sometimes use terms like “the top quad” to refer to one of the layers of the near hexagon.

Two points (p1, q1) and (p2, q2) of L3× GQ(2, 2) are collinear if either

(i) p1 = p2 and q1 is collinear to q2, or

(ii) p1 is collinear to p2 and q1 = q2.

The lines of L3× GQ(2, 2) are of two types. The type-one lines are the 15 lines of the form
{(p, q) : p ∈ L3} for a fixed point q ∈ GQ(2, 2). The type-two lines are the 45 lines of the
form {(p, q) : q ∈ L} for a fixed p ∈ L3 and some line L of GQ(2, 2).

The near hexagon L3× GQ(2, 2) has a number of obvious automorphisms. One type of
automorphism involves permuting the three GQ(2, 2)-quads, but making no other changes.
The subgroup of all such automorphisms is isomorphic to S3. Another type of automor-
phism involves acting diagonally on the three GQ(2, 2)-quads by S6, the automorphism
group of GQ(2, 2). This action commutes with the action of S3 just mentioned, and pro-
duces a group of automorphisms isomorphic to S6 × S3. It turns out that this is the full
automorphism group, as shown by Brouwer et al. [1].

From now on, let us denote the Veldkamp space of L3× GQ(2, 2) by V . Some features
of V are close to obvious, which stems from Sec. 2. One of these is that the intersection of
one of the three GQ(2, 2)-quads with a point of V (regarded as a subset of the 45 points)
can take one of two forms. Either the GQ(2, 2)-quad is completely filled in (i. e., it is deep),
or takes the form of one of the geometric hyperplanes of GQ(2, 2) (i. e., it is singular,
sub-quadrangular or ovoidal). Furthermore, the Veldkamp sum of any two of the layers
(regarded as subsets of GQ(2, 2) under some obvious identification) must be equal to the
third layer. It follows from this that V contains 210 − 1 = 1023 points.

The above discussion shows that, as an S6 × S3-module over F2, V is isomorphic to
M ⊗N , where M is the 5-dimensional module for S6 described earlier, and N is the S3-
module obtained by quotienting the 3-dimensional permutation module {f1, f2, f3} for S3

by the submodule spanned by f1 + f2 + f3. The set {f1, f2} then form a basis for N , and
the set

{ei ⊗ fj : 1 ≤ i ≤ 5, 1 ≤ j ≤ 2}

forms a basis for V . We will write this basis for short as {e1, . . . e10}, where for 1 ≤ i ≤ 5,
ei denotes ei ⊗ f1, and for 6 ≤ i ≤ 10, ei denotes ei−5 ⊗ f2.
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4 The classification of hyperplanes
The geometric hyperplanes of L3× GQ(2, 2) were classified in [9]. Up to automorphisms,
there are eight types of them, denoted by H1 to H8 and described in detail in [9, Table 2].
We now explain how these eight types can be reconstructed using the results in the previous
section.

The description of the hyperplanes of GQ(2, 2) above can be used to identify each
hyperplane with one of the 31 nontrivial set partitions of a 6-element into two pieces. If S
and T are disjoint nonempty sets for which

S ∪ T = {1, 2, 3, 4, 5, 6},

then we identify the pair {S, T} with the hyperplane∑
i∈S

ei =
∑
j∈T

ej .

If |S| ≥ |T |, we associate the partition (|S|, |T |) of the number 6 to the set partition {S, T}.
Under these identifications, the partitions of 6 given by (5, 1), (4, 2) and (3, 3) correspond,
via set partitions, to ovoids, perp sets and grids, respectively.

The Veldkamp sum operation on VGQ(2,2) described in the previous section may now
be defined purely in terms of sets: the Veldkamp sum of the two set partitions {A|B} and
{C|D} is given by

{(A ∩ C) ∪ (B ∩D)|(A ∩D) ∪ (B ∩ C)}.

This identification extends to a set-theoretic description of the hyperplanes of L3×
GQ(2, 2). The hyperplanes of this larger space may be put into bijection with ordered
quadruples of pairwise disjoint sets (A,B,C,D) such that (a) no three of the sets are
empty and (b) the union of the four sets is {1, 2, 3, 4, 5, 6}. Such a quadruple corresponds
to the hyperplane given by the ordered triple of partitions

({A ∪B|C ∪D}, {A ∪ C|B ∪D}, {A ∪D|B ∪ C}).

Here, the leftmost component of the ordered triple describes the hyperplane of GQ(2, 2)
appearing in the uppermost GQ(2, 2)-quad of L3× GQ(2, 2), and so on. For example, if
the sets C and D are empty, the top GQ(2, 2)-quad will be deep and the other two will be
identical to each other, being either singular, sub-quadrangular or ovoidal.

The correspondence between the ordered quadruples and the hyperplanes is four-to-
one, because the quadruples (A,B,C,D), (B,A,D,C), (C,D,A,B) and (D,C,B,A)
all index the same hyperplane. It follows that acting by an element of the Klein four-group
V4 on an ordered quadruple leaves the corresponding hyperplane invariant. The group
S6 × S4 acts on the quadruples, where S6 acts diagonally on each of the set partitions A,
B, C and D, and S4 acts by place permutation. This induces an action of S6 × S4 on
the hyperplanes of L3× GQ(2, 2), and since the action of V4 ≤ S4 is trivial, this in turn
induces an action of S6 × (S4/V4) ∼= S6 × S3 on the hyperplanes, thus recovering the full
automorphism group of L3× GQ(2, 2) in which S3 acts by permuting the GQ(2, 2)-quads.

This approach yields another way to deduce that the number of hyperplanes of L3×
GQ(2, 2) is 210 − 1, as follows. There are 46 possible quadruples of pairwise disjoint
sets (A,B,C,D) whose union is {1, 2, 3, 4, 5, 6}, and four of these quadruples have three
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Table 1: A classification of geometric hyperplanes of L3× GQ(2, 2).

Name Partition Orbit size Stabilizer Order
H1 (3, 3) 30 (S3 o Z2)× S2 144
H2 (4, 2) 45 S4 × S2 × S2 96
H3 (5, 1) 18 S5 × S2 240
H4 (2, 2, 1, 1) 270 S2 × S2 × S2 × S2 16
H5 (2, 2, 2) 90 S2 × S2 × S2 × S3 48
H6 (3, 1, 1, 1) 120 S3 × S3 36
H7 (3, 2, 1) 360 S3 × S2 12
H8 (4, 1, 1) 90 S4 × S2 48

empty components. Since the correspondence between quadruples and hyperplanes is four-
to-one, the number of hyperplanes is (46 − 4)/4.

The correspondence described above induces a natural correspondence between S6 ×
S4-orbits (or S6 × S3-orbits) of hyperplanes on the one hand, and partitions of 6 into two,
three or four parts on the other. There are eight such partitions; they are shown in Table
1, together with their orbit sizes, stabilizers isomorphism types, stabilizer orders, and their
name in the H1 −H8 notation of [9, Table 2].

5 Counting and classifying different types of Veldkamp lines
The orbits of lines in the Veldkamp space V may be enumerated using a standard technique
sometimes (inaccurately) known as Burnside’s Lemma, which proves the following.

Let G be a finite group acting on a finite set X with t orbits, and for each g ∈ G,

let Xg denote the number of elements of X fixed by g. Then we have t =
1

|G|
∑
g∈G
|Xg|.

Furthermore, if C is a set of conjugacy class representatives of G, then we have

t =
1

|G|
∑
g∈C
|C||Xg|.

Using this technique, we can recover known results about orbits of lines under the
action of the automorphism group S6 of GQ(2, 2): there are 3 orbits of hyperplanes (Veld-
kamp points) and 5 orbits of Veldkamp lines. We can also recover the result the Veldkamp
space V has 8 orbits of hyperplanes under the automorphism group S6 × S3.

The same idea can be adapted to count the orbits of Veldkamp lines of V . The counting
argument is more complicated than for the case of Veldkamp points, because it is possible
for a line to be fixed by a group element g without the three individual points being fixed.
There are three possibilities to consider, which we denote by (1), (2) and (3) in Table 2.

(1) Every point of the Veldkamp line is fixed by g. Such lines lie entirely within the
fixed point space of g. Each number in the Fix(1) column is the number of lines
in a projective space PG(d(g) − 1, 2), for a suitable integer d(g) depending on the
conjugacy class of g.

(2) One point of the Veldkamp line is fixed by g, and the other two are exchanged. To
enumerate such lines, we take one point x outside the fixed point space of g. The
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other two points are the point g(x), and the point collinear with both of them (which
is fixed by g). We then divide by 2 to correct for the overcount.

Writing d(g) as above, it follows in each case that the entry in the Fix(2) column of
g is given by

1

2

(
2d(g

2) − 2d(g)
)
.

(3) The element g rotates the three points of the Veldkamp line in a 3-cycle. Each entry
in the Fix(3) column is a number of the form (4k − 1)/3, and the enumeration of
these cases is the most complicated. An ordered Veldkamp line can be thought of as
a sequence of 30 binary digits. Typically, some even number, 2k, of these bits can
be chosen arbitrarily, provided that not all of them are zero, and then the rest of the
structure is forced. It is then necessary to divide by 3 to correct for an overcount, by
identifying an ordered Veldkamp line with each of its cyclic shifts.

We identify the group S6×S3 in the obvious way with the subgroup of S9 fixing setwise
each of the subsets {1, 2, 3, 4, 5, 6} and {7, 8, 9}. Since there are 11 partitions of 6 and 3
partitions of 3, it follows that S6×S3 has 33 conjugacy classes, and it is straightforward to
find conjugacy class representatives. Table 2 shows the calculation for the Veldkamp lines
of L3× GQ(2, 2). The grand total of

673920 = |S6 × S3| × 156 = 720× 6× 156

proves that there are 156 orbits of Veldkamp lines of the near hexagon.
All 156 types are then listed in Table 3. Here, each type is characterized by its compo-

sition (columns 9 to 16) and the properties of the core C of the line, that is the set of points
that are common to all the three geometric hyperplanes of a line of the given type. In par-
ticular, for each type (column 1) we list the number of points (column 2) and lines (column
3) of the core as well as the distribution of the orders of its points. The last three columns
show the intersection of C with each of the three GQ(2, 2)-quads. Here, ‘g-perp’ stands for
a perp-set in a certain GQ(2, 1) located in the particular GQ(2, 2), and ‘unitr/tritr’ abbrevi-
ates a unicentric/tricentric triad. If two or more types happen to possess the same string of
parameters, the distinction between them is given by an explanatory remark/footnote.
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Table 2: Orbits of Veldkamp lines of L3× GQ(2, 2).

Conjugacy class Fix(1) Fix(2) Fix(3) Size of class Product
id 174251 0 0 1 174251

(12) 10795 384 0 15 167685
(12)(34) 651 480 0 45 50895

(12)(34)(56) 651 480 0 15 16965
(123) 651 0 5 40 26240

(123)(456) 1 0 85 40 3440
(1234) 35 24 0 90 5310

(1234)(56) 35 24 0 90 5310
(123)(45) 35 24 5 120 7680
(12345) 1 0 0 144 144
(123456) 1 0 5 120 720

(78) 155 496 0 3 1953
(12)(78) 155 496 0 45 29295

(12)(34)(78) 155 496 0 135 87885
(12)(34)(56)(78) 155 496 0 45 29295

(123)(78) 7 28 1 120 4320
(123)(456)(78) 0 1 5 120 720

(1234)(78) 7 28 0 270 9450
(1234)(56)(78) 7 28 0 270 9450
(123)(45)(78) 7 28 1 360 12960
(12345)(78) 0 1 0 432 432
(123456)(78) 0 1 5 360 2160

(789) 0 0 341 2 682
(12)(789) 0 0 85 30 2550

(12)(34)(789) 0 0 21 90 1890
(12)(34)(56)(789) 0 0 21 30 630

(123)(789) 1 0 85 80 6880
(123)(456)(789) 35 0 21 80 4480

(1234)(789) 0 0 5 180 900
(1234)(56)(789) 0 0 5 180 900
(123)(45)(789) 1 0 21 240 5280
(12345)(789) 0 0 1 288 288
(123456)(789) 1 6 5 240 2880

673920
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Table 3: The types of Veldkamp lines of L3 × GQ(2, 2).

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd
1 27 27 0 0 0 27 0 3 – – – – – – – grid grid grid
2 25 24 0 0 10 10 5 2 1 – – – – – – full g-perp g-perp
3 23 19 0 0 12 11 0 2 – – 1 – – – – grid g-perp grid
4 21 20 0 0 6 12 3 – 3 – – – – – – full line line
5 21 18 0 6 0 12 3 1 1 1 – – – – – full unitr unitr
6 21 18 0 6 0 12 3 – 3 – – – – – – full tritr tritr
7 21 16 0 2 12 6 1 1 1 – 1 – – – – perp grid g-perp
8 21 16 0 0 18 0 3 – 3 – – – – – – perp perp perp
9 19 15 0 0 12 7 0 1 – – 2 – – – – grid g-perp g-perp
10 19 13 0 4 10 5 0 1 – – 2 – – – – grid g-perp g-perp
11 19 12 0 6 9 4 0 1 1 – – – – 1 – perp grid unitr
12 17 16 0 2 0 14 1 – 1 2 – – – – – full point point
13 17 12 0 2 12 2 1 – 1 – 2 – – – – perp g-perp g-perp
14 17 12 0 2 11 4 0 – 1 – 2 – – – – grid line g-perp
15 17 10 0 8 6 2 1 1 – – 1 1 – – – g-perp g-perp perp
16 17 10 1 4 10 2 0 1 – – 1 – – 1 – grid unitr g-perp
17 17 10 0 8 7 0 2 – 2 – – 1 – – – perp line perp
18 17 10 1 4 10 2 0 – 1 – 2 – – – – grid tritr g-perp
19 17 10 0 8 6 2 1 – 1 – 2 – – – – perp g-perp g-perp
20 17 9 2 6 6 3 0 1 – 1 – – – 1 – ovoid unitr grid
21 17 9 0 8 8 1 0 1 – – 1 – 1 – – perp g-perp g-perp
22 17 9 0 9 6 2 0 – 2 – – – 1 – – perp tritr perp
23 15 11 0 0 12 3 0 – – – 3 – – – – g-perp g-perp g-perp
24 15 9 0 6 6 3 0 1 – – – – – 2 – unitr grid unitr
25 15 9 0 6 6 3 0 – – – 3 – – – – g-perp1 g-perp g-perp
26 15 9 0 6 6 3 0 – – – 3 – – – – g-perp1 g-perp g-perp
27 15 8 2 4 7 2 0 – 1 – 1 – – 1 – grid tritr unitr
28 15 8 2 3 9 1 0 – 1 – 1 – – 1 – line grid unitr
29 15 8 2 4 7 2 0 – – 1 2 – – – – grid unitr unitr
30 15 8 0 6 9 0 0 – – – 3 – – – – g-perp g-perp g-perp
31 15 7 1 8 5 1 0 1 – – – – 1 1 – perp g-perp unitr
32 15 7 4 2 8 1 0 1 – – – – – 2 – unitr grid unitr
33 15 7 1 8 5 1 0 – 1 – 1 – – 1 – perp unitr g-perp
34 15 7 0 9 6 0 0 – – – 3 – – – – g-perp g-perp g-perp
35 15 6 2 10 1 2 0 1 – – – 1 – 1 – perp unitr g-perp
36 15 6 3 6 6 0 0 1 – – – – – 2 – ovoid g-perp g-perp
37 15 6 2 9 3 1 0 – 1 1 – – – 1 – ovoid unitr perp
38 15 5 0 15 0 0 0 – – 3 – – – – – ovoid ovoid ovoid
39 13 8 0 4 8 0 1 – 1 – – 2 – – – perp line line
40 13 8 0 3 9 1 0 – 1 – – – – 2 – line grid point
41 13 8 0 4 7 2 0 – – – 2 1 – – – line g-perp g-perp
42 13 7 2 2 8 1 0 – – 1 1 – – 1 – grid unitr point
43 13 6 0 9 3 1 0 – 1 – – – 2 – – perp tritr tritr
44 13 6 0 9 3 1 0 – 1 – – – 2 – – perp line line
45 13 6 4 0 9 0 0 – 1 – – – – 2 – point grid tritr
46 13 6 0 10 2 1 0 – 1 – – – – 2 – perp g-perp point
47 13 6 0 9 3 1 0 – 1 – – – – 2 – perp unitr unitr
48 13 6 1 6 6 0 0 – – – 2 – 1 – – tritr g-perp g-perp
49 13 6 0 8 5 0 0 – – – 2 – 1 – – line g-perp g-perp
50 13 6 1 6 6 0 0 – – – 2 – – 1 – g-perp g-perp unitr
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Table 3: (Continued.)

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd
51 13 5 2 8 2 1 0 – 1 – – 1 1 – – perp line tritr
52 13 5 2 8 2 1 0 – – 1 1 – 1 – – perp unitr unitr
53 13 5 2 8 2 1 0 – – – 2 1 – – – tritr g-perp g-perp
54 13 5 0 11 2 0 0 – – – 2 1 – – – line g-perp g-perp
55 13 5 2 7 4 0 0 – – – 2 – 1 – – tritr g-perp g-perp
56 13 5 2 8 2 1 0 – – – 2 – – 1 – g-perp g-perp unitr
57 13 5 2 7 4 0 0 – – – 2 – – 1 – unitr g-perp g-perp
58 13 4 4 8 0 0 1 1 – – – 1 – – 1 perp unitr unitr
59 13 4 4 8 0 0 1 – 1 1 – – – – 1 perp ovoid point
60 13 4 4 8 0 0 1 – 1 – 1 – – – 1 perp unitr unitr
61 13 4 4 8 0 0 1 – 1 – – 2 – – – perp tritr tritr
62 13 4 4 7 1 1 0 – 1 – – – 2 – – tritr tritr perp
63 13 4 4 7 1 1 0 – 1 – – – – 2 – line g-perp ovoid
64 13 4 4 7 1 1 0 – 1 – – – – 2 – perp unitr unitr
65 13 4 4 6 3 0 0 – 1 – – – – 2 – tritr g-perp ovoid
66 13 4 4 8 0 0 1 – – 1 1 1 – – – perp unitr unitr
67 13 3 6 6 0 1 0 1 – – – – 1 – 1 perp unitr unitr
68 13 3 6 6 0 1 0 1 – – – – – 1 1 ovoid g-perp unitr
69 11 6 2 0 9 0 0 – – 1 – – – 2 – grid point point
70 11 5 0 7 4 0 0 – – – 1 – – 2 – g-perp g-perp point
71 11 4 2 7 1 1 0 – – 1 – 1 – 1 – perp unitr point
72 11 4 2 7 1 1 0 – – – 1 1 – 1 – line g-perp unitr
73 11 4 2 6 3 0 0 – – – 1 1 – 1 – line unitr g-perp
74 11 4 2 6 3 0 0 – – – 1 – 1 1 – unitr tritr g-perp
75 11 4 2 6 3 0 0 – – – 1 – 1 1 – line unitr g-perp
76 11 4 2 6 3 0 0 – – – 1 – – 2 – g-perp2 unitr unitr
77 11 4 2 6 3 0 0 – – – 1 – – 2 – g-perp2 unitr unitr
78 11 4 1 8 2 0 0 – – – 1 – – 2 – point g-perp g-perp
79 11 3 4 6 0 1 0 – 1 – – – – 1 1 perp point unitr
80 11 3 4 6 0 1 0 – – 1 – – 1 1 – perp unitr point
81 11 3 2 9 0 0 0 – – 1 – – – 2 – unitr unitr ovoid
82 11 3 4 6 0 1 0 – – – 2 – – – 1 unitr g-perp unitr
83 11 3 4 6 0 1 0 – – – 1 1 – 1 – tritr unitr g-perp
84 11 3 4 5 2 0 0 – – – 1 – 1 1 – tritr g-perp unitr
85 11 3 3 7 1 0 0 – – – 1 – 1 1 – line g-perp unitr
86 11 3 4 6 0 1 0 – – – 1 – – 2 – unitr3 g-perp unitr
87 11 3 4 6 0 1 0 – – – 1 – – 2 – unitr3 g-perp unitr
88 11 3 4 5 2 0 0 – – – 1 – – 2 – g-perp4 unitr unitr
89 11 3 4 5 2 0 0 – – – 1 – – 2 – g-perp4 unitr unitr
90 11 2 6 4 1 0 0 – 1 – – – – 1 1 line unitr ovoid
91 11 2 6 4 1 0 0 – – – 2 – – – 1 unitr g-perp unitr
92 11 2 6 4 1 0 0 – – – 1 1 – 1 – tritr unitr g-perp
93 11 2 6 4 1 0 0 – – – 1 – 1 1 – tritr g-perp unitr
94 11 2 6 4 1 0 0 – – – 1 – – 2 – g-perp unitr unitr
95 11 1 8 3 0 0 0 – – 2 – – – – 1 ovoid point ovoid
96 11 1 8 3 0 0 0 – – 1 – – – 2 – unitr unitr ovoid
97 11 0 11 0 0 0 0 1 – – – – – – 2 unitr unitr ovoid
98 11 0 11 0 0 0 0 – 1 – – – – 1 1 tritr ovoid unitr
99 9 6 0 0 9 0 0 – – – – 3 – – – line line line

100 9 4 0 8 0 0 1 – 1 – – – – – 2 perp point point
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Table 3: (Continued.)

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd
101 9 3 2 6 0 1 0 – – 1 – – 1 – 1 perp point point
102 9 3 2 6 0 1 0 – – – 1 – – 1 1 point g-perp unitr
103 9 3 0 9 0 0 0 – – – – 3 – – – line line line
104 9 3 2 5 2 0 0 – – – – 2 1 – – line tritr line
105 9 3 0 9 0 0 0 – – – – 1 2 – – line line line
106 9 3 2 5 2 0 0 – – – – 1 – 2 – tritr g-perp point
107 9 3 1 7 1 0 0 – – – – 1 – 2 – point g-perp line
108 9 3 0 9 0 0 0 – – – – – 3 – – tritr tritr tritr
109 9 3 1 7 1 0 0 – – – – – 1 2 – point g-perp line
110 9 3 0 9 0 0 0 – – – – – – 3 – unitr unitr unitr
111 9 2 4 4 1 0 0 – – – 1 – 1 – 1 line unitr unitr
112 9 2 4 4 1 0 0 – – – 1 – – 1 1 g-perp point unitr
113 9 2 4 4 1 0 0 – – – – 1 – 2 – line unitr5 unitr
114 9 2 4 4 1 0 0 – – – – 1 – 2 – line unitr5 unitr
115 9 2 4 4 1 0 0 – – – – 1 2 – – tritr tritr line
116 9 2 3 6 0 0 0 – – – – – 3 – – line line tritr
117 9 2 4 4 1 0 0 – – – – – 1 2 – tritr g-perp point
118 9 2 3 6 0 0 0 – – – – – 1 2 – tritr unitr unitr
119 9 2 4 4 1 0 0 – – – – – – 3 – point6 g-perp unitr
120 9 2 4 4 1 0 0 – – – – – – 3 – point6 g-perp unitr
121 9 1 6 3 0 0 0 – – – 1 1 – – 1 unitr line unitr
122 9 1 6 3 0 0 0 – – – – 3 – – – tritr tritr line
123 9 1 6 3 0 0 0 – – – – 1 2 – – line tritr tritr
124 9 1 6 3 0 0 0 – – – – 1 – 2 – line unitr unitr
125 9 1 6 3 0 0 0 – – – – – 3 – – tritr tritr tritr
126 9 1 6 3 0 0 0 – – – – – 1 2 – line unitr unitr
127 9 1 6 3 0 0 0 – – – – – 1 2 – tritr unitr unitr
128 9 1 6 3 0 0 0 – – – – – – 3 – unitr unitr unitr
129 9 0 9 0 0 0 0 – 1 – – – – – 2 tritr point ovoid
130 9 0 9 0 0 0 0 – – 1 – – – 1 1 ovoid unitr point
131 9 0 9 0 0 0 0 – – – 1 1 – – 1 tritr unitr unitr
132 9 0 9 0 0 0 0 – – – 1 – 1 – 1 tritr unitr unitr
133 9 0 9 0 0 0 0 – – – 1 – – 1 1 unitr7 unitr unitr
134 9 0 9 0 0 0 0 – – – 1 – – 1 1 unitr7 unitr unitr
135 9 0 9 0 0 0 0 – – – – 2 1 – – tritr tritr tritr
136 9 0 9 0 0 0 0 – – – – 1 – 2 – tritr unitr unitr
137 9 0 9 0 0 0 0 – – – – – 1 2 – tritr unitr unitr
138 9 0 9 0 0 0 0 – – – – – – 3 – unitr unitr unitr
139 7 2 2 4 1 0 0 – – – – 1 – 1 1 point unitr line
140 7 2 2 4 1 0 0 – – – – – – 2 1 point g-perp point
141 7 1 4 3 0 0 0 – – 1 – – – – 2 ovoid point point
142 7 1 4 3 0 0 0 – – – – – 1 1 1 line unitr point
143 7 1 4 3 0 0 0 – – – – – – 2 1 unitr8 unitr point
144 7 1 4 3 0 0 0 – – – – – – 2 1 point unitr8 unitr
145 7 0 7 0 0 0 0 – – – 1 – – – 2 unitr unitr point
146 7 0 7 0 0 0 0 – – – – 1 – 1 1 tritr point unitr
147 7 0 7 0 0 0 0 – – – – – 1 1 1 tritr point9 unitr
148 7 0 7 0 0 0 0 – – – – – 1 1 1 tritr point9 unitr
149 7 0 7 0 0 0 0 – – – – – – 2 1 point10 unitr unitr
150 7 0 7 0 0 0 0 – – – – – – 2 1 point10 unitr11 unitr
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Table 3: (Continued.)

# of Points of Order Composition
Tp Pt Ln 0 1 2 3 4 H1 H2 H3 H4 H5 H6 H7 H8 1st 2nd 3rd
151 7 0 7 0 0 0 0 – – – – – – 2 1 point10 unitr11 unitr
152 5 1 2 3 0 0 0 – – – – 1 – – 2 line point point
153 5 0 5 0 0 0 0 – – – – – 1 – 2 tritr point point
154 5 0 5 0 0 0 0 – – – – – – 1 2 unitr point point
155 3 1 0 3 0 0 0 – – – – – – – 3 point point point
156 3 0 3 0 0 0 0 – – – – – – – 3 point point point

Explanatory remarks:
1Two (25) or no two (26) of the g-perps are such that their centers are joined by a

type-one line.
2The center of the g-perp does (77) or does not (76) lie on the type-one line passing

through the center of one of the two unicentric triads.
3The centers of the two unicentric triads are (86) or are not (87) joined by a type-one

line.
4One line (88) or no line (89) of the g-perp is incident with the type-one line passing

through the center of one of the two unicentric triads.
5The five type-one lines through the points of the two triads do (114) or do not (113)

cut a doily-quad in an ovoid.
6One line (120) or no line (119) of type-two through the point is incident with the

type-one line through the center of the g-perp.
7One (133) or none (134) of the unicentric triads is such that the type-one lines through

two of its points pass through the centers of the other two triads.
8The centers of the two unicentric triads are (143) or are not (144) joined by a type-one

line.
9The point does (147) or does not (148) lie on the type-one line passing through a center

of the tricentric triad.
10The point does (149) or does not (150 and 151) lie on the type-one line passing

through the center of one of the two unicentric triads.
11The centers of the two unicentric triads do (150) or do not (151) belong to the same

grid-quad.
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Abstract

We consider the worst-case query complexity of some variants of certain PPAD-
complete search problems. Suppose we are given a graph G and a vertex s ∈ V (G).
We denote the directed graph obtained from G by directing all edges in both directions
by G′. D is a directed subgraph of G′ which is unknown to us, except that it consists of
vertex-disjoint directed paths and cycles and one of the paths originates in s. Our goal is to
find an endvertex of a path by using as few queries as possible. A query specifies a vertex
v ∈ V (G), and the answer is the set of the edges of D incident to v, together with their
directions.

We also show lower bounds for the special case when D consists of a single path. Our
proofs use the theory of graph separators. Finally, we consider the case when the graph G
is a grid graph. In this case, using the connection with separators, we give asymptotically
tight bounds as a function of the size of the grid, if the dimension of the grid is considered
as fixed. In order to do this, we prove a separator theorem about grid graphs, which is
interesting on its own right.

Keywords: Separator, graph, search, grid.

Math. Subj. Class.: 90B40, 05C85

1 Introduction
This paper deals with the following search problem. We are given a simple, undirected,
connected graph G and a vertex s ∈ V (G). We denote the directed graph obtained from
G by directing all edges in both directions by G′. Let D be a directed subgraph of G′,
which is the vertex-disjoint union of a directed path starting at s and possibly some other
directed paths and cycles. D is unknown to us, and our goal is to identify an endvertex of a
directed path. We may query a vertex v, and as an answer, we learn the edges ofD incident
to v together with their directions. In particular, if the answer is only one incoming edge,
then we know that v is an endvertex. We analyze the minimum number of queries that are
necessary in the worst case.

We give lower bounds in the more restrictive model where we know D is one directed
path. Note that if instead of looking for an endvertex, we look for an ending or a starting
vertex of a path (different from s), then this model still gives a lower bound for this easier
problem. In Section 4 we mention some additional models.

Denote by h(G) the minimum number of queries needed to find an endvertex in the
worst case for any s ∈ G. If we know that D is one directed path, denote this quantity by
hP (G).

Biseparators and multiseparators. To state some of our results we need to define sepa-
rators of graphs. This notion can be defined in two different ways and both definitions are
widely used. Here we distinguish between the two definitions.

E-mail addresses: gerbner.daniel@renyi.mta.hu (Dániel Gerbner), keszegh.balazs@renyi.mta.hu (Balázs
Keszegh), dom@cs.elte.hu (Dömötör Pálvölgyi), rote@inf.fu-berlin.de (Günter Rote), wiener@cs.bme.hu
(Gábor Wiener)
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Definition 1.1.

1. Given a graph G = (V,E), a subset S ⊆ V is called an α-biseparator of G if V \ S
can be divided into two parts, A and B, such that there are no edges between A and
B, and both have cardinality at most α|V |.

2. Given a graph G = (V,E), a subset S ⊆ V is called an α-multiseparator of G if
every connected component of V \ S has cardinality at most α|V |.

Note that A or B in the definition of a biseparator can be empty: we do not require
V \ S to be disconnected. Small biseparators make sense only for α ≥ 1/2.

Given these definitions, when we write separator, it can mean either a biseparator or
a multiseparator, as in many cases it makes no difference. In the literature, the notation
f(n)-separator can also be found, where f(n) is an upper bound on the cardinality of S in
terms of the number n of vertices. In this paper it is more straightforward to fix α and then
look for the smallest α-separator. Therefore, we let sbiα (G) be the minimum cardinality of
an α-biseparator in G and smα (G) be the minimum cardinality of an α-multiseparator in G.

It follows from the definitions that every α-biseparator is an α-multiseparator, and thus
sbiα (G) ≥ smα (G). In many cases they are of the same order of magnitude. In particular,
if we have a bound smα (G) ≤ O(nc) for a class of graphs which is closed under taking
subgraphs for some c < 1 and for some arbitrary α < 1, we get the same asymptotic bound
on sbi1/2(G), by iteratively separating one of the components. However, there are cases
when multiseparators are much smaller than biseparators. For example, if G consists of
three disjoint cliques of equal size, all connected to a degree-three vertex, then sm1/2(G) = 1

but sbi1/2(G) = dn/6e. For any tree, sm1/2(G) = 1 but it is not hard to show that for a
complete ternary tree, sbi1/2(G) = Θ(log n), see Appendix A. Finally, if we consider a
class of graphs closed under taking subgraphs, by repeatedly refining the separation, then it
is obvious that smα (G) and smα′(G) have the same order of magnitude for any two constants
α and α′.

Results. Our main result establishes a connection between the biseparators and the search
complexity for general graphs.

Theorem 1.2. For any connected graph G with at least 2 vertices, we have sbi1/2(G) ≤
hP (G) ≤ h(G).

We can prove an upper bound of the same order of magnitude, if every subgraph has
small multiseparators. Note that when bounding h(G), sbi(G), the larger of the separators,
gives the lower bound and sm(G), the smaller one, gives the almost matching upper bound,
which implies that indeed for a large class of graphs sbi(G) and sm(G) have the same order
of magnitude.

Theorem 1.3. Let 0 < α, β < 1 be constants, let f be a monotone function, and let G be a
graph such that any subgraph H of G has an α-multiseparator of size at most f(|V (H)|).
If f(αx) ≤ βf(x) for all x > 0, then

hP (G) ≤ h(G) ≤ f(|V (G)|)
1− β

.
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The condition on f could be interpreted as having “at least polynomial growth”. The
condition is fulfilled by the function f(x) = const · xc if and only if c ≥ logα β. To put it
differently, if α and c > 0 are given, the theorem applies with β := αc.

We also study the search problem for the special case of grid graphs.

Definition 1.4. Let d be a positive integer and (n1, . . . nd) a sequence of positive integers.
The d-dimensional grid graph of side length (n1, . . . nd), denoted by Gd(n1, . . . nd), has
vertex set×i

{0, 1, 2, . . . , ni − 1}, and there is an edge between two vertices if and only if
they differ in exactly one coordinate and the difference is 1. If n1 = n2 = · · · = nd, then
we simply write Gd(n).

We estimate the search complexity of grid graphs as follows.

Theorem 1.5. Ω(nd−1/
√
d) ≤ hP (Gd(n)) ≤ h(Gd(n)) ≤ O(nd−1).

As a tool, we will prove a bound on the cardinality of separators of grid graphs, using
classic results from the theory of vertex isoperimetric problems and cube slicing.

Theorem 1.6. The smallest 1/2-biseparator of the grid graph Gd(n) has cardinality

sbi(Gd(n)) = Θ(nd−1/
√
d).

We note that when considering grid graphs, one could also study the related problem
that the path starting at s is monotone, i.e., if u and v are on the path and u ≤ v (according
to the usual partial order of the vectors), then the edge between u and v (if it exists) is
directed towards v. In this case the needed number of queries reduces dramatically. Indeed,
the trivial algorithm which follows the path uses at most dn queries. In two dimensions we
could improve slightly this upper bound, yet there is a more significant improvement by
Xiaoming Sun (personal communication), who proved that 8n/5 queries are enough in two
dimensions. From below, at least n − 2 queries are needed regardless of d [7, Lemma 6].
This problem resembles the pyramid-path search problem (but it is not exactly the same),
where also a lower bound of n is proved for the two-dimensional case [5].

Motivation. Hirsch, Papadimitriou and Vavasis [7] have proved worst-case lower bounds
for finding Brouwer fixed points for algorithms using only function evaluation. They
showed a lower bound that is exponential in the dimension, disproving the conjecture
that Scarf’s algorithm is polynomial. In our language, they have (implicitly) proved that
h(Gd(n)) = Ω(nd−2/d2) [7, Lemma 16]. Our Theorem 1.5 is an improvement of their
result, although we do not use the continuous setting but rather focus only on the discretiza-
tion of the problem.

Later, Papadimitriou [10] considered similar complexity search problems in great de-
tail and defined corresponding complexity classes PPA, PPAD, etc. In his model, an
exponential-size graph is given by a succinct representation, i.e., by the description of a
Turing-machine T . The vertices of the graph correspond to binary sequences of length n
and if we input such a sequence to T , it outputs all the neighbors of the corresponding
vertex in polynomial time (thus the degrees are bounded by a polynomial). Therefore, in
his model, instead of considering query cost, one can work with the classical running time
of the algorithm that gets T as input. If the algorithm uses T as a black box, we get back
the query-cost model.
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Papadimitriou considered the problem when the maximum degree of the graph is 2, i.e.,
it consists of vertex disjoint paths and cycles and we are also given, as part of the input,
a degree-one vertex, s, and our goal is to output another degree-one vertex. This search
problem is denoted by LEAF, and the complexity class PPA is defined such that LEAF
is complete for PPA. (PPA stands for “Polynomial Parity Argument”.)

Papadimitriou introduced another variant, where the underlying graph is directed (T
outputs both the in- and out-neighbors of its input in this case), the in- and out-degree of
every vertex is at most one, and we are given a starting vertex s with in-degree zero and
out-degree one. Therefore, the resulting digraph is the vertex-disjoint union of a directed
path starting at s and possibly some other directed paths and cycles, exactly like in the
problem that we study. Here our goal can be either to output an in-degree one, out-degree
zero vertex (called LEAFDS problem) or an in-degree plus out-degree equals one vertex
(called LEAFD problem), which means the end of a path, just like in the problem we study.
Thus, the query-cost of LEAFD is exactly h(K2n).

The complexity classes for which the problems LEAFDS and LEAFD are complete
are denoted, respectively, by PPADS and PPAD. It is easy to see that PPAD is con-
tained in both PPA and PPADS, while an oracle separation is known for the two latter
classes [2]. Nowadays PPAD enjoys huge popularity, as several problems, among them
finding an ε-approximate Nash-equilibrium, turned out to be PPAD-complete. This is
why this paper focuses on h(G), the query-cost version of PPAD, though most of our
results would also hold for the other variants.

An extensive list of PPAD-complete problems can be found on Wikipedia.

2 Upper bounds
Claim 2.1. Suppose that the connected components ofG\S are Y1, . . . , Yk. If every vertex
of S has been queried, we know a Yi which contains an endvertex (or that an endvertex is
in S, hence already identified).

Proof. The answers clearly show how many times we enter and leave S from each com-
ponent Yi. If we enter a component Yi more times than we leave it, then Yi must contain
an endvertex. If there is no such component, the component containing s must contain an
endvertex.

This simple observation is crucial for our upper bounds and it does not hold if the
answers would contain only the edges leaving the queried vertex.

Proof of Theorem 1.3. Let us choose an α-multiseparator S1 with |S1| ≤ f(|V (G)|) which
cuts G into parts Y1, . . . , Yk, and query all vertices of S1. By Observation 2.1 we know
a part Yj which contains an endvertex. Let G1 be G restricted to Yj and choose an α-
multiseparator S2 of size at most f(|V (G1)|), which cuts G1 into parts Z1, . . . , Zl.

Then S1 ∪ S2 is a separator of G, which cuts it into parts Y1, . . . , Yj−1, Yj+1, . . . , Yk,
Z1, . . . , Zl. Thus, by again using Observation 2.1 after asking every vertex of S1 ∪ S2 we
know which part Zi contains an endvertex.

After this we can continue the same way, defining G2 and asking S3, defining G3 and
asking S4 and so on, until an endvertex is in some Si. As |V (Gj)| ≤ α|V (Gj−1)| for
any j, one can easily see that |V (Gj)| ≤ αj |V |. By the assumptions on f , f(|Sj |) ≤
f(|V (Gj−1)|) ≤ f(αj−1|V |) ≤ βj−1f(|V |). Altogether at most

∑∞
j=1 β

j−1f(|V |) ≤
f(|V |)/(1− β) questions were asked.
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A celebrated theorem of Lipton and Tarjan [8] states that planar graphs have 2/3-
separators of size at most

√
8 ·
√
|V |. Thus we have the following corollary.

Corollary 2.2. If G is planar, then h(G) = O(
√
|V |).

Now, let us look at d-dimensional grid graphs. Miller, Teng and Vavasis [9] introduced
the so-called overlap graphs for every d and proved that every member G of the class has
separator of size O(|V (G)|(d−1)/d). They mention that any subset of the d-dimensional
infinite grid graph belongs to the class of overlap graphs. The polynomial function f(x) =
cx(d−1)/d satisfies the assumption of Theorem 1.3. Since |V (Gd(n))| = nd, this implies
that h(G) = O(nd−1). Here we show that the multiplicative constant is less than 3.

Theorem 2.3. h(Gd(n)) ≤ (2 + 1
2d−1−1 )nd−1.

Proof. We follow the proof of Theorem 1.3, but the cuts we use are always axis-aligned
hyperplanes, which cut the current part into two smaller grid graphs. More precisely, for
any i let j ≡ i mod d, 0 ≤ j ≤ d − 1; now Si is a hyperplane perpendicular to the jth

coordinate axis, and it cutsGi−1 into two parts of size at most |V (Gi−1)|/2. One can easily
see that this is possible and |Si+1| ≤ |Si|/2, except if j = 0, in which case |Si+1| ≤ |Si|.
This means that there are at most

nd−1(1 + 1/2 + 1/4 + . . .+ 1/2d−1)(1 + 1/2d−1 + 1/22(d−1) + . . .)

≤ nd−1(2− 1/2d−1)
1

1− 1/2d−1
= nd−1

(
2 +

1

2d−1 − 1

)
queries.

3 Lower bounds
Before proving Theorem 1.6 which claims that any 1/2-separator in the grid graph Gd(n)
has cardinality Ω(nd−1/

√
d), we present a slightly weaker result, as it has a short proof not

using results from the theory of isoperimetric problems.

Claim 3.1. Any α-multiseparator in the grid graph Gd(n) has cardinality at least (1 −
α)nd−1/d for α ≥ 1/2.

Proof. We use induction on d. The claim is trivial for d = 1. Let us denote by S an
α-multiseparator.

Let us choose an arbitrary axis, and denote by L the nd−1 parallel lines in the grid
which go in that direction. Let L′ ⊂ L be the set of those lines which intersect S. Note
that every other element of L contains vertices only from one component of G \ S. If
|L′| ≥ (1− α)nd−1/d, then we are done. Hence we can suppose |L′| < (1− α)nd−1/d.

Elements ofL′ cover less than (1−α)nd/d points, hence for any componentC ofG\S,
the other components together contain at least ((1 − α)d − (1 − α))nd/d vertices, which
are not covered by elements of L′. This means that there are at least (1−α)(d−1)nd−1/d
elements of L which contain only vertices not in C. Now consider a hyperplane in the grid,
orthogonal to the direction of the lines of L, and denote by H the vertices of Gd(n) that
belong to the hyperplane. Clearly,H contains at least (1− α)(d− 1)nd−1/d elements not
in C, hence S ∩H is an α′-multiseparator ofH (with α′ := 1− (1− α)(d− 1)/d) and so
we can apply induction on each of these (d− 1)-dimensional hyperplanes.

By induction, there are at least (1−α)(d−1)nd−2/d(d−1) elements of S in every such
hyperplane, which gives at least n(1−α)nd−2/d = (1−α)nd−1/d elements in total.
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Before proving the stronger version of this result, we need to introduce some notations
and results.

Let A be an arbitrary set of vertices. The set of vertices that are not in A, but are
connected to some vertex of A is called the boundary of A, denoted by ∂A. Following
the notations of Bollobás and Leader [3], we define an order on the vertices, the simplicial
order, by setting x < y if

∑
xi <

∑
yi, or

∑
xi =

∑
yi and for some j we have xj > yj

and xi = yi for all i < j. This coincides with the lexicographic order according to the
vector (

∑
xi,−x1,−x2, . . . ,−xn).

Theorem 3.2 (Bollobás and Leader [3]). In Gd(n), among sets of vertices of a given size,
the initial segment of the simplicial order has the smallest boundary.

The special case n = 2, i.e., the hypercube, was previously treated by Harper [6], while
the unbounded case of n = ∞ was solved by Wang and Wang [13]. We note that in the
paper of Bollobás and Leader the definition of boundary is different: they also include A
in ∂A.

We will also need some results about the volume of slices of a cube, i.e., intersections
of the cube with specific hyperplanes. For a contemporary approach to this area we refer to
[14]. In the next theorem Hd(t) denotes the following set in the d-dimensional unit cube
Id: Hd(t) = {x ∈ Id |

∑
xi = t }; Voli denotes the i-dimensional volume of some set of

dimension i.

Theorem 3.3 ([11, 14]). limd→∞Vold−1
(
Hd(d/2+s

√
d)
)

=
√

6
π e
−6s2 , for each fixed s.

Let Lk denote the k-th layer of Gd(n): the set of all vertices in Gd(n) whose coordi-
nates sum to k. The layer range from 0 to (n−1)d. We define the size of the “middle-most”
layers Zn,d by

Zn,d :=

{
|L((n−1)d−1)/2| = |L((n−1)d+1)/2|, for (n− 1)d odd,
min{|L(n−1)d/2−1|, |L(n−1)d/2|, |L(n−1)d/2+1|}, for (n− 1)d even.

Zmax
n,d :=

{
|L((n−1)d−1)/2| = |L((n−1)d+1)/2| = Zn,d, for (n− 1)d odd,
|L(n−1)d/2|, for (n− 1)d even.

In the even case, we actually know that the middle level L(n−1)d/2 is the largest of the
three levels in the definition of Zn,d, as the levels decrease symmetrically in size from the
middle to the ends [4]. From discretizing the above theorem, one can obtain the following
bound on Zn,d. Its proof can be found in Appendix B.

Corollary 3.4. For every d, there exists a constant Cd such that

Zn,d = Cd/
√
d · nd−1 ±O(nd−2) and

Zmax
n,d = Cd/

√
d · nd−1 ±O(nd−2).

Cd →
√

6/π as d→∞.

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We start with the lower bound. Let us denote by S a 1/2-biseparator
which separates the vertex set A and B (such that V = A ∪ B ∪ S). If |S| ≥ Zn,d we are
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done. Thus we suppose that |S| < Zn,d. Denote byA′ the vertex set of size |A| which is an
initial segment of the simplicial order. By Theorem 3.2 we know that |S| ≥ |∂A| ≥ |∂A′|.

By the definition of the simplicial order, ∂A′ is contained in the union of two successive
layers k and k + 1: ∂A′ = P1 ∪ P2, where P1 ⊆ Lk and P2 ⊆ Lk+1. First we claim that
k must be very close to the middlemost layer. More precisely, if nd is odd, we can assume
k = nd−1

2 , and if nd is even, we can assume k = nd
2 − 1 or k = nd

2 .
We treat only the odd case, the even case being similar. First, we show that A′ must

reach at least level k = nd−1
2 . If A′ were disjoint from Lk, we would get

|A|+ |S| = |A′|+ |S| < |A′|+ Zn,d = |A′ ∪ Lk| ≤ n2/2,

since the last set contains only vertices in the lower half of the levels. This contradicts the
requirement fact that A ∪ S must cover at least half of the vertices. Secondly, if A′ would
contain vertices of level k+1, it would contain more than the levels 0, 1, . . . , k which make
up half of all vertices. This is again a contradiction to the 1/2-biseparator property.

By the definition ofZn,d, we have now established that each of the two central layersLk
and Lk+1 contains at least Zn,d points. To conclude the proof, we show that the separator
∂A′ which is contained in the two layers Lk and Lk+1 must have size at least Zn,d −
O(nd−2). If a vertex v = (x1, . . . , xd) of Lk+1 is not in P2, then the adjacent vertex v−

defined by v− = (x1, . . . xd−1, xd − 1) must be in P1 unless it is not a point of the grid
G(n, d) (i.e., xd = 0):

(Lk+1 \ P2)− ∩G(n, d) ⊆ P1

Since the number of vertices of Lk+1 for which xd = 0 is O(nd−2), we obtain

|Lk+1| − |P2| −O(nd−2) ≤ |P1|,

from which the bound |∂A′| = |P1|+ |P2| ≥ Zn,d −O(nd−2) follows.
For the upper bound, we simply take the central layer Lb(n−1)d/2c of size Zmax

n,d as a
biseparator.

Now we are ready to prove Theorem 1.2, that sbi1/2(G) ≤ hP (G).

Proof of Theorem 1.2. We will use an adversary argument for the lower bound on the num-
ber of queries. The adversary will try to answer the queries in such a way that the discovery
of the endvertex by the searcher is delayed as much as possible. The adversary need not
choose a path D in advance, but it is required that the answers remain consistent with some
path.

Let Q denote the vertices that have been queried so far in the search. We will show
that the adversary can achieve that after the other end of the path is found, Q becomes a
1/2-biseparator. The adversary maintains a component C of V −Q, see Figure 1. C is the
set of vertices which can possibly be the endvertex of the path. (The adversary will follow
a greedy strategy of keeping this set as large as possible.) In addition to C, the adversary
maintains a path P between s and some vertex p ∈ C, which will be part of the final path
and for which P ∩ C = {p}. The remaining components of V − Q are partitioned into
two sets V \ (Q ∪C) = A ∪B such that both A and B contain at most |V |/2 vertices and
there are no edges between A and B. Thus we always have a partition into four disjoint
sets V = Q ∪ A ∪ B ∪ C. The adversary can reveal all these data to the searcher as free
additional information. Initially, C = V , p = s and Q = A = B = ∅.
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p
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Figure 1: A schematic drawing of the situation maintained by the adversary. The queried
vertices, Q, are marked by squares.
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Figure 2: Updating the set C after a query q

The strategy is the following. If the queried vertex q is in Q, the adversary repeats the
previous answer for this vertex. If q ∈ P \ {p}, the adversary answers by reporting the
ingoing and outgoing edge of P at that vertex. If q /∈ C ∪ P , then the answer is that “the
path does not pass through this vertex.” In these cases, no new information is revealed to
the searcher. The vertex p, the set C, and the path P remain unchanged; the only change is
that q is moved from A ∪B to Q.

Let us now look at the case q ∈ C. Let C \ {q} = D1 ∪D2 ∪ · · · ∪Dm be the partition
of C \ {q} into m ≥ 1 connected components. The adversary chooses a largest component
Dj , and will answer in such a way that the new set C becomes Cnew = Dj .

Therefore, if Cnew contains p, the answer is again “the path does not pass through this
vertex,” see Figure 2 (a). The current endpoint p and the path P are unchanged. If Cnew

does not contain p (including the case q = p), then choose pnew ∈ Cnew to be a neighbor
of q, see Figure 2 (b). As q was a possible endpoint of the path before this step, there is
a path P new from p to q which lies in C \ Cnew. The adversary uses P new and the edge
qpnew to extend the path P to a longer path P new. (This is the only case when the path is
updated.) The adversary reports the last arc of P new as the ingoing arc at q and qpnew as
the outgoing arc.
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To maintain the invariant that |A|, |B| ≤ |V |/2, we go through the components Di 6=
Cnew one by one and add them either to A or to B (to eventually obtain Anew and Bnew),
whichever is smaller. If, for example, |A| ≤ |B|, then |A|+ |Di| ≤ |B|+ |Cnew| ≤ |V |/2
as A,Di, B,C

new are disjoint subsets of V . Therefore, the invariant is maintained.
The searcher can only identify t, the end of the path, when |C| becomes 1. By assump-

tion, the graph G has at least two vertices and is connected, and therefore Q 6= ∅. Thus, at
this point,

min{|A|, |B|} ≤ |V \ (Q ∪ C)|/2 ≤ (|V | − 1− 1)/2 = |V |/2− 1.

We can now add the singleton set C = {t} to the smaller of A and B without exceeding
the size bound |V |/2. The set Q of queried vertices forms thus a 1/2-biseparator.

Corollary 3.5. hP (Gd(n)) = Ω(nd−1/
√
d).

Theorem 1.5 summarizes the above results. The lower and upper bounds are quite
close. Specifically, if we consider d as fixed, then the theorem gives exact asymptotics in n
for the needed number of queries.

4 Concluding Remarks: Problem Variations
Here we mention three more variants of the problem.

In the first variant, we consider any directed subgraph of G′ and a vertex s with larger
out-degree than in-degree. In this version there is a vertex with higher in-degree than out-
degree, our goal is to find such a vertex. All of our algorithms work in this case, and
obviously the same lower bounds hold.

In the second variant, D consists of directed paths and cycles, but we also assume that
they cover every vertex. This is a special case of our model, hence the upper bounds hold.
However, a lower bound similar to Theorem 1.2 is not plausible, as there are graphs that
have only big separators, yet there are only a few valid choices for D. For example if G
contains a vertex of degree one, different from the source, then this vertex must be the
endvertex. But in case of grid graphs we can show that the additional assumption on D
does not make the problem much easier.

Denote by hU (G) the minimum number of queries needed to find an endvertex in the
worst-case for any s ∈ G. Now we show how to give a lower bound for hU (Gd(n)). Let
us suppose we are given an r1× r2× r3× · · · × rd grid graph G. Then let G4,4 denote the
4r1 × 4r2 × r3 × · · · × rd grid graph.

Theorem 4.1. Let G be a grid graph. Then hP (G) ≤ hU (G4,4).

The proof of this theorem can be found in Appendix C.
One can easily see that if 4 divides n and G is the n/4×n/4×n× · · · ×n grid graph,

then Gd(n) = G4,4. We need a lower bound on the size of separators in G. It is easy to see
that if we replace every vertex of G by 16 vertices to get Gd(n), an α-separator is replaced
by an α-separator, hence the same lower bound of Ω(nd−1/

√
d), divided by 16, holds for

G.

Corollary 4.2. Ω(nd−1/
√
d) ≤ hU (Gd(n)) ≤ O(nd−1).
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In the third variant, D is undirected. Our goal is to find another endvertex and the
answer to the query is the at most two incident edges. Obviously, this is a harder problem
than the directed variant. Hence our lower bounds hold, and one can easily modify our
proofs to get the same upper bounds as well. For example, in Observation 2.1, the endvertex
is in the component Yi which is connected to S by an odd number of edges, counting an
extra edge for the component of s.

Finally, a straightforward application of our proofs gives the asymptotics to a question
recently asked on MathOverflow [1], which is the following. Given a path P1 from the
bottom-left vertex of an n × n grid to its top-right vertex, and another path P2 from its
top-left vertex to its bottom-right vertex, how many queries are needed to find a vertex
contained in both paths? The proofs of Theorems 1.2 and 2.3 can be adapted to show that
Θ(n) queries are necessary and sufficient.

Acknowledgment

We would like to thank our anonymous referee for the remarks that improved the presenta-
tion of the paper.

References
[1] A problem on chains of squares - can one find an easy combinatorial proof?, http://

mathoverflow.net/q/185003.

[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo and T. Pitassi, The relative complexity of NP
search problems, J. Comput. System Sci. 57 (1998), 3–19, doi:10.1006/jcss.1998.1575.

[3] B. Bollobás and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory Ser.
A 56 (1991), 47–62, doi:10.1016/0097-3165(91)90021-8.

[4] N. G. de Bruijn, C. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a
number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193.

[5] D. Gerbner and B. Keszegh, Path search in the pyramid and in other graphs, J. Stat. Theory
Pract. 6 (2012), 303–314, doi:10.1080/15598608.2012.673885.

[6] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial
Theory 1 (1966), 385–393, doi:10.1016/s0021-9800(66)80059-5.

[7] M. D. Hirsch, C. H. Papadimitriou and S. A. Vavasis, Exponential lower bounds for finding
Brouwer fixed points, J. Complexity 5 (1989), 379–416, doi:10.1016/0885-064X(89)90017-4.

[8] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36
(1979), 177–189, doi:10.1137/0136016.

[9] G. L. Miller, S.-H. Teng and S. A. Vavasis, A unified geometric approach to graph separators,
in: 32nd Annual Symposium on Foundations of Computer Science (San Juan, PR, 1991), IEEE
Comput. Soc. Press, pp. 538–547, 1991, doi:10.1109/SFCS.1991.185417.

[10] C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of
existence, J. Comput. System Sci. 48 (1994), 498–532, doi:10.1016/S0022-0000(05)80063-7.

[11] G. Polya, Berechnung eines bestimmten Integrals, Math. Ann. 74 (1913), 204–212, doi:10.
1007/BF01456040.

[12] R. P. Stanley, Enumerative Combinatorics. Vol. 1, volume 49 of Cambridge Studies
in Advanced Mathematics, Cambridge University Press, Cambridge, 1997, doi:10.1017/
CBO9780511805967, corrected reprint of the 1986 original.



312 Ars Math. Contemp. 12 (2017) 301–314

[13] D. L. Wang and P. Wang, Discrete isoperimetric problems, SIAM J. Appl. Math. 32 (1977),
860–870, doi:10.1137/0132073.

[14] Y. Xu and R.-h. Wang, Asymptotic properties of B-splines, Eulerian numbers and cube slicing,
J. Comput. Appl. Math. 236 (2011), 988–995, doi:10.1016/j.cam.2011.08.003.

A Biseparators for Ternary Trees
We show that a rooted ternary tree with k + 1 complete levels has sbi1/2(G) = Θ(k). Any
root-to-leaf path is a 1/2-biseparator, establishing the upper bound. Let us turn to the lower
bound. A complete ternary tree of height h has n = (3h+1− 1)/2 vertices. It is convenient
to give each vertex a “weight” of 2. The total weight of the tree becomes 2n = 3k+1 − 1,
which is very near to a power of 3. In ternary notation, 2n = (22 . . . 2)3 with k twos, and
the ideal weight for the halves of the biseparator is 2n/2 = n = (11 . . . 1)3.

After removing a separating set, any union of components of the complement can be
represented as a sum and difference of subtrees. Here, by a subtree we mean a node together
with all its descendants. If the separator has s nodes, we must be able to group the resulting
components into a set that has between n/2−s and n/2 nodes, i.e., weight between n−2s
and n. Each separator node creates at most four new subtrees from which the sum and
difference can be formed: its own subtree and the three children subtrees. (These latter
ones exist only if the node was not a leaf.) So with s separating nodes, we get 1 + 4s
subtrees from which to form the sum and difference. Each tree has a weight of the form
3h − 1.

If we take a sum and difference of L ≤ 4s+ 1 subtrees we must fulfill the inequality

n− 2s ≤
L∑
i=1

(±(3hi − 1)) ≤ n,

which implies

n− 2s− L ≤
L∑
i=1

(±3hi) ≤ n+ L

and

n− 6s− 1 ≤
L∑
i=1

(±3hi) ≤ n+ 4s+ 1.

For any number p in the range n−6s−1 ≤ p ≤ n+4s+1, the ternary representation starts
with at least k − 1− dlog3(6s+ 1)e ones. On the other hand, one easily sees by induction
that a sum and difference of L powers of 3 has at most L ones in its ternary representation.
We thus get the relation 4s + 1 ≥ L ≥ k − 1 − dlog3(6s + 1)e, from which s ≥ Ω(k)
follows.

B Proof of Corollary 3.4
We show that for any fixed δ ≥ 0 (and then by symmetry for every δ < 0 too), whenever
(n− 1)d/2 + δ is an integer,

|L(n−1)d/2+δ| = Cd/
√
d · nd−1 ±O(nd−2).
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We define Cd = Vold−1Hd(d/2), i.e., the volume of the middle slice of the unit
hypercube. Setting s = 0 in Theorem 3.3 establishes the convergence of Cd to

√
6/π.

The layer Lk, for k = (n−1)d/2+δ, is a discrete version of a slice of a cube. If we fix
the first d − 1 coordinates, then there is at most one vertex in Lk that has these first d − 1
coordinates. Thus |Lk| = |L′k|, where L′k is the projection of Lk along the last axis.

To estimate the size of L′k (and thus of Lk) take first the middle slice Hd(d/2) of the
continuous unit cube and project it to the first d − 1 coordinates, yielding the polytope
Hd(d/2)′. As the normal vector of the slice is (1, 1, . . . , 1), projecting it to the hyperplane
orthogonal to the last axis scales the volume by a factor of 1/

√
d:

Vold−1H
d(d/2)′ = Vold−1H

d(d/2)/
√
d.

Now let Hd(d/2)′′ = nHd(d/2)′, i.e., we blow up Hd(d/2)′ by a factor n. Let M be
the set of grid points in this Hd(d/2)′′. As for fixed d, Hd(d/2)′′ is a factor-n blow up of
some fixed (d − 1)-dimensional convex polytope, the difference between its volume and
the number of grid points in it is O(nd−2). (This follows basically from the definition of
the volume, for details see e.g., [12, Proposition 4.6.13].) Thus,

|M | = nd−1 Vold−1H
d(d/2)′ +O(nd−2) =

= nd−1 Vold−1H
d(d/2)/

√
d+O(nd−2) = Cd/

√
d · nd−1 +O(nd−2).

Now we are left to show that |L′k| = |M | + O(nd−2). For that it is enough to show that
|L′k \M | and |M \L′k| areO(nd−2). For all of these points the sum of the d−1 coordinates
is equal to (n− 1)d/2 + i (resp. (n− 1)d/2−n+ i) for some 0 < i ≤ δ. This is O(nd−2)
points for every i, altogether 2δO(nd−2) = O(nd−2) points, which finishes the proof.

C Proof of Theorem 4.1
Suppose we are given a grid graph G and an Algorithm A which finds t in G4,4 in case
one path and some cycles cover every vertex. We show an Algorithm B which finds the
endvertex in G in case there is only a directed path. We can naturally identify every vertex
of G with a 4 × 4 grid in G4,4: the vertex v = (i1, . . . id) corresponds to the axis-parallel
4 × 4 rectangle (we call it a block) B(v) having 16 vertices, whose two opposite corners
are (4i1−3, 4i2−3, i3, . . . id) and (4i1, 4i2, i3, . . . id). We call (4i1−3, 4i2−3, i3, . . . id)
and (4i1, 4i2, i3, . . . id) the even corners and the two other corners (4i1 − 3, 4i2, i3, . . . id)
and (4i1, 4i2 − 3, i3, . . . id) the odd corners.

Consider a directed path P in G. We call a system of a directed path and some directed
cycles in G4,4 good if they cover every vertex and the path goes through exactly those
blocks which correspond to the vertices of P , in the same order.

Now we construct good systems. If a vertex v ∈ V (G) is not on the path, we cover
the corresponding block by a cycle. In case of a vertex v = (i1, . . . , id) on the path in
G, the directed path arrives at the corresponding block B(v) in some corner p1(v), and
goes straight to a neighboring corner p2(v), where it leaves. The remaining vertices form
a 4 × 3 rectangle, which can be covered by a cycle. Finally, when v is the very last vertex
on the path, we define p1(v) similarly, and cover the remaining vertices by a path starting
in p1(v).

Our good systems will satisfy an additional property. If, for a vertex v = (i1, . . . id)

of G, the coordinate sum
∑d
j=3 ij is even, then the first vertex p1(v) of the path in the
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corresponding block is an even corner, and the last vertex p2(v) is an odd corner. In case∑d
j=3 ij is odd, it is the other way round. Note that if it is true for B(s), it has to be true

for every other block as well. Indeed, when the path leaves a block at, for example, an odd
corner, it either moves in one of the first two dimensions (then it arrives at an even corner,
and

∑d
j=3 ij does not change), or in another dimension (then it arrives at an odd corner,

but the parity of
∑d
j=3 ij changes).

Note that these properties do not uniquely determine the system. We will incrementally
determine the graph as queries arrive.

Now we are ready to define Algorithm B. At every step we call Algorithm A, and then
answer such a way that at the end we get a good system. If Algorithm A would query
a vertex v in G4,4, Algorithm B queries the corresponding vertex v′ in G instead (i.e.,
the vertex v′ with v ∈ B(v′)). Using the answer for this query, we choose all the edges
incident to vertices of B(v′) and answer to Algorithm A according to this. If v′ has been
asked before, we have already determined the edges in B(v′), and answer accordingly.
Suppose that v′ has not been queried before. In case the answer is that v′ is not on the
path, choose an arbitrary cycle covering the vertices of the corresponding block B(v′) and
answer according to the edges incident to v.

In case the answer gives two arcs uv′ and v′w, we have to choose the entering vertex
p1(v′) and the exit vertex p2(v′). We will discuss this choice below. This choice will define
5 edges on the path and a cycle of length 12. One edge connects the blocks corresponding
to u and v, leaving the last vertex of the path in B(u) and arriving at the first vertex of the
path in B(v′), i.e., this edge is p2(u)p1(v′). Similarly we add the edge p2(v′)p1(w). We
also add the three edges which connect p1(v′) and p2(v′). Finally we cover the remaining
12 vertices with a cycle.

We still have to tell which one of the two possible first vertices we use as p1(v′), and
similarly for the possible last vertices. If p2(u) has already been determined, this fixes the
choice of p1(v′) as the vertex adjacent to it. If uv′ is parallel to one of the first two axes, this
also reduces the choice of the corner p1(v′) to one possibility. Otherwise we pick p1(v′)
arbitrarily among the two choices. The exiting vertex p2(v′) is determined analogously.

Even if Algorithm A would know all answers in B(v′), it does not give more infor-
mation than what Algorithm B knows after asking v′. Algorithm A does not finish before
Algorithm B finds the end vertex, thus Algorithm A needs at least as many queries as
Algorithm B (on the respective graphs), which finishes the proof.
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Abstract

In this paper we describe an infinite chiral 4-polytope in the Euclidean 3-space. This
builds on previous work of Bracho, Hubard and the author, where a finite chiral 4-polytope
in the Euclidean 4-space is constructed. These two polytopes show that there are finite and
infinite chiral polytopes of full rank as defined by McMullen.

Keywords: Chiral 4-polytope, full rank polytope.
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1 Introduction
In this paper we regard n-polytopes as combinatorial structures in Rd constructed from (n−
1)-polytopes as building blocks, where 0- and 1-polytopes are points and line segments,
respectively.

Regular polytopes are those admitting the highest degree of symmetry in the sense that
any two flags are equivalent under the symmetry group. In some way they admit all possible
abstract reflections as symmetries.

Nowadays we have plenty of examples of regular polytopes, the most obvious being
the convex regular polytopes (see for example [2]) and the tessellations by n-dimensional
cubes. Other examples of regular polytopes can be found in [4, 5, 6, 7].

Chiral polytopes have two orbits of flags under the symmetry group with the property
that adjacent flags belong to distinct orbits. They admit all abstract rotations as symmetries,
but no abstract reflection.

There is very little published work on chiral polytopes on Euclidean spaces. There are
no convex chiral polytopes and no chiral tessellations of Euclidean spaces. This illustrates
the difficulty to find ‘natural’ families of chiral polytopes.

In 2005 Schulte classified all chiral polyhedra in R3 (see [11] and [12]). They are all
infinite; some have finite faces, and some have infinite faces.
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In [5, Theorem 11.2] it was claimed that for any positive integer d there are neither
finite chiral d-polytopes in Rd, nor infinite chiral (d+ 1)-polytopes in Rd.

The first known finite chiral 4-polytope in R4 was discovered in [1] in 2014 proving
false one half of the claim in [5]. In this paper we describe the first known infinite chiral
4-polytope in R3, proving false the remaining half of the claim.

Definitions and basic results are given in Section 2. In Section 3 we describe the build-
ing blocks of the 4-polytope, which is constructed in Section 4. Finally, in Section 5 we
discuss the combinatorial symmetry of the 4-polytope.

2 Preliminaries
In this section we recall some concepts and results of the Euclidean space and of polytopes
embedded on it.

2.1 Symmetries of the Euclidean space

The rotation group of the octahedron, that we shall denote by [3, 4]+, is one of the finite
groups of isometries of R3. It contains 24 elements, out of which six are 4-fold rotations,
eight are 3-fold rotations, nine are half-turns, and the remaining one is the identity. In
particular, all of its elements preserve orientation (see for example [3] for a more detailed
description of this group).

A lattice is the orbit of the origin o under a discrete translation group of R3 generated
by translations with respect to three linearly independent vectors. Up to similarity, there are
three lattices that are invariant under the action of the group [3, 4]+ (see [8, Section 6D]).

The cubic lattice, denoted by Λ(1,0,0), consists of the points of R3 with integer coordi-
nates. The translations by the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) constitute a basis for
the translation group of this lattice.

The face-centred cubic lattice, denoted by Λ(1,1,0), is generated by the translations by
the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1). It contains the set of points of R3 with integer
coordinates, whose sum is an even number. The cubic lattice is the union

Λ(1,1,0) ∪ (Λ(1,1,0) + (1, 0, 0))

of two isometric copies of the face-centred cubic lattice.
Finally, the body centred cubic lattice is the set of points with integer coordinates such

that either all of them are even, or all of them are odd. It is generated by the translations
by the vectors (1, 1, 1), (−1, 1, 1) and (1,−1, 1), and it is denoted by Λ(1,1,1). The cubic
lattice is the union

Λ(1,1,0) ∪ (Λ(1,1,0) + (1, 0, 0)) ∪ (Λ(1,1,0) + (0, 1, 0)) ∪ (Λ(1,1,0) + (0, 0, 1))

of four isometric copies of the body-centred cubic lattice.
The tessellation {4, 3, 4} by cubes of R3 is the only regular tessellation of the Eu-

clidean space. A Petrie polygon of {4, 3, 4} is a helix with vertex and edge sets contained
in those of {4, 3, 4}, where every two consecutive edges belong to some square; every three
consecutive edges belong to the same cube, but not to the same square; and no four con-
secutive edges belong to the same cube. The direction vectors of any three consecutive
edges of a Petrie polygons of {4, 3, 4} are precisely (1, 0, 0),(0, 1, 0) and (0, 0, 1) in some
order. These helices have axes with direction vectors (1, 1, 1), (1, 1,−1), (1,−1, 1) and
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(−1, 1, 1). Every edge of a Petrie polygon h is a translate of any edge that is 3k steps apart
in h (that is, there are 3k − 1 edges between them).

Any two Petrie polygons of {4, 3, 4} are isometric. However, any given Petrie polygon
is equivalent under orientation preserving isometries (translations, rotations and twists) to
only half of the Petrie polygons. We say that a Petrie polygon is a right helix if it can be
obtained from the helix

. . . , (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (−1, 1, 1), . . .

by an orientation preserving isometry. The remaining helices are called left helices.

2.2 Polyhedra and 4-polytopes

When studying highly symmetric polytopes we need to move away from convexity to get
a richer theory. The definitions below follow the spirit of [4] and subsequent papers.

For us a polygon (or 2-polytope) in R3 is a discrete set of points called vertices or 0-
faces together with a set of line segments called edges or 1-faces between pairs of vertices,
such that the resulting graph is connected and 2-regular. The edges are allowed to intersect
in interior points, but there are no vertices in the interior of edges.

A polyhedron (or 3-polytope) in R3 is a set of polygons, called 2-faces, with the extra
properties that every edge belongs to exactly two polygons, the set of vertices is discrete,
the graph determined by the vertices and edges is connected, and the vertex-figures at all
vertices are connected. Here the vertex-figure at a vertex v is the polygon (or in principle
polygons) whose vertices are the neighbours of v, two of which are adjacent if and only if
they are the two neighbours of v in a 2-face.

A 4-polytope in R3 is a set of polyhedra, called 3-faces with the extra properties that
every 2-face belongs to exactly two polyhedra, the set of vertices is discrete, the graph
determined by the vertices and edges is connected, and the vertex-figures at all vertices are
polyhedra. The vertex-figure at a vertex v in this case consists of the polygons that are the
vertex-figures at v in the polyhedra containing it.

Defined as above, polyhedra and 4-polytopes in R3 are precisely Euclidean realisations
of abstract polyhedra and 4-polytopes as defined in [8, Section 5]. Due to this relationship,
we say that two elements of an n-polytope are incident if one is contained in the other as
geometric objects. Vertices, edges, polygons and polyhedra are then regarded as objects of
rank 0, 1, 2 and 3, respectively.

The facets of an n-polytope are its (n − 1)-faces (n ∈ {3, 4}). The 1-skeleton of a
polyhedron or of a 4-poltyope is the graph determined by its sets of vertices and edges.
The 2-skeleton of a 4-polytope consists of the sets of vertices, edges and 2-faces.

A flag of an n-polytope P is a set of n mutually incident elements of P , one of each
rank. That is, a flag of a polygon is a pair of incident vertex and edge, a flag of a polyhedron
is a triple of mutually incident vertex, edge and 2-face, and a flag of a 4-polytope contains
a vertex, an edge, a polygon and a polyhedron, all incident to the other three.

Given any flag Φ of an n-polytope and given i ∈ {0, . . . , n − 1} there exists a unique
flag Φi that differs from Φ only on the face of rank i. The flag Φi is known as the i-
adjacent flag of Φ. We extend recursively this notion and for any word w on the elements
in {0, . . . , n− 1} we define Φwi := (Φw)i.

By a symmetry of an n-polytope P we mean an isometry of R3 that preserves P . An
n-polytope is said to be regular whenever its symmetry group acts transitively on the flags
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of P . Clearly, the facets of a regular 4-polytope are regular polyhedra. There are 48 regular
polyhedra and 8 regular 4-polytopes in R3; they were thoroughly studied in [7].

An n-polytope is said to be chiral whenever its symmetry group induces two orbits on
the flags, with adjacent flags in distinct orbits. The term ‘chiral’ often carries the meaning of
being handed, that is, not admitting a mirror symmetry. In our context, where only highly
symmetric objects are of interest, chiral polytopes denote the most symmetric polytopes
that do not admit a symmetry mapping a flag to an adjacent flag, which is the combinatorial
equivalent to mirror symmetry.

There are no finite chiral polyhedra in R3 (see for example [11, Theorem 3.1]). Infinite
chiral polyhedra were classified in [11] and [12] in six families. One of this polyhedra is
described in detail in Section 3.

Regular and chiral n-polytopes admit a set of distinguished abstract rotations as sym-
metries. These are isometries Si that map a given base flag Φ to the flag Φi(i−1) for
i ∈ {1, . . . , n − 1}. Such an isometry needs not be a rotation around an axis in R3.
However, the term ‘rotation’ is in no way inadequate, since their combinatorial impact is
similar to that of a rotation on a polygon. S1 cyclically permutes the vertices and edges
of the base 2-face, S2 cyclically permutes the edges and polygons around the base vertex
contained in the base polyhedron, and S3 cyclically permutes the polygons and polyhedra
around the base edge.

The symmetry group of a chiral n-polytope is generated by its distinguished abstract ro-
tations. The group generated by all distinguished abstract rotations of a regular n-polytope
has index at most 2 in the full symmetry group. The tetrahedron {3, 3} and its Petrial
{4, 3}3 are examples of polyhedra where the subgroups generated by the distinguished
abstract rotations have index 2 and 1, respectively.

Conversely, an n-polytope whose symmetry group contains all possible distinguished
abstract rotations is either regular or chiral, and it is regular if and only if the symmetry
group contains an element moving the base vertex but fixing all other elements of the base
flag (see [13] for the combinatorial analogue to these claims).

3 The polyhedron P1(1, 0)

It is time now to describe the chiral polyhedron P1(1, 0) as a particular case of the general
description of the polyhedra P1(a, b) in [9]. Other description, using the technique known
as Wythoff’s construction, can be found in [12].

Throughout, T will denote the cubical tessellation {4, 3, 4} of R3 with vertices on Z3,
and η : R3 → Π the orthogonal projection into the plane Π through the origin o with
normal vector (1, 1, 1). It is well known that the image under η of the 1-skeleton of T is
the 1-skeleton of a tessellation T ′ by equilateral triangles, and that Λ(1,1,1)η is the vertex
set of a tessellation by equilateral trangles whose edge length is twice as that of Z3η. The
preimage under η of any edge of T ′ intersects T in a collection of parallel edges.

Figure 1 shows the tessellation T ′ of Π on pale gray and black lines. Assume that the
origin o projects to the fat vertex and that the coordinate axes project as indicated. That
is, assume that one endpoint of the edge to the left of the fat vertex is the projection of
(1, 0, 0), that the black edge at the fat vertex that does not belong to the dotted path ends
at the projection of (0, 0, 1), and that one endpoint of the remaining black edge incident to
the fat vertex is the projection of (0, 1, 0).

Under these assumptions the polyhedron P1(1, 0) can be described as follows. Its ver-
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Figure 1: Projection of the 1-skeleton of P1(1, 0)

tex set is Z3. The edge set of P1(a, b) consists of all edges e of T such that eη is a black
edge in Figure 1, that is,

• the edge between (x, y, z) and (x+ 1, y, z) for every (x, y, z) ∈ Λ(1,1,1) and
(x, y, z) ∈ Λ(1,1,1) + (0, 0, 1),

• the edge between (x, y, z) and (x, y + 1, z) for every (x, y, z) ∈ Λ(1,1,1) and
(x, y, z) ∈ Λ(1,1,1) + (1, 0, 0),

• the edge between (x, y, z) and (x, y, z + 1) for every (x, y, z) ∈ Λ(1,1,1) and
(x, y, z) ∈ Λ(1,1,1) + (0, 1, 0).

Finally, the 2-faces are all Petrie polygons of T living in this 1-skeleton.
The six edges incident to any given vertex of T project by η to three gray edges and

three black edges. This can be used to show that all vertices of P1(a, b) have degree 3.
Since no two black edges at the same vertex in Figure 1 are collinear, the set of three edges
incident to a vertex of P1(a, b) are translates of the three edges incident to some vertex of
the cube C with vertex set {(x, y, z) : x, y, z,∈ {0, 1}}. The precise arrangement of edges
at each vertex is explained by the following straightforward lemma.

Lemma 3.1. The three edges incident to any vertex of P1(1, 0) in Λ(1,1,1) are translates
of the three edges incident to (0, 0, 0) in the cube C defined as above. Similarly, the three
edges incident to any vertex of P1(1, 0) in Λ(1,1,1) + (1, 0, 0) (resp. in Λ(1,1,1) + (0, 1, 0)
and Λ(1,1,1) + (0, 0, 1)) are translates of the three edges of C incident to (1, 0, 1) (resp. to
(1, 1, 0) and to (0, 1, 1)).

The 2-faces of P1(1, 0) are helices over triangles and belong to four parallel classes
H1,H2,H3,H4. Helices inH1 project to the triangles with black edges in Figure 1. Every
helix in H2 projects to Π either in the path with dashed lines or in one of its translates.
Helices in H3 and H4 project to images of helices in H2 under rotations by 2π/3 and by
4π/3, respectively.

The axis of every helix inH1 has direction vector (1, 1, 1). There is precisely one helix
inH1 projecting to each triangle in Figure 1. For example, the helix

. . . , (−1, 0,−1), (−1, 0, 0), (−1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), . . . (3.1)

is the only helix that projects to the triangle with gray interior. All other helices in H1 are
obtained by translating this helix by integer combinations of (1, 1,−1) and (1,−1, 1).
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In contrast, infinitely many helices inH2 project to the dotted path. They are the helix

. . . , (1,−1,−1), (1, 0,−1), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (−1, 1, 1), . . . (3.2)

and its translates by m(1, 1, 1) for m ∈ Z. The remaining helices in H2 are obtained
by translating these helices by m(1, 1,−1) for m ∈ Z. They all have direction vector
(−1, 1, 1).

The parallel classesH3 andH4 are respectively represented by the helices

. . . , (−1, 1,−1), (−1, 1, 0), (0, 1, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1,−1, 1), . . . , (3.3)

. . . , (−1,−1, 1), (0,−1, 1), (0, 0, 1), (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1,−1), . . . , (3.4)

which have the same projection to Π as their translates bym(1, 1, 1) withm ∈ Z. All other
helices in each of these classes are obtained by translating these helices by m(−1, 1, 1) for
m ∈ Z. The axis of every helix in H3 (resp. H4) has direction vector (1,−1, 1) (resp.
(1, 1,−1)).

It should be clear now that every edge in a black-edged triangle in Figure 1 is in the
projection of a helix in H1 and of a helix in some other parallel class. The horizontal
edges in black-edged triangles are the projection of helices in H1 and H3; those edges
in black-edged triangles that are translates of the edge in the gray triangle that belongs
also to the dotted path are projections of helices in H1 and H2; and the remaining edges
in black-edged triangles are projections of helices in H1 and H4. Similarly, every black
edge in Figure 1 that is not in a triangle belongs to the projection of helices in precisely
two of the parallel classes H2, H3 and H4. From this it is easy to see that every edge of
P1(1, 0) belongs precisely to two helices. Furthermore, the parallel classes of the helices
containing an edge e are completely determined by whether or not eη belongs to a black-
edged triangle, together with its direction vector in Figure 1.

In order to discuss the symmetries of P1(1, 0) we take as base flag Φ the one containing
the origin o, the edge between o and (0, 1, 0), and the helix in (3.2). Let S1 be the screw
motion

(x, y, z) 7→ (−y + 1, z,−x) (3.5)

with axis
{

1
3 (1, 1, 0) + k(−1, 1, 1) : k ∈ R

}
, translation vector 1

3 (1,−1,−1) and rotation
component of 2π/3. Let S2 be the rotation

(x, y, z) 7→ (z, x, y) (3.6)

about the axis {k(1, 1, 1) : k ∈ R} by an angle of 2π/3. By applying these isometries to
the edges of P1(1, 0) we can see that S1 and S2 preserve the 1-skeleton of P1(1, 0). Hence,
S1 and S2 also preserve the set of 2-faces of P1(a, b). Furthermore, S1 cyclically permutes
the vertices of the base 2-face and S2 cyclically permutes the three helices around o. This
implies that P1(1, 0) admits symmetries acting like the distinguished abstract rotations and
therefore it is either regular or chiral.

The polyhedron P1(1, 0) turns out to be chiral. Indeed, the only isometry T preserving
the base edge and base helix, but interchanging the base vertex o with (0, 1, 0) is the half-
turn

(x, y, z) 7→ (z,−y + 1, x)

with axis {(0, 1/2, 0) + k(1, 0, 1) : k ∈ R}. However, such a T maps the edge between
o and (0, 0, 1) to the edge between (0, 1, 0) and (1, 1, 0), which is not an edge of P1(1, 0),
and hence does not preserve the 1-skeleton of P1(1, 0).
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The base helix of P1(1, 0) is a right helix as explained in Section 2. The symmetries S1

and S2 defined above are both orientation preserving. It follows that all helices in P1(1, 0)
are right helices.

The symmetry S3
1 of P1(1, 0) is the translation by the vector (1,−1,−1). The conju-

gates of this translation by S2 and S2
2 are the translations by the vectors (−1, 1,−1) and

(−1,−1, 1), respectively. The next proposition follows.

Proposition 3.2. The symmetry group of P1(1, 0) contains the translations by all vectors
with endpoints in Λ(1,1,1).

Since P1(1, 0) is chiral, it is also helix-transitive, implying the next remark.

Remark 3.3. The orthogonal projections of P1(1, 0) in the directions (1, 1,−1), (1,−1, 1)
and (−1, 1, 1) of the axes of the helices are all isometric to the projection in the direction
(1, 1, 1) in Figure 1.

It is interesting to note that the set of gray edges in Figure 1 is isometric to the set of
black edges, and one can be obtained from the other by a half-turn around the fat point. The
polyhedron constructed from the preimages in T of the gray edges under the projection η is
clearly isometric to P1(1, 0) but it contains only left helices. They are precisely the images
of the helices of P1(1, 0) under the isometry mapping x̄ to −x̄ for every x̄ ∈ R3.

4 The chiral 4-polytope P{∞,3,4}

The polyhedron P1(1, 0) just described is the building block of the chiral 4-polytope
P{∞,3,4}. The vertex and edge sets of P{∞,3,4} are the vertex and edge sets of the cu-
bic tessellation T . The 2-faces of P{∞,3,4} are all right Petrie polygons of T . This set
constitutes the regular polygonal complex K7(1, 1) in [10].

The facets of P{∞,3,4} are P1(1, 0) and its images under the group [3, 4]+ of rotations
of the octahedron. Recall that [3, 4]+ has 24 elements. Since P1(1, 0) is invariant under
three-fold rotations around the line through o with direction vector (1, 1, 1), there are at
most 8 images of P1(1, 0) under [3, 4]+.

In fact, P{∞,3,4} has precisely 8 facets. They are described next. Recall from Section
3 that the three neighbours of o in P1(1, 0) are e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 =
(0, 0, 1). This motivates to denote this polyhedron as a facet of P{∞,3,4} by F(+,+,+). The
group [3, 4]+ acts transitively on the set of octants of R3 and hence P{∞,3,4} has precisely
8 facets. They are denoted F(a1,a2,a3), where ai takes the value ‘+’ whenever in that facet
ei is a neighbour of o, and the value ‘−’ otherwise. For example, the orbit of F(+,+,+)

under the 4-fold rotation around the z axis mapping (x, y, z) to (y,−x, z) is

(F(+,+,+), F(+,−,+), F(−,−,+), F(−,+,+)).

In order to better understand the combinatorics of P{∞,3,4} it is convenient to compute
the image of all its facets under the projection η as defined in Section 3. This can be done
by directly applying the orientation preserving isometries in [3, 4]+ and then η to the edges
of P1(1, 0).

Alternatively, we can use the fact that the helices of P1(1, 0) split in four classes H1,
H2,H3 andH4, consisting of helices with axes having direction vector (1, 1, 1), (−1, 1, 1),
(1,−1, 1) and (1, 1,−1), respectively. Every isometry T ∈ [3, 4]+ permutes the four di-
rections (1, 1, 1), (1, 1,−1), (1,−1, 1) and (−1, 1, 1) of the axes of helices of P1(1, 0) and
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Figure 2: Projections of the eight facets of P{∞,3,4}

so F(+,+,+)T must have a parallel class of helices with axes in the direction of (1, 1, 1).
These helices project orthogonally into triangles on the plane Π; furthermore, this triangles
must be pointing up, since they are precisely the images of right helices, whereas the left
helices project into triangles pointing down. Similarly, the helices in the three remaining
parallel classes must project into isometric copies of the dotted path in Figure 1. This infor-
mation, together with the three neighbours of o on each facet and Remark 3.3, determines
the projections of the eight facets of P{∞,3,4} as in Figure 2, where the fat dot represents
the origin o.

We can see that F(+,+,+) and F(−,−,−) are the only facets where o does not belong to a
helix with axis in the direction of (1, 1, 1). In both instances o belongs to helices with axes
in the directions of (−1, 1, 1), (1,−1, 1) and (1, 1,−1).

We choose the following seven isometries T(a1,a2,a3) ∈ [3, 4]+ mapping F(+,+,+) to
F(a1,a2,a3):

T(+,−,−) : (x, y, z) 7→ (x,−y,−z),
T(−,+,−) : (x, y, z) 7→ (−x, y,−z),
T(−,−,+) : (x, y, z) 7→ (−x,−y, z),
T(−,+,+) : (x, y, z) 7→ (−z, y, x),

T(+,−,+) : (x, y, z) 7→ (y,−x, z),
T(+,+,−) : (x, y, z) 7→ (x, z,−y),

T(−,−,−) : (x, y, z) 7→ (−x,−y,−z).

We also denote by H1, H2, H3 and H4 the helices in (3.1), (3.2), (3.3) and (3.4), respec-
tively. Recall that the helices in F(+,+,+) with direction vector (1, 1, 1) are H1 and its
translates by vectors with endpoints in Λ(1,1,1).

The right Petrie polygons of T with axes in the direction of (1, 1, 1) are the ones in
F(+,+,+) together with their translates by (1, 0, 0), (0, 1, 0) and (0, 0, 1). It can be seen
from Figure 2 that the helices in F(+,+,+) with axis in the direction of (1, 1, 1) are also
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helices of F(−,−,−). Furthermore, the helices with axes in the direction of (1, 1, 1) of
F(+,−,−) and of F(+,−,+) are the translates of those in F(+,+,+) by (0, 0, 1), the helices
with axes in the direction of (1, 1, 1) of F(−,+,−) and of F(+,+,−) are the translates of those
in F(+,+,+) by (1, 0, 0), and the helices with axes in the direction of (1, 1, 1) of F(−,−,+)

and of F(−,+,+) are the translates of those in F(+,+,+) by (0, 1, 0). This can also be verified
by noting that

H1 = H1T(−,−,−) + (−1, 1, 1),

H1 + (1,−1, 1) = H2T(+,−,−) + (0, 0, 1) = H2T(+,−,+) + (0, 0, 1),

H1 + (1,−1,−1) = H3T(−,+,−) + (1, 0, 0) = H3T(+,+,−) + (1, 0, 0),

H1 = H4T(−,−,+) + (0, 1, 0) = H4T(−,+,+) + (0, 1, 0),

together with the fact that [3, 4]+ permutes the four directions of the axes of the helices of
F(+,+,+) and that the set of helices of F(+,+,+) in any of the four directions is invariant by
translations by vectors with endpoints in Λ(1,1,1). This shows that all right Petrie polygons
of T with axes in the direction of (1, 1, 1) belong to at least two facets of P{∞,3,4}. Recall
that the set of helices on P1(1, 0) with axis in the direction of (1, 1, 1) can be obtained
by translating H1 by vectors with endpoints in Λ(1,1,1), and similarly the set of helices of
P1(1, 0) with axis in the direction of (−1, 1, 1), (1,−1, 1) or (1, 1,−1) can be obtained
by translating H2, H3 or H4, respectively, by vectors with endpoints in Λ(1,1,1). This
shows that each right Petrie polygon of T with axis in the direction of (1, 1, 1) belongs to
precesely two facets of P{∞,3,4}. The fact that T and P{∞,3,4} are symmetric under [3, 4]+

implies the following lemma.

Lemma 4.1. Every helix of P{∞,3,4} belongs to precisely two facets.

Table 1 indicates the direction vector of the helices that two facets have in common
(if any). In the table, (a1, a2, a3) indicates the facet F(a1,a2,a3). In particular one can
conclude that the facets F(a1,a2,a3) and F(b1,b2,b3) have a helix in common if (a1, a2, a3)
and (b1, b2, b3) coincide either in two coordinates or in none. The entries on the table can
be obtained by applying the isometries T(a1,a2,a3) to the helices of F(+,+,+), or by a careful
inspection of Figure 2.

Facets (+,+,+) (+,+,−) (+,−,+) (−,+,+) (+,−,−) (−,+,−) (−,−,+) (−,−,−)

(+,+,+) — (−1, 1, 1) (1, 1,−1) (1,−1, 1) none none none (1, 1, 1)

(+,+,−) (−1, 1, 1) — none none (1,−1, 1) (1, 1, 1) (1, 1,−1) none

(+,−,+) (1, 1,−1) none — none (1, 1, 1) (1,−1, 1) (−1, 1, 1) none

(−,+,+) (1,−1, 1) none none — (−1, 1, 1) (1, 1,−1) (1, 1, 1) none

(+,−,−) none (1,−1, 1) (1, 1, 1) (−1, 1, 1) — none none (1, 1,−1)

(−,+,−) none (1, 1, 1) (1,−1, 1) (1, 1,−1) none — none (−1, 1, 1)

(−,−,+) none (1, 1,−1) (−1, 1, 1) (1, 1, 1) none none — (1,−1, 1)

(−,−,−) (1, 1, 1) none none none (1, 1,−1) (−1, 1, 1) (1,−1, 1) —

Table 1: Helices shared by two facets of P{∞,3,4}.
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Recall that the vertex-figure at o in P{∞,3,4} consists of the eight triangles that are the
vertex-figures at o of the eight facets of P{∞,3,4}. From the construction it is immediate
that the vertex-figure at o in P{∞,3,4} is an octahedron.

As a consequence of Proposition 3.2, the three neighbours in F(+,+,+) of any vertex v
in Λ(1,1,1) are v+(1, 0, 0), v+(0, 1, 0) and v+(0, 0, 1). A similar statement can be made for
the remaining seven facets of P{∞,3,4}. Indeed, since F(a1,a2,a3) is the image of F(+,+,+)

under some isometry in [3, 4]+ and Λ(1,1,1) is invariant under the entire group [3, 4]+, the
translations by vectors with endpoints in Λ(1,1,1) are symmetries of F (a1, a2, a3). This
implies that the vertex-figure at any vertex of P{∞,3,4} in Λ(1,1,1) is an octahedron. This
statement is in fact true for any vertex of P{∞,3,4}.

Lemma 4.2. The vertex-figure of any vertex of P{∞,3,4} is an octahedron.

Proof. Since every facet of P{∞,3,4} is invariant under translations by vectors with end-
points in Λ(1,1,1), we only need to show that the result holds for a representative of each
translation class. Since Λ(1,0,0) is the disjoint union of four translates of Λ(1,1,1), there are
only four orbits of vertices of P{∞,3,4} under the action of the translations by vectors with
endpoints in Λ(1,1,1). We take o, (1, 0, 0), (0, 1, 0) and (0, 0, 1) as representatives of these
orbits.

The previous discussion shows that the result holds for o (and hence for vertices in
Λ(1,1,1)). A close inspection to Figure 2 (or direct verification) shows that the neighbours
of the remaining three representatives in facet F(a1,a2,a3) are as in Table 2, where an entry
(b1, b2, b3) indicates that v has as neighbour v + ei when bi is ‘+’, and v − ei when bi is
‘−’.

F(+,+,+) F(+,+,−) F(+,−,+) F(−,+,+) F(+,−,−) F(−,+,−) F(−,−,+) F(−,−,−)

(1, 0, 0) (−,+,−) (−,−,−) (−,+,+) (+,−,+) (−,−,+) (+,+,+) (+,−,−) (+,+,−)

(0, 1, 0) (−,−,+) (+,−,+) (+,+,−) (−,−,−) (−,+,−) (+,−,−) (+,+,+) (−,+,+)

(0, 0, 1) (+,−,−) (−,+,+) (−,−,−) (+,+,−) (+,+,+) (−,−,+) (−,+,−) (+,−,+)

Table 2: Neighbours of (1, 0, 0), (0, 1, 0) and (0, 0, 1) on the facets of P{∞,3,4}.

The entry of Table 2 corresponding to vertex v and facet F indicates the octant deter-
mined by the three neighbours of v in F . The vertex-figure of v at F is then a triangle in
that octant (determined by the three neighbours of v). All octants appear exactly once on
each row, implying that the vertex-figures are all octahedra.

We are now ready for our main result.

Theorem 4.3. The structure P{∞,3,4} is a chiral 4-polytope in R3.

Proof. We know that P{∞,3,4} is the set of polyhedra

{P1(1, 0)α : α ∈ [3, 4]+},

and that the set of vertices is descrete. We also know that its 1-skeleton coincides with
that of the tessellation by cubes, and hence it is connected. Every 2-face belongs to pre-
cisely two facets by Lemma 4.1 and all vertex-figures are polyhedra by Lemma 4.2. Hence
P{∞,3,4} is a 4-polytope.
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By construction, P{∞,3,4} is invariant under the rotation S2 defined in (3.6) and the
rotation S3 given by

(x, y, z) 7→ (z, y,−x),

since they just permute the images of P1(1, 0) under [3, 4]+. Furthermore, the screw mo-
tion S1 defined in (3.5) also preserves P{∞,3,4}. In fact, by applying S1 to the edge set
of F(a1,a2,a3) for each (a1, a2, a3) we can see that S1 fixes F(+,+,+) and F(+,+,−), and
induces the permutation(

F(+,−,+), F(−,−,−), F(−,+,+)

)
·
(
F(+,−,−,), F(−,−,+), F(−,+,−)

)
in the remaining 6 facets of P{∞,3,4}.

These three isometries are the distinguished abstract rotations with respect to the flag
Ψ containing o, the edge between o and (0, 1, 0), the helix in (3.2) and the facet F(+,+,+).
Indeed, it is not hard to verify that ΨS1 = Ψ10, ΨS2 = Ψ21 and ΨS3 = Ψ32. Hence
P{∞,3,4} is either regular or chiral, and since its facets are chiral, P{∞,3,4} itself is chiral.

5 Combinatorial symmetry
In the previous section we constructed a 4-polytope that is chiral as a geometric object. In
this section we discuss its combinatorial nature. That is, we study P{∞,3,4} as a partially
ordered set with a rank function ranging in {0, 1, 2, 3}, whose elements are the vertices,
edges, polygons and polyhedra of P{∞,3,4} where two of them are incident if and only if
one is contained in the other (see [8] for proper definitions of abstract polytopes).

An automorphism of an n-polytope is a bijection of its vertices, edges, etc. that pre-
serves the incidence. A polytope is combinatorially regular (resp. combinatorially chiral)
if its automorphism group acts transitively on its flags (resp. if its automorphism group in-
duces two orbits on flags with adjacent flags in distinct orbits). The distinguished abstract
rotations of P{∞,3,4} as a geometric object induce automorphisms as an abstract object.

Due to the connectivity of P{∞,3,4} and to the uniqueness of i-adjacent flags for i ∈
{0, 1, 2, 3}, any automorphism of P{∞,3,4} is completely determined by the image on any
flag. As a consequence of this, the group generated by the automorphisms given by the
abstract distinguished rotations of P{∞,3,4} has index at most 2 on the full automorphism
group of P{∞,3,4}. Furthermore, P{∞,3,4} is combinatorially regular if and only if there is
an automorphism mapping a flag Φ to its 1-adjacent flag Φ1. We next show that this is not
the case.

Theorem 5.1. The 4-polytope P{∞,3,4} is combinatorially chiral.

Proof. We take as base flag Ψ := {F0, F1, F2, F3} where F0 = o, F1 is the edge between
o and (0, 1, 0), F2 is the helix in (3.2), and F3 = F(+,+,+). We will show that P{∞,3,4}
is abstractly chiral by assuming that there exists an automorphism R1 mapping Ψ to Ψ1,
and showing that the image of the vertex (1,−1, 1) under such R1 is not well defined.
In doing so we will abuse notation and use the geometric names and descriptions of the
vertices, edges, 2-faces and facets, but the arguments to deduce the action of R1 will be
purely combinatorial (not geometric).

Since R1 fixes F2 and o while moving F1, it must interchange the neighbours of o in
F2, namely (1, 0, 0) and (0, 1, 0). The facet F3 also is fixed by R1, and o belongs to three
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edges in F3. Since R1 interchages the edge between o and (1, 0, 0) with F1, it must fix
the remaining edge, that is, the edge between o and (0, 0, 1); in particular (0, 0, 1)R1 =
(0, 0, 1). This implies that the helices H3 in (3.3) and H4 in (3.4) are also interchanged by
R1, and so R1 interchanges (1, 0, 1) with (0,−1, 1) and (1,−1, 1) with (−1,−1, 1).

Now, since R1 fixes F3 but interchanges H3 and H4, it must also interchange the facets
F(−,+,+) and F(+,−,+) since they are the only facets containing H3 and H4, respectively,
other than F(+,+,+). The edge between o and (0, 0, 1) is contained in precisely the four
facets F(+,+,+), F(−,+,+), F(+,−,+) and F(−,−,+). The first of these facets is fixed by
R1 while the second and third are interchanged. Since R1 fixes the edge between o and
(0, 0, 1), it must also fix the facet F(−,−,+).

Thus R1 fixes F(−,−,+) and the edge between o and (0, 0, 1). The remaining edges of
F(−,−,+) containing o have their other endpoints in (−1, 0, 0) and (0,−1, 0). The edge
between o and (−1, 0, 0) is also an edge of F(−,+,+) but not of F(+,−,+), whereas the edge
between o and (0,−1, 0) is also an edge of F(+,−,+) but not of F(−,+,+). Therefore R1

must interchange the edge between o and (−1, 0, 0) with the edge between o and (0,−1, 0).
In F(−,−,+) there is only one helix containing these two edges, and so it must be preserved
by R1. This helix is H2T(−,−,+) with vertices

..., (−1, 1,−1), (−1, 0,−1), (−1, 0, 0), (0, 0, 0), (0,−1, 0), (0,−1, 1), (1,−1, 1), ... ,

and so R1 must interchange (0,−1, 1) with (−1, 0,−1), and (1,−1, 1) with (−1, 1,−1).
But we showed before that (1,−1, 1)R1 = (−1,−1, 1). This yields the desired contradic-
tion.
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Abstract

Addona, Wagon and Wilf (Ars Math. Contemp. 4 (1) (2011), 29-62) examined a prob-
lem about the winning chances in tossing unbalanced coins. Here we present some integral
representations associated with such winning probabilities in a more general setting via
using certain Fourier transform method. When our newly introduced parameters (r, d) are
set to be (0, 1), one of our results reduces to the main formula in the above reference.
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1 Introduction: How to make it fair and fun?
One of the final two papers published by Herbert S. Wilf (1932-2012) is a joint work
with Addona and Wagon entitled “How to lose as little as possible”, which investigates
an intriguing problem of disadvantaged player Alice competing with Bob [1]:
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Suppose Alice has a coin with probability of heads equal to q (0 < q < 1), Bob has a
different coin with probability of heads equal to p (0 < p < 1), and that q < p. They toss
their coins independently n times each. The rule says that Alice wins if and only if she gets
strictly more heads than Bob does. Clearly, in the above setting Alice’s odds of winning
are

P(Sn > Tn) =

n∑
j=0

(
n

j

)
pj(1− p)n−j

n∑
k=j+1

(
n

k

)
qk(1− q)n−k, (1.1)

where the random variable Sn (resp. Tn) stands for the number of heads that Alice gets
(resp. Bob gets) after n tosses.

For convenience, let

f(n) = f(n, p, q) = P(Sn > Tn). (1.2)

In search of the choice of n that maximizes Alice’s chances of winning, it is shown in
[1] that f(n) is essentially unimodal, and sharp bounds on the turning point N(q, p) are
given. Their analysis uses the multivariate form of Zeilbergers algorithm [2]. In particular,
one of the main results of [1] that provides a key role in the proof of unimodality and in the
derivation of the turning point is the following:

Theorem 1.1. With f(n) defined above,

f(n+ 1)− f(n)
((1− p)(1− q))n+1

= (y +
1

2
(1 + xy))φn(xy)−

1

2
φn+1(xy), (1.3)

where x = p/(1 − p), y = q/(1 − q), φn(z) =
∑n
j=0

(
n
j

)2
zj = (1 − z)nPn( 1+z1−z ), and

Pn(u) is the classical Legendre polynomial:

Pn(u) =
1

π

∫ π

0

(u+
√
u2 − 1 cos t)ndt.

(Note that |u| = | 1+xy1−xy | > 1 for xy ∈ (0, 1) ∪ (1,+∞); the case xy = 1 yields p = 1− q
and (1.3) may be verified directly from (1.1) without using the Legendre polynomial.)

Explicitly, the numerator of the left hand side of (1.3), which is the essential part, may
be expressed via

f(n+ 1)− f(n) = 1

π

∫ π

0

ψn(t)(q − pq −
√
pq(1− p)(1− q) cos t)dt, (1.4)

where ψ(t) = 1− p− q + 2pq + 2
√
pq(1− p)(1− q) cos t. In fact, the above expression

(1.4) is found by first using the multivariate form of Zeilberger’s algorithm and then proved
mathematically (with ease once the formula is found). Also, it follows from (1.4) that the
probability for Alice to win with n tosses is

P(Sn > Tn) =
1

π

∫ π

0

1− ψn(t)
1− ψ(t)

(q − pq −
√
pq(1− p)(1− q) cos t)dt.

To be fair and fun, here in this paper we consider a more general setting. Since Alice
has a weaker coin, why should not she toss it for r more times than Bob does? And if
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that becomes the fact, maybe we should investigate the chances for Alice to get at least d
(d ≥ 1) more heads than Bob does.

Now formally, let Sn ∼ Bin (n, q) and Tm ∼ Bin (m, p). Suppose Alice tosses her
coin n+r (r ≥ 0) times and Bob tosses his n times, and that Alice wins iff she gets at least
d (d ≥ 1) more heads than Bob does. Under the new rule, the probability for Alice to win
is

P(Sn+r ≥ Tn + d) =

n∑
j=0

(
n

j

)
pj(1− p)n−j

n+r∑
k≥j+d

(
n+ r

k

)
qk(1− q)n+r−k.

For convenience, we let

fr,d(n) = fr,d(n, p, q) = P(Sn+r ≥ Tn + d). (1.5)

Apparently, the function f(n) in this setting is f0,1(n).
In order to study the turning point, investigations of the difference fr,d(n+1)−fr,d(n)

are needed. In Section 2 we introduce probabilistic preliminaries with Fourier analysis
blended. In Section 3 we provide several representations of the difference function based
on certain trigonometric integrals.

Throughout this work we adopt the commonly used convention for the generalized
binomial coefficients: for α ∈ R, j ∈ Z,

(
α

j

)
=


α(α−1)···(α−j+1)

j! , if j ≥ 1;
1, if j = 0;
0, if j < 0.

2 Probabilistic analysis: Lens of Fourier method
To attack on fr,d(n + 1) − fr,d(n), we adopt the Fourier analysis approach used in [4],
where the special case p = q has been studied.

The following known fact [3, p. 95] will be useful in our studies. Let Z be an integer-
valued random variable. It holds that

P(Z = k) =
1

2π

∫ 2π

0

ϕZ(t)e
−iktdt, (2.1)

where ϕZ(t) is the characteristic function of Z.

Lemma 2.1. For any r, d, n ∈ N,

fr,d(n+ 1)− fr,d(n) =
r∑
j=0

(
q(1− p)P(Tn − Sn − k = j + 1− d)− p(1− q)

P(Tn − Sn − k = j − d)
)
P(Sr = j).

Proof. For convenience, let g(n, k) := P(Tn − Sn − k = 0). Note that

fr,d(n) = P(Sn+r ≥ Tn + d) = P(S′r ≥ Tn − Sn + d) =

n∑
k=−n

g(n, k)P(S′r ≥ k + d).
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Here in this proof technically S′r is independent of Sn and has the same distribution as Sr.
Similarly,

fr,d(n+ 1) = P(S′r ≥ Tn − Sn + Y1 −X1 + d)

=

n∑
k=−n

g(n, k)P(S′r ≥ Y1 −X1 + k + d).

Comparing the two formulae above, we arrive at

fr,d(n+ 1)− fr,d(n)

=

n∑
k=−n

g(n, k)(p(1− q)P(S′r ≥ k + d+ 1) + q(1− p)P(S′r ≥ k + d− 1)

+ (2pq − p− q)P(S′r ≥ k + d))

=

n∑
k=−n

g(n, k)(q(1− p)P(S′r = k + d− 1)− p(1− q)P(S′r = k + d))

=

r∑
j=0

(q(1− p)g(n, j + 1− d)− p(1− q)g(n, j − d))P(S′r = j).

Corollary 2.2. For any r, d, n ∈ N, fr,d(n+ 1)− fr,d(n) =

1

2π

∫ 2π

0

ϕn(t)

r∑
j=0

(P(Sr = j)(q(1− p)e−i(j+1−d)t − p(1− q)e−i(j−d)t))dt,

where

ϕ(t) = ϕ(t, p, q) := Eeit(Y1−X1)

= (1− p+ peit)(1− q + qe−it)

= 1− p− q + 2pq + (p+ q − 2pq) cos t+ i(p− q) sin t

is the characteristic function of Y1 −X1 with that Y1 ∼ Bin (1, p) and X1 ∼ Bin (1, q).

Proof. This is an immediate consequence of (2.1) and Lemma 2.1.

Corollary 2.3. More specifically, for r = 0, d = 1, and n ∈ N,

f0,1(n+ 1)− f0,1(n) =
1

2π

∫ 2π

0

ϕn(t)(q(1− p)− p(1− q)eit)dt. (2.2)

In the case r = 0 and d = 1, the formula of Corollary 2.2 reduces to the formula by
Addona et al [1] as will be shown in Example 3.3.
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3 Integral representations
The difference fr,d(n+1)−fr,d(n) may be evaluated directly. In fact it depends on certain
trigonometric integrals. Before we proceed the following fact is needed.

Lemma 3.1. For all nonnegative integers a, b, c, let J(a, b, c) =
∫ 2π

0
cosa t sinb t cos(ct)dt

and K(a, b, c) =
∫ 2π

0
cosa t sinb t sin(ct)dt. Then

J(a, b, c) = 2π
∑
s

(−1)b/2+s

2a+b+1

(
b

s

)[(
a

(a+ b− c)/2− s

)
+

(
a

(a+ b+ c)/2− s

)]
K(a, b, c) = 2π

∑
s

(−1)(b−1)/2+s

2a+b+1

(
b

s

)[(
a

(a+ b− c)/2− s

)
−
(

a

(a+ b+ c)/2− s

)]
,

where for convenience we assume that (−1)u = 0 if u /∈ Z.

Proof. Note that J(a, b, c) = 0 whenever b is odd, and that∫ 2π

0

eitmdt =

{
2π, if m = 0;
0, otherwise.

Hence we have

J(a, b, c) =

∫ 2π

0

cosa t sinb t cos(ct)dt

=

∫ 2π

0

(
eit + e−it

2
)a(

eit − e−it

2i
)b(
eict + e−ict

2
)dt

=
∑
l,s

(−1)b−s

2a+b+1ib

∫ 2π

0

(
a

l

)
eitl−it(a−l)

(
b

s

)
eits−it(b−s)(eict + e−ict)dt

=
∑
l,s

(−1)b/2−s
(
a
l

)(
b
s

)
2a+b+1

(

∫ 2π

0

eit(2l−a+2s−b+c)dt+

∫ 2π

0

eit(2l−a+2s−b−c)dt)

= 2π
∑
s

(−1)b/2+s

2a+b+1

(
b

s

)[(
a

(a+ b− c)/2− s

)
+

(
a

(a+ b+ c)/2− s

)]
.

A similar calculation yields the result for K(a, b, c).

Now we rewrite Corollary 2.2 in a more explicit form:

Theorem 3.2. For any r, d, n ∈ N,

fr,d(n+ 1)− fr,d(n)

=
1

2π

∫ 2π

0

ϕn(t)

r∑
j=0

[

(
r

j

)
qj(1− q)r−j(q(1− p) cos(j + 1− d)t− p(1− q) cos(j − d)t

− q(1− p)i sin(j + 1− d)t+ p(1− q)i sin(j − d)t]dt,

where

ϕ(t) = 1− p− q + 2pq + (p+ q − 2pq) cos t+ i(p− q) sin t.
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Note that by Theorem 3.2, fr,d(n+ 1)− fr,d(n) reduces to

1

2π

r∑
j=0

(
r

j

)
qj(1− q)r−j(I1 + I2 + I3 + I4)

where the integrals Ik’s (1 ≤ k ≤ 4) are defined as,

I1 =

∫ 2π

0

ϕn(t)q(1− p) cos(j + 1− d)tdt

I2 = −
∫ 2π

0

ϕn(t)p(1− q) cos(j − d)tdt

I3 = −
∫ 2π

0

ϕn(t)q(1− p)i sin(j + 1− d)tdt

I4 =

∫ 2π

0

ϕn(t)p(1− q)i sin(j − d)t)dt.

All results reduce to such integrals. We shall represent fr,d(n + 1) − fr,d(n) by
the “basis”

∫ 2π

0
cos2k tdt, k ≥ 0. To do this, we partition the real parts of ϕn(t)(q(1 −

p) cos(j + 1 − d)t, etc, according to the “order” 2k, i.e., those of the form constant times
cosa t sinb t cos(ct) or cosa t sinb t sin(ct) where 2k − 1 ≤ a + b ≤ 2k. The notation
[cos2k t]If means that in the expansion of f , we group all “homogeneous” terms (of form
cosa t sinb t cos(ct) or cosa t sinb t sin(ct) where 2k−1 ≤ a+b ≤ 2k) and take the ratio of

the integrals
∑
a,b

∫ 2π
0

cosa t sinb t cos(ct)dt∫ 2π
0

cos2k tdt
or

∑
a,b

∫ 2π
0

cosa t sinb t sin(ct)dt∫ 2π
0

cos2k tdt
as the corresponding

coefficient. For example, based on Lemma 3.1, we have

[cos2k t]I(cos
2k−1−2m t sin2m t cos(ct))

=
(2k)!!

(2k − 1)!!

∑
s

(−1)m+s

22k

(
2m

s

)
(

(
2k − 1− 2m

(2k − 1− c)/2− s

)
+

(
2k − 1− 2m

(2k − 1 + c)/2− s

)
),

[cos2k t]I(cos
2k−2m t sin2m t cos(ct))

=
(2k)!!

(2k − 1)!!

∑
s

(−1)m+s

22k+1

(
2m

s

)
(

(
2k − 2m

(2k − c)/2− s

)
+

(
2k − 2m

(2k + c)/2− s

)
).

Similarly we obtain the formulas for [cos2k t]I(cos2k−2m t sin2m−1 t sin(ct)) and
[cos2k t]I(cos

2k+1−2m t sin2m−1 t sin(ct)). Consequently, [cos2k t]I{I1}, etc, may be
found and the following theorem follows. To keep the cleanness we omit the proof de-
tails.

Theorem 3.3. For r, d ∈ N,

fr,d(n+ 1)− fr,d(n) =
1

2π

∑
j

(
r

j

)
qj(1− q)r−j

∑
k

an,k(j, d)

∫ 2π

0

cos2k(t)dt,
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where (i) an,k(j, d) =

n!

(2k)!(n+ 1− 2k)!

(2k)!!
(

2k
k+(j−d+1)/2

)
(2k − 1)!!

(1− p− q + 2pq)n−2k(q(1− p)p(1− q))k

(q−1(1− p)−1p(1− q))
j−d+1

2 {(k + (j − d+ 1)/2)p+ (n+ 1− k + (j − d+ 1)/2)q

− (n+ 2 + j − d)pq − (k + (j − d+ 1)/2)}, if j − d is odd;

and (ii) an,k(j, d) =

n!

(2k)!(n+ 1− 2k)!

(2k)!!
(

2k
k+(j−d)/2

)
(2k − 1)!!

(1− p− q + 2pq)n−2k(q(1− p)p(1− q))k

(q−1(1− p)−1p(1− q))
j−d
2 {(−n− 1 + k + (j − d)/2)p

− (k − (j − d)/2)q + (n+ 1− j + d)pq + k}, if j − d is even.

We conclude with three examples.

Example 3.1.

f1,1(n+ 1)− f1,1(n)

=
∑
k

an,k(1, 1)
1

2π

∫ 2π

0

cos2k(t)dt,

where

an,k(1, 1) =
n!

(2k)!(n+ 1− 2k)!
(1− p− q + 2pq)n−2k22k(1− q)

(pq(1− p)(1− q))k((−n− 1 + k)p− kq + (n+ 1)pq + k).

Example 3.2. For m ∈ N,

(i) f0,2m(n+ 1)− f0,2m(n) =
∑
k

an,k(0, 2m)
1

2π

∫ 2π

0

cos2k(t)dt,

where an,k(0, 2m) :=

n!

(2k)!(n+ 1− 2k)!
(1− p− q + 2pq)n−2k

(2k)!!
(

2k
k+m

)
(2k − 1)!!

(pq(1− p)(1− q))k

(q(1− p)p−1(1− q)−1)−m((−n− 1 + k −m)p− (k −m)q + (n+ 1 + 2m)pq + k).

(ii) f0,2m+1(n+ 1)− f0,2m+1(n) =
∑
k

an,k(0, 2m+ 1)
1

2π

∫ 2π

0

cos2k(t)dt,

where an,k(0, 2m+ 1) :=

n!

(2k)!(n+ 1− 2k)!
(1− p− q + 2pq)n−2k

(2k)!!
(

2k
k+m

)
(2k − 1)!!

(pq(1− p)(1− q))k

(q(1− p)p−1(1− q)−1)−m((k −m)p+ (n+ 1− k −m)q+

(n+ 1− 2m)pq +m− k).
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Theorem 3.3 actually provides a perspective to generalize the Legendre type represen-
tations discussed in [1].

Finally we exhibit the equivalence of Corollary 2.3 and (1.4).

Example 3.3.

f0,1(n+ 1)− f0,1(n) =
1

π

∫ π

0

ψn(t)(q − pq −
√
pq(1− p)(1− q) cos t)dt,

where ψ(t) = 1− p− q + 2pq + 2
√
pq(1− p)(1− q) cos t.

Proof. In fact, specializing Theorem 3.3,

f0,1(n+ 1)− f0,1(n) =
1

2π

b(n+1)/2c∑
k=0

an,k(0, 1)

∫ 2π

0

cos2k tdt

=
1

π

∫ π

0

b(n+1)/2c∑
k=0

an,k(0, 1) cos
2k tdt

=
1

π

∫ π

0

ψn(t)(q − pq −
√
pq(1− p)(1− q) cos t)dt.

Thus we have rediscovered (1.4).
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Abstract

In the present paper we are interested in the saturation number of closed benzenoid
chains and certain families of nanotubes. The saturation number of a graph is the cardinal-
ity of a smallest maximal matching in the graph. The problem of determining the saturation
number is related to the edge dominating sets and efficient edge dominating sets in a graph.
We establish the saturation number of some closed benzenoid chains and C4C6-tubes. Fur-
ther, upper and lower bounds for the saturation number of armchair, zig-zag, TUC4C8(S)
and TUC4C8(R) nanotubes are calculated.

Keywords: Saturation number, maximal matching, edge domination number, efficient edge dominat-
ing set, closed benzenoid chain, armchair nanotube, zig-zag nanotube, tubulene, TUC4C8(S) nan-
otube, TUC4C8(R) nanotube.

Math. Subj. Class.: 92E10, 05C70, 05C69

1 Introduction
The saturation number s(G) of a graphG is the cardinality of a smallest maximal matching
in G. Maximal matchings serve as models of adsorption of dimers (those that occupy
two adjacent atoms) to a molecule. It can occur that the double bonds in a molecule are
not efficiently saturated by dimers, and therefore, their number is below the theoretical
maximum. Hence, the saturation number provides an information on the worst possible
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case of adsorption. Besides in chemistry the saturation number has a list of interesting
applications in engineering and networks.
A lot of work has been done on enumeration problems of different matchings in some
chemical graphs, for example see [4, 5], but not much has been done on the smallest max-
imal matchings. Previous work on the saturation number includes research on benzenoid
systems [8] and fullerenes [6, 1, 2]. Recent results on related concepts can be found in
[3, 7].
The saturation number is closely related to the edge dominating sets. Actually, for any
graph, the saturation number equals the edge domination number. The problem of deter-
mining the saturation number of a graph is NP-complete [13].
In this paper we show how to use an efficient edge dominating set in a graph to determine its
saturation number. Also, the saturation number is established for certain closed benzenoid
chains. Further, some bounds for the saturation number of different families of nanotubes
are calculated.

2 Preliminaries
A matching M in a graph G is a set of edges of G such that no two edges from M share
a vertex. A matching M is a maximum matching if there is no matching in G with greater
cardinality. The cardinality of any maximum matching in G is denoted by ν(G) and called
the matching number of G. If every vertex of G is incident with an edge of M , the match-
ing M is called a perfect matching (in chemistry perfect matchings are known as Kekulé
structures).
A matching M in a graph G is maximal if it cannot be extended to a larger matching in
G. Obviously, every maximum matching is also maximal, but the opposite is generally not
true. A matching M is a smallest maximal matching if there is no maximal matching in
G with smaller cardinality. The cardinality of any smallest maximal matching in G is the
saturation number of G.
The following lemma is very useful for proving lower bounds for the saturation number.
The proof can be found online, but for the sake of completeness we provide it.

Lemma 2.1. Let G be a graph and let A and B be maximal matchings in G. Then |A| ≥
|B|
2 and |B| ≥ |A|2 .

Proof. First note that each edge in B \ A can be adjacent to at most two edges in A \ B
since A is a matching. Moreover, each edge in A \ B is adjacent to an edge in B \ A by
maximality of B. Therefore,

|A \B| ≤ 2|B \A|.

Hence, we obtain

|A| = |A ∩B|+ |A \B| ≤ 2|B ∩A|+ 2|B \A| = 2|B|.

The other inequality can be proven analogously.

An independent set is a set of vertices in a graph G, no two of which are adjacent. A
maximum independent set is an independent set of largest possible cardinality for a given
graph G. This cardinality is called the independence number of G, and denoted α(G).
It is obvious that if M is a maximal matching and A is the set of endpoints of edges in
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M , then the set of vertices in V (G)− A is an independent set of vertices in G. Therefore,
α(G) ≥ |V (G)|−2s(G). Hence, we obtain another lower bound for the saturation number:

s(G) ≥ |V (G)| − α(G)
2

.

Another graph invariant closely related to the saturation number is the edge domination
number. An edge dominating set for a graph G is a subset D ⊆ E(G) such that every
edge not in D is incident to at least one edge in D. An independent edge dominating set
is an edge dominating set in which no two elements are adjacent. An independent edge
dominating set is in fact a maximal matching and a smallest independent edge dominating
set is a smallest maximal matching, i.e. the cardinality of a smallest independent edge
dominating set is the saturation number. The edge domination number of a graphG, γ′(G),
is the smallest cardinality taken over all edge dominating sets of G. If M is a smallest
maximal matching of G, then M is also an edge dominating set, therefore γ′(G) ≤ s(G).
For the contrary, if D is a smallest edge dominating set with k elements, we can construct
a maximal matching of cardinality k (for the details see [13]). Therefore, s(G) ≤ γ′(G).
Hence, for every graph G it holds

s(G) = γ′(G). (2.1)

Figure 1: Illustration of a (4,−3)-type tubulene.

Since the paper focuses on nanotubes, we will formally define open-ended carbon nan-
otubes, also called tubulenes (see [11]). Choose any lattice point in the hexagonal lat-
tice as the origin O. Let −→a1 and −→a2 be the two basic lattice vectors. Choose a vector
−→
OA = n−→a1+m−→a2 such that n and m are two integers and |n|+ |m| > 1, nm 6= −1. Draw
two straight lines L1 and L2 passing through O and A perpendicular to OA, respectively.
By rolling up the hexagonal strip between L1 and L2 and gluing L1 and L2 such that A
and O superimpose, we can obtain a hexagonal tessellationHT of the cylinder. L1 and L2

indicate the direction of the axis of the cylinder. Using the terminology of graph theory,
a tubulene T is defined to be the finite graph induced by all the hexagons of HT that lie
between c1 and c2, where c1 and c2 are two vertex-disjoint cycles of HT encircling the
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axis of the cylinder. The vector
−→
OA is called the chiral vector of T and the cycles c1 and

c2 are the two open-ends of T .
For any tubulene T , if its chiral vector is n−→a1 + m−→a2, T will be called an (n,m)-type
tubulene (see Figure 1). A tubulene T is called zig-zag if n = 0 or m = 0 and armchair if
n = m.

3 Graphs with an efficient edge dominating set
One other concept is also very useful in studying the saturation number. A matching D of
a graph G is called an efficient edge dominating set if for each edge e ∈ E(G) \ D there
is exactly one edge f in D such that e and f are incident (this concept is equivalent to the
efficient dominating set in the line graph ofG, for the details see [10]). Using the following
theorem we can exactly determine the saturation number for some graphs.

Theorem 3.1. If a graph G has an efficient edge dominating set D, then

s(G) = |D|.

Proof. It follows from Equation 2.1 that s(G) = γ′(G). Hence it is enough to show that
γ′(G) = |D| (see [9]).

Obviously, if D is an efficient edge dominating set then D is also an edge dominating
set. Therefore, γ′(G) ≤ |D|. Conversely, let P be a smallest edge dominating set and let
e ∈ D. It follows that either e ∈ P or there is an edge f ∈ P such that e and f are incident.
Therefore, for an edge e ∈ D there always exists fe ∈ P such that e = fe or e and fe are
incident. It is also clear that since D is an efficient edge dominating set, for given edges e
and e′ in D, e 6= e′, it follows that fe 6= fe′ . Hence, |D| ≤ |P | = γ′(G). The proof is
complete.

Example 3.2. One infinite family of graphs with an efficient edge dominating set are
C4C6-tubes, which are constructed of cycles C4 and C6 - see Figure 2. Let T (p, q) be
a C4C6-tube with p layers of hexagons and with q hexagons in every layer. The set of dou-
ble edges in Figure 2 is obviously an efficient edge dominating set of cardinality pq = 15.
Therefore, by Theorem 3.1, the saturation number of T (p, q) is s(T (p, q)) = pq.

Figure 2: A C4C6-tube T (3, 5). Edges e1, e2 and e3 are joined with edges e′1, e′2 and e′3,
respectively.

For example, polyacenes and closed polyacenes are also such graphs (see Section 4). How-
ever, not many graphs posses an efficient edge dominating set.
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4 Closed benzenoid chains
Recall that benzenoid graphs are 2-connected subgraphs of the hexagonal lattice such that
every bounded face is a hexagon. The vertices lying on the border of the non-hexagonal
face of a benzenoid graph are called external; other vertices, if any, are called internal.
A benzenoid graph without internal vertices is called catacondensed. If no hexagon in a
catacondensed benzenoid is adjacent to three other hexagons, we say that the benzenoid
is a chain. In each benzenoid chain there are exactly two hexagons adjacent to one other
hexagon; those two hexagons are called terminal, while any other hexagons are called in-
terior. An interior hexagon is called straight if the two edges it shares with other hexagons
are parallel, i.e., opposite to each other. If the shared edges are not parallel, the hexagon is
called kinky. If all interior hexagons of a benzenoid chain are straight, we call the chain a
polyacene.

Let B be a benzenoid chain with terminal hexagons h and h′. Let e = uv and e′ =
u′v′ be edges of h and h′, respectively, such that vertices u, v, u′, v′ have degree 2 in B.
Furthermore, suppose that there exist a path from u to u′ in the perimeter of B, which does
not contain neither v nor v′. A graph obtained by identifying edges e and e′ is called a
closed benzenoid chain. For example see Figure 3.

Figure 3: A closed benzenoid chain. Edges e and e′ are joined together.

Similar as before, a hexagon of a closed benzenoid chain is called straight if the two edges
it shares with other hexagons are opposite to each other. If the shared edges are not parallel,
the hexagon is called kinky.

Remark 4.1. Note that not every closed benzenoid chain is a tubulene in the sense of the
definition in the preliminaries. In fact, if we consider benzenoid chain embedded in the
hexagonal lattice, it is not difficult to see that a closed benzenoid chain is a tubulene if and
only if the distance from u to u′ in the hexagonal lattice is an even number and the edge e
is parallel to e′.

In this section we compute the saturation number of some closed benzenoid chains.
The following lemma claims that every closed benzenoid chain has a perfect matching.

Lemma 4.2. Let B be a closed benzenoid chain. Then B has a perfect matching.

Proof. LetG be a benzenoid chain from whichB is obtained by identifying edges e and e′.
Since every internal hexagon in G has exactly 4 edges on the perimeter and both terminal
hexagons have 5 edges on the perimeter, there is always an even number of edges on the
perimeter of G. Therefore, let M be a perfect matching of the perimeter of G such that
e ∈M . Obviously, M is a perfect matching of G. Now we consider two cases:
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1. If e′ ∈M , then after identifying e and e′ into the new edge f , the set (M \ {e, e′})∪
{f} is a perfect matching of B.

2. If e′ /∈M , then after identifying e and e′, the set M \{e} is a perfect matching of B.

Hence, we have seen that B has a perfect matching.

In the next proposition we prove a lower bound for the saturation number of closed ben-
zenoid chains.

Proposition 4.3. Let B be a closed benzenoid chain with h hexagons. Then s(B) ≥ h.

Proof. LetM be a perfect matching ofB. Since there is 4h vertices inB and every edge in
M covers exactly 2 vertices, perfect matchingM contains 2h edges. Therefore, by Lemma
2.1, any maximal matching contains at least half of the number of edges in M . Hence,
s(B) ≥ 2h

2 = h.

A closed benzenoid chainB is called a closed polyacene (or a hexagonal belt) if it does
not contain kinky hexagons (see Figure 4).

Figure 4: A maximal matching of a closed polyacene with 5 hexagons.

Proposition 4.4. Let B be a closed polyacene with h hexagons. Then s(B) = h.

Proof. Obviously, the set of vertical edges of B (see the edges in matching M from Figure
4) is an efficient edge dominating set and |M | = h. Therefore, by Theorem 3.1 it follows
s(B) = h.

The following theorem completely characterizes closed polyacenes among closed ben-
zenoid chains according to saturation number.

Theorem 4.5. Let B be a closed benzenoid chain with h hexagons. Then s(B) = h if and
only if B is a closed polyacene.

Proof. Let B be a closed polyacene with h hexagons. It follows from Proposition 4.4 that
s(B) = h.

For the converse suppose that B is a closed benzenoid chain with h hexagons and
s(B) = h. Let M be a maximal matching with h edges. Those edges cover exactly 2h
vertices. Let A be the set of vertices that are not covered by edges in M . Since B has 4h
vertices, there are 2h vertices in A. Since M is a maximal matching, no two vertices in A
are adjacent. Let A′ be the set of edges that are incident to vertices in A. Since the degree
of every vertex in B is at least 2, it follows |A′| ≥ 4h. But A′ ⊆ E(B) \M and therefore,
|A′| ≤ 5h − h = 4h. Hence, every vertex in A has degree 2 and every hexagon contains
exactly two elements of A. Therefore, every hexagon of B has 2 non-adjacent vertices of
degree 2. It follows that B is a closed polyacene.
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In the next theorem we compute the saturation number of closed benzenoid chains with
exactly one kinky hexagon. However, such closed benzenoid chain is never a tubulene
since the distance between u and u′ is odd.

Theorem 4.6. Let B be a closed benzenoid chain with h hexagons such that exactly one of
them is a kinky hexagon. Then s(B) = h+ 1.

Proof. Let M be the set of edges in B that lie on exactly two hexagons. Moreover, let
one other edge of the kinky hexagon be in M . Then it is easy to see that M is a maximal
matching and therefore, s(B) ≤ h+ 1.
Since B is not a closed polyacene, s(B) ≥ h+ 1 and the proof is complete.

Proposition 4.7. LetB be a closed benzenoid chain with exactly two kinky hexagons which
are consecutive. Then s(B) = h+ 1.

Proof. LetM be a maximal matching with h+1 edges from Figure 5. Hence, s(B) ≤ h+1.

Figure 5: A closed benzenoid chain with two consecutive kinky hexagons and its maximal
matching.

Since B is not a closed polyacene, s(B) ≥ h+ 1 and the proof is complete.

5 Zig-zag tubulenes

Figure 6: Zig-zag tubulene ZT (3, 4).

Let T be a zig-zag tubulene such that c1, c2 are the shortest possible cycles encircling
the axis of the cylinder (see Figure 6). If T has n layers of hexagons, each containing
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exactly h hexagons, then we denote it by ZT (n, h). Note that ZT (n, h) is a (0, h) or
(h, 0)-type tubulene. First we show an upper bound for the saturation number of ZT (n, h),
which is essentially of order 2nh

3 .

Theorem 5.1. Let ZT (n, h) be a zig-zag tubulene. Then

s(ZT (n, h)) ≤


h(2n+3)

3 , 3 | n
h(2n+1)

3 , 3 | n− 1
h(2n+2)

3 , 3 | n− 2.

Proof. Let ZT (n, h) be drawn in a plane such that some edges are vertical and such that
cycles c1 and c2 lie on the bottom and on the top. To show an upper bound, we construct
a maximal matching of ZT (n, h). This maximal matching is obtained by alternating two
different layers of edges - vertical and non-vertical. We start with vertical edges in the first
layer (at the bottom of a tubulene) and we need 2 layers of edges for every 3 layers of
hexagons. Obviously we have exactly h edges in every layer. Now consider three different
cases.

Figure 7: A maximal matching of zig-zag tubulenes. Lines L1 and L2 are joined together.

1. If 3 | n: then we need 2n
3 layers of edges and one additional layer at the top of a

tubulene. Hence, we obtain h(2n+3)
3 edges in M . See Figure 7(a).

2. If 3 | n − 1: in this case we need 2(n−1)
3 layers of edges and we have to add one

vertical layer. Hence, |M | = h(2n+1)
3 . See Figure 7(b).
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3. If 3 | n − 2: in this case we have 2(n−2)
3 layers of edges and we have to add 2

additional layers (one vertical and one non-vertical) to obtain a maximal matching.
Hence, |M | = h(2n+2)

3 . See Figure 7(c).

It is obvious that in such a way we always obtain a maximal matching. Therefore, the proof
is complete.

In the next lemma we prove a lower bound.

Lemma 5.2. Let ZT (n, h) be a zig-zag tubulene. Then

s(ZT (n, h)) ≥ (n+ 1)h

2
.

Proof. Obviously ZT (n, h) has a perfect matching with (n + 1)h edges. Therefore, by
Lemma 2.1, any maximal matching contains at least (n+1)h

2 edges.

Theorem 5.1 and Lemma 5.2 together imply the following corollary.

Corollary 5.3. Let ZT (n, h) be a zig-zag tubulene. Then

(n+ 1)h

2
≤ s(ZT (n, h)) ≤


h(2n+3)

3 , 3 | n
h(2n+1)

3 , 3 | n− 1
h(2n+2)

3 , 3 | n− 2.

6 Armchair tubulenes
Let T be an armchair tubulene such that c1 and c2 are the shortest possible cycles encircling
the axis of the cylinder and such that there is the same number of hexagons in every column
of hexagons (see Figure 8). If T has n vertical layers of hexagons, each containing exactly
p hexagons, then we denote it by AT (n, p). Obviously, n must be an even number. Note
thatAT (n, p) is a (n2 ,

n
2 )-type tubulene. In the following theorem we prove an upper bound

for the saturation number of AT (n, p).

Theorem 6.1. Let AT (n, p) be an armchair tubulene. Then

s(AT (n, p)) ≤


2n(p+1)

3 , 3 | n
(2n+1)(p+1)

3 , 3 | n− 1
2(n+2)(p+1)

3 , 3 | n− 2.

Proof. Let AT (n, p) be drawn in a plane such that some edges are horizontal and such that
cycles c1 and c2 lie on the bottom and on the top. To show an upper bound, we construct
a maximal matching of AT (n, p). This maximal matching is obtained by alternating two
different columns of edges - horizontal and non-horizontal. We start with horizontal edges
in the first column (at the left side of a tubulene) and we need 2 columns of edges for every
3 columns of hexagons. Obviously we have exactly p + 1 edges in every column. Now
consider three different cases.

1. If 3 | n: then we need 2n
3 columns of edges to obtain a maximal matching. Hence,

we obtain 2n(p+1)
3 edges in M . See Figure 8.
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Figure 8: A maximal matching of armchair tubulene AT (6, 4). Curves L1 and L2 are
joined together.

2. If 3 | n − 1: in this case we need 2(n−1)
3 columns of edges and we have to add one

horizontal column. Hence, |M | = (2n+1)(p+1)
3 .

3. If 3 | n − 2: in this case we have 2(n−2)
3 columns of edges and we have to add 2

additional horizontal layers of edges to obtain a maximal matching. Hence, |M | =
2(n+2)(p+1)

3 . See Figure 9.

Figure 9: A maximal matching of armchair tubulene AT (8, 4). Curves L1 and L2 are
joined together.

It is obvious that in such a way we always obtain a maximal matching. Therefore, the proof
is complete.

In the next lemma we prove a lower bound.

Lemma 6.2. Let AT (n, p) be an armchair tubulene. Then

s(AT (n, p)) ≥ n(p+ 1)

2
.

Proof. Obviously AT (n, p) has a perfect matching with n(p + 1) edges (we can put all
horizontal edges in a perfect matching). Therefore, by Lemma 2.1, any maximal matching
contains at least n(p+1)

2 edges.
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Theorem 6.1 and Lemma 6.2 together imply the following corollary.

Corollary 6.3. Let AT (n, h) be an armchair tubulene. Then

n(p+ 1)

2
≤ s(AT (n, p)) ≤


2n(p+1)

3 , 3 | n
(2n+1)(p+1)

3 , 3 | n− 1
2(n+2)(p+1)

3 , 3 | n− 2.

7 TUC4C8(S) nanotubes
A C4C8 net is a trivalent pattern made by alternating squares C4 and octagons C8. Iden-
tifying some edges in such a lattice we obtain a TUC4C8(S) nanotube (see Figure 10).
Such nanotubes could appear by successive low energy Stone-Wales edge flipping [12] in
polyhex nanotubes. In this section we prove an upper and a lower bound for the saturation
number of TUC4C8(S) nanotubes. We denote nanotube with q layers and p squares (or
octagons) in every layer with TS(p, q).

Figure 10: TS(4, 4) with a maximal matching.

Theorem 7.1. Let TS(p, q) be a TUC4C8(S) nanotube. Then

s(TS(p, q)) ≤


4pq
3 , 3 | p

(4p+2)q
3 , 3 | p− 1

(4p+1)q
3 , 3 | p− 2.

Proof. To prove the theorem we construct a maximal matching for nanotube TS(p, q). In
every layer we put every third edge in the matching M . In layer with k = 1 we put the first
edge in M and in layer with k = 2 we start with the second edge (see Figure 10). Next, in
the third layer, we repeat the first layer.

Now consider the following cases:

1. If 3 | p, then we have 4pq
3 edges in M .

2. If 3 | p−1: in this case we have 4(p−1)q
3 edges and we have to add 2 additional edges

in every layer to obtain a maximal matching. Hence, |M | = 4(p−1)q
3 +2q = (4p+2)q

3 .

3. If 3 | p−2: in this case we have 4(p−2)q
3 edges and we have to add 3 additional edges

in every layer to obtain a maximal matching. Hence, |M | = 4(p−2)q
3 +3q = (4p+1)q

3 .
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In the next proposition we prove a lower bound.

Lemma 7.2. Let TS(p, q) be a TUC4C8(S) nanotube. Then s(TS(p, q)) ≥ pq.

Proof. First notice that TS(p, q) always has a perfect matching. For example, we can take
every second edge in every layer. Since the number of vertices in TS(p, q) is 4pq, a perfect
matching of TS(p, q) contains 2pq edges, since every edge covers two vertices. Now it
follows from Lemma 2.1 that every maximal matching contains at least pq edges. Hence,
s(TS(p, q)) ≥ pq.

Theorem 7.1 and Lemma 7.2 together imply the next corollary.

Corollary 7.3. Let TS(p, q) be a TUC4C8 nanotube. Then

pq ≤ s(TS(p, q)) ≤


4pq
3 , 3 | p

(4p+2)q
3 , 3 | p− 1

(4p+1)q
3 , 3 | p− 2.

8 TUC4C8(R) nanotubes
Again we begin with a C4C8 net, but this time squares are not in the horizontal position.
Identifying some edges in such a lattice we obtain a TUC4C8(R) nanotube (see Figure
11). In this section we prove an upper and a lower bound for the saturation number of
TUC4C8(R) nanotubes. We denote a nanotube with p octagons in every layer and q oc-
tagons in every column with TR(p, q).

Figure 11: TR(4, 3) with a maximal matching. Left and right side are joined.

Theorem 8.1. Let TR(p, q) be a TUC4C8(R) nanotube. Then

s(TR(p, q)) ≤


4qp
3 + p, 3 | q

4(q−1)p
3 + 3p, 3 | q − 1

4(q−2)p
3 + 4p, 3 | q − 2.
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Proof. We construct a maximal matching M for nanotube TR(p, q). For every 3 rows of
octagons we put 4 layers of edges in the matching M . Of course, every layer contains
exactly p edges. See Figure 11.

Now consider the following cases:

1. If 3 | q: in this case we have 4qp
3 edges in M and we need one additional layer of

horizontal edges at the top - see Figure 11.

2. If 3 | q−1: in this case we have 4(q−1)p
3 edges and we have to add 3 additional layers

of edges to obtain a maximal matching. Hence, |M | = 4(q−1)p
3 + 3p.

3. If 3 | q−2: in this case we have 4(q−2)p
3 edges and we have to add 4 additional layers

of edges to obtain a maximal matching. Hence, |M | = 4(q−2)p
3 + 4p.

In the next lemma we prove a lower bound.

Lemma 8.2. Let TR(p, q) be a TUC4C8(R) nanotube. Then s(TR(p, q)) ≥ p(q + 1).

Proof. First notice that TR(p, q) always has a perfect matching. Since the number of
vertices in TR(p, q) is 4p(q+1), a perfect matching of TR(p, q) contains 2p(q+1) edges,
since every edge covers two vertices. Now it follows from Lemma 2.1 that every maximal
matching contains at least p(q + 1) edges. Hence, s(TR(p, q)) ≥ p(q + 1).

Theorem 8.1 and Lemma 8.2 together imply the next corollary.

Corollary 8.3. Let TR(p, q) be a TUC4C8(R) nanotube. Then

p(q + 1) ≤ s(TR(p, q)) ≤


4qp
3 + p, 3 | q

4(q−1)p
3 + 3p, 3 | q − 1

4(q−2)p
3 + 4p, 3 | q − 2.

Concluding remarks
In the paper we have established some bounds for the saturation number of certain families
of nanotubes. However, the exact values are unknown. There are still many open problems
regarding the saturation number of molecular graphs, for example coronenes, coronoids,
polyomino chains, etc.
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Abstract

An NMNR-coloring of a hypergraph is a coloring of vertices such that in every hy-
peredge at least two vertices are colored with distinct colors, and at least two vertices are
colored with the same color. We prove that every 3-uniform 3-regular hypergraph admits
an NMNR-coloring with at most 3 colors. As a corollary, we confirm the conjecture that
every bipartite cubic graph admits a 2-homogenous coloring, where a k-homogenous col-
oring of a graph G is a proper coloring of vertices such that the number of colors in the
neigborhood of any vertex equals k. We also introduce several other results and propose
some additional problems.

Keywords: Homogenous coloring, mixed hypergraph, bi-hypergraph, NMNR-coloring.

Math. Subj. Class.: 05C15, 05C65

1 Introduction
In this paper we continue the study of homogenous colorings of graphs initiated in [8],
specifically focusing on regular bipartite graphs. We consider only finite graphs and hype-
graphs. Every graphG = (V,E) is determined by the set of vertices V = V (G) and the set
of edges E = E(G). For any undefined notions used in the paper we refer to the standard
monograph [1]. Given a vertex-coloring ϕ of a graph G, the palette of a vertex v, P (v), is
the set of colors appearing in the neighborhoodN(v) of v, i.e. P (v) = {ϕ(u) |u ∈ N(v)}.
The cardinality of P (v) is denoted by p(v).
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A k-homogenous coloring of a graph G is a proper coloring of its vertices such that the
palette of every vertex is of size k. The smallest number of colors (if it exists), for which G
admits a k-homogenous coloring is called k-homogenous chromatic number and denoted
χk
h(G).

As observed in [8], only bipartite graphs admit a 1-homogenous coloring: every proper
coloring of a bipartite graph with two colors is admissible. Additionally, every d-regular
graph admits a d-homogenous coloring: assigning distinct color to every vertex does the
job. In fact, the d-homogenous chromatic number of a d-regular graph G is equal to the
chromatic number of the square graph G2, i.e. the graph with V (G2) = V (G) where two
vertices are adjacent if they are at distance at most 2 in G.

In the other cases, the question whether a graph admits a homogenous k-coloring be-
comes harder. In particular, two types of problems arise: (a) for a given integer k and a
graph G, does G admit a k-homogenous coloring; and (b) if (a) is answered in affirmative,
what is the value of χk

h(G)?
A d-regular graph G is completely homogenous if it admits a k-homogenous coloring

for every k, 1 ≤ k ≤ d. The motivation for this paper was given by the following conjec-
ture.

Conjecture 1.1 (Janicová, 2015). Every cubic bipartite graph is completely homogenous.

As the cases with k ∈ {1, 3} are trivial as remarked above, it only remains to prove
that there exists a 2-homogenous coloring of every cubic bipartite graph. To prove this, we
make use of the results from the rich field of hypergraph colorings.

A hypergraph H = (V, ε) is determined by a set of vertices V = V (H) and a set of
(hyper)edges ε = ε(H), where every edge is an arbitrary subset of vertices. For an edge e,
let V (e) denote the set of vertices incident to e. We say that H is k-uniform if every edge
is incident to exactly k vertices, k-regular if every vertex is contained in exactly k edges,
and linear if every two edges share at most one vertex.

Similarly as in the case of graphs, by a coloring ϕ of a hypergraph H we mean an
assignment of colors to the vertices of H . For an edge e ∈ ε, the palette of e, P (e), is the
set of colors given to the vertices incident to e. Again, we define p(e) = |P (e)|. We say
that an edge e of H is monochromatic if p(e) = 1, i.e. all the vertices incident to e are
colored with the same color, and an edge is rainbow if p(e) = |V (e)|, i.e. no two vertices
of e are colored with the same color. A coloring of H is non-monochromatic non-rainbow
coloring (or a NMNR-coloring in short) if there is neither monochromatic edge nor rainbow
edge in H .

The notion of NMNR-colorings arose from more general concepts of color-bounded
hypergraphs introduced by Bujtás and Tuza in [2], where for every edge the lower and the
upper bound on the palette size is given, and pattern hypergraphs introduced by Dvořák et
al. in [6], where every hyperedge is assigned a set of admissible colors. Color-bounded
hypergraphs generalize many coloring concepts in hypergraphs; they were inspired by the
work of Drgas-Burchardt and Łazuka [5], who only set the lower bounds on the sizes of
palettes, and the notion of mixed hypergraphs introduced by Voloshin [12, 13]. A mixed
hypergraphM consists of the set of vertices and two families of edges, the C-edges and the
D-edges. A coloring of the vertices of M is proper if no C-edge is rainbow and no D-edge
is monochromatic. Study of mixed hypergraphs received considerable attention in the last
two decades1 (cf. [10]). Interestingly, colorings of mixed hypergraphs are strongly related

1See also the web-page http://spectrum.troy.edu/voloshin/mh.html for more details.



M. Janicová et al.: From NMNR-coloring of hypergraphs to homogenous coloring of graphs 353

to various types of graph colorings as shown e.g. by Král’ in [9].
If every edge of M is a C-edge and a D-edge, then M is called a bi-hypergraph. When

a mixed hypergraph M is a bi-hypergraph, then a proper coloring of M is precisely an
NMNR-coloring. We refer an interested reader to [3] and [4] for the most recent results in
this field.

Now, we present the main results of the paper, thus solving Conjecture 1.1 in affirma-
tive.

Theorem 1.2. Every cubic bipartite graph G admits a 2-homogenous coloring. Moreover,

χ2
h(G) ≤ 6 .

Theorem 1.2 is in fact a corollary of the following theorem:

Theorem 1.3. Every 3-regular 3-uniform hypergraph admits an NMNR-coloring with at
most 3 colors.

The rest of the paper is structured as follows: in Section 2, we introduce some auxiliary
results we use in the proofs of the main results. In Section 3, we prove Theorem 1.3, and
in the last section, we present several additional results and conclude the paper with some
open problems.

2 Auxiliaries
In this section we present some auxiliary results. First, we show how the problem of 2-
homogenous coloring of a cubic bipartite graphs can be modeled with an NMNR-coloring
of 3-uniform hypergraphs. Let G be a cubic bipartite graph and HG be a hypergraph with
the vertex set V (HG) = V (G) and the edge set ε(HG) = {N(v) | v ∈ V (G)}. Clearly,
HG is 3-uniform, hence an NMNR-coloring of HG is a coloring assigning exactly two
different colors to the vertices incident to every edge of HG, meaning that the palette of
every vertex in G is of size 2. Hence, we immediately obtain the next proposition.

Proposition 2.1. Every cubic bipartite graph G admits a 2-homogenous coloring if and
only if the hypergraph HG admits an NMNR-coloring.

Note that the bipartiteness of G is necessary to ensure that the coloring of G is proper,
as we now see. The hypergraphHG is not connected, since no pair of vertices from distinct
parts ofG is incident to a common edge ofHG. Let ϕ be an NMNR-coloring ofHG. Then,
a 2-homogenous coloring ϕ′ of G is obtained by assigning the color (i, ϕ(v)) to the vertex
v in G, where i ∈ {1, 2} denotes the part of G the vertex v belongs to. This in particular
means that at most twice the number of colors used for an NMNR-coloring of HG are used
for a 2-homogenous coloring of G. On the other hand, each 2-homogenous coloring of G
is also an NMNR-coloring of HG.

As G is cubic, HG is also 3-regular, which enables us to use the following results on
bipartite hypergraphs. A hypergraph is bipartite or 2-colorable if it admits a coloring of
vertices with 2 colors such that no edge is monochromatic.

Theorem 2.2 (Henning and Yeo, 2013). For an integer k ≥ 4, every k-regular k-uniform
hypergraph is bipartite.
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The proof of Theorem 2.2 was given in [7], but the result was mentioned already earlier
in [11].

For k = 3, there exist infinite families of non-bipartite 3-regular 3-uniform hypergraphs
(cf. [7]), the Fano plane being the most famous example (see Fig. 1). The result however
holds if the hypergraph is not regular.

Theorem 2.3 (Henning and Yeo, 2013). Every connected 3-uniform hypergraph with max-
imum degree at most 3 that is not 3-regular is bipartite.

Figure 1: The hypergraph of Fano plane is not bipartite.

Theorem 2.3 immediately implies the following corollary.

Corollary 2.4. Every connected 3-regular 3-uniform hypergraph is either bipartite or be-
comes bipartite after deleting any edge from it.

3 Proof of Theorem 1.3
First we prove a lemma about NMNR-colorings of linear 3-regular 3-uniform hypergraphs.

Lemma 3.1. Every linear 3-regular 3-uniform hypergraph admits an NMNR-coloring with
at most three colors.

Proof. Let H be a connected 3-regular 3-uniform linear hypergraph. By Corollary 2.4, H
is either bipartite, or H − e is bipartite, for any e ∈ E(H). In the former case, the lemma
trivially holds, so we may asume that H is not bipartite.

We prove the lemma by contradiction. Suppose that H does not admit an NMNR-
coloring with at most three colors. Let es = (u, v, w) be an edge of H and ϕ be a 2-
coloring (with colors 0 and 1) of H−es. Consequently, es is monochromatic, and, without
loss of generality, we may assume that ϕ(u) = ϕ(v) = ϕ(w) = 0.

We distinguish two types of edges of H regarding ϕ: an edge e is of type 0 if two
vertices of e are colored with 0, and the third vertex is colored with 1, and analogously, e
is of type 1, if one of its vertices is colored with 0, and the other two are colored with 1.
Define ϕ(v) = 1− ϕ(v) and call it the complementary color of a vertex v.

First, we discuss the types of the edges incident to the vertices of a monochromatic
edge.

Claim 3.2. Every vertex incident to a monochromatic edge is incident to an edge of type 0
and an edge of type 1.
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Proof: Let e be a monochromatic edge of H . Without loss of generality, we may assume
all the vertices of e are of color 0. Suppose to the contrary that there is a vertex of e, say
x, incident to two edges of the same type. If x is incident to two edges of type 0, then we
can recolor x to 1 (see the left case in Fig. 2), obtaining a 2-coloring of H , a contradiction.
In the case when x is incident to two edges of type 1, we color x with the color 2 (see the

x x x x

Figure 2: Recoloring of a vertex x incident to two edges of type 0 (on the left), and type 1
(on the right). Vertices of color 0 are depicted with empty circles, vertices of color 1 with
full, and the vertex of color 2 as a cross.

right case in Fig. 2). Notice that all three edges incident to x are now bichromatic, and so
we obtain an NMNR-coloring of H with at most 3 colors, a contradiction. �

An alternating chain C = e0v1e1v2e2 . . . ek−1vk with respect to the coloring ϕ, is
a sequence of vertices and edges, where e0 is a monochromatic edge incident to v1, the
vertices vi, vi+1 are incident to the edge ei, for 1 ≤ i ≤ k − 1, and ei is of type ϕ(vi).
The third vertex incident to ei is denoted v′i+1. We say that an edge e, distinct from the
edges of C, is a bow edge for C if at least two of its vertices are incident to some edges
of C. An alternating chain C is wrapped if one of the vertices vk and v′k, say vk, is
incident to some bow edge ek = (vk, x, y) and there is no bow edge for the alternating
chain C ′ = e0v1e1v2e2 . . . ek−2vk−1. Consequently, if, say, x is incident to ei, then y is
not incident to any edge of C, as H is linear and C ′ does not have bow edges.

In the following claim, we discuss the edges incident to the vertices of alternating chains
without bow edges.

Claim 3.3. Let C = e0v1e1v2e2 . . . e`−1v` be an alternating chain without bow edges.
Then, for every ei, 1 ≤ i ≤ `− 1, each of the vertices vi+1 and v′i+1 is incident to another
edge of the same type as ei, and an edge of the opposite type.

Proof: Suppose to the contrary, that there exists i, 1 ≤ i ≤ ` − 1, for which the claim
does not hold and choose the smallest such i. Then, we recolor each vj , 1 ≤ j ≤ i, with
its complementary color, and obtain a 2-coloring of H with precisely one monochromatic
edge ei, due to minimality of i. By applying Claim 3.2 to ei and vi+1 or v′i+1, we obtain a
contradiction on non-bipartiteness of H . �

From Claims 3.2 and 3.3, and the fact thatH is finite, it directly follows that there exists
a wrapped alternating chain C = esv1e1v2e2 . . . ek−1vk, for some k ≥ 2 in H starting in
some vertex of es, say u = v1.
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In what follows, we show that we can recolor some vertices of H using colors 0, 1,
and 2 to obtain an NMNR-coloring with at most three colors. At every step of recoloring,
at most one edge of H is monochromatic and the other ones are bichromatic. Note that,
for simplicity, we always adjust the coloring ϕ, so ϕ changes after every recoloring. Let
i, 0 ≤ i ≤ k − 2, be the smallest integer such that the edge ei is incident to a vertex of
the edge ek = (vk, x, y). Let x be the vertex incident to the edges ei and ek. Additionally,
denote the edge incident to vk distinct from ek−1 and ek by ek+1. It is possible that ek+1

is also incident to some vertex of C, but, by the minimality of i, it may be incident only to
some vertex incident to the edges ej , for j ≥ i. As H is linear, ek+1 is not incident to x.

First, recolor all the vertices vj , for 1 ≤ j ≤ i, with the color ϕ(vj). Note that only ei
becomes a monochromatic edge (see Fig. 3). Next, consider two cases regarding the vertex

e0

ek

ek−1

v1 vkvk−1v2

e1

vi+1

ei

e0

ek

ek−1

v1 vkvk−1v2

e1

vi+1

ei

v1

Figure 3: In a wrapped alternating chain we recolor the vertices from v1 to vi to their
complementary colors, where ei is the edge to which ek is wrapped.

x. In both cases, we may, without loss of generality, assume that ϕ(vk) = 0.

(i) x = vi+1. Suppose first that ϕ(x) = 0. Then, ϕ(y) = 1, for otherwise ek would
be monochromatic. If the edge ek+1 is of type 0, then recolor the vertex x to 2 and
the vertex vk to 1. If the edge ek+1 is of type 1, then we consider two subcases. If
i + 2 < k − 1, then recolor the vertices x and vk to 2, and the vertex vk−1 to 0.
Otherwise, if i + 2 = k − 1, recolor x to 1, vk−1 to 0, and vk to 2. As vk−1 is not
incident to ek+1, ϕ is an NMNR-coloring in both subcases.

We may thus assume that ϕ(x) = 1. By Claim 3.3, we have that ϕ(y) = 1. Note that
i+1 < k− 1 in this case as H is linear. If the edge ek+1 is of type 1, then recolor x
and vk to 2, and vk−1 to 0. In the case when ek+1 is of type 0, recolor x to 2, and vk
to 1. This establishes the case (i).

(ii) x = v′i+1. Suppose that ϕ(x) = 0. As above, ϕ(y) must be 1. Note that by
Claim 3.2, the third edge x is incident to is of type 1. If the type of ek+1 is 0, then
recolor x to 2 and vk to 1. If the type of ek+1 is 1, then recolor the vertices x and vk
to 2, and the vertex vk−1 to 0.

Therefore, we may assume that ϕ(x) = 1. Suppose first that ϕ(y) = 1. Then, the
third edge incident to x is of type 0. If ek+1 is of type 0, then recolor vk to 1, and x
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to 2. If ek+1 is of type 1, then recolor vk−1 to 0 and vk to 2, and, in the case when
i+ 1 < k − 1, recolor also x to 2.

Suppose now that ϕ(y) = 0. Then, the third edge incident to x is of type 1. If ek+1

is of type 0, then recolor vk to 1, and x to 0. Therefore, we may assume that the type
of ek+1 is 1. Then, we recolor vk to 2, and x and vk−1 to 0.

This establishes the lemma.

Now, we are ready to prove Theorem 1.3 by considering non-linear 3-regular 3-uniform
graphs.

Proof of Theorem 1.3. We prove the theorem by contradiction. Let H be a 3-regular 3-
uniform hypergraph with the minimum number of vertices such that it does not admit an
NMNR-coloring with at most 3 colors. By Lemma 3.1, H is not linear. Thus, we may as-
sume that there exists a pair of edges e, f ∈ E(H) having at least two vertices in common.
If e and f are incident to the same three vertices, then H − e is bipartite by Corollary 2.3.
Consequently, H is bipartite also and the theorem holds.

Hence, it remains to consider the case where e and f are incident to precisely two com-
mon vertices. Let e = (u, v, w) and f = (v, w, z). Suppose first that there is another edge
g = (v, w, x) of H incident to the vertices v and w. Then, let H∗ be the hypergraph ob-
tained from H by replacing the edges e, f and g with an edge e∗ = (u, z, x) and removing
the vertices v and w. By the minimality of H , there exists an NMNR-coloring ϕ∗ of H∗

with at most 3 colors. Without loss of generality, we may assume that ϕ∗(u) = ϕ∗(z) = 0
and ϕ∗(x) = 1. However, we can obtain an NMNR-coloring of H from ϕ∗ by coloring the
vertex v with 0 and w with 1.

Thus, we may assume that there is no edge of H , apart from e and f , incident to both
v and w. Now, let H∗ be the hypergraph obtained from H by identifying the edges e
and f into an edge e∗ = (u, v∗, z) (where v∗ corresponds to the vertices v and w in H).
Again, since H∗ is smaller than H , there exists an NMNR-coloring ϕ∗ of H∗ with at most
3 colors. In what follows, we show that ϕ∗ can be extended to the vertices v and w. Denote
the third edge of H containing v (resp. w) by g = (a, b, v) (resp. h = (w, c, d)). There are
three possible configurations of g and h (up to symmetry) in terms of the vertices a, b and
c, d, namely:

(i) g = (a, u, v), h = (w, z, c);

(ii) g = (a, u, v), h = (w, c, d), with d 6= z; and

(iii) g = (a, b, v), h = (w, c, d), with b 6= u, d 6= z.

Note also that it is possible that some vertices of g and h coincide.
Without loss of generality, we may again assume that the vertices of e∗ are colored

by the colors 0 and 1 only in ϕ∗. Clearly, if ϕ∗(u) = ϕ∗(z) = 1 and ϕ∗(v∗) = 0,
then we color both, v and w, with 0 and obtain an NMNR-coloring of H with at most 3
colors. So, we may assume that ϕ∗(v∗) = 0 and either ϕ∗(u) = 0 and ϕ∗(z) = 1, or
ϕ∗(u) = 1 and ϕ∗(z) = 0. In both cases, if {ϕ∗(a), ϕ∗(b)} 6= {1} and {ϕ∗(a), ϕ∗(b)} 6=
{0, 2}, then color v with 1 and w with 0. Otherwise, if {ϕ∗(c), ϕ∗(d)} 6= {1} and
{ϕ∗(c), ϕ∗(d)} 6= {0, 2}, then color v with 0 and w with 1. In the remaining cases, i.e.
when {{ϕ∗(a), ϕ∗(b)}, {ϕ∗(c), ϕ∗(d)}} ∈ {{1}, {0, 2}}, color v and w with the color 2.
It is easy to verify that such a coloring results in an NMNR-coloring of H with at most 3
colors, which establishes the theorem.
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Finally, from Theorem 1.3, we derive the proof of Theorem 1.2.

Proof of Theorem 1.2. Let G be a cubic bipartite graph and HG the 3-regular 3-uniform
hypergraph HG, whose existence is guaranteed by Proposition 2.1. By Theorem 1.3, there
exists an NMNR-coloring of HG with at most 3 colors, and thus also a 2-homogenous
coloring of G with at most 6 colors.

4 Conclusion
We have shown that every cubic bipartite graph G is completely homogenous and that
χ2
h(G) ≤ 6. For the latter, we used a simple construction of coloring obtained by NMNR-

coloring with at most 3 colors of the hypergraph HG modeling the neighborhoods in two
parts of G. At least 3 colors must be used to color HG, but one does not always need
to double the number of colors to guarantee that the coloring of G is proper. In fact, we
believe that the following holds.

Conjecture 4.1. Let G be a cubic bipartite graph. Then

χ2
h(G) ≤ 4 .

A computer verification shows that the conjecture is true for cubic bipartite graphs of
order at most 26, and is tight as χ2

h(K3,3) = 4.
When considering k-regular bipartite graphs for k ≥ 4, the proof that they all admit

a 2-homogenous coloring is much easier. Similarly as cubic bipartite graphs, by Proposi-
tion 2.1, one can model the ones with higher degree. Let G be a k-regular bipartite graph
and HG the k-regular k-uniform hypergraph modeling G. By Theorem 2.2, HG is bipar-
tite, implying that no edge of HG is monochromatic, and clearly not rainbow, as only two
colors are used. It immediately proves the following theorem.

Theorem 4.2. Every k-regular bipartite graph G, with k ≥ 4, admits a 2-homogenous
coloring. Moreover,

χ2
h(G) ≤ 4 .

It is natural to ask, what if, for k ≥ 4, the sizes of palettes are bigger than 2. Already in
the class of 4-regular bipartite graphs, there are graphs which do not admit 3-homogenous
colorings. However, among all 4-regular bipartite graphs of order at most 22, there are
precisely two graphs not admitting a 3-homogenous coloring: the complete bipartite graph
K5,5 without a perfect matching, and the bipartite complement of the Heawood graph, i.e.
the complete bipartite graphK7,7 with a copy of the Heawood graph removed. Both graphs
are depicted in Fig. 4.

An `-proper coloring of a hypergraph H is such that the palette size of every edge
equals `. One can trivially generalize Proposition 2.1 into the following form.

Proposition 4.3. Every k-regular bipartite graph G admits an `-homogenous coloring if
and only if the hypergraph HG admits an `-proper coloring.

A complete k-uniform hypergraph Hk
n is a hypergraph on n vertices with the edge set

consisting of all k-element subsets of the vertex set. Let G be isomorphic to the complete
bipartite graph Kn,n without a perfect matching. Then, each of the two components of
the hypergraph HG is isomorphic to the complete (n − 1)-uniform hypergraph Hn−1

n .
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Figure 4: The only two 4-regular bipartite graphs on at most 22 vertices which do not admit
a 3-homogenous coloring. A K5,5 without a perfect matching on the left, and the bipartite
complement of the Heawood graph on the right.

In [2], the authors, considered a more general notion of complete uniform color-bounded
hypergraphs, with given lower and upper bounds for the sizes of edge palettes. Here, we
only present the result, where the lower and the upper bounds are equal.

Proposition 4.4 (Bujtás, Tuza, 2009). The complete (n − 1)-uniform hypergraph Hn−1
n

admits an `-proper coloring if and only if ` ∈ {1, n− 1} or

2 ≤ n− 2

`− 1
.

Hence, the above inequality holds whenever ` ≤ n/2. Proposition 4.4 implies that the
complete bipartite graph Kn,n without a perfect matching is not completely homogenous
for any n ≥ 4. However, as discussed already above, it is not known if there exists some
other infinite family of regular bipartite graphs which are not completely homogenous.
Thus, the directions of further work are straightforward.

Question 1. Which k-regular bipartite graphs admit `-homogenous colorings, for k ≥ 4
and 3 ≤ ` ≤ k − 1?

Problem 4.5. Classify completely homogenous k-regular bipartite graphs, for k ≥ 4.

Question 2. For a k-regular bipartite graph G admitting an `-homogenous coloring, what
is the order of χ`

h(G) as a function of k and `?

We conclude with a conjecture about 4-regular bipartite graphs.

Conjecture 4.6. Every 4-regular bipartite graph, distinct from K5,5 without a perfect
matching and the bipartite complement of the Heawood graph, is completely homogenous.
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1 Introduction
The graphs we study are simple, connected, undirected graphs of valency four, admitting
an orientation of their edges preserved by a vertex-transitive and edge-transitive subgroup
of the automorphism group, that is, graphs of valency four admitting a half-arc-transitive
group action. Many of these graphs arise as medial graphs for regular maps on Riemann
surfaces [8, 9]. The work of Marušič, summarised in [8], demonstrated the importance of a
certain family of cyclic subgraphs for understanding the internal structure of these graphs,
namely their alternating cycles. These are cycles in which each two consecutive edges have
opposite orientations. They were introduced in [7] and their basic properties were studied
in [7, 10].

The families of oriented graphs studied in this paper were singled out in [9, 10] be-
cause they demonstrate three different extremes for the structure of their alternating cycles:
namely the alternating cycles are ‘loosely attached’, ‘antipodally attached’ or ‘tightly at-
tached’ (see Subsection 1.2). These families are based on one of two infinite families of
underlying unoriented valency four graphs (called X(r) and Y (r) for positive integers r),
and for each family three different edge-orientations are induced by three different sub-
groups of their automorphism groups (Section 1.3); the three different edge-orientations
correspond to the three different attachment properties of their alternating cycles. In this
paper it is shown in Theorem 1.1 that these are essentially the only edge-orientations of the
underlying graphs which are invariant under a half-arc-transitive group action.

Our approach is to study the normal quotients of these ‘X-graphs’ and ‘Y -graphs’ (as
explained below), and in doing so we discover that graphs from a third family arise, the
‘Z-graphs’. We find (Theorem 1.3) that normal quotients of the X-graphs are sometimes
X-graphs, sometimes Y -graphs, and sometimes Z-graphs, and the same is true for normal
quotients of the Y -graphs. In addition we determine in Theorem 1.2 those oriented graphs
in these families which are ‘basic’ in the sense that all their proper normal quotients are
degenerate (see Subsection 1.1).

1.1 Graph-group pairs and their normal quotients

The normal quotient approach was introduced in [2] to study oriented graphs, focusing on
the structure of certain quotient graphs rather than subgraphs. For a connected oriented
four-valent graph Γ with corresponding vertex- and edge-transitive group G preserving the
edge-orientation, a normal quotient of (Γ, G) is determined by a normal subgroup N of
G. It is the graph ΓN with vertices the N -orbits on the vertices of Γ, and with distinct N -
orbits B,C adjacent provided there is some edge of Γ between a vertex of B and a vertex
of C. The normal quotient theory in [2] asserts (with specified degenerate exceptions) that
the normal quotient ΓN has valency four, and inherits an edge-orientation from Γ which
is preserved by the quotient group G/N acting transitively on vertices and edges, and,
moreover, Γ is a cover of ΓN (that is, for adjacent N -orbits B,C, each vertex of B is
adjacent to exactly one vertex of C).

We call a pair (Γ, G) basic if the only proper normal quotients (that is, taking N 6= 1)
are degenerate. Each pair (Γ, G) has at least one basic normal quotient, (more details are
given in Section 2, and see [1, 2]). For the pairs (Γ, G) we study in this paper, there is
always a basic normal quotient which lies in one of the families (possibly a different family
from the family containing (Γ, G)). Thus, although all the graph-group pairs in a given
family share the same properties of their alternating cycles (Remark 1.4), the structure of
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the family can be further elucidated by studying the much smaller subfamily of basic pairs.

1.2 The alternating cycles of Marušič

Let OG(4) denote the set of all graph-group pairs (Γ, G), where Γ is a connected graph
of valency four, G is a vertex-transitive and edge-transitive subgroup of automorphisms,
and G preserves an orientation of the edges. In particular G is not transitive on the arcs
of Γ (ordered pairs of vertices which form an edge), and such a group action is called
half-arc-transitive.

Alternatively we could interpret each pair (Γ, G) ∈ OG(4) as consisting of a con-
nected, undirected graph Γ of valency four, and a group G of automorphisms acting half-
arc-transitively. Such a group action determines an edge-orientation of Γ (up to reversing
the orientation on every edge). It is possible for a single graph to have different edge-
orientations determined by different subgroups of automorphisms. This is the case with the
examples in Subsection 1.3 (a) and (b). By viewing the fundamental objects of study as
undirected graphs endowed with (perhaps several) edge-orientations, we are able to give a
unified discussion of all possible edge-orientations preserved by half-arc-transitive group
actions. Our notation is therefore slightly different from the papers [9, 10] where different
names for the same graph are used for different edge-orientations.

The alternating cycles of (Γ, G) (defined above), are determined by the edge-orienta-
tion. They partition the edge set, they all have the same even length, denoted by 2 ·r(Γ, G),
where r(Γ, G) is called the radius of (Γ, G), and if two alternating cycles share at least one
vertex, then they intersect in a constant number a(Γ, G) of vertices, called the attachment
number, such that a(Γ, G) divides 2 · r(Γ, G) [7, Proposition 2.4]. The radius can be any
integer greater than 1 ([7, Section 3] and [10, Section 4]), and the attachment number can
be any positive integer [12, Theorem 1.5]. It is possible that a(Γ, G) = 2 · r(Γ, G) and all
such pairs (Γ, G) were characterised by Marušič in [7, Proposition 2.4(ii)].

Otherwise, if a(Γ, G) < 2 · r(Γ, G), then Γ is a cover of a (possibly smaller) quotient
graph Γ′ admitting a (possibly unfaithful) action G′ of G such that (Γ′, G′) ∈ OG(4) and
the attachment number a(Γ′, G′) is either 1, 2 or r(Γ′, G′), [10, Theorem 1.1 and Theorem
3.6]. For this reason attention has focused on families of examples (Γ, G) ∈ OG(4) for
which a(Γ, G) is 1, 2 or r(Γ, G), and such pairs are said to be loosely attached, antipodally
attached or tightly attached, respectively. As we already mentioned, graphs in the families
we examine have one of these properties, and the structure of their alternating cycles was
studied by Marušič and others [4, 6, 7, 9, 10, 11, 12, 13].

1.3 The families of oriented graphs and our results

We describe the underlying graphs and their edge-orientations.

(a) The first three families of oriented graphs are all based on the same family of graphs,
namely the Cartesian product X(r) = C2r �C2r of two cycles of length 2r, for a positive
integer r. The graph X(r) has vertex set Z2r ×Z2r, such that (i, j) is adjacent to (i± 1, j)
and (i, j ± 1) for all i, j ∈ Z2r. If r = 1 then X(1) = C4, a 4-cycle. If r ≥ 2, then X(r)
has valency 4 and its automorphism group is G(r) = AutX(r) = D4r o Z2 = D2

4r o Z2,
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with generators

µ1 : (i, j) −→ (i+ 1, j), µ2 : (i, j) −→ (i, j + 1),

σ1 : (i, j) −→ (−i, j), σ2 : (i, j) −→ (i,−j),
τ : (i, j) −→ (j, i).

The group G(r) is arc-transitive of order 32r2, and the stabiliser of the vertex x = (0, 0)
is G(r)x = 〈σ1, σ2, τ〉, a dihedral group of order 8. In 1999, Marušič and the fourth au-
thor [10] defined three edge-orientations on the graphs X(r), each of which corresponds
to a half-arc-transitive action of a certain subgroup of G(r), as follows. The second edge-
orientation was also studied by Marušič and Nedela [9]. As mentioned above, by Theo-
rem 1.1, these are the only edge-orientations preserved by a half-arc-transitive subgroup of
AutX(r), up to conjugation in the automorphism group, and reversing the orientations on
all edges. We note that elements of Z2r have a well-defined parity (even or odd).

(a.1) Define the first edge-orientation by

(i, j)→ (i, j + 1) if i is even, (i, j)← (i, j + 1) if i is odd

(i, j)→ (i+ 1, j) if j is even, (i, j)← (i+ 1, j) if j is odd

and the corresponding group

G1(r) := 〈µ1σ2, µ2σ1, τ〉.

Note that G1(r)x = 〈τ〉 ∼= Z2, and |G1(r)| = 8r2.

(a.2) Define the second edge-orientation by

(i, j)→ (i, j + 1), (i, j)← (i+ 1, j) if i+ j is even

(i, j)← (i, j + 1), (i, j)→ (i+ 1, j) if i+ j is odd

and the corresponding group

G2(r) := 〈µ1µ2, µ1
2, σ1, σ2, τµ1〉.

Note that G2(r)x = 〈σ1, σ2〉 ∼= Z2
2 , and |G2(r)| = 16r2.

(a.3) Define the third edge-orientation by

(i, j)→ (i, j + 1), (i, j)→ (i+ 1, j) for all i and j

and the corresponding group

G3(r) := 〈µ1, µ2, τ〉.

Note that G3(r)x = 〈τ〉 ∼= Z2, and |G3(r)| = 8r2.

In Remark 3.1 we discuss briefly how these three edge-orientations may be visualised. In
neither of the papers [9, 10] where these graphs were previously studied are the genera-
tors of the groups Gk(r) defined explicitly, and we need this information for our analysis.
Indeed in order to analyse these families of oriented graphs we need an additional graph
family related to the third edge orientation.
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Table 1: Types of basic pairs (Γ, G) in OG(4)

Basic Type Possible ΓN for 1 6= N C G Conditions on G-action
on vertices

quasiprimitive K1 only quasiprimitive
biquasiprimitive K1 and K2 only (Γ bipartite) biquasiprimitive
cycle at least one Cm (m ≥ 3) at least one quotient action

D2m or Zm

(a.4) Let s be an odd integer, s ≥ 3, and let Z(s) = Cs�Cs (that is, the graph X(r) with
2r replaced by s); let µ1, µ2, τ have the same meanings as above (as permutations of
the set Zs × Zs); define the edge-orientation as in (a.3); and call the corresponding
group G3Z(s) = 〈µ1, µ2, τ〉.

(b) The last three families of oriented graphs are all based on certain quotients of the graphs
in part (a). Define the (undirected) graph Y (r) as the quotient of X(r) modulo the orbits
of the normal subgroup M(r) := 〈(µ1µ2)r〉 of G(r). Thus the vertices of Y (r) are the
2-element subsets {(i, j), (i+r, j+r)}, for i, j ∈ Z2r, and the vertex {(i, j), (i+r, j+r)}
of Y (r) is adjacent to {(i±1, j), (i+ r±1, j+ r)} and {(i, j±1), (i+ r, j+ r±1)}. The
graph Y (1) = K2 and, for r ≥ 2, Y (r) has valency 4, and admits an arc-transitive action
of the quotient H(r) := G(r)/M(r). Moreover, X(r) is a cover of Y (r). In particular,
Y (2) = K4,4, a complete bipartite graph.

For k = 2, 3 with r ≥ 2, and also for k = 1 with r even, we have M(r) ≤ Gk(r) and
we define Hk(r) := Gk(r)/M(r). Then the graph-group pair (Y (r), Hk(r)) ∈ OG(4)
(Lemma 3.3). It is the normal quotient of the pair (X(r), Gk(r)) relative to M(r), and by
[2, Theorem 1.1], Y (r) inherits the kth-edge-orientation from X(r).
For any of the graphs X(r), Y (r), Z(s), each of the edge-orientations defined above is
invariant under some edge-transitive subgroup of automorphisms (by Theorem 1.2), and
these are essentially the only such edge-orientations for these graphs.

Theorem 1.1. Let Γ = X(r) with r ≥ 2, or Γ = Y (r) with r 6∈ {1, 2, 4}, or Γ = Z(s)
with s odd, s > 1. Then, up to conjugation in Aut Γ, and up to reversing the orientation on
each edge, the only edge-orientations of Γ invariant under a half-arc-transitive subgroup
of Aut Γ are those defined in Subsection 1.3.

We prove Theorem 1.1 in Section 4. By [2, Lemma 3.3], each graph-group pair (Γ, G) ∈
OG(4) is a normal cover of at least one basic pair in OG(4). It turns out that the graph-
group pairs (X(r), Gk(r)), (Y (r), Hk(r)), and (Z(s), G3Z(s)) all lie inOG(4), and are all
normal covers of at least one basic pair from one of these families, but not necessarily from
the same family (Remark 3.1 (c)). Our main results identify which of these pairs is basic
(Theorem 1.2), and present some of their interesting normal quotients (Theorem 1.3). The
types of basic graph-group pairs are defined according to the kinds of degenerate normal
quotients they have. These are summarised in Table 1, taken from [2, Table 2].

Theorem 1.2. Let (Γ, G) be one of the graph-group pairs in Table 2. Then (Γ, G) ∈
OG(4). Moreover (Γ, G) is basic if and only if the conditions in the ‘Conditions to be
Basic’ column hold, and in this case, the basic type is given in the ‘Basic Type’ column.
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Table 2: Conditions for (Γ, G) to be basic in Theorem 1.2. (Refer to Lemma 6.2.)

(Γ, G) Conditions Conditions to be Basic Basic Type
(X(r), Gk(r)) all k and r k = 1, r odd prime cycle
(Y (r), Hk(r)) all k and r even all k and r = 2 cycle
(Y (r), Hk(r)) k > 1 and r odd k = 2, r odd prime biquasiprimitive
(Z(s), G3Z(s)) s ≥ 3 odd s odd prime cycle

We verify membership of OG(4) in Lemma 3.3, and prove the assertions in Table 2 in
Lemma 6.2. The normal quotients we explore are those modulo the following subgroups
of G(r) and/or G3Z(s). We note that |µi| is 2r or s, when interpreting µi as an element of
G(r) or G3Z(s), respectively. For each divisor a of 2r or of s, as appropriate, define

N(a) = 〈µa1 , µa2〉 if a | |µ1| (1.1)

M(a) = 〈(µ1µ2)a, µ2a
1 〉 if 2a | |µ1|

N(2,+) = 〈µ2
1, µ

2
2, σ1, σ2〉 ≤ G2(r).

If |µ1| = 2r, then each of N(a),M(a) is normal in the full automorphism group G(r) of
X(r), and if a | r, then N(2a) is a subgroup of M(a) of index 2; if |µ1| = s is odd, then
N(a) E G3Z(s) (and M(a) is not defined). We also consider:

J = 〈µ1µ2〉 ∼= Zt, and K = 〈µ1µ
−1
2 , τ〉 ∼= D2t (1.2)

where t = |µ1| ∈ {2r, s}, and if |µ1| = 2r, also

J(+) = 〈µ1µ2, µ
r
1〉 and K(+) = 〈µ1µ

−1
2 , τ, µr1〉. (1.3)

If t = 2r then the four subgroups in (1.2) and (1.3) all contain M(r) and are normal in
G3(r), while if t = s then J,K are normal in G3Z(s). For an arbitrary subgroup L of
G(r), we write L := LM(r)/M(r), so, for example, H(r) = G(r) and Hk(r) = Gk(r),
and we also consider the subgroups M(a) and N(a). Note that

M(r) 6≤ N(a) if and only if 2r
a is odd if and only if N(a) = M(a2 ). (1.4)

Theorem 1.3. Let (Γ, G) be a graph-group pair (X(r), Gk(r)), (Y (r), Hk(r)), or
(Z(s), G3Z(s)), where k ∈ {1, 2, 3}, s ≥ 3 is odd, r ≥ 2, and in the case of (Y (r), H1(r)),
r is even.

(a) Then (Γ, G) has proper non-degenerate normal quotients (ΓN , G/N), for (Γ, G), N
and the ‘Conditions’ as in one of the lines of Table 3.

(b) also (Γ, G) has degenerate normal quotients (ΓN , G/N), for N,G as in one of the
lines of Table 4.

We prove parts (a) and (b) of Theorem 1.3 in Lemmas 5.1 and 5.2, respectively. We do
not claim that Theorem 1.3 classifies all the normal quotients for these graph-group pairs.
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Table 3: Non-degenerate normal quotients of (Γ, G) for Theorem 1.3, with N as in (1.1)
and a > 1. (Refer to Lemma 5.1.)

(Γ, G) N (ΓN , G/N) Conditions on k, a, r

(X(r), Gk(r)) N(2a) (X(a), Gk(a)) a < r

(X(r), Gk(r)) M(a) (Y (a), Hk(a)) 2r
a even, and a even if k = 1

(X(r), G3(r)) N(a) (Z(a), G3Z(a)) a odd

(Y (r), Hk(r)) N(2a) (X(a), Gk(a)) r
a even

(Y (r), Hk(r)) M(a) (Y (a), Hk(a)) 2r
a > 2 even, and a even if k = 1

(Y (r), H3(r)) N(a) (Z(a), G3Z(a)) a odd

(Z(s), G3Z(s)) N(a) (Z(a), G3Z(a)) a < s

Table 4: Degenerate normal quotients of (Γ, G) for Theorem 1.3, with N as in (1.1), (1.2)
or (1.3). (Refer to Lemma 5.2.)

N in Gk(r) N in Hk(r) N in G3Z(s) (ΓN , G/N) Conditions

N(2) N(2) – (C4, D8) k = 1, 3,

with r even for Hk(r)

N(2,+) N(2,+) – (C4, Z4) k = 2

with r even for Hk(r)

– N(2,+) – (K2, Z2) k = 2, r odd

– N(2) – (K2, Z2) k = 3, r odd

J J J (Ct, D2t) k = 3, t ∈ {2r, s}
K K K (Ct, Zt) k = 3, t ∈ {2r, s}
J(+) J(+) – (Cr, D2r) k = 3

K(+) K(+) – (Cr, Zr) k = 3
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Remark 1.4. (a) When defining (Z(s), G3Z(s)) with s odd, we only consider the third
edge-orientation since, for s odd, elements of Zs do not have a well-defined parity, and so
the definitions of the first and second edge-orientations do not make sense for the graph
Z(s).

Also, when defining (Y (r), Hk(r)), we require that r should be even when k = 1,
since when k = 1 and r is odd, there are oriented edges in both directions between adjacent
Y (r)-vertices, so the first edge-orientation of X(r) is not inherited by Y (r).

(b) The nomenclature in (a.4) may seem clumsy. However we decided to keep the same
names for the graphs X(r), Y (r) in order to facilitate reference to [9, 10] for their other
properties, as follows.

(i) It is pointed out in [10, Section 2] and [9, Page 161], that for r ≥ 3, the oriented
graph-group pairs (X(r), Gk(r)) are loosely attached with radius 2, antipodally at-
tached with radius r, and tightly attached with radius 2r, for k = 1, 2, 3, respectively.
Note that the graph X(r) with the kth edge-orientation is called Xk(r) in [10].

(ii) It is remarked in [10, Section 2], that if r ≥ 3, then the oriented graph-group pairs
(Y (r), Hk(r)) (with r even if k = 1) are loosely attached with radius 2, antipodally
attached with radius r, and tightly attached with radius r, for k = 1, 2, 3, respectively.

(iii) The pairs (X(r), G2(r)) and (Y (r), H2(r)) were also studied by Marušič and
Nedela, where they were characterised in [9, Props. 3.3, 3.4] as the only pairs with
stabilisers of order at least 4, and such that every edge lies in precisely two oriented
4-cycles.

(c) By Theorems 1.2 and 1.3, the graph-group pairs all have basic normal quotients, some-
times more than one. We summarise our findings.

(i) (X(r), G1(r)), and also (Y (r), H1(r))(r even), have basic normal quotients
(Y (2), H1(2)) if r is even and (X(a), G1(a)) for odd primes a | r;

(ii) (X(r), G2(r)), and also (Y (r), H2(r)), have as basic normal quotients
(Y (a), H2(a)) for primes a | 2r;

(iii) (X(r), G3(r)), and also (Y (r), H3(r)), have as basic normal quotients
(Y (2), H3(2)) if r is even and (Z(a), G3Z(a)) for odd primes a | r;

(iv) (Z(s), G3Z(s)) (s odd) has basic normal quotients (Z(a), G3Z(a)) for odd primes
a | s.

2 Preliminaries: normal quotients of pairs in OG(4)

For fundamental graph theoretic concepts please refer to the book [5], and for fundamental
notions about group actions please refer to the book [3]. For permutations g of a set X , we
denote the image of x ∈ X under g by xg .

A permutation group on a set X is semiregular if only the identity element fixes a point
of X; the group is regular if it is transitive and semiregular. If a permutation group G on
X has a normal subgroup K E G such that K is regular, then (see [3, Section 1.7]) G is a
semidirect product G = K.Gx, where Gx is the stabiliser of a point x ∈ X . Moreover, we
may identify X with K in such a way that x = 1K , K acts by right multiplication and Gx
acts by conjugation. Many of the groups we study in this paper have this form.
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As mentioned in Section 1, normal quotients of graph-group pairs (Γ, G) ∈ OG(4) are
usually of the form (ΓN , G/N), they lie in OG(4), and Γ is a cover of ΓN , where N E G.
The only exceptions are the degenerate cases when ΓN consists of a single vertex (if N is
transitive), or a single edge (if the N -orbits form the bipartition of a bipartite graph Γ), or
when ΓN is a cycle possibly, but not necessarily, inheriting a G-orientation of its edges, [2,
Theorem 1.1]. Thus (Γ, G) ∈ OG(4) is basic if all of its proper normal quotients (that is,
the ones with N 6= 1) are degenerate.

For a graph-group pair (Γ, G) ∈ OG(4) and vertex x, the out-neighbours of x are the
two vertices y such that x→ y is a G-oriented edge of Γ.

An isomorphism between graph-group pairs (Γ, G), (Γ′, G′) is a pair (f, ϕ) such that
f : Γ → Γ′ is a graph isomorphism, ϕ : G → G′ is a group isomorphism, and (xg)f =
(xf)(g)ϕ for all vertices x of Γ and all g ∈ G.

Lemma 2.1. Suppose that (Γ, G) ∈ OG(4), N E G, and (f, ϕ) is an isomorphism from
(ΓN , G/N) to (Γ′, G′). Let M be the set of all normal subgroups M of G such that
N ≤ M and M is the kernel of the G-action on the M -vertex-orbits in Γ. Then, for
each M ∈ M, (f, ϕ) induces an isomorphism from (ΓM , G/M) to (Γ′

M
, G′/M), where

M = (M/N)ϕ, and each normal quotient of (Γ′, G′) corresponds to exactly one such
normal quotient (ΓM , G/M).

Proof. The isomorphism ϕ : G/N → G′ determines a one-to-one correspondence M 7→
(M/N)ϕ between the set of all normal subgroups of G which contain N , and the set of all
normal subgroups of G′, and moreover, setting M = (M/N)ϕ, ϕ induces an isomorphism
ϕM : G/M → G′/M given by Mg → M(Ng)ϕ. For normal quotient graphs ΓM , the
induced group action isG/M̂ , where M̂ is the kernel of theG-action on theM -orbits. Thus
ΓM = ΓM̂ , and the normal quotients of (Γ, G) relative to normal subgroups M containing
N are precisely the normal quotients (ΓM , G/M), for M ∈M.

For each M ∈ M, the graph isomorphism f : ΓN → Γ′ induces a graph isomorphism
fM : ΓM → Γ′

M
, where fM maps the M -vertex-orbit xM in Γ to the M -vertex-orbit in Γ′

containing (xN )f . By the definition of (f, ϕ) we have ((xN )Ng)f = ((xN )f)(Ng)ϕ for
each vertex x of Γ and each g ∈ G. It follows that ((xM )Mg)fM = ((xM )fM )(Mg)ϕM

for each vertex x of Γ and each g ∈ G, and hence (fM , ϕM ) is an isomorphism from
(ΓM , G/M) to (Γ′

M
, G′/M).

This property of (f, ϕ) implies that normal subgroups containing N with the same
vertex-orbits in Γ correspond to normal subgroups of G′ with the same vertex-orbits in
Γ′, and vice versa. Thus, on the one hand, distinct subgroups inM correspond to distinct
normal quotients of (Γ′, G′). Also, on the other hand, each K E G′ such that K is the
kernel of the G′-action on the K-vertex-orbits in Γ′ is of the form K = (M/N)ϕ, where
N ≤M and M is the kernel of the G-action on the M -vertex orbits in Γ.

3 Each graph-group pair (Γ, G) in Theorem 1.2 lies in OG(4)

First we consider X(r) and Gk(r) for k ≤ 3 and r ≥ 3. Recall the definitions of the edge
orientations and the generators µ1, µ2, σ1, σ2, τ , from Subsection 1.3 (a). We make a few
comments about the various edge orientations.

Remark 3.1. We view the vertex set of X(r) as a 2r × 2r grid with rows and columns
labeled 0, 1, . . . , 2r − 1 (in this order, increasing to the right and increasing from top to
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bottom), and with the vertex (i, j) in the row i, column j position. The edges of X(r)
then are either horizontal if they join vertices with equal first entries, or vertical if they join
vertices with equal second entries. It may be helpful to use this point of view when reading
the proofs below. In particular it aids a description of the various edge orientations.

(1) In the first edge-orientation, for i even, the horizontal edges in row i are oriented from
left to right (except of course that the edge from (i, 2r − 1) is joined to (i, 0)), and
for i odd, the horizontal edges in row i are oriented from right to left. Similarly, for
j even, the vertical edges in column j are oriented downwards and those in column
j, for odd j, are oriented upwards.

(2) In the second edge-orientation, both the rows and the columns are alternating cycles,
arranged in such a way that, for each i, j, the sequence

(i, j), (i, j + 1), (i+ 1, j + 1), (i+ 1, j)

forms a directed 4-cycle, oriented from left to right if i+ j is even, and from right to
left if i+ j is odd.

(3) Finally, in the third edge-orientation, all the horizontal edges are oriented from left
to right, and all the vertical edges are oriented downwards.

Lemma 3.2. Let k ≤ 3 and r ≥ 2. Then the group Gk(r) preserves the kth edge-
orientation of X(r).

Proof. We consider the cases k = 1, 2, 3 separately. In each case, for each generator of
Gk(r), we consider its actions on a horizontal edge E in row i joining (i, j) to (i, j + 1),
and on a vertical edge D in column j joining (i, j) to (i+ 1, j).

(1) Firstly µ1σ2 mapsE to the horizontal edgeE′ joining (i+1,−j) to (i+1,−j−1),
since µ1σ2 moves row i to row i + 1 (by µ1) and then reflects it across a vertical axis
through the 0th-column (by σ2). Thus if E is oriented from left to right, then E′ is oriented
from right to left (and vice versa), and since horizontal edges in row i and row i + 1 have
opposite orientations (see Remark 3.1(1)), it follows that µ1σ2 preserves the orientation of
horizontal edges. Also µ1σ2 maps D to the vertical edge joining (i+ 1,−j) to (i+ 2,−j),
and since j,−j have the same parity, edges in columns j and −j have the same orientation
(see Remark 3.1(1)). Thus µ1σ2 preserves the first edge-orientation on all edges. An
exactly similar argument (interchanging the roles of rows and columns) shows that µ2σ1
also preserves the first edge-orientation.

Finally τ swaps the horizontal edge E in row i with the vertical edge E′ in column i
joining (j, i) to (j+1, i). If i is even then E is oriented from left to right and E′ is oriented
downwards, so the orientation is preserved. Also, if i is odd then E is oriented from right
to left and E′ is oriented upwards, and again the orientation is preserved. (For example, the
oriented edge (1, 2)← (1, 3) is swapped with the oriented edge (2, 1)← (3, 1).) Similarly
the action of τ preserves the orientation of D. Thus τ preserves the first edge-orientation.

(2) Firstly µ2
1 maps E to the horizontal edge E′ joining (i+ 2, j) to (i+ 2, j + 1) and

E,E′ have the same orientation; and µ2
1 maps D to the vertical edge D′ joining (i + 2, j)

to (i + 3, j) and D,D′ have the same orientation. Thus µ2
1 preserves the second edge-

orientation. Similar arguments show that µ2
2 and µ1µ2 also preserve the second edge-

orientation. Next, σ1 mapsE to the horizontal edgeE′ in row−i joining (−i, j) to (−i, j+
1) and since i+j and−i+j have the same parity, the edgesE,E′ have the same orientation;
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similarly σ1 mapsD to the vertical edgeD′, still in column j, joining (−i, j) to (−i−1, j)
and we see again that D,D′ have the same orientation. Thus σ1 preserves the second
edge-orientation. An exactly similar argument shows that also σ2 preserves the second
edge-orientation. Finally τµ1 maps E to the vertical edge E′ joining (j+ 1, i) to (j+ 2, i)
and since i + j and j + 1 + i have opposite parities, the orientation of E is preserved
under the action of τµ1; and τµ1 maps D to the horizontal edge D′ joining (j + 1, i) to
(j + 1, i+ 1) and for the same reason the orientation of D is preserved under the action of
τµ1. Thus τµ1 preserves the second edge-orientation.

(3) Firstly, since µ1 and µ2 map E to a horizontal edge and D to a vertical edge,
and since all horizontal edges have the same orientation, and all vertical edges have the
same orientation (see Remark 3.1(3)), it follows that µ1 and µ2 preserve the third edge-
orientation. Finally τ swaps horizontal and vertical edges, and since all horizontal edges
are oriented from left to right, and all vertical edges are oriented downwards, it follows that
τ also preserves the third edge-orientation.

Next we prove membership of OG(4). Recall that, for a subgroup L ≤ G(r) we write
L = LM(r)/M(r) for the corresponding subgroup of H(r) = G(r)/M(r).

Lemma 3.3. Let k ≤ 3, r ≥ 2, and let s > 1 be odd. Let (Γ, G) be one of (X(r), Gk(r)),
(Y (r), Hk(r)) (with r even if k = 1), or (Z(s), G3Z(s)). Then (Γ, G) ∈ OG(4).

Proof. It is easy to check that the graphsX(r) andZ(s) are connected. Thus, once we have
proved that Gk(r) acts half-arc-transitively on X(r), and G3Z(s) acts half-arc-transitively
on Z(s), it follows from Lemma 3.2 that (X(r), Gk(r)) ∈ OG(4) and (Z(s), G3Z(s)) ∈
OG(4). Further, as (Y (r), Hk(r)) is a normal quotient of (X(r), Gk(r)) relative to
M(r) ∼= Z2, its membership in OG(4) follows from [2, Theorem 1.1]. It therefore re-
mains to prove that the actions on X(r) and Z(s) are half-arc-transitive. First we consider
X(r).

The subgroup L := N(2) = 〈µ1
2〉 × 〈µ2

2〉 ≤ G(r) is contained in Gk(r), for each k,
and the L-orbits on vertices are the following four subsets.

∆ee = {(i, j) | i, j are both even}, ∆eo = {(i, j) | i is even, j is odd}, (3.1)
∆oe = {(i, j) | i is odd, j is even}, ∆oo = {(i, j) | i, j are both odd}.

Writing ḡ = Lg for each g ∈ G(r), we note that G(r)/L = 〈µ̄1, µ̄2, σ̄1, σ̄2, τ̄〉 ∼= (Z2 ×
Z2) o Z2 of order 25. Let x := (0, 0) ∈ ∆ee. For each k we find a normal subgroup
K of Gk(r) such that K contains L and K is regular on vertices. Hence Gk(r) is the
semidirect productGk(r) = K·(Gk(r))x. Then to prove half-arc-transitivity, it is sufficient
to prove that (Gk(r))x fixes setwise and interchanges the two out-neighbours of x. (This is
sufficient since, for two arbitrary oriented edges, say y → z and y′ → z′, there are elements
g, g′ ∈ K such that yg = x, (y′)g

′
= x, so that zg, (z′)g

′
are possibly equal out-neighbours

of x.)
(1) For the first edge-orientation we see that K := 〈µ1σ2, µ2σ1〉 is normalised by τ

and hence K is normal in G1(r) with index 2, and G1(r) = K · 〈τ〉. Since |G1(r)| = 8r2

(see Subsection 1.3), we have |K| = 4r2. Moreover, since xµ1σ2 = (1, 0) ∈ ∆oe, x
µ2σ1 =

(0, 1) ∈ ∆eo, and (0, 1)µ1σ2 = (1,−1) ∈ ∆oo, it follows that K permutes the L-orbits
transitively, and hence K is transitive on vertices. Now |K| = 4r2, and hence K is regular
on vertices. Thus the stabiliser (G1(r))x has order 2 and so is equal to 〈τ〉 ∼= Z2. Finally
τ interchanges the two out-neighbours (0, 1) and (1, 0) of x.



372 Ars Math. Contemp. 12 (2017) 361–381

(2) For the second edge-orientation, the subgroup K := 〈µ1µ2, µ
2
1, τµ1〉 is normalised

by σ1 and σ2 and hence is normal in G2(r). Also the subgroup H := 〈σ1, σ2〉 ∼= Z2
2 fixes

the vertex x and H ∩K = 1. Since |G2(r)| = 16r2 = |K|.|H|, this implies that G2(r) is
the semidirect product K ·H , and |K| = 16r2/|H| = 4r2. Since xµ1µ2 = (1, 1) ∈ ∆oo,
xτµ1 = (1, 0) ∈ ∆oe, and (1, 0)µ1µ2 = (2, 1) ∈ ∆eo, it follows that K permutes the L-
orbits transitively, and hence K is transitive on vertices. Then since |K| = 4r2, it follows
that K is regular on vertices. Thus the stabiliser (G2(r))x has order |G2(r) : K| = 4 and
so is equal to H . Finally σ2 ∈ H interchanges the two out-neighbours (0, 1) and (0,−1)
of x.

(3) For the third edge-orientation, the subgroup K := 〈µ1, µ2〉 is normalised by τ and
hence is normal in G3(r) of index 2, and G3(r) = K · 〈τ〉 so |K| = 4r2. Moreover, since
xµ1 = (1, 0) ∈ ∆oe, x

µ2 = (0, 1) ∈ ∆eo, and (0, 1)µ1 = (1, 1) ∈ ∆oo, it follows that K
permutes the L-orbits transitively, and hence K is transitive on vertices. Now |K| = 4r2,
and henceK is regular on vertices. Thus the stabiliser (G3(r))x has order 2 and so is equal
to 〈τ〉 ∼= Z2. Finally τ interchanges the two out-neighbours (0, 1) and (1, 0) of x.

(4) Now we consider Z(s) and G = G3Z(s) with s odd. It is straighforward to show
that the subgroup K = 〈µ1, µ2〉 is regular on vertices, and G = K.〈τ〉 with Gx = 〈τ〉.
Also τ interchanges the two out-neighbours (0, 1) and (1, 0) of x.

4 Classifying the edge-orientations
In this section we prove Theorem 1.1. Suppose that Γ is one of the graphsX(r), Y (r), Z(s)
defined in Subsection 1.3, and thatH ≤ Aut Γ acts half-arc-transitively. Then as discussed
in Subsection 1.2, H preserves an edge-orientation of Γ, and this edge-orientation is deter-
mined by H up to reversing the orientation on each edge. Moreover, this edge-orientation
and its ‘reverse’ will be the same as those preserved by a subgroup of Aut Γ which is
maximal subject to containing H and acting half-arc-transitively on Γ. Thus proving The-
orem 1.1 is equivalent to classifying all of the subgroups H of Aut Γ which are maximal
subject to acting half-arc-transitively on Γ. First we show that a proof of Theorem 1.1 in
the case of X(r) implies the result for the graph Y (r).

Lemma 4.1. If r 6∈ {1, 2, 4}, then AutY (r) is the group G(r)/M(r) discussed in Subsec-
tion 1.3(b). Moreover, if the assertions of Theorem 1.1 hold for X(r), then they hold also
for Y (r).

Proof. WriteG(r)=G(r)/M(r), soG(r) is an arc-transitive subgroup ofA := AutY (r),
where M(r) = 〈(µ1µ2)r〉 as in Subsection 1.3. We consider the vertex x = {(0, 0), (r, r)}
of Y (r), and its four neighbours y = {(1, 0), (r + 1, r)}, y′ = {(−1, 0), (r − 1, r)},
z = {(0, 1), (0, r + 1)} and z′ = {(0,−1), (r, r − 1)}. The stabiliser in G(r) of the arc
(x, y) is the subgroup 〈σ2〉. Since r 6∈ {1, 2, 4}, there are two paths of length 2 joining y to
the vertex v, for v = z and v = z′ but only one such path for v = y′. It follows that Ax,y
must also fix y′.

Thus Ax,y,z has index 2 in Ax,y , and fixes each of the four neighbours of x. Moreover,
Ax,y,z fixes the second common neighbour {(1, 1), (r + 1, r + 1)} of y and z, and also
the second common neighbour {(1,−1), (r + 1, r − 1)} of y and z′. It follows that Ax,y,z
fixes pointwise each of the neighbours of y. Repeating this argument we conclude that
Ax,y,z = 1. Thus |A| is equal to twice the number of arcs, and hence A = G(r).
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To prove the last assertion, suppose that H ≤ A and H is maximal subject to being
half-arc-transitive on Y (r), and thus preserving a certain edge-orientation of Y (r) (and
its reverse edge-orientation). Define an edge-orientation of X(r) by orienting each edge
of X(r) according to the orientation of the corresponding edge of Y (r). Since X(r) is a
double cover of Y (r), this means that both X(r)-edges corresponding to a Y (r)-edge will
have the same orientation. Now H = H/M(r) where M(r) ≤ H ≤ G(r), H is half-arc-
transitive on X(r), and H preserves this edge-orientation of X(r). Thus, by assumption,
replacing H by a conjugate in AutX(r) if necessary, this edge-orientation of X(r) is one
of the three defined in Subsection 1.3 (a) or the reverse of one of these, and so H ≤ Gk(r)
for some k ∈ {1, 2, 3}. Moreover if k = 1, then r is even, since in this case, if r were odd
then the two X(r)-edges corresponding to a Y (r)-edge would have opposite orientations
(see Remark 1.4 (a)).

By Lemma 4.1, we may assume that Γ = X(r) or Z(s), or in other words, that
Γ = Ct�Ct, where either t = 2r, or t = s (with s odd). Then A := Aut Γ =
〈µ1, µ2, σ1, σ2, τ〉, where the generators are defined as in Subsection 1.3 (a). We use
this notation for the rest of this subsection and we assume that H is a half-arc-transitive
subgroup of Aut Γ. We let x = (0, 0), and denote its neighbours in Γ by y = (1, 0),
y′ = (−1, 0), z = (0, 1) and z′ = (0,−1). First we obtain some restrictions on H .

Lemma 4.2. (a) The group H contains none of the elements σ1µ1, σ2µ2, σ1σ2µ1, or
σ1σ2µ2.

(b) Up to conjugation in A, the stabiliser Hx is one of 〈σ1σ2〉, 〈σ1, σ2〉 or 〈τ〉.

Proof. As noted in Subsection 1.3, Ax = 〈σ1, σ2, τ〉 ∼= D8, and Ax,y = 〈σ2〉 ∼= Z2. There
are thus exactly two elements of A which reverse the arc (x, y), and an easy computation
shows these are the elements σ1µ1 and σ1σ2µ1. Since H is vertex-transitive, and edge-
transitive, but not arc-transitive, these two elements do not lie in H . The same argument
for the arc (x, z) shows that H does not contain σ2µ2 or σ1σ2µ2. This proves part (a).

Since H is not arc-transitive, it is a proper subgroup of A, so Hx is a proper subgroup
of Ax, and Hx has two orbits on {y, y′z, z′}, the set of neighbours of x. If |Hx| = 4
these properties imply that Hx = 〈σ1, σ2〉. The only other possibility is that |Hx| = 2,
so suppose this is the case. Of the five involutions in Ax the only ones which act on
{y, y′z, z′} with two cycles of length 2 are σ1σ2, τ and σ1σ2τ . Since τσ1 = σ1σ2τ , part
(b) follows.

This result allows us, in particular, to deal with the case whereH contains the subgroup
M := 〈µ1, µ2〉.

Lemma 4.3. If H contains M := 〈µ1, µ2〉, then up to conjugation in A,

H =

{
G3(r) if t = 2r

G3Z(s) if t = s is odd.

In particular the edge-orientation is the one defined in Subsection 1.3 (a.3) or (a.4), or its
reverse. Moreover, all assertions in Theorem 1.1 hold if Γ = Z(s).

Proof. Suppose that M ≤ H . Then H = M o Hx, as M is regular on vertices, and it
follows from Lemma 4.2 that Hx = 〈τ〉 (replacing H by a conjugate if necessary). Thus
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H is as claimed and so is the edge-orientation. If Γ = Z(s) then |A| = 8s2 and the
subgroup M is the unique Hall 2′-subgroup of A. Since H is vertex-transitive H must
contain M .

We may therefore assume that Γ = X(r), and that M 6⊆ H . Next we consider the case
τ ∈ H .

Lemma 4.4. If Γ = X(r), M 6⊆ H , and τ ∈ H , then up to conjugation in A, H = G1(r)
and the edge-orientation is as defined in Subsection 1.3 (a.1) or its reverse.

Proof. Since τ ∈ H , we have Hx = 〈τ〉 by Lemma 4.2, and so |A : H| = 4. Also
|M : M ∩H| = |MH : H| divides |A : H| = 4.

We claim that |M : M ∩ H| = 4. Suppose not. Then since M 6⊆ H , the subgroup
M ∩H has index 2 in M , and as it is τ -invariant, it follows that M ∩H = 〈µ2

1, µ
2
2, µ1µ2〉.

Now MH/M ∼= H/(M ∩H) has order |H|/|M ∩H| = 4, and as Ax is a transversal for
M in A, the M -cosets in MH/M have representatives from a subgroup of Ax of order 4
containing τ . The unique such subgroup is 〈τ, σ1σ2〉. Since each of these M -cosets also
has a representative from H , it follows that H contains an element σ1σ2µi1µ

j
2, for some

i, j. Since H contains µ2
1, µ

2
2 and µ1µ2, we may assume that j = 0 and i ∈ {0, 1}. Part (a)

of Lemma 4.2 implies that i 6= 1, while the fact that Hx = 〈τ〉 implies that i 6= 0. This is
a contradiction, and hence |M : M ∩H| = 4. Thus |MH/M | = |H|/|M ∩H| = 8, so
MH = A.

We next claim that M ∩H = 〈µ2
1, µ

2
2〉. Since M ∩H is τ -invariant, this claim would

follow if the projection of M ∩H into 〈µ1〉 were contained in 〈µ2
1〉 (since this would imply

that M ∩H ⊆ 〈µ2
1, µ

2
2〉). Suppose that this is not the case. Then M ∩H is a τ -invariant,

subdirect subgroup of M = 〈µ1〉 × 〈µ2〉 of index 4, and it follows that r is even and
M ∩H = 〈µ4

1, µ
4
2, µ1µ

a
2〉, where a ∈ {1,−1}. Since MH = A, H contains an element of

the form h = σ2µ
i
1µ
j
2 for some i, j, and hence H contains µ1µ

a
2(µ1µ

a
2)h = µ1µ

a
2µ1µ

−a
2 =

µ2
1. This is a contradiction, proving our second claim.

Thus M ∩ H = 〈µ2
1, µ

2
2〉. Since MH = A, the subgroup H contains an element

h′ = σ1µ
i
1µ
j
2 for some i, j, and since M ∩H contains µ2

1, µ
2
2, we may assume that i, j ∈

{0, 1}. Since σ1 6∈ H , and also, by Lemma 4.2, σ1µ1 6∈ H , it follows that j = 1. If
h′ = σ1µ1µ2, then H also contains (h′)τ = σ2µ2µ1, and this implies that H contains
(h′)τ (h′)−1 = σ2σ1 = σ1σ2, which is a contradiction. Thus h′ = σ1µ2. Then H also
contains (h′)τ = σ2µ1, and so the group G1(r) is contained in H . These groups have the
same order, so H = G1(r) and the lemma follows.

Thus from now on we may assume that τ 6∈ H and hence, by Lemma 4.2, that Hx =
〈σ1σ2〉 or 〈σ1, σ2〉.

Lemma 4.5. If Γ = X(r), M 6⊆ H , and Hx = 〈σ1, σ2〉 or 〈σ1σ2〉, then up to conjugation
in A, H ≤ G2(r) and the edge-orientation is as defined in Subsection 1.3 (a.2) or its
reverse.

Proof. Here Hx = 〈σ1σ2〉 or 〈σ1, σ2〉 and |H| = 8r2 or 16r2 respectively. Let δ := |M :
M ∩ H|, so δ > 1 since M 6⊆ H . Then |H| = |H : M ∩ H| · |M ∩ H| = |MH :
M | · (4r2/δ) divides 8 · (4r2/δ), so δ | 4 or δ = 2 according as |H| = 8r2 or 16r2.
Note that it is sufficient to prove that H ≤ G2(r) (up to conjugation in A), since the edge-
orientations preserved by H and G2(r) are then the same as both act half-arc-transitively.
Let πi : M → 〈µi〉 denote the natural projection map, for i = 1, 2.
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We claim that πi(M ∩ H) = 〈µi〉 for at least one i. Suppose that this does not hold.
Then, since δ ≤ 4, it follows that M ∩ H = 〈µ2

1, µ
2
2〉, δ = 4, so Hx = 〈σ1σ2〉 and

A = MH . Since A = MH it follows that H contains elements of the form h = τµi1µ
j
2

and h′ = σ1µ
i′

1 µ
j′

2 , and we may assume that i, j, i′, j′ all lie on {0, 1} since µ2
1, µ

2
2 lie in

H . Since neither τ nor σ1 lies in H , (i, j) 6= (0, 0) 6= (i′, j′). By Lemma 4.2 (a), H does
not contain either σ1µ1 or σ2µ2 = (σ1σ2)(σ1µ2), and hence the only possiblity for h is
σ1µ1µ2. If h′ = τµ1 then H contains (h′)2 = µ2µ1, which is a contradiction. Similarly
h′ 6= τµ2. Thus h′ = τµ1µ2, but then H contains h′h−1 = τσ1, which is a contradiction,
proving the claim.

Replacing H by its conjugate Hτ if necessary, we may assume that M ∩ H contains
µ1µ

a
2 for some a. Then |M ∩ H| = 2r |H ∩ 〈µ2〉|, and hence H ∩ 〈µ2〉 = 〈µδ2〉 and

M ∩ H = 〈µ1µ
a
2 , µ

δ
2〉, where r is even if δ = 4. We may also assume that 0 ≤ a < δ.

Moreover a 6= 0, since otherwise H contains (σ1σ2)µ1, contradicting Lemma 4.2.

We claim that δ = 2. Suppose to the contrary that δ = 4. Then r is even, Hx = 〈σ1σ2〉,
and M ∩H = 〈µ1µ

a
2 , µ

4
2〉, with a ∈ {1, 2, 3}. The equations in the first paragraph imply

that |MH : M | = 8 so A = MH , and hence H contains elements of the form h = σ1µ
b
2

and h′ = τµc2 for some b, c ∈ {1, 2, 3} (adjusting by elements of M ∩H and noting that
τ, σ1 6∈ H). Then M ∩ H contains µ1µ

a
2(µ1µ

a
2)h = µ2a

2 , which implies that a = 2, and
hence that M ∩H contains µ2

1. Therefore M ∩H contains (µ1µ
2
2)h

′
µ−21 = µ2, which is a

contradiction.

Thus δ = 2, so M ∩ H = 〈µ1µ2, µ
2
2〉, and the equations in the first paragraph imply

that |MH : M | = 4 or 8, when |H| = 8r2 or 16r2 respectively. Then MH/M has order
at least 4. Suppose that H contains an element of the form h = τµi1µ

j
2; adjusting by an

element of M ∩ H we may assume that h = τµ1 (since H does not contain τ ). Then
H = 〈M ∩ H,Hx, τµ1〉 ≤ 〈µ1µ2, µ

2
2, σ1, σ2, τµ1〉 = G2(r), and the lemma is proved

in this case. If H contains no such element then |MH/M | = 4. Next, if H contains an
element of the form h = τσ`µ

i
1µ
j
2 (for ` = 1 or 2), then adjusting by an element of M ∩H

we may assume that h = τσ`µ1 (since H does not contain τσ`), and again we find that
H = 〈M∩H,Hx, τσ`µ1〉 ≤ G2(r). The lemma follows in this case. Thus we may assume
that MH/M projects to the subgroup 〈σ1, σ2〉 of Ax, and now we obtain an element of the
form h = σ1µ

i
1µ
j
2 in H , and H = 〈M ∩H,Hx, h〉 ≤ G2(r), completing the proof.

All the assertions of Theorem 1.1 now follow from Lemmas 4.1, 4.3, 4.4, and 4.5,
completing its proof.

5 Identifying normal quotients of (Γ, G) for Theorem 1.3
We identify some of the normal quotients of these graph-group pairs. Note that whenever
a normal subgroup N of G(r) is contained in Gk(r) we can use it to form a normal quo-
tient of (X(r), Gk(r)), and moreover we can use Lemma 2.1 to deduce information about
normal quotients of (Y (r), Hk(r)) (taking N = M(r)) and about (Z(s), G3Z(s)) (taking
r = s odd and N = N(s)). Recall the definitions of the subgroups in (1.1), (1.2) and (1.3).
First we deal with normal quotients moduloN(a),M(a), and the corresponding subgroups
of H(r) = G(r)/M(r).

Lemma 5.1. For Γ, G,N as in one of the lines of Table 3, the assertions about the normal
quotient (ΓN , G/N) are valid.
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Proof. Let G = Gk(r) or G3Z(s), and let Γ = X(r) or Z(s), so Γ has vertex set Zt × Zt,
where t = 2r or s respectively. Consider the action on vertices of the normal subgroup
N = N(a) of G, where a | t and 2 < a < t. The N -orbits are the a2 subsets

∆i,j = {(i′j′) | i′ ≡ i (mod a), j′ ≡ j (mod a)}

for i, j ∈ Za. Since (i′, j′) is adjacent in Γ to (i′ ± 1, j′) and (i′, j′ ± 1), for all i′, j′ ∈ Zt,
it follows that ∆i,j is adjacent in the quotient graph ΓN to ∆i±1,j and ∆i,j±1, for each
i, j ∈ Za. Thus, since a > 2, ΓN has valency 4, and the mapping f : ∆i,j −→ (i, j)
defines a graph isomorphism from ΓN to X(a/2) if a is even, or to Z(a) if a is odd.
By [2, Theorem 1.1], the group induced by G on the quotient ΓN is precisely G/N , and
(ΓN , G/N) ∈ OG(4). In particular N is the kernel of the G-action on the set of N -orbits
in Γ. Write ḡ := Ng for elements of the quotient group G/N .

If a is even, then it follows from the definitions of the generators µ1, µ2, σ1, σ2, τ of
G(r), given in Subsection 1.3, that the induced maps µ̄1, µ̄2, σ̄1, σ̄2, τ̄ acting on ΓN corre-
spond to the respective generators for the smaller group G(a/2) acting on X(a/2). This
natural correspondence defines a group isomorphism G(r)/N → G(a/2) which restricts
to an isomorphism ϕ : G/N → Gk(a/2). We conclude that (f, ϕ) defines an isomorphism
from (ΓN , G/N) to (X(a/2), Gk(a/2)). Thus the first line of Table 3 is valid.

Similarly if a is odd, then the maps µ̄1, µ̄2, τ̄ acting on ΓN induced from the gen-
erators µ1, µ2, τ (for G3(r) or G3Z(s)) correspond to the respective generators for the
smaller group G3Z(a) acting on Z(a), and we obtain an isomorphism from (ΓN , G/N) to
(Z(a), G3Z(a)). Thus lines 3 and 7 of Table 3 are also valid.

Suppose now that t = 2r above, so Γ = X(r). If a and 2r
a are both even then by

(1.4), N(a) contains M(r), and it follows by Lemma 2.1 (taking N = M(r) in that re-
sult) that the quotient of (Y (r), Hk(r)) modulo N(a) is isomorphic to the quotient of
(X(r), Gk(r)) modulo N(a), and we have just shown that this latter quotient is isomor-
phic to (X(a/2), Gk(a/2)). Thus line 4 of Table 3 is valid. Similarly if a is odd then
2r
a is even, and again by (1.4), N(a) contains M(r). The same argument now yields that

the quotient of (Y (r), Hk(r)) moduloN(a) is isomorphic to (Z(a), G3Z(a)), proving that
line 6 of Table 3 is valid.

It remains to consider lines 2 and 5 of Table 3. We continue to let (Γ, G) be the pair
(X(r), Gk(r)), and we note that, if a normal quotient of (Γ, G) modulo M is 4-valent,
then by [2, Theorem 1.1], M is the kernel of the G-action on the set of M -vertex-orbits
in Γ. Consider now M = M(a) where a | r (so 2r

a is even) and 1 < a ≤ r. Since
M ⊆ G = Gk(r), we must have a even when k = 1. Applying Lemma 2.1 with
(Γ′, G′) = (X(a), Gk(a)) and N = N(2a), we find that the quotient of (Γ, G) modulo
M is isomorphic to the quotient of (X(a), Gk(a)) modulo the image of M under pro-
jection from G to G/N ∼= Gk(a), namely 〈(µ̄1µ̄2)a〉. Thus the latter normal quotient is
(Y (a), Hk(a)), proving that line 2 of Table 3 is valid.

For the final line, line 5, we apply Lemma 2.1 with (Γ′, G′) = (Y (r), Hk(r)) and
N = M(r), where r is even when k = 1. Consider M = M(a), where a | r and
1 < a < r, and note that N ≤ M . We wish to take the quotient of (Γ′, G′) modulo
M = M(a)M(r)/M(r), and we note that 1 < M ≤ Hk(r) if and only if a < r, and also
a is even when k = 1. Suppose this is the case. Then by Lemma 2.1, the quotient of (Γ, G)
modulo M is isomorphic to the quotient of (Y (r), Hk(r)) modulo the image M of M(a)
under projection from G to G/N ∼= Hk(r). We already proved that the former normal
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quotient (ΓM , G/M) is isomorphic to (Y (a), Hk(a)). This proves that line 5 of Table 3 is
valid.

Next we consider normal quotients in Table 4. Recall the definitions of the subgroups
in (1.1), (1.2) and (1.3).

Lemma 5.2. For Γ, G as in Theorem 1.3 (b), and for N as in one of the lines of Table 4,
the assertions about the normal quotient (ΓN , G/N) are valid.

Proof. The N(2)-vertex-orbits on X(r) are the four subsets given in (3.1). It is straight-
forward to check that the underlying quotient graph of X(r) modulo N(2) is a cycle C4.
With the first and third edge-orientations (that is, k = 1 or 3), there are oriented edges
in both directions between the adjacent N(2)-orbits, so the cyclic quotient is unoriented,
N(2) is the kernel of the action on the N(2)-vertex-orbits, and the induced group is D8.
Thus line 1 of Table 4 is valid for N in Gk(r) with k = 1, 3. Moreover in these cases,
if r is even, then N(2) contains M(r) by (1.4), and it follows from Lemma 2.1 that the
quotient of (Y (r), Hk(r)) modulo N(2) is isomorphic to the quotient of (X(r), Gk(r))
modulo N(2), namely (C4, D8), proving the rest of line 1 of Table 4.

On the other hand, if k = 2, then the edges of the quotient graph of X(r) modulo N(2)
(which is a 4-cycle) are oriented ∆ee → ∆eo → ∆oo → ∆oe → ∆ee, the kernel of the
G2(r)-action on the N(2)-vertex-orbits is N(2,+), and G2(r)/N(2,+) ∼= Z4. Thus line
2 of Table 4 is valid for N in G2(r). If r is even, then M(r) ≤ N(2,+) and arguing as
in the previous paragraph, the normal quotient of (Y (r), H2(r)) modulo N(2,+) is also
(C4, Z4), proving the rest of line 2 of Table 4.

Next suppose that r is odd and k = 2, or 3. Then the preimage in Gk(r) of N(2,+), or
N(2), is equal to 〈N(2,+), µ1µ2〉, or M(1), respectively. Each of these preimage groups
has vertex-orbits ∆ee ∪ ∆oo and ∆eo ∪ ∆oe in X(r), and hence the normal quotients of
(Y (r), H2(r)) modulo N(2,+), and of (Y (r), H3(r)) modulo N(2), are both isomorphic
to (K2, Z2). This proves that lines 3 and 4 of Table 4 are valid.

Now let (Γ, G) = (X(r), G3(r)) and (Γ′, G′) = (Y (r), H3(r)). First consider N =
J = 〈µ1µ2〉. Then the N -vertex-orbits in Γ are the sets Bi = {(i + j, j) | j ∈ Z2r}
for i ∈ Z2r. The quotient (ΓN , G/N) is the unoriented cycle C2r with edges of both
orientations between adjacent N -orbits Bi, Bi+1 (for example, (i, 0) → (i + 1, 0) and
(i, 0) ← ((i + 1) − 1,−1)). Hence N is the kernel of the G-action on the set of N -
orbits, and (ΓN , G/N) = (C2r, D4r), as in line 5 of Table 4 for ‘N in G3(r)’. The
same argument with 2r replaced by s, proves line 5 for ‘N in G3Z(s)’ with N = J .
Continuing with N = J in G3(r), since N contains M(r), it follows from Lemma 2.1 that
the normal quotient of (Γ′, G′) modulo N is also (C2r, D4r), completing the proof of line
5 of Table 4. Moreover, if we replace N by J(+) = 〈µ1µ2, µ

r
1〉, then the N -vertex-orbits

become Bi ∪ Bi+r, for 0 ≤ i < r, and the quotients (ΓN , G/N) and (Γ′
N
, G′/N) both

become (Cr, D2r), proving line 7 of Table 4.
Now consider M = 〈µ1µ

−1
2 〉 in G = G3(r). The M -vertex-orbits in Γ are the sets

Di = {(i + j,−j) | j ∈ Z2r} for i ∈ Z2r. All the out-neighbours of vertices in Bi
lie in Bi+1, and hence the quotient is (an oriented) cycle of length 2r and the induced
group is Z2r. Moreover the element τ ∈ G fixes each Di setwise and the kernel of the
G-action on the set of M -orbits is N := K = 〈M, τ〉. Thus (ΓN , G/N) = (C2r, Z2r),
and sinceN containsM(r), it follows from Lemma 2.1 that the normal quotient of (Γ′, G′)
modulo N is also (C2r, Z2r), as in line 6 of Table 4. If we replace 2r by s and (Γ, G) by
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(Z(s), G3Z(s)), the argument above proves line 6 for N = K in G3Z(s), completing the
proof of line 6 of Table 4. Finally, if we replace N by K(+) = 〈µ1µ

−1
2 , τ, µr1〉 in G3(r),

then the N -vertex-orbits in X(r) become Di ∪ Di+r for 0 ≤ i < r, and the quotients
(ΓN , G/N) and (Γ′

N
, G′/N) both become (Cr, Zr), as asserted in line 8 of Table 4.

Theorem 1.3 follows from Lemmas 5.1 and 5.2.

6 Identifying the basic pairs (Γ, G) for Theorem 1.2
Each of the pairs (Γ, G) in Theorem 2 lies inOG(4), by Lemma 3.3. Before competing the
proof of Theorem 1.2 by determining the basic graph-group pairs, we prove a preliminary
lemma. The centraliser of a subgroup N of a group G is the subgroup CG(N) = {g ∈ G |
gh = hg, ∀ h ∈ N}. For a prime p, Op(G) is the (unique) largest normal p-subgroup of
G. By Sylow’s Theorem, Op(G) is contained in every Sylow p-subgroup of G. Possibly
Op(G) = 1.

Lemma 6.1. Suppose that r ≥ 3.

(a) Let N(2) be as in (1.1), a subgroup of G(r). Then CG(r)(N(2)) = 〈µ1, µ2〉.
(b) For t odd, O2(G2(t)) = M(t), O2(G3(t)) = 〈µt1, µt2〉, and O2(G3Z(t)) = 1.

Proof. (a) Let C := CG(r)(N(2)). Recall that N(2) = 〈µ2
1, µ

2
2〉 and that 〈µ1, µ2〉 is

abelian, so 〈µ1, µ2〉 ≤ C. Let K = 〈µ1, µ2, σ1, σ2〉. Then each element of G(r) \ K
interchanges 〈µ1〉 and 〈µ2〉, and hence does not centralise N(2). Thus C ≤ K. Similarly,
for i = 1, 2, any element of K not lying in 〈µ1, µ2, σi〉 inverts 〈µ3−i〉, so does not lie in C
since r > 2. It follows that C = 〈µ1, µ2〉.

(b) Let Q = O2(Gk(t)) with k = 2 or 3. Since M(t) = 〈µt1µt2〉 ∼= Z2 is normal in
Gk(t), we have M(t) ≤ Q. Moreover, since t is odd, the normal subgroups N(2) (of order
t2) and Q intersect in the identity subgroup. Hence Q ≤ CG(t)(N(2)) ∩ Gk(t) = L, say,
and by part (a), L = 〈µ1, µ2〉 ∩ Gk(t). In fact Q must be contained in the unique Sylow
2-subgroup P of L. If k = 2, then P = M(t) and hence Q = M(t). If k = 3, then
P = 〈µt1, µt2〉, and since this subgroup P is a normal 2-subgroup of G3(t), it follows that
Q = P . Finally consider Q = O2(G3Z(t)). Since |G3Z(t)| = 2t2 with t odd, we have
|Q| ≤ 2. Suppose for a contradiction that |Q| = 2. Then Q ∩N = 1, where N = 〈µ1, µ2〉
(of odd order t2). SoQ centralisesN , but this implies thatG3Z(t) = NQ is abelian, which
is not the case. Hence Q = 1.

Lemma 6.2. The ‘Conditions to be Basic’ in Table 2 are correct, namely,

(a) (X(r), Gk(r)) is basic if and only if k = 1 and r is an odd prime;

(b) (Y (r), Hk(r)) is basic if and only if either r = 2, or k = 2 and r is an odd prime;

(c) (Z(s), G3Z(s)) is basic if and only if s is an odd prime.

Moreover the ‘Basic Type’ entries in Table 2 are also correct.

Proof. (a) Suppose first that (X(r), Gk(r)) is basic, that is, (X(r), Gk(r)) has no proper
nondegenerate normal quotients. It follows from lines 1 and 2 of Table 3 that k = 1 and r
is an odd prime.
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Conversely suppose that k = 1 and r is an odd prime, and assume, for a contradiction
that G1(r) has a nontrivial normal subgroup N such that (X(r)N , Gk(r)/N) is nondegen-
erate. Then by [2, Theorem 1.1],N is semiregular on the vertices ofX(r), and this quotient
has valency 4, so N has at least five vertex-orbits. Without loss of generality we may as-
sume that N is a minimal normal subgroup of G1(r). Now N ∩ N(2) = 1 would imply
that N ≤ CG1(r)(N(2)), and hence by Lemma 6.1 that N ≤ 〈µ1, µ2〉 ∩ G1(r) = N(2),
which in turn implies N ≤ N ∩N(2) = 1, a contradiction. Hence N ∩N(2) 6= 1, so by
the minimality of N , we have N ≤ N(2). Since N(2) has only four vertex orbits in X(r),
N must be a proper subgroup of N(2), and since |N(2)| = r2 and r is an odd prime, it
follows that |N | = r. Since N is normalised by τ ∈ G1(r), it follows that N 6= 〈µ2

i 〉 for
i = 1 or i = 2, and hence that N = 〈µ2

1µ
2i
2 〉 for some i such that 1 ≤ i < r. Now N must

contain (µ2
1µ

2i
2 )τ = µ2

2µ
2i
1 . Since the only element of N projecting to µ2i

1 is (µ2
1µ

2i
2 )i, we

have µ2
2µ

2i
1 = (µ2

1µ
2i
2 )i, and hence µ2(i2−1)

2 = 1, so i2 ≡ 1 (mod r). This implies that
i = 1 or r − 1. However neither 〈µ2

1µ
2
2〉 nor 〈µ2

1µ
2(r−1)
2 〉 is normalised by µ1σ2 ∈ G1(r).

This is a contradiction. Therefore (X(r), Gk(r)) is basic when k = 1 and r is an odd
prime. Moreover (X(r), G1(r)) is basic of cycle type, see line 1 of Table 4.

(b) Suppose next that (Γ′, G′) = (Y (r), Hk(r)) is basic, where r is even if k = 1. It
follows from lines 4, 5 and 6 of Table 3 that either r = 2, or k = 2 and r is an odd prime.
Now we prove the converse. Suppose that r = 2, or k = 2 and r is an odd prime. LetM be
a minimal normal subgroup of G′ = Hk(r) and consider the quotient Γ′M . If (Γ′M , G

′/M)
is nondegenerate (hence of valency 4), then by [2, Theorem 1.1], M is semiregular with at
least five vertex-orbits on Γ′, and M is the kernel of the G′-action on the M -orbits. On the
other hand if (Γ′M , G

′/M) is degenerate, then we replace M by the kernel of the G′-action
on the M -orbits. We consider the possibilities for (Γ′M , G

′/M): in particular if none are
nondegenerate then (Γ′, G′) is basic.

Suppose first that r = 2. Then the graph Γ′ has only eight vertices, and hence M has at
most four vertex-orbits, so all quotients (Γ′M , G

′/M) are degenerate. Thus if r = 2, then
(Γ′, G′) is basic. It is basic of cycle type, by lines 1 and 2 of Table 4.

Suppose now that k = 2 and r is an odd prime. Note that the normal subgroup N(2)
of G′ has just two vertex-orbits, each of size r2, on Γ′. If M contains N(2) then by
the minimality of M , M = N(2,+) (the kernel of the G′-action on the N(2)-orbits)
and (Γ′M , G

′/M) = (K2, Z2) as in line 4 of Table 4. Suppose now that M 6⊇ N(2). By
Lemma 2.1, since (Γ′, G′) is isomorphic to the normal quotient of (Γ, G) = (X(r), Gk(r))
modulo the normal subgroupN = M(r) ofG (Table 3, line 2), it follows that (Γ′M , G

′/M)
is isomorphic to a normal quotient (ΓL, G/L) for some normal subgroup L of G such that
N ≤ L and L is the kernel of theG-action on the L-vertex-orbits on Γ, andG/L ∼= G′/M .
Moreover L/N corresponds to M under the isomorphism G → G′. In particular, L/N is
a minimal normal subgroup of G/N if M is a minimal normal subgroup of G′, and since
M 6⊇ N(2) we have L 6⊇ N(2).

If |L| is not divisible by (the odd prime) r, then L is a normal 2-subgroup ofG = G2(r)
properly containing N = M(r). Hence L ≤ O2(G) and O2(G) 6= M(r), contradicting
Lemma 6.1(b). Thus |L| is divisible by r. Then L′ := L ∩ N(2) 6= 1, and L′ 6= N(2)
since L 6⊇ N(2). Since |N(2)| = r2, it follows that |L′| = r, and, being the intersection
of two normal subgroups, L′ is normal in G = G2(r). We argue as in the proof of part (a):
L′ 6= 〈µ2

i 〉 for i = 1 or i = 2 since L′ is normalised by τµ1. So L′ = 〈µ2
1µ

2i
2 〉, for some

i such that 1 ≤ i < r. However σ2 ∈ G2(r) and σ2 does not normalise L′, contradiction.
Thus there is no proper normal quotient (Γ′M , G

′/M) with M 6⊇ N(2). Hence (Γ′, G′) is
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basic and its only proper normal quotient is (K2, Z2). This implies that (Γ′, G′) is basic of
biquasiprimitive type, see Table 1, and completes the proof of part (b).

(c) Suppose now that (Γ, G) = (Z(s), G3Z(s)), where s is odd. If (Γ, G) is basic
then it follows from line 7 of Table 3 that s is an odd prime. Suppose conversely that
s is an odd prime. Let M be a nontrivial normal subgroup of G which is equal to the
kernel of the G-action on the M -orbits in Γ, and consider (ΓM , G/M). If M contains
N = N(1) = 〈µ1, µ2〉 (of order s2), then since N is vertex-transitive on Z(s), we have
M = G and (ΓM , G/M) = (K1, 1). So assume that N 6⊆ M . If M ∩N = 1, then M is
a normal subgroup of G of order dividing |G|/|N | = 2, and so |M | = 2 and M ≤ O2(G),
contradicting Lemma 6.1. Thus M ∩N must have order s, and must be normal in G. Since
M ∩ N is normalised by τ ∈ G, it follows that M ∩ N = 〈µ1µ

±1
2 〉, that is, M ∩ N is

either J or the derived subgroup K ′ of K, as defined in (1.2). If M ∩ N = K ′, then the
orbits of M ∩ N and K are the same. Thus ΓM is a quotient of ΓM∩N which, in either
case, is a cycle of length s, by lines 5 and 6 of Table 4. Thus (Γ, G) is basic of cycle type,
completing the proof of part (c).

Finally we observe that Theorem 1.2 follows from Lemma 3.3 (for membership in
OG(4)), and Lemma 6.2.
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Abstract

Let X be a finite vertex-transitive graph of valency d, and let A be the full automor-
phism group of X . Then the arc-type of X is defined in terms of the sizes of the orbits
of the stabiliser Av of a given vertex v on the set of arcs incident with v. Such an orbit is
said to be self-paired if it is contained in an orbit ∆ of A on the set of all arcs of X such
that ∆ is closed under arc-reversal. The arc-type of X is then the partition of d as the sum
n1 + n2 + · · ·+ nt + (m1 +m1) + (m2 +m2) + · · ·+ (ms +ms), where n1, n2, . . . , nt
are the sizes of the self-paired orbits, and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the
non-self-paired orbits, in descending order. In this paper, we find the arc-types of several
families of graphs. Also we show that the arc-type of a Cartesian product of two ‘relatively
prime’ graphs is the natural sum of their arc-types. Then using these observations, we show
that with the exception of 1 + 1 and (1 + 1), every partition as defined above is realisable,
in the sense that there exists at least one vertex-transitive graph with the given partition as
its arc-type.
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1 Introduction
Vertex-transitive graphs hold a significant place in mathematics, dating back to the time
of first recognition of the Platonic solids, and also now in other disciplines where symme-
try (and even other properties such as rigidity) play an important role, such as fullerene
chemistry, and interconnection networks.

A major class of vertex-transitive graphs is formed by Cayley graphs, which represent
groups in a very natural way. (For example, the skeleton of the C60 molecule is a Cayley
graph for the alternating group A5.) It is relatively easy to test whether a given vertex-
transitive graph is a Cayley graph for some group: by a theorem attributed to Sabidussi [23],
this happens if and only if the automorphism group of the graph contains a subgroup that
acts regularly on vertices. Vertex-transitive graphs that fail this test are relatively rare, the
Petersen graph being a famous example. A recent study of small vertex-transitive graphs
of valency 3 in [18] shows that among 111360 such graphs of order up to 1280, only 1434
of them are not Cayley graphs.

For almost every Cayley graph, the automorphism group itself acts regularly on vertices
(see [1]). Any such graph is called a graphical regular representation of the group G, or
briefly, a GRR. In a book by Coxeter, Frucht and Powers [8] devoted to the study of 3-
valent GRRs, vertex-transitive 3-valent graphs were classified into four types, according
to the action of the automorphism group on the arcs (ordered pairs of adjacent vertices)
of the graph. One class consists of those graphs which are arc-transitive, another of those
for which there are two orbits on arcs, and the other two are two classes of GRRs. Arc-
transitive graphs are also called symmetric.

Symmetric graphs have been studied quite intensively, especially in the 3-valent case,
by considering the action of the automorphism group on non-reversing walks of given
length s, known as s-arcs. For example, it was shown by Tutte [26, 27] that every finite
symmetric 3-valent graph is s-arc-regular for some s ≤ 5, and hence that the order of the
stabiliser of a vertex in the automorphism group of every such graph is bounded above by
48. Tutte’s theorem and related work have been used to determine all symmetric 3-valent
graphs on up to 10, 000 vertices; see [9, 6, 5]. Also Tutte’s seminal theorem was generalised
much later by Weiss, who used the classification of doubly-transitive permutation groups
to prove that every finite symmetric graph of valency greater than 2 is s-arc-transitive but
not (s+1)-arc-transitive for some s ≤ 7, and in particular, that there are no 8-arc-transitive
finite graphs; see [29].

Another important class of vertex-transitive graphs was investigated by Tutte [28] and
Bouwer [3], namely the graphs that are vertex- and edge-transitive but not arc-transitive.
These are now called half-arc-transitive graphs. Every such graph has even valency, and
its automorphism group has two orbits on arcs, with every arc (v, w) and its reverse (w, v)
lying in different orbits; see [28, p. 59]. Bouwer [3] constructed a family of examples con-
taining one half-arc-transitive graph of each even valency greater than 2, and the first and
third authors of this paper have recently proved that other examples of the type considered
by Bouwer produce infinitely many of every such valency; see [7].

According to Coxeter, Frucht and Powers [8], the idea of classifying cubic vertex-
transitive graphs with respect to the arc-orbits of the automorphism group originated in
some work by Ronald Foster over half a century ago, which was presented to his friends in
the form of unpublished notes. The classification is carried out rigorously in their book [8].
Although Foster’s original idea of ‘zero-symmetric’ graphs was later expanded to other
valencies under the term GRR, the classification by arc-orbits itself was never extended
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in a systematic way to graphs of other valencies. This paper provides a remedy for that
omission. By introducing the concept of ‘arc-type’, we provide a language that can be used
to unify the notions of arc-transitivity and half-arc-transitivity and the above-mentioned
classification of symmetric 3-valent graphs, and also to extend this classification to vertex-
transitive graphs of higher valency.

We can now define the notion of arc-type for a vertex-transitive graph. Let X be a
d-valent vertex-transitive graph, with automorphism group A. We first make a critical
observation about the pairing of arc-orbits. The orbit of an arc (v, w) under the action of A
can be paired with the orbit ofA containing the reverse arc (w, v), and if these orbits are the
same, then the given orbit is said to be self-paired. This is similar to the definition of paired
orbitals for transitive permutation groups. But here we will abuse notation and extend the
definition to the orbits of the stabiliser Av in A of a vertex v on the arcs emanating from
v, and say that the orbit of Av containing the arc (v, w) is self-paired if (v, w) lies in the
same orbit of A as its reverse (w, v).

We define the arc-type of X as the partition Π of d as the sum

Π = n1 + n2 + · · ·+ nt + (m1 +m1) + (m2 +m2) + · · ·+ (ms +ms) (†)

where n1, n2, . . . , nt are the sizes of the self-paired arc-orbits of Av on the arcs emanating
from v, and m1,m1,m2,m2, . . . ,ms,ms are the sizes of the non-self-paired arc-orbits, in
descending order.

Similarly, the edge-type of X is the partition of d as the sum of the sizes of the orbits
of Av on edges incident with v, and can be found by simply replacing each bracketed term
(mj +mj) by 2mj (for 1 ≤ j ≤ s).

The number of possibilities for the arc-type Π depends on the valency d. For d = 1
there is just one possibility, namely with n1 = 1, and this occurs for the complete graph
K2. For d = 2, in principle there could be three possibilities, namely 2, 1 + 1 and (1 + 1),
but every 2-valent connected graph is a cycle, and is therefore arc-transitive, with arc-type
2. In particular, 1 + 1 and (1 + 1) cannot occur as arc-types. For d = 3 there are four
possibilities (namely 3, 2 + 1, 1 + 1 + 1 and 1 + (1 + 1)), and they all occur, as shown in
[8]. A natural question arises as to what arc-types occur for higher valencies.

In this paper, we provide some basic theory for arc-types, which helps us to answer that
question. In particular, we give for each positive integer d the number of different partitions
of the above form (†) for d, by means of a generating function. This gives a closed form
solution for the number of different possibilities in the case of a GRR of given valency d.
(As a curiosity, we mention that there is also a connection with the different root types of
polynomials with real coefficients.)

Then our main theorem states that with the exception of 1+1 and (1+1), every partition
Π as defined in (†) is realisable, in the sense that there exists at least one vertex-transitive
graph with Π as its arc-type. To prove this, we consider how to combine ‘small’ vertex-
transitive graphs into a larger vertex-transitive graph, preserving (but increasing the number
of) the summands in the arc-type. The key step is to show that the arc-type of a Cartesian
product of such graphs is just the sum of their arc-types, when the graphs are ‘relatively
prime’ with respect to the Cartesian product.

Our proof of the theorem then reduces to finding suitable ‘building blocks’, to use
as base cases for the resulting construction. Several interesting families and examples of
graphs are found to be helpful. In particular, we introduce the concept of a special kind
of thickened cover of a graph, obtained by replacing some edges of the given graph by
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complete bipartite graphs, and other edges by ladder graphs (with ‘parallel’ edges). Under
some special conditions, the thickened cover is vertex-transitive, and it is easy to compute
its arc-type from the arc-type of the given base graph. Note that this does not work in
general. It can happen that a group G acts transitively on the vertices of the graph, with
given arc-type, but the full automorphism group is larger thanG. The challenge is to ensure
that no further automorphisms are admitted.

Finally, as a corollary of our main theorem, we show that every standard partition of
a positive integer d is realisable as the edge-type of a vertex-transitive graph of valency d,
except for 1 + 1 (when d = 2).

Vertex-transitive graphs are key players in algebraic graph theory, but also (as intimated
earlier) they have important applications in other branches of mathematics. In group theory
they play a crucial role as Cayley graphs. In geometry they are encountered in convex
and abstract polytopes, incidence geometries, and configurations, and in manifold topology
they feature in the study of regular and chiral maps and hypermaps, and Riemann and Klein
surfaces with large automorphism groups.

Classification of vertex-transitive graphs by their edge- or arc-type gives a new view-
point, and helps provide a better understanding of their structure. This approach can also be
fruitful in terms of determining all small examples of various kinds of graphs, akin to the
census of 3-valent symmetric graphs on up to 10000 vertices [9, 6, 5], the census of vertex-
transitive graphs up to 31 vertices [22], or the census of small 4-valent half-arc-transitive
graphs and arc-transitive digraphs of valency 2 [20]. For example, the construction used by
Potočnik, Spiga and Verret to obtain their census of vertex-transitive 3-valent graphs on up
to 1280 vertices in [18] depends on the edge-type, and their census of all connected quartic
arc-transitive graphs of order up to 640 (also in [18]) was obtained by associating some of
them with vertex-transitive 3-valent graphs of edge-type 2+1 (and using cycle decomposi-
tions); see also [19, 21]. In these cases it was a stratified approach that enabled the limits of
the census to be pushed so high, and it is likely that for graphs of higher valency or larger
order, this kind of approach will be invaluable.

2 Preliminaries

All the graphs we consider in this paper are finite, simple, undirected and non-trivial. Given
a graph X , we denote by V (X) and E(X) the set of vertices and the set of edges of X ,
respectively. We denote an edge of X with vertices u and v by {u, v}, or sometimes more
briefly by uv. We will occasionally use triangle (respectively quadrangle) to denote an
unoriented 3-cycle (resp. 4-cycle) in a graph, and will say that two triangles are disjoint if
they have no vertex in common. For any vertex v of X , we denote by E(v) the set of edges
of X incident with v. An arc is an ordered pair of adjacent vertices, and we denote by
A(X) the set of all arcs of X . Associated with each edge {u, v} there are two arcs, which
we denote by (u, v) and its reverse (v, u). Also we define A(v) as the set of all arcs (v, w)
of X emanating from a given vertex v.

The automorphism group of X is denoted by Aut(X). Note that the action of Aut(X)
on the vertex-set V (X) also induces an action of Aut(X) on the edge-setE(X) and one on
the arc-set A(X). If the action of Aut(X) is transitive on the vertex-set, edge-set, or arc-
set, then we say that X is vertex-transitive, edge-transitive or arc-transitive, respectively.
An arc-transitive graph is often also called symmetric. The graph X is half-arc-transitive
if it is vertex-transitive and edge-transitive, but not arc-transitive. Note that the valency of
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a half-arc-transitive graph is necessarily even; see [28, p. 59].
In this paper we only consider vertex-transitive graphs. Obviously, vertex-transitive

graphs are always regular. Moreover, because a disconnected vertex-transitive graph con-
sists of pairwise isomorphic connected components, we may restrict our attention here
to connected graphs. Also we will sometimes use ‘VT’ as an abbreviation for vertex-
transitive.

Next, let G be a group, and let S be a subset of G that is inverse-closed and does not
contain the identity element. Then the Cayley graph Cay(G,S) is the graph with vertex-
set G, and with vertices u and v being adjacent if and only if vu−1 ∈ S (or equivalently,
v = xu for some x ∈ S). Since we require S to be inverse-closed, this Cayley graph
is undirected, and since S does not contain the identity, the graph has no loops. Also
Cay(G,S) is regular, with valency |S|, and is connected if and only if S generates G.
Furthermore, it is easy to see thatG acts as a group of automorphisms of Cay(G,S) by right
multiplication, and this action is transitive on vertices, with trivial stabiliser, and so this
action ofG on Cay(G,S) is sharply-transitive (or regular). Hence in particular, Cay(G,S)
is vertex-transitive.

Indeed the following (which is attributed to Sabidussi [23]) shows how to recognise
Cayley graphs:

Lemma 2.1. A graph X is a Cayley graph for the group G if and only if G acts regularly
on V (X) as a group of automorphisms. More generally, a graph X is a Cayley graph if
and only if some subgroup of Aut(X) acts regularly on V (X).

Observe that for a fixed x ∈ S, all the edges of form {u, xu} and {u, x−1u} for u ∈ G
lie in the same edge-orbit (as each other) under the automorphism group of Cay(G,S), and
similarly, that all the arcs of the form (u, xu) lie in the same arc-orbit. If all such arc-orbits
are distinct, then G is the full automorphism group of Cay(G,S), and Cay(G,S) is called
a graphical regular representation of the group G, or briefly a GRR for G. Another term
for such a graph is zero-symmetric. Note that if X is a connected zero-symmetric graph
(or GRR) with valency d, then X has d arc-orbits, and all the arcs emanating from a given
vertex v lie in different arc-orbits. Moreover, if G = Aut(X), then the stabiliser Gv of
any vertex v must fix each neighbour of v, and then by connectedness, it follows that Gv
is trivial. Thus G acts regularly on V (X), and so by Lemma 2.1, the graph X is a Cayley
graph for G.

Next, we describe another group-theoretic construction, for a special class of vertex-
transitive graphs. Let G be a group, let H be a subgroup of G, and let a be an element of
G such that a2 ∈ H . Now define a graph Γ = Γ(G,H, a) by setting

V (Γ) = {Hg : g ∈ G} and E(Γ) = {{Hx,Hy} : x, y ∈ G | xy−1 ∈ HaH}.

This graph Γ is called a (Sabidussi) double coset graph. As with Cayley graphs, the given
group G induces a group of automorphisms of Γ(G,H, a) by right multiplication, since
(xg)(yg)−1 = xgg−1y−1 = xy−1 ∈ HaH whenever {Hx,Hy} ∈ E(Γ). Again this
action is vertex-transitive, since (Hx)x−1y = Hy. Moreover, the stabiliser of the vertex
H is GH = {g ∈ G|Hg = H}, which is H itself, and this acts transitively on the neigh-
bourhood {Hah : h ∈ H} of H , so in fact Γ(G,H, a) is arc-transitive. Conversely, every
non-trivial arc-transitive graph X can be constructed in this way, by taking G = Aut(X),
and H = Gv for some v ∈ V (X), and a as any automorphism in G that interchanges v
with one of its neighbours.
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Finally, we mention a convenient way to describe cubic Hamiltonian graphs, that will
be helpful later. Let X be a cubic Hamiltonian graph on n vertices. Label the vertices of
X with numbers 0, . . . , n − 1, such that vertices i and i + 1 are consecutive in a given
Hamilton cycle for 0 ≤ i < n (treated modulo n). Each vertex i is adjacent to i − 1 and
i + 1 (mod n), and to one other vertex, which has label vi, say. Now define di = vi − i
for 0 ≤ i < n. Then the LCF-code of X is given by the sequence [d0, . . . , dn−1]. Clearly
the LCF-code defines the graph X , since the edges are {i, i + 1} for all i (mod n) and
{i, i + di} for all i (mod n). On the other hand, the LCF is not necessarily unique for X ,
since it depends on the choice of Hamilton cycle. Note also that if the code sequence is
periodic, then it is sufficient to list a sub-sequence and indicate how many times it repeats,
using a superscript. For example, [3,−3]4 is the LCF-code of a 3-dimensional cube.

3 Edge-types and integer partitions
Let X be a vertex-transitive graph of valency d, and let {∆1, . . . ,∆k} be the set of orbits
of G = Aut(X) on E(X). This partition of E(X) into orbits also induces a partition of
the set E(v) of all edges incident with a given vertex v, namely into the sets E(v)∩∆i for
1 ≤ i ≤ k. These are simply the restrictions of the edge-orbits ∆i to the set E(v).

If we let `i = |E(v) ∩∆i| for each i, then we may define the edge-type of X to be the
partition of the valency d as the sum

`1 + `2 + · · ·+ `k,

where we assume the numbers `i are in descending order. Note that by vertex-transitivity,
the numbers `i do not depend on the choice of v. (Indeed when X is finite, counting
incident vertex-edge pairs (v, e) with e ∈ ∆i gives 2|∆i| = |V (X)|`i and therefore `i =
2|∆i|/|V (X)| for each i.) Hence in particular, the edge-type does not depend on the choice
of v. We denote the edge-type of X by et(X).

It is not at all obvious as to which partitions can occur as the edge-type of a vertex-
transitive graph. The edge-type of a vertex-transitive cubic graph can be 3, or 2 + 1, or
1 + 1 + 1, while that of a vertex-transitive quartic graph can be 4, or 3 + 1, or 2 + 2, or
2 + 1 + 1, or 1 + 1 + 1 + 1. We will see instances of all of these in Section 5. Then later,
in Section 9, we will show that with the exception of 1 + 1 (for d = 2), every standard
partition of a given positive integer d can be realised as an edge-type.

To enumerate the possibilities for a given valency d, we may use generating functions
for integer partitions. Let p(d, k) denote the number of partitions of d with k parts, and let
p(d) denote the number of partitions of an integer d. Obviously, p(d) =

∑
k p(d, k).

The generating functions for integer partitions are very well-known, and can be found
in [30, p. 100] for example. In fact, the generating function P (x, y) for p(d, k) is given by

P (x, y) =
∑
d

∑
k≥ 0

p(d, k)ykxd =
∏
n≥ 1

1

1− yxn
,

and then by taking y = 1, we get

P (x) =
∏
n≥ 1

1

1− xn
=
∑
d≥ 0

p(d)xd

as the generating function for p(d) itself.



M. Conder, T. Pisanski, A. Žitnik: Vertex-transitive graphs and their arc-types 389

4 Arc-types and marked partitions
In this section we refine the notion of edge-type of a vertex-transitive graph X , by consid-
ering the action of Aut(X) on the arcs of X .

Let ∆ be an orbit of Aut(X) on A(X), and let ∆∗ = {(v, u) : (u, v) ∈ ∆} be its
paired orbit, in the same way that a permutation group on a set Ω has paired orbitals on the
Cartesian product Ω × Ω. Note that ∆∗ is also an orbit of Aut(X) on A(X), and that the
union ∆ ∪∆∗ consists of all the arcs obtainable from an orbit of Aut(X) on edges of X .
We say that ∆ is self-paired if ∆ = ∆∗ and non-self-paired if ∆ 6= ∆∗.

We can now write the orbits of Aut(X) on A(X) as

∆1, . . . ,∆t, ∆t+1,∆
∗
t+1, . . . ,∆t+s,∆

∗
t+s,

where ∆1, . . . ,∆t are self-paired, while ∆t+1, . . . ,∆t+s are non-self-paired.
This partition of A(X) into the orbits of Aut(X) also induces a partition of the set of

arcs emanating from a given vertex. For any vertex v of X , define ni = |A(v) ∩ ∆i| for
1 ≤ i ≤ t, andmj = |A(v)∩∆j | for t+1 ≤ j ≤ t+s. Again sinceX is vertex-transitive,
these numbers do not depend on the choice of v, and then furthermore, arc-reversal gives
|A(v) ∩∆∗j | = |A(v) ∩∆j | = mj for t+ 1 ≤ j ≤ t+ s.

Hence the ni are the sizes of the self-paired arc-orbits restricted to A(v), while the mj

are the sizes of the non-self-paired arc-orbits restricted to A(v), and thus we obtain

d = |A(v)| = n1 + · · ·+ nt + (m1 +m1) + · · ·+ (ms +ms),

just as in (†) in the Introduction. This is the arc-type of X , and we denote it by at(X).
We may call the expression on the right-hand-side of the above a marked partition of

the integer d. By this, we mean simply a partition in which some pairs of equal-valued
summands are placed in parentheses. Note that the parentheses in a marked partition Π
are important, because when Π represents the arc-type of a VT graph, they indicate that
the two numbers summed between the parentheses are the sizes of two paired arc-orbits
corresponding to the same edge-orbit.

Since the order of the arc-orbits of each of the two kinds (self-paired and non-self-
paired) can be chosen arbitrarily, we may consider two marked partitions to be equal if
they have the same summands, possibly in a different order. Usually we will assume that
the summands of each kind (unbracketed and bracketed) are in descending order, so that
n1 ≥ · · · ≥ nt and m1 ≥ · · · ≥ ms.

In a sense, the three most important classes of vertex-transitive graphs are the arc-
transitive, half-arc-transitive and zero-symmetric graphs, and their arc-types are as follows:

• Arc-transitive graphs of valency d have arc-type d;

• Half-arc-transitive graphs of even valency d have arc-type (d/2 + d/2);

• Zero-symmetric graphs have arc-type 1 + . . .+ 1 + (1 + 1) + . . .+ (1 + 1).

In particular, it follows that there are bd/2c + 1 possibilities for the arc-type of a d-valent
zero-symmetric graph (or GRR).

At this point, we recall that the arc-type of a VT graph X depends on the action of the
G = Aut(X) on the arcs of X , and in particular, the action of the vertex-stabiliser Gv on
the neighbourhood X(v) of a given vertex v. The summands in the arc-type of X are just
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the sizes of the orbits of Gv on the neighbourhood of a vertex v of X , while the brackets
depend on the pairings of arc-orbits of G.

By finding the generating function for the set of marked partitions, we can count the
(maximum) number of possible arc-types for each valency d.

Let t′(d, k) denote the number of marked partitions of dwith k parts, and let t(d) denote
the number of marked partitions of an integer d. Obviously, t(d) =

∑
k t
′(d, k). We can

obtain the generating function T ′(x, y) for t′(d, k) by adapting the generating function for
standard partitions, to take account of the bracketed pairs. This can be found from [30, p.
95], for example, and is as follows:

T ′(x, y) =
∑
d≥0

∑
k≥0

t′(d, k)xdyk =
∏
n≥1

1

(1− yxn)(1− y2x2n)
.

Then by taking y = 1, we get

T (x) = T ′(x, 1) =
∏
n≥1

1

(1− xn)(1− x2n)
=
∑
d≥0

t(d)xd

as the generating function for t(d) itself.
Here we remark that a different combinatorial approach can be taken for the generating

function T (x), namely through refining integer partitions by labelling some even parts
(with an asterisk). For example, the partition 6 = 2 + 2 + 1 + 1 gives rise to three labelled
partitions: 6 = 2 + 2 + 1 + 1, 6 = 2 + 2∗ + 1 + 1, and 6 = 2∗ + 2∗ + 1 + 1.

Now let t∗(d, k) denote the number of labelled partitions of an integer d having k parts.
Then the generating function for t∗(d, k) is

T ∗(x, y) =
∑
d≥0

∑
k≥0

t∗(d, k)xdyk =
∏
n≥1

1

(1− yxn)(1− yx2n)
,

and we find that T ∗(x, 1) = T ′(x, 1) = T (x).

Also we note that the generating function T (x) defines the sequence

1, 1, 3, 4, 9, 12, 23, 31, 54, 73, 118, . . . ,

which is denoted by A002513 in The On-Line Encyclopedia of Integer Sequences [24].
Finally, it should come as no surprise that marked partitions of a positive integer d can

be used also to count different types of solutions of a real polynomial equation of degree
d, when attention is paid whether the roots are real and unequal, real and equal (in various
combinations) or simple or multiple complex conjugate; see [4].

5 Edge-types and arc-types for small valency
In this section we give examples of vertex-transitive graphs with every possible edge-type
and arc-type, for valencies up to 4, and summarise the information in Table 1 at the end.
Note that it is enough to find examples of VT graphs for each arc-type, since the same
graphs will give also all the possible edge-types. We do not give a proof that the arc-type
is as claimed in each case, since that can be easily verified by computer (using for example
Magma [2]), or in some cases by hand.
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Graphs with arc-type 1 + 1 + 1 of order up to 120 are given in [8, Part III], and graphs
with arc-type (1 + 1) + 1 of order up to 120 are given in [8, Part II]. The other zero-
symmetric graphs listed here were found with the help of Magma [2], by checking the
Cayley graphs for certain kinds of generating sets for small groups. In some cases, we give
the smallest possible example with the given arc-type. Some examples were found by also
checking tables of vertex-transitive graphs on up to 31 vertices; see [22].

Valency d = 1 (one case):

(P1) There is only one marked partition of 1, namely 1, and only one VT graph with this
arc-type, namely the complete graph K2.

Valency d = 2 (three cases):

(P2) 2 = 2: For every n ≥ 3, the simple cycle Cn has arc-type 2.

(P3) 2 = 1 + 1: No VT graph has arc-type 1 + 1, because cycles are the only connected
regular graphs with valency 2.

(P4) 2 = (1+1): No VT graph has arc-type (1+1), because cycles are the only connected
regular graphs with valency 2.

Valency d = 3 (four cases):

(P5) 3 = 3: The VT graphs with arc-type 3 are precisely the arc-transitive cubic graphs,
and there are infinitely many examples, the smallest of which is the complete graph
K4. Numerous other small examples, including the ubiquitous Petersen graph, are
given in the Foster census [9], which was later expanded by Conder and Dobcsányi
[6], and again further by Conder [5] up to order 10000.

(P6) 3 = 2 + 1: The smallest VT graph with arc-type 2 + 1 is the triangular prism, on 6
vertices; see Figure 1. It is easy to see that the edges on the two triangles form one
edge-orbit, while all the other edges form another orbit.

Figure 1: The triangular prism, which has arc-type 2 + 1

(P7) 3 = 1 + 1 + 1: The smallest VT graph with arc-type 1 + 1 + 1 is the zero-symmetric
graph on 18 vertices from [8, p. 4]; see also Figure 2. This is the Cayley graph of
a group of order 18 generated by three involutions, and it can also be described as a
cubic Hamiltonian graph with LCF-code [5,−5]9.
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Figure 2: The smallest VT graph with arc-type 1 + 1 + 1, on 18 vertices

(P8) 3 = 1+(1+1): The smallest VT graph with arc-type 1+(1+1) is the zero-symmetric
graph on 20 vertices from [8, p. 35]; see Figure 3. This is the Cayley graph of a group
of order 20, generated by one involution and one non-involution, and it can also be
described as a cubic Hamiltonian graph with LCF-code [6, 6,−6,−6]5. For more
properties of this graph, see Lemma 8.4.
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Figure 3: The smallest VT graph with arc-type 1 + (1 + 1), on 20 vertices

Valency d = 4 (nine cases):
(P9) 4 = 4: The VT graphs with arc-type 4 are arc-transitive quartic graphs. The smallest

example is the complete graph K5.
(P10) 4 = (2 + 2): The VT graphs with arc-type (2 + 2) are half-arc-transitive quartic

graphs. The smallest example is the Holt graph [12], of order 27; see Figure 4.

Figure 4: The Holt graph (the smallest 4-valent half-arc-transitive graph)
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(P11) 4 = 3 + 1: The smallest VT graph with arc-type 3 + 1 is K4 �K2, which is the
Cartesian product of K4 and K2. The two summands K4 and K2 have arc-types 3
and 1, respectively, and are ‘relatively prime’. The example will be generalised in
Theorem 6.6.

(P12) 4 = 2 + 2: The smallest VT graph with arc-type 2 + 2 is the circulant graph
Cay(Z7; {1, 2}) on 7 vertices, where Z7 is viewed as an additive group. This graph
is shown in Figure 5. Each of the edges on the outer 7-cycle lies in two triangles
while each edge of the inner 7-cycle lies in only one triangle, and it follows that
Cay(Z7; {1, 2}) has two edge orbits.

Figure 5: The circulant Cay(Z7; {1, 2}), which has arc-type 2 + 2

(P13) 4 = 2 + (1 + 1): The graph on 40 vertices in Figure 6 is the smallest known VT
graph with arc-type 2 + (1 + 1). It is a thickened cover of the trivalent graph on 20
vertices with arc-type (1 + 1) + 1; see Section 7 for generalisations of this.

Figure 6: A VT graph with arc-type 2 + (1 + 1), on 40 vertices

(P14) 4 = (1 + 1) + (1 + 1): The graph on 42 vertices in Figure 7 is the smallest VT graph
with arc-type (1+1)+(1+1). As a GRR, it is a Cayley graph of the group C7oC6

with generating set that contains an element of order 6, an element of order 7, and
their inverses. For more details on this graph see Lemma 8.6.
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Figure 7: On the left is the smallest VT graph with arc-type (1+1)+(1+1), on 42 vertices
— and on the right is an illustration of an embedding of this graph on the torus, using a
hexagon with opposite sides identified

(P15) 4 = 2 + 1 + 1: The graph on 12 vertices in Figure 8 is the smallest VT graph with
arc-type 2 + 1 + 1. It can be obtained from the hexagonal prism by adding diagonals
to three non-adjacent quadrangles.

Figure 8: The smallest VT graph with arc-type 2 + 1 + 1, on 12 vertices

(P16) 4 = 1 + 1 + (1 + 1): The graph on 20 vertices in Figure 9 is the smallest VT graph
with arc-type 1 + 1 + (1 + 1). If G is the Frobenius group C5 o C4 of order 20,
generated by the permutations a = (1, 2, 3, 4, 5) and b = (2, 3, 5, 4), which satisfy
the relations a5 = b4 = 1 and b−1ab = a2, then this graph is the Cayley graph (in
fact a GRR) for G given by the generating set S = {ab2, a2b2, b, b−1}.

Figure 9: The smallest VT graph with arc-type 1 + 1 + (1 + 1), on 20 vertices
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(P17) 4 = 1 + 1 + 1 + 1: The graph on 16 vertices in Figure 10 is the smallest VT
graph with arc-type 1 + 1 + 1 + 1. It is the Cayley graph (in fact a GRR) for the
dihedral group D8 = 〈x, y | x2 = y8 = (xy)2 = 1 〉 of order 16 with generating set
S = {x, xy, xy2, xy4}.

Figure 10: The smallest VT graph with arc-type 1 + 1 + 1 + 1, on 16 vertices

The above examples are summarised in Table 1.

Valency Edge-type Arc-type Example Case
1 1 1 K2 P1
2 2 2 C3 P2

(1 + 1) [Impossible] P3
2 1 + 1 1 + 1 [Impossible] P4
3 3 3 K4 P5
3 2 + 1 2 + 1 prisms P6

(1 + 1) + 1 LCF [6, 6,−6,−6]5 P7
3 1 + 1 + 1 1 + 1 + 1 LCF [5,−5]9 P8
4 4 4 K5 P9

(2 + 2) Holt graph P10
4 3 + 1 3 + 1 K4 �K2 P11
4 2 + 2 2 + 2 Cay(Z7; {1, 2}) P12

2 + (1 + 1) Figure 6 P13
(1 + 1) + (1 + 1) Figure 7 P14

4 2 + 1 + 1 2 + 1 + 1 Figure 8 P15
(1 + 1) + 1 + 1 Figure 9 P16

4 1 + 1 + 1 + 1 1 + 1 + 1 + 1 Figure 10 P17

Table 1: Edge-types and arc-types of VT graphs with valency up to 4

6 Arc-types of Cartesian products
Given a pair of graphs X and Y (which might or might not be distinct), the Cartesian
product X �Y is a graph with vertex set V (X)× V (Y ), such that two vertices (u, x) and
(v, y) are adjacent in X �Y if and only if u = v and x is adjacent with y in Y, or x = y
and u is adjacent with v in X .
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This definition can be extended to the Cartesian product X1 � . . . �Xk of a larger
number of graphsX1, . . . , Xk. The termsXi are called the factors of the Cartesian product
X1 � . . . �Xk. The Cartesian product operation � is associative and commutative. A
good reference for studying this and other products is the book by Imrich and Klavžar [13].

There are many properties of Cartesian product graphs that can be easily derived from
the properties of their factors. For example, we have the following:

Proposition 6.1. A Cartesian product graph is connected if and only if all of its factors are
connected.

Proposition 6.2. Let X1, . . . , Xk be regular graphs with valencies d1, . . . , dk. Then their
Cartesian product X1 � . . . �Xk is also regular, with valency d1 + · · ·+ dk.

A graph X is called prime (with respect to the Cartesian product) if it is not isomorphic
to the Cartesian product of a pair of smaller, non-trivial graphs. It is well-known that
every connected graph can be decomposed to a Cartesian product of prime graphs, which
is unique up to reordering and isomorphism of the factors; for a proof, see [13, Theorem
4.9]. Similarly, two graphs are said to be relatively prime (with respect to the Cartesian
product) if there is no non-trivial graph that is a factor of both. Note that two prime graphs
are relatively prime unless they are isomorphic.

We are interested in the question of how the symmetries of individual graphs are in-
volved in the symmetries of their product. Let X = X1 � . . . �Xk, and let α be an
automorphism of one of the Xi. Then α induces an automorphism β of X , given by

β : (v1, . . . , vk) 7→ (v1, . . . , vi−1, v
α
i , vi+1, . . . , vk).

The set of all automorphisms ofX induced in this way forms a subgroup of Aut(X), and if
some of the factors of X are isomorphic, then Aut(X) contains also other automorphisms
that permute these factors among themselves, but if the factors of X are relatively prime,
then there are no other automorphisms. Indeed we have the following:

Theorem 6.3. ([13, Corollary 4.17]) LetX be the Cartesian productX = X1 � . . . �Xk

of connected pairwise relatively prime graphs X1, . . . , Xk . Then every automorphism ϕ
of X has the property that

ϕ : (v1, . . . , vk) 7→ (v ϕ1

1 , . . . , v ϕk

k ) for all (v1, . . . , vk) ∈ V (X),

where ϕi is an automorphism of Xi for 1 ≤ i ≤ k.

Corollary 6.4. If X be the Cartesian product X1 � . . . �Xk of connected pairwise rela-
tively prime graphs X1, . . . , Xk, then Aut(X) ∼= Aut(X1)× · · · ×Aut(Xk).

Corollary 6.5. A Cartesian product of connected graphs is vertex-transitive if and only if
every factor is vertex-transitive.

Corollary 6.5 follows directly from Theorem 6.3 when the factors are pairwise rela-
tively prime. But it is also true in the general case — for a proof, see [13, Proposition
4.18].

We now come to the key observation we need to prove our main theorem.

Theorem 6.6. Let X1, . . . , Xk be non-trivial connected vertex-transitive graphs, with arc-
types τ1, . . . , τk. Then also X = X1 � . . . �Xk is a connected vertex-transitive graph,
and if X1, . . . , Xk are pairwise relatively prime, then the arc-type of X is τ1 + · · ·+ τk.
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Proof. First, the graph X is connected by Proposition 6.1, and vertex-transitive by Corol-
lary 6.5. For the second part, suppose that X1, . . . , Xk are pairwise relatively prime. Then
by Corollary 6.4, we know that Aut(X) ∼= Aut(X1) × · · · × Aut(Xk). Moreover, by
Theorem 6.3, the stabiliser in Aut(X) of a vertex (v1, . . . , vk) of X is isomorphic to
Aut(X1)v1 × · · · ×Aut(Xk)vk .

We will now show that two arcs incident with a given vertex u = (u1, . . . , uk) in X are
in the same orbit of Aut(X) if and only if the corresponding arcs are in the same orbit of
Aut(Xi) for some i, and that two such arcs are in paired orbits of Aut(X) if and only if the
corresponding arcs of Xi belong to paired orbits of Aut(Xi) for some i. This will imply
that the sizes of arc-orbits of Aut(X) on X match the sizes of arc-orbits of the subgroups
Aut(Xi) on the corresponding Xi, for 1 ≤ i ≤ k, and hence that the arc-type of X is just
the sum of the arc-types of X1, . . . , Xk.

So suppose that u′ = (u ′1, . . . , u
′
k) and u′′ = (u ′′1 , . . . , u

′′
k ) are adjacent to u =

(u1, . . . , uk) in X , and that the arcs (u, u′) and (u, u′′) lie in the same orbit of Aut(X).
Then there exists an automorphism ϕ of X taking (u, u′) to (u, u′′), and since ϕ stabilises
u, we know that ϕ = (ϕ1, . . . , ϕk) where ϕi ∈ Aut(Xi)ui for 1 ≤ i ≤ k. Also u′ differs
from u in only one coordinate, say the i-th one, in which case u ′j = uj for j 6= i, and then
since ϕ = (ϕ1, . . . , ϕk) takes u′ to u′′ (and ϕj fixes uj), we find that u ′′j = uj , so that u′′

differs from u only in the i-th coordinate as well. In particular, ϕi fixes ui and takes u ′i to
u ′′i , so the arcs (ui, u

′
i ) and (ui, u

′′
i ) lie in the same orbit of Aut(Xi).

The converse is easy. For suppose the arcs (ui, u
′
i ) and (ui, u

′′
i ) lie in the same orbit

of Aut(Xi), and ϕi is an automorphism of Xi taking (ui, u
′
i ) to (ui, u

′′
i ). Then letting

u ′j = u ′′j = uj for j 6= i, and u′ = (u ′1, . . . , u
′
k) and u′′ = (u ′′1 , . . . , u

′′
k ), we find that the

automorphism of X induced by ϕi takes (u, u′) to (u, u′′), and so these two arcs lie in the
same orbit of Aut(X).

On the other hand, suppose the arcs (u, u′) and (u, u′′) lie in different but paired orbits
of Aut(X). Then there exists an automorphism ϕ of X taking (u, u′) to (u′′, u), and
ϕ = (ϕ1, . . . , ϕk) where ϕi ∈ Aut(Xi) for 1 ≤ i ≤ k. Again, u′ differs from u in only
one coordinate, say the i-th one, in which case u ′j = uj for j 6= i. Then since ϕ takes u′ to
u, we find that ϕj fixes uj , and since ϕ takes u to u′′, also u ′′j = uj . Thus, as before, u′′

differs from u only in the i-th coordinate, and the arcs (ui, u
′
i ) and (ui, u

′′
i ) lie in the same

orbit of Aut(Xi). The converse is analogous to the previous case, and this completes the
proof.

Our final observations in this section are often helpful when proving that a given graph
is prime with respect to the Cartesian product. The first two are easy, and the third one is
proved in [14], for example.

Lemma 6.7. Let X = X1 �X2 be a Cartesian product of two connected graphs, each of
which has at least two vertices. Then every edge of X is contained in a 4-cycle.

Corollary 6.8. Let X be a connected graph. If some edge of X is not contained in any
4-cycle, then X is prime. In particular, if X has no 4-cycles, then X is prime.

Lemma 6.9. Let X be a Cartesian product of connected graphs.

(a) All the edges in a cycle of length 3 in X belong to the same factor of X .

(b) Let (v, u, w, x) be any 4-cycle in X . Then the edges {v, u} and {w, x} belong to the
same factor of X , as do the edges {u,w} and {x, v}.



398 Ars Math. Contemp. 12 (2017) 383–413

(c) If e and f are incident edges that are not in the same factor of X , then there exists a
unique 4-cycle that contains e and f , and this 4-cycle has no diagonals.

7 Thickened covers
In this section we explain the general notion of a thickened cover of a graph, and show how
it can be used to build larger vertex-transitive graphs from a given one.

Let X be any simple graph, F any subset of the edge-set of X , and m any positive
integer. Then we define X(F,m) to be the graph with vertex set V (X) × Zm, and with
edges of two types:

(a) an edge from (u, i) to (v, i), for every i ∈ Zm and every {u, v} ∈ E(X) \ F ,

(b) an edge from (u, i) to (v, j), for every (i, j) ∈ Zm × Zm and every {u, v} ∈ F .

We call X(F,m) a thickened m-cover of X over F .
In other words, a thickened m-cover of a graph X over a given set F of edges of X

is obtained by replacing each vertex of X by m vertices, and each edge by the complete
bipartite graph Km,m if the edge lies in F , or by mK2 (a set of m ‘parallel’ edges) if the
edge does not lie in F .

For example, the thickened 3-cover of the path graph P6 on 6 vertices over the unique
1-factor of P6 is shown in Figure 11.

Figure 11: A thickened 3-cover of P6 (over its 1-factor)

Here we note that X(F, 1) is isomorphic to X , while X(∅,m) is isomorphic to mX
(the union of m copies of X).

Also the base graph X is a quotient of X(F,m), obtainable by identifying all vertices
(u, i) that have the same first coordinate, but X(F,m) is not a covering graph of X in the
usual sense of that term when F is non-empty and m > 1, because in that case the valency
of a vertex (u, i) of X(F,m) is greater than the valency of u.

On the other hand, if X(m) is the multigraph obtained from X by replacing each edge
from F by m parallel edges, then X(F,m) is a regular covering graph of X(m), with
voltages taken from Zm: we may choose the voltages of the edges not in F to be 0, and
for each set of m parallel edges, choose a direction and then assign distinct voltages from
Zm to these edges. The derived graph of X(m) with this voltage assignment is a covering
graph of X(m) that is isomorphic to X(F,m).

(For the definitions of voltage graphs and covering graphs, see the book on topological
graph theory by Gross and Tucker [10].)

For each u ∈ V (X), we may call the set {(u, i) : i ∈ Zm} of vertices of X(F,m)
the fibre over the vertex u of X . Similarly the fibre over the edge {u, v} of X is the
set {{(u, i), (v, i)} : i ∈ Zm} of edges of X(F,m) if {u, v} ∈ E(X) \ F , or the set
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{{(u, i), (v, j)} : i, j ∈ Zm} if {u, v} ∈ F . Also for each i ∈ Zm we call the subgraph of
X(F,m) induced by the vertices {(u, i) : u ∈ V (X)} the i-th layer of X(F,m).

We now define three families of bijections on the vertex set of X(F,m). The first is ϕ̃,
which is induced by addition of 1 mod m on Zm, and given by the rule

ϕ̃ : (u, i) 7→ (u, i+ 1) for all u ∈ V (X) and all i ∈ Zm. (7.1)

Next, if ψ is any automorphism of X , then we define ψ̃ by the rule

ψ̃ : (u, i) 7→ (uψ, i) for all u ∈ V (X) and all i ∈ Zm. (7.2)

Finally, if i, j ∈ Zm and {u, v} is an edge in F such that u and v lie in different components
of X \ F (the graph obtained from X by deleting all the edges in F ), then we define the
bijection θ̃ = θ̃(u, v, i, j) by

θ̃ : (w, k) 7→


(w, j) if k = i and w lies in the same component of X \ F as v,
(w, i) if k = j and w lies in the same component of X \ F as v,
(w, k) otherwise.

(7.3)

Lemma 7.1. If X is any graph, F ⊆ E(X) and m ≥ 2, then ϕ̃ is an automorphism of
X(F,m).

Proof. The mapping ϕ̃ is a bijection and obviously sends edges of X(F,m) to edges, so is
an automorphism of X(F,m).

Lemma 7.2. If ψ ∈ Aut(X) and ψ preserves F setwise, then ψ̃ is an automorphism of
X(F,m) for all m.

Proof. The given mapping ψ̃ is clearly a bijection. Next, if {u, v} ∈ F then also {uψ, vψ}∈
F by hypothesis, and so {(u, i), (v, j)}ψ̃ = {(uψ, i), (vψ, j)} is an edge of X(F,m), for
all i, j ∈ Zm. Similarly, if {u, v} ∈ E(X) \ F , then {uψ, vψ} ∈ E(X) \ F , and so
{(u, i), (v, i)}ψ̃ = {(uψ, i), (vψ, i)} is an edge of X(F,m), for all i ∈ Zm.

Corollary 7.3. If X is a vertex-transitive graph, and F ⊆ E(X) is a union of some edge-
orbits of X , then X(F,m) is vertex-transitive for every m ≥ 2.

Proof. The subgroup of Aut(X(F,m)) generated by ϕ̃ and {ψ̃ : ψ ∈ Aut(X)} acts
transitively on the vertex set of X(F,m).

Here we note that X(F,m) is vertex-transitive also when F is the union of edge-orbits
of some vertex-transitive subgroup of Aut(X).

Lemma 7.4. If X is any graph, F ⊆ E(X) and m ≥ 2, and {u, v} is any edge in F such
that u and v lie in different components ofX \F , then θ̃ = θ̃(u, v, i, j) is an automorphism
of X(F,m), for all i, j ∈ Zm.

Proof. The mapping θ̃ is clearly a bijection, and to prove it is an automorphism ofX(F,m),
all we have to do is show that it preserves the set E′ of edges incident with one or more
vertices not fixed by θ̃. So suppose w is any vertex of X lying in the same component of
X \ F as v, and consider the effect of θ̃ on an edge from (say) the vertex (w, i) to a vertex
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(z, k) in X(F,m). If {w, z} ∈ E(X) \ F and k = i, then z lies in the same component
of X \ F as w and hence in the same one as v, and therefore θ̃ takes (w, i) to (w, j), and
(z, k) = (z, i) to (z, j), which is a neighbour of (w, j). On the other hand, if {w, z} ∈ F
and k is arbitrary, then θ̃ takes (w, i) to (w, j), and (z, k) to (z, k), which is a neighbour of
(w, j). The analogous things happen for edges incident with (w, j) in place of (w, i), and
so the set E′ is preserved by θ̃, as required.

Next, we note that under the assumptions of Lemma 7.4, the automorphism θ̃(u, v, i, j)
fixes the vertex (u, k), for every k ∈ Zm, and therefore the stabiliser of every such (u, k)
contains the automorphisms θ̃(u, v, i, j) for all i, j ∈ Zm.

We now give a helpful example of an application of this thickened cover construction,
to cycles of even order.

Theorem 7.5. Let X be the cycle on n vertices, where n is even and n > 2, and let F be
a 1-factor of X . Then X(F,m) is vertex-transitive for all m ≥ 2, with arc-type m + 1
(that is, with two self-paired arc orbits of lengthsm and 1) whenever (n,m) 6= (4, 2). Also
X(F,m) is prime with respect to the Cartesian product, for m ≥ 2 and n 6= 4.

Proof. We may take V (X) = Zn and E(X) = {{r, r+1} : r ∈ Zn}, and assume without
loss of generality that F = {{2r, 2r+1} : r ∈ Zn}. By Lemma 7.1 and Lemma 7.4, we
know that ϕ̃ and θ̃(2r, 2r + 1, i, j) are automorphisms of X(F,m), for all r ∈ Zn and all
i, j ∈ Zm. Also let ρ̃ and τ̃ be the permutations of V (X(F,m)) given by

ρ̃ : (u, i) 7→ (u+ 2, i) and τ̃ : (u, i) 7→ (1− u, i) for all u ∈ V (X) and all i ∈ Zm.

By Lemma 7.2, these are automorphisms of X(F,m), induced by the automorphisms ρ
and τ of X taking u 7→ u + 2 and u 7→ 1 − u, and from this is is clear that ρ̃ and
τ̃ generate a dihedral subgroup of Aut(X(F,m)) of order n (with n/2 ‘rotations’ and
n/2 ‘reflections’). Moreover, this subgroup acts transitively on the vertices of the i-th
layer {(u, i) : u ∈ Zn} of X(F,m), for every i ∈ Zm. It follows that the subgroup of
Aut(X(F,m)) generated by the automorphisms ϕ̃, ρ̃ and τ̃ acts transitively on the set of
all vertices of X(F,m), and therefore X(F,m) is vertex-transitive.

Now let ∆1 and ∆2 be the sets of arcs associated with edges of the types (a) and (b)
from the construction of X(F,m). Specifically, let ∆1 be the set of arcs associated with
edges of the form {(2r + 1, i), (2r + 2, i)} for r ∈ Zn and i ∈ Zm, and let ∆2 be the set
of arcs associated with edges of the form {(2r, i), (2r + 1, j)} for r ∈ Zn and i, j ∈ Zm.
Note that by the thickening construction, every vertex of X(F,m) is incident with one arc
from ∆1, and with m arcs from ∆2.

All the arcs in ∆1 lie in the same orbit of Aut(X(F,m)). In fact ∆1 is an arc-orbit
of the subgroup generated by ϕ̃, ρ̃ and τ̃ , and here we may note that τ̃ ρ̃ reverses each
arc ((1, i), (2, i)), and so ρ̃−r(τ̃ ρ̃)ρ̃ r reverses each arc ((2r + 1, i), (2r + 2, i)) in ∆1.
Similarly, all the arcs associated with edges of the form {(2r, i), (2r + 1, i)} for r ∈ Zn
and i ∈ Zm lie in the same orbit of the subgroup generated by ϕ̃, ρ̃ and τ̃ , and then since
θ̃(2r, 2r + 1, i, j) interchanges the vertices (2r, i) and (2r, j) while fixing (2r + 1, i) and
(2r + 1, j), we find that all the arcs in ∆2 lie in the same orbit of Aut(X(F,m)).

Next, we show there is no automorphism taking an arc in ∆1 to an arc in ∆2, unless
(n,m) = (4, 2). To see this, we consider the number of quadrangles containing a given
edge. Every edge of the form {(2r, i), (2r + 1, j)} is contained in at least (m− 1)2 quad-
rangles, namely those with vertices (2r, i), (2r + 1, j), (2r, k) and (2r + 1, `), for given
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k ∈ Zm \ {i} and ` ∈ Zm \ {j}. On the other hand, if n > 4 then no edge of the form
{(2r + 1, i), (2r + 2, i)} is contained in a quadrangle, because the other neighbours of
(2r+ 1, i) and 2r+ 2, i) are all of the form (2r, j) and (2r+ 3, j) respectively, and no two
of these are adjacent, while if n = 4, then every edge of the form {(2r + 1, i), (2r + 2, i)}
is contained in exactly m quadrangles, namely those with vertices (2r + 1, i), (2r + 2, i),
(2r+ 3, j) and (2r, j), for given j ∈ Zm. Since (m− 1)2 > m for all m > 2, the numbers
of quadrangles are different when (n,m) 6= (4, 2).

Hence if (n,m) 6= (4, 2), we find that ∆1 and ∆2 are arc-orbits of X(F,m). Then
since every vertex is incident with one arc from ∆1 and m arcs from ∆2, the arc-type of
X(F,m) is m + 1 in this case. Finally, if n > 4, then by Corollary 6.8, the fact that not
every edge of X(F,m) is contained in a quadrangle implies that X(F,m) is prime with
respect to the Cartesian product.

In the exceptional case (n,m) = (4, 2), the graph C4(F, 2) is isomorphic to the 3-cube
Q3, which is arc-transitive (with arc-type 3). Also for every m ≥ 2, the graph C4(F,m) is
isomorphic to the Cartesian product of Km,m and K2, and hence is not prime.

Thickened covers of cycles belong to the family of cyclic Haar graphs [11], which
are regular covering graphs over a dipole. Indeed the graph C2k(F,m) we considered in
Theorem 7.5 is a covering graph over a dipole with n + 1 edges, and voltage assignments
1, 0,m, 2m, . . . , (n− 1)m from the additive group Zmn.

Next, we prove the following, which will be very helpful later.

Theorem 7.6. Let X be a vertex-transitive graph, let F be union of edge-orbits of X , and
let m be any integer with m ≥ 2. Also suppose that for every edge {u, v} ∈ F , the vertices
u and v lie in different components of X \ F , and let (x, y) and (z, w) be two arcs lying in
the same arc-orbit of X . Then

(a) the arcs ((x, i), (y, i)) and ((z, j), (w, j)) lie in the same arc-orbit of X(F,m) for
all i, j,∈ Zm, and

(b) the arcs ((x, i), (y, j)) and ((z, k), (w, `)) lie in the same arc-orbit of X(F,m) for
all i, j, k, ` ∈ Zm, when {x, y} ∈ F .

Proof. First, there exists an automorphism ψ that maps (x, y) to (z, w). Now let ϕ̃ and ψ̃
be the mappings defined earlier in this section in (7.1) and (7.2). These are automorphisms,
by Lemma 7.1 and Lemma 7.2, and ϕ̃ j−i ψ̃ takes the arc ((x, i), (y, i)) to ((z, j), (w, j)),
and so these two arcs lie in the same orbit of Aut(X(F,m)).

Next, suppose {x, y} ∈ F . Then also {z, w} ∈ F , since {x, y} and {z, w} are in the
same edge-orbit, and the vertices z and w lie in different components of X \ F , by hy-
pothesis. Note that the automorphism ϕ̃k−iψ̃ takes ((x, i), (y, i)) to ((z, k), (w, k)), Now
let θ̃ = θ̃(z, w, k, `), as defined in (7.3). This is an automorphism of X(F,m), by Lemma
7.4, which takes ((z, k), (w, k)) to ((z, k), (w, `)). Thus ϕ̃k−iψ̃θ̃ takes ((x, i), (y, i)) to
((z, k), (w, `)), and so these two arcs lie in the same of Aut(X(F,m)).

Note that Theorem 7.6 cannot be pushed much further. For example, if F is a 1-factor
in X = C6, then the graph Y = C6(F, 2) has arc-type 2 + 1, by Theorem 7.5. Now one
might expect that if Φ1 is the smaller edge-orbit of Y, then the 4-valent graph Y (Φ1, 2) has
arc-type 2 + 2, but this does not happen: it turns out that Y (Φ1, 2) is arc-transitive, and so
has arc-type 4.
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8 Building blocks
In this section we produce families of examples (and a few single examples) of vertex-
transitive graphs with certain arc-types, which we will use as building blocks for the Carte-
sian product construction, to prove our main theorem in the final section. The marked
partitions that occur as arc-types in these cases have a small number of summands. We
begin with the arc-transitive case, for which there is just one summand.

Lemma 8.1. For every integer m ≥ 2, there exist infinitely many VT graphs that have
arc-type m and are prime with respect to the Cartesian product.

Proof. First, when m = 2 we can take the cycle graphs Cn, for n ≥ 5. These are vertex-
transitive, with arc-type 2, and taking n > 4 ensures that Cn contains no 4-cycles and is
therefore prime, by Lemma 6.7.

Now suppose m ≥ 3. We construct infinitely many m-valent arc-transitive graphs,
using a theorem of Macbeath [16] which gives the following: for almost all positive integer
triples (m1,m2,m3) with 1/m1 + 1/m2 + 1/m3 < 1, there exist infinitely many odd
primes p for which the simple group PSL(2, p) is generated by two elements x and y such
that x, y and xy have orders m1, m2 and m3, respectively.

Here we can take (m1,m2,m3) = (2,m,m+4), and then for each such prime p > m,
takeG = PSL(2, p) and letH be the cyclic subgroup ofG generated by y. Then |H| = m,
and the double coset graph Γ = Γ(G,H, x) is an arc-transitive graph of order |G|/m =
p(p − 1)(p + 1)/(2m). This graph has valency m, because the stabiliser in G of the arc
(H,Hx) is the cyclic subgroup H ∩ x−1Hx, which is trivial since G is simple. Thus Γ
has arc-type m.

It remains to show that Γ is prime. For the moment, suppose that Γ ∼= X �Y where
X and Y are relatively prime non-trivial graphs. Then by Corollary 6.5, X and Y are
vertex-transitive, and so by Theorem 6.6 we have m = at(Γ) = at(X) + at(Y ), which is
impossible. Hence the prime factors of Γ must be all the same, and so Γ is the Cartesian
product of (say) k copies of a single prime graph X . But then the order of Γ is |V (X)|k,
which is impossible unless k = 1, since the prime p divides |V (Γ)| = p(p−1)(p+1)/(2m)
but p2 does not. Hence Γ itself is prime.

At this point we remark that there are several other ways to produce infinitely many
m-valent arc-transitive graphs for all m ≥ 3. For example, another construction uses ho-
mological covers: start with a given m-valent arc-transitive graph X (such as the complete
graph on m + 1 vertices), and then for every sufficiently large prime p, construct a homo-
logical p-cover Γp over X with no 4-cycles. Then Γp is also an m-valent arc-transitive
graph, and is prime since it contains no 4-cycles; see [17].

Next, we consider half-arc-transitive graphs.

Lemma 8.2. For every integer m ≥ 2, there exist infinitely many VT graphs that have
arc-type (m+m) and are prime with respect to the Cartesian product.

Proof. In 1970, Bouwer [3] constructed an infinite family of vertex- and edge-transitive
graphs of even valency, indexed by triples (m, k, n) of integers such that m, k, n ≥ 2 and
2k ≡ 1 mod n. Each such graph, which we will call B(m, k, n), has order knm−1 and
valency 2m. The construction is easy, using only modular arithmetic. Bouwer proved that
the graphs B(m, 6, 9) are half-arc-transitive, thereby showing that for every even integer
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2m > 2, there exists a half-arc-transitive graph with valency 2m. Recently the first and
third authors of this paper adapted Bouwer’s approach to prove that almost all the graphs
B(m, k, n) are half-arc-transitive [7]. In particular, they showed that if n > 7 and k > 6
(and 2k ≡ 1 mod n), then X(m, k, n) is a half-arc-transitive graph of girth 6, for every
m ≥ 2. This gives infinitely many prime graphs of type (m+m), for every m ≥ 2.

Here we note that there are several constructions for half-arc transitive graphs. In par-
ticular, Li and Sim used properties of projective special linear groups to construct infinitely
many half-arc transitive graphs of every even valency greater than 2 in [15]. A census of
4-valent half-arc transitive graphs up to 1000 vertices is given in [20].

Lemma 8.3. For every integer m ≥ 2 there exist infinitely many prime VT graphs with
arc-type m+ 1.

Proof. By Theorem 7.5, for every m ≥ 2 and every even n > 4, the thickened m-cover of
Cn over a 1-factor F (of Cn) is a prime VT graph with arc-type m+ 1.

In fact we will need only one prime VT graph with arc-type m + 1 for each m in the
proof of Theorem 9.1, as we do for the next two arc-types, m+ (1 + 1) and 1 + (m+m),
as well.

Lemma 8.4. For every integer m ≥ 2 there exists a prime VT graph with arc-type m +
(1 + 1).

Proof. Let X be the graph with arc-type 1 + (1 + 1) given in Figure 3. Before proceeding,
we describe some additional properties of X . First, Aut(X) is generated by the involutory
automorphism α that takes v 7→ 21−v for all v ∈ V (X), and the automorphism β of order
4 that acts as (1, 7, 8, 2)(3, 20, 6, 9)(4, 14, 5, 15)(10, 17, 19, 12)(11, 16, 18, 13) on vertices.
In fact Aut(X) is isomorphic to the semi-direct product C5 o3 C4, with normal subgroup
of order 5 generated by γ = αβ2 (= [β, α]), and β−1γβ = γ3. In particular, X is a Cayley
graph (and a GRR) for this group.

The graphX has two edge-orbits: one of size 20 containing the edges {1, 2} and {1, 7},
and one of size 10 containing the edge {1, 20}. Edges in the first orbit lie in quadrangles,
while those in the second do not. The arc (1, 20) is reversed by the automorphism α, so it
lies in a self-paired arc-orbit, of size 20. On the other hand, the arcs (1, 2) and (1, 7) lie
in distinct paired arc-orbits, also of size 20. (This can be seen by either considering the
images of (1, 20) under the 20 automorphisms βiγj (for i ∈ Z4 and j ∈ Z5), or by using
the effect on 7-cycles to show there is no automorphism that takes (1, 2) to (1, 7).)

Now let F be the smaller edge-orbit, containing the edges of the form {2i, 2i+1} (with
the vertices considered mod 20, so we treat 20 as 0), and let Y be the thickened m-cover
X(F,m) of X over F . Then Y is vertex-transitive, by Corollary 7.3, and its valency is
m+ 2.

The edges from (1, 0) to (2, 0) and (1, 0) to (7, 0) both lie in a single quadrangle,
namely the one with vertices (1, 0), (2, 0), (8, 0) and (7, 0), while the edge from (1, 0) to
(20, 0) lies in exactly (m−1)2 quadrangles, namely the ones with third and fourth vertices
(1, i) and (20, j) for any i, j ∈ Zm \ {0}. Hence if m > 2, then the edges from (1, 0) to
(2, 0) and (1, 0) to (7, 0) cannot lie in the same edge-orbit as the edge from (1, 0) to (20, 0).
This is also true when m = 2, because (for example) the edges from (1, 0) to (2, 0) and
(1, 0) to (7, 0) both lie in 16 different 7-cycles, while the edge from (1, 0) to (20, 0) lies
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in only 12 different 7-cycles. (This can be checked by hand or by use of MAGMA.) Also
X \F is a disjoint union of quadrangles (on vertex-sets {4i+ 1, 4i+ 2, 4i+ 7, 4i+ 8} for
i ∈ Z5), and so Theorem 7.6 applies. By part (b) of Theorem 7.6, the edge-orbit F of X
gives rise to a summand m for the arc-type of Y, and then by part (a), noting that (1, 2) and
(7, 1) lie in the same arc-orbit of X , we find that Y = X(F,m) has arc-type m+ (1 + 1)
or m+ 2.

To show that Y has arc-type m + (1 + 1), again we consider 7-cycles. It is an easy
exercise to show that there are exactly 4m2 cycles of length 7 containing the edge from
(1, 0) to (2, 0), namely those of the following forms:

• ((1, 0), (2, 0), (3, i), (4, i), (5, j), (6, j), (7, 0)), for any i, j ∈ Zm,

• ((1, 0), (2, 0), (3, i), (4, i), (18, i), (19, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (2, 0), (3, i), (17, i), (18, i), (19, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (2, 0), (8, 0), (9, i), (15, i), (14, j), (20, j)), for any i, j ∈ Zm.

Note that some of these can differ in only one vertex, namely in the 4th vertex of the second
and third forms, for a given pair (i, j). Similarly, there are exactly 4m2 cycles of length 7
containing the edge from (1, 0) to (7, 0), namely those of the following forms:

• ((1, 0), (7, 0), (6, i), (12, i), (13, j), (14, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (7, 0), (6, i), (12, i), (13, j), (19, j), (20, j)), for any i, j ∈ Zm,

• ((1, 0), (7, 0), (6, i), (5, i), (4, j), (3, j), (2, 0)), for any i, j ∈ Zm,

• ((1, 0), (7, 0), (8, 0), (9, i), (15, i), (14, j), (20, j)), for any i, j ∈ Zm.

But in these cases, when two such 7-cycles differ in only one vertex, they differ in the 6th
vertex (of the first and second form, for a given pair (i, j)). It follows that there can be
no automorphism of Y taking the arc ((1, 0), (2, 0)) to the arc ((1, 0), (7, 0)), and so the
arc-type of Y must be m+ (1 + 1).

It remains to show that Y = X(F,m) is prime. For this, we consider any decompo-
sition of Y into Cartesian factors, which are connected by Proposition 6.1, and we apply
Lemma 6.9. The edge {(1, 0), (2, 0)} lies in no quadrangle with any of the edges of the
form {(1, 0), (20, i)}, for i 6= 0, and it follows from part (c) of Lemma 6.9 that all those
edges must lie in the same factor of Y as {(1, 0), (2, 0)}, say U . The same argument holds
for the edge {(1, 0), (7, 0)}, and so this lies in U as well. Hence U contains allm+2 edges
incident with the vertex (1, 0). By vertex-transitivity and connectivity, all edges of Y lie in
U , and so U = Y . Thus X(F,m) is prime.

Lemma 8.5. For every integer m ≥ 2 there exists a prime VT graph with arc-type 1 +
(m+m).

Proof. This is very similar to the proof of Lemma 8.4. Again, let X be the graph with arc-
type 1+(1+1) given in Figure 3, but this time take F to be the edge-orbit ofX containing
the edge {1, 2} (and the edge {1, 7}). Then the thickened m-cover Z = X(F,m) of X
over F is vertex-transitive, with valency 1 + 2m. Also the edge from (1, 0) to (20, 0) lies
in no quadrangles, which implies immediately that Z is prime. On the other hand, the edge
from (1, 0) to (2, 0) lies in (2m − 1)2 quadrangles, and so again the edge from (1, 0) to
(2, 0) cannot lie in the same edge-orbit as the edge from (1, 0) to (20, 0). Next, X \ F
is a union of 10 non-incident edges, and hence by part (a) of Theorem 7.6, we find that
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Z = X(F,m) has arc-type 1 + (m + m) or 2m + 1. Finally, as before, there are 4m2

cycles of length 7 containing the edge from (1, 0) to (2, 0), and 4m2 containing the edge
from (1, 0) to (7, 0), but when two of these cycles differ in only one vertex, it is in the
4th vertex in the former case, but in the 6th vertex in the latter case, and so there can be
no automorphism of Z taking the arc ((1, 0), (2, 0)) to the arc ((1, 0), (7, 0)). Hence the
arc-type of Z is 1 + (m+m).

Now we consider the marked partition (1 + 1) + (1 + 1) of 4. For this one, we use a
quite different construction.

Lemma 8.6. There are infinitely many prime VT graphs with arc-type (1 + 1) + (1 + 1).

Proof. For any prime number p ≡ 1 mod 6, let G be the group Cp ok C6, generated by
two elements a and b of orders 6 and p such that a−1ba = bk, where k is a primitive 6th
root of 1 mod p. Also take S = {x, y, x−1, y−1} where x = a and y = ba2, and let X be
the Cayley graph Cay(G,S).

ThenX is a 4-valent VT graph, and from the natural action ofG by right multiplication,
it is easy to see that all edges of the form {g, xg} or {g, x−1g} lie in a single edge-orbit,
as do all edges of the form {g, yg} or {g, y−1g}. We now show that these edge-orbits are
distinct, and that each gives rise to two distinct arc-orbits, by proving that the stabiliser in
Aut(X) of vertex 1 is trivial.

First, we observe that 0 ≡ 1 − (k2)3 ≡ (1 − k2)(1 + k2 + k4) mod p, and then since
k2 6≡ 1 mod p, we have 1 + k2 + k4 ≡ 0 mod p. It follows that

y3 = (ba2)3 = b(a−4ba4)(a−2ba2) = bbk
4

bk
2

= b1+k
4+k2 = b0 = 1.

In particular, every edge of the form {g, yg} or {g, y−1g} lies in a 3-cycle (associated with
the relation y3 = 1). On the other hand, it is easy to see that no edge of the form {g, xg}
or {g, x−1g} lies in a 3-cycle, and so X has two distinct edge-orbits, and its edge-type is
2 + 2.

Similarly, we note that 0 ≡ 1 − (k3)2 ≡ (1 − k3)(1 + k3) mod p but k3 6≡ 1 mod
p, so k3 ≡ −1 mod p, and therefore yx = ba3 = a3b−1 = a−3b−1 = x−1y−1. Hence
the two vertices x and y−1 have two common neighbours, namely 1 and yx. Also xy =
x(yx)x−1 = x(x−1y−1)x−1 = y−1x−1, and therefore x−1 and y have two common
neighbours, namely 1 and xy. Furthermore, it is an easy exercise to verify that no other
two neighbours of 1 have a second common neighbour.

It follows that every automorphism α ofX that fixes the vertex 1 must either fix or swap
its two neighbours y and y−1, and similarly, must fix or swap its two neighbours x and x−1.
Also if α swaps one pair, then it must also swap the other pair. Hence α either fixes all four
neighbours of 1, or induces a double transposition on them. By vertex-transitivity, the same
holds for any automorphism fixing a vertex v. Moreover, if the automorphism α fixes one
of the arcs incident with the vertex 1, then it fixes every neighbour s of 1, and then since it
fixes the arc (s, 1), it must act trivially on the neighbourhood of s. Then by induction and
connectedness, α fixes every vertex of X .

Now suppose Aut(X) 6= G, or equivalently, that the stabiliser in Aut(X) of each
vertex is non-trivial. Now if β and γ are non-trivial automorphisms of X that fix the vertex
1, then they induce the same permutation (x, x−1)(y, y−1) on the four neighbours of 1, so
βγ−1 acts trivially on the neighbourhood of 1 and hence is trivial, giving β = γ. Hence
the stabiliser of vertex 1 contains a unique non-trivial automorphism, which must have
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order 2. In particular, |Aut(X)| = 2|V (X)| = 2|G|, and so G is a normal subgroup of
index 2 in Aut(X). Moreover, the element of Aut(X) of order 2 stabilising the vertex
1 must normalise G, and hence induces an automorphism θ of G, and from what we saw
earlier, θ swaps x with x−1, and y with y−1. Now θ takes a = x to x−1 = a−1, and
b = ya−2 = yx−2 to y−1x2 = (ba2)−1a2 = a−2b−1a2 = b−k

2

, and so θ takes bk to
(bk)−k

2

= b−k
3

= b−(−1) = b. But on the other hand, bk = a−1ba, and so θ takes bk

to ab−k
2

a−1 = b−k (since a−1b−ka = (bk)−k = b−k
2

). Thus b−k = (bk)θ = b, and it
follows that k ≡ −1 mod p, a contradiction.

Hence no such automorphism θ of G exists, and we find that Aut(X) = G, and that X
has arc-type (1 + 1) + (1 + 1), as required.

Finally, we show that X is prime, using a similar argument to the one in the proof of
Lemma 8.1. If X ∼= X1 �X2 where X1 and X2 are relatively prime non-trivial graphs,
then by Theorem 6.6 we have (1 + 1) + (1 + 1) = at(X) = at(X1) + at(X1), which is
impossible, since no VT graph has arc-type (1 + 1). Hence the prime factors of X must be
all the same, and so X is a Cartesian product of (say) k copies of a single prime graph Y .
But then 6p = |V (X)| = |V (Y )|k, which is impossible unless k = 1, since p is a prime
number congruent to 1 mod 6. Thus X itself is prime.

Next, we use the first of these graphs (the one with p = 7) to prove the following.

Lemma 8.7. For every integer m ≥ 2, there exists a prime VT graph with arc-type (m +
m) + (1 + 1).

Proof. Let X be the graph with arc-type (1 + 1) + (1 + 1) in Figure 7, which is also the
graph constructed in Lemma 8.6 for p = 7, and let F be the edge-orbit of X consisting
of all the edges that are not contained in a triangle. (These are the edges corresponding to
multiplication by the generator x for G = C7oC6.) Now let Y = X(F,m), the thickened
m-cover of X over F . Then Y is vertex-transitive, by Corollary 7.3, and its valency is
2m + 2. Also X \ F is a disjoint union of triangles, so Theorem 7.6 applies, and tells us
that all the edges of Y associated with edges of F lie in the same edge-orbit, and all the
edges of Y associated with edges of E(X) \ F lie in the same edge-orbit. We will show
that Y has arc-type (m+m) + (1 + 1), by proving that these edge-orbits are distinct, and
that each gives rise to two arc-orbits.

We do this by showing that every automorphism of Y = X(F,m) induces a permuta-
tion of the fibres over X , and therefore projects to an automorphism of X . It then follows
that any automorphism of Y taking an arc ((v, i), (w, j)) to an arc ((v′, i′), (w′, j′)) gives
rise to an automorphism of X taking (v, w) to (v′, w′). Hence if (v, w) and (v′, w′) lie
in different arc-orbits of X , then ((v, i), (w, j)) and ((v′, i′), (w′, j′)) lie in different arc-
orbits of Y , for all i, j, i′, j′ ∈ Zm.

Observe that the graph X \F is a disjoint union of 14 triangles in X , and that there are
no other triangles inX . Also it is quite easy to see that every triangle in Y is one of the 14m
triangles of the form Ti = {(u, i), (v, i), (w, i)} for some triangle T = {u, v, w} in X and
some i ∈ Zm, and that these 14m triangles are pairwise disjoint. In particular, since every
automorphism takes triangles to triangles, we find that every automorphism of Y preserves
the set of edges of Y the form {(u, i), (v, i)} with i ∈ Zm and {u, v} ∈ E(X) \ F , and
hence also preserves the set of edges of Y of the form {(u, i), (v, j)} with {u, v} ∈ F .
(This also implies that Y is not edge-transitive, so its edge-type is m+ 2.)
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Next, consider what happens locally around a vertex (u, i) of Y . This vertex lies in a
unique triangle Ti = {(u, i), (v, i), (w, i)}, where v = yu and w = y−1u, and also lies in
m edges of the form (r, j) and m edges of the form (s, j), for j ∈ Zm, where r = xu and
s = x−1u. The other vertices in the fibre over the vertex u have the form (u, `) for some
` ∈ Zm, and each of these lies at distance 2 from (u, i).

In fact, there are 2m paths of length 2 from each such (u, `) to the given vertex (u, i),
namely the m paths of the form ((u, `), (r, j), (u, i)) for j ∈ Zm, and the m paths of the
form ((u, `), (s, j), (u, i)), for j ∈ Zm. On the other hand, from every other vertex at
distance 2 from the given vertex (u, i) there are only 1, 2 or m paths of length 2 to (u, i). It
follows that the stabiliser in Aut(Y ) of the vertex (u, i) preserves the fibre over the vertex
(u, i), and therefore Aut(Y ) permutes the fibres over vertices of X .

Thus X(F,m) has arc-type (m+m) + (1 + 1).
Finally, we show that Y = X(F,m) is prime. If Y ∼= Y1 �Y2 where Y1 and Y2 are

relatively prime non-trivial graphs, then each Yi is vertex-transitive, and by Theorem 6.6
the arc-type of Y1 or Y2 is (1 + 1), which is impossible. Hence the prime factors of Y must
be all the same, and so Y is a Cartesian product of (say) k copies of a single prime graph
Z. Also by part (a) of Lemma 6.9, all the edges of a given triangle lie in the same factor,
so Z contains a triangle. But now if k > 1 then some subgraph of Y is a Cartesian product
of two triangles, and in the latter, every vertex lies in two distinct triangles, which does not
happen in Y . Hence k = 1, and Y itself is prime.

We use yet another construction in the next case, to produce zero-symmetric graphs
with arc-type 1 + 1 + 1. Many examples of such graphs are already well known, but we
need an infinite family of examples that are prime. A sub-family of the family we use
below appears in [8, p. 66].

Lemma 8.8. There are infinitely many prime VT graphs with arc-type 1 + 1 + 1.

Proof. Let G be the dihedral group Dn of order 2n, where n is any integer of the form
2m− 1 where m ≥ 6 (so that n is odd and n ≥ 11). Then G is generated by two elements
x and y satisfying x2 = yn = 1 and xyx = y−1, and the elements of G are uniquely
expressible in the form xiyj where i ∈ Z2 and j ∈ Zn. (In factG is the symmetry group of
a regular n-gon, with the powers of y being rotations and elements of the form xyj being
reflections.)

Now defineX as the Cayley graph Cay(G, {x1, x2, x3}), where x1 = x, x2 = xy and
x3 = xy3. This graph is vertex-transitive, and since the xi are involutions, it is 3-valent
and bipartite. We show that X is prime and has arc-type 1 + 1 + 1.

The vertices at distance 2 from the identity element are the products of two of the xi,
which are all distinct: x1x2 = y, x1x3 = y3, x2x1 = y−1, x2x3 = y2, x3x1 = y−3 and
x3x2 = y−2. In particular, X has no 4-cycles, and hence is prime. Since X is bipartite, it
also follows that the girth of X is 6.

Next, there are 12 paths of length 3 starting from the identity element, but only 7 ver-
tices at distance 3 from the identity element. Indeed it is an easy exercise to show that the
coincidences are precisely the following:

x1x2x1 = x2x3x2 = xyn−1, x1x2x3 = x2x1x2 = x3x2x1 = xy2,
x1x3x2 = x2x3x1 = xyn−2, and x2x1x3 = x3x1x2 = xy4.
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In particular, the edge {1, x1} lies in exactly four cycles of length 6, namely (1, x1,
x2x1, x1x2x1, x3x2, x2), (1, x1, x2x1, x3x2x1, x2x3, x3), (1, x1, x2x1, x3x2x1, x1x2, x2)
and (1, x1, x3x1, x2x3x1, x3x2, x2). Similarly, the edge {1, x2} lies in exactly five 6-
cycles, and the edge {1, x3} lies in only three. These numbers are different, and it follows
that the edges {1, x1}, {1, x2} and {1, x3} lie in distinct arc-orbits.

Hence the arc-type of X is 1 + 1 + 1, as claimed.

The next four lemmas deals with the remaining basic arc-types we need.

Lemma 8.9. There exist more than one prime VT graphs with arc-type 1 + (1 + 1).

Proof. We have already observed that the zero-symmetric graph on 20 vertices given in
Figure 3 has arc-type 1 + (1 + 1), and because not every edge is contained in a 4-cycle,
it is prime by Corollary 6.8. Some other examples of graphs of arc-type 1 + (1 + 1)
appear in [8, p. 39]; these can be described with LCF-codes [2k, 2k,−2k,−2k]m for
(m, k) ∈ {(13, 5), (17, 13), (25, 7), (29, 17)}, and they are all prime, since they all have
edges that are not contained in 4-cycles.

Lemma 8.10. There exists a prime VT graph with arc-type 1 + 1 + (1 + 1).

Proof. The graph on 20 vertices given in Figure 9 has arc-type 1+1+(1+1). Now suppose
that this graph is not prime. Then since 20 is not a non-trivial power of any integer, the
graph must be the Cartesian product of two smaller connected VT graphs that are relatively
prime. Then since there are no VT graphs with arc-type 1 + 1 or (1 + 1), it must be a
Cartesian product of two connected VT graphs with arc-types 1 and 1 + (1 + 1). The
former has to be K2, and so the other is a VT graph of order 10 with arc-type 1 + (1 + 1).
But no such graph exists — in fact, the smallest VT graph with arc-type 1 + (1 + 1) has 20
vertices. Hence the given graph is prime.

Lemma 8.11. There exists a prime VT graph with arc-type 1 + 1 + 1 + 1.

Proof. The graph on 16 vertices given in Figure 10 has arc-type 1+1+1+1. Also this graph
cannot be the Cartesian product of two smaller connected VT graphs that are relatively
prime, by a similar argument to the one given in the proof of Lemma 8.10, because there
is no VT graph of order 8 with arc-type 1 + 1 + 1. (The smallest VT graph with arc-
type 1 + 1 + 1 has order 18.) Finally, if it is the Cartesian power of some smaller graph,
then it has to be the Cartesian square of C4 (or the Cartesian 4th power of K2, which is
isomorphic to C4 �C4), but this graph is arc-transitive, with arc-type 4. Hence the given
graph is prime.

Lemma 8.12. There exists a prime VT graph with arc-type (1 + 1) + (1 + 1) + (1 + 1).

Proof. Let X be the Cayley graph Cay(G,S) for the group G = SL(2, 3) of all 2 × 2
matrices of determinant 1 over Z3, given by the set S = {x, x−1, y, y−1, xy, (xy)−1},
where

x =

(
1 0
1 1

)
and y =

(
0 1
−1 0

)
.

These two elements generate G and satisfy the relations x3 = y4 = 1 and yx−1 = (xy)2,
which are defining relations for G. This Cayley graph X is 6-valent, with girth 3, and it is
not difficult to show that its diameter is 3.
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In the neighbourhood of the identity element 1 inX , there is an edge between y and xy,
and a path of length 3 from y−1 to (xy)−1 via x and x−1, but there are no other edges (be-
tween vertices of that neighbourhood). Also the vertices y and y−1 have another common
neighbour, namely y2, and the vertices xy and (xy)−1 have another common neighbour,
namely y−1xy (= (xyx)−1), but y and (xy)−1 have no other common neighbour, and y−1

and xy have no other common neighbour. It follows that the stabiliser in Aut(X) of the
vertex 1 either fixes all its neighbours, or interchanges y with xy, and y−1 with (xy)−1,
and x with x−1. But the number of neighbours of the vertex y that are at distance 2 from
x is 4, while the number of neighbours of the vertex xy that are at distance 2 from x−1 is
only 3, so the latter cannot happen, and hence the stabiliser in Aut(X) of 1 acts trivially
on the neighbourhood of 1. By vertex-transitivity, the same holds at every vertex, and then
by induction and connectedness, it follows that the stabiliser of every vertex is trivial.

Thus Aut(X) = G, making X a GRR. Then since the edges {1, s} and {1, s−1} lie in
the same edge-orbit for each s ∈ S, we find that X has type (1 + 1) + (1 + 1) + (1 + 1).

Finally, X cannot be the Cartesian product of two smaller connected VT graphs that
are relatively prime, since there are no VT graphs with arc-type (1 + 1). Also X cannot be
a Cartesian power of some smaller VT graph, since its order 24 is not a non-trivial power
of any integer. Hence X is prime.

The graph used in the proof of Lemma 8.12 is shown in Figure 12.

Figure 12: A VT graph with arc-type (1 + 1) + (1 + 1) + (1 + 1), on 24 vertices

9 Realisability
We say that a marked partition Π is realisable if there exist a vertex-transitive graph with
arc-type Π. Recall that the marked partitions 1 + 1 and (1 + 1) are not realisable (as we
explained in the introductory section), and on the other hand, some other marked parti-
tions with few summands are realisable by infinitely many vertex-transitive graphs (as we
showed in Section 8).

In this final section we prove that all other marked partitions are realisable. We then
find (as a corollary) that all standard partitions except 1 + 1 are realisable as the edge-type
of a vertex-transitive graph.
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Theorem 9.1. Every marked partition other than (1 + 1) and 1 + 1 is realisable as the
arc-type of a vertex-transitive graph.

Proof. Let Π = n1 + · · ·+ nt + (m1 +m1) + · · ·+ (ms +ms) be a marked partition of
an integer d ≥ 2, different from 1 + 1 and (1 + 1). We may assume that n1 ≥ · · · ≥ nt
and m1 ≥ · · · ≥ ms. If d ≤ 4, then we know from the examples given in Section 5 that Π
is realisable, and therefore we may assume that d ≥ 5 when necessary.

We will show how to find a VT graph with arc-type Π, by taking the Cartesian product
of prime graphs with smaller degrees and simpler arc-types, chosen so that the sum of their
arc-types is Π. To do this, we consider separately the two cases where s = 0 and t = 0,
with a focus on the number of ni or mj that are equal to 1, respectively, and then we
combine these two cases in order to show how to handle all possibilities.

Case (A): s = 0, with Π = n1 + · · ·+ nt.
Let k be the number of ni that are equal to 1, so that ni > 1 for 1 ≤ i ≤ t − k, and

nt = 1 for t− k + 1 ≤ i ≤ t.
If k = 0, then by Lemma 8.1 we can find t pairwise non-isomorphic prime VT graphs

with arc-types n1, . . . , nt, and by Theorem 6.6, their Cartesian product is a VT graph with
arc-type Π.

If k = 1, we can take the Cartesian product of t − 2 pairwise non-isomorphic prime
VT graphs with arc-types n1, . . . , nt−2, and one prime VT graph with arc-type nt−1 + 1,
as given by Lemma 8.3, and again, this is a VT graph with arc-type Π.

If k = 2, we can take the Cartesian product of t−3 pairwise non-isomorphic prime VT
graphs with arc-types n1, . . . , nt−3, one prime VT graph with arc-type nt−2 + 1, and the
graph K2.

Finally, if k ≥ 3, we can take the Cartesian product of t − k pairwise non-isomorphic
prime VT graphs with arc-types n1, . . . , nt−k, plus

(i) k/3 pairwise non-isomorphic prime VT graphs with arc-type 1 + 1 + 1 taken from
Lemma 8.8, when k ≡ 0 mod 3, or

(ii) one prime VT graph of type 1 + 1 + 1 + 1 from Lemma 8.11, and (k−4)/3 pairwise
non-isomorphic prime VT graphs with arc-type 1 + 1 + 1, when k ≡ 1 mod 3, or

(iii) one copy of K2, and one prime VT graph of type 1 + 1 + 1 + 1, and (k − 5)/3
pairwise non-isomorphic prime VT graphs with arc-type 1 + 1 + 1, when k ≡ 2 mod
3.

Case (B): t = 0, with Π = (m1 +m1) + · · ·+ (ms +ms).
Let ` be the number of mj that are equal to 1, so that mj > 1 for 1 ≤ i ≤ s − `, and

mj = 1 for s− `+ 1 ≤ i ≤ s.
If ` = 0, then by Lemma 8.2 we can find s pairwise non-isomorphic VT graphs with

arc-types (m1 +m1), . . . , (ms +ms), and then their Cartesian product is a VT graph with
arc-type Π.

If ` = 1, we can take the Cartesian product of s−2 pairwise non-isomorphic VT graphs
with arc-types (m1 + m1), . . . , (ms−2 + ms−2), and one prime VT graph with arc-type
(ms−1 +ms−1) + (1 + 1) from Lemma 8.7.

Finally, if ` ≥ 2, we can take the Cartesian product of s − ` pairwise non-isomorphic
prime VT graphs with arc-types (m1 +m1), . . . , (ms−` +ms−`), plus
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(i) `/2 pairwise non-isomorphic prime VT graphs with arc-type (1 + 1) + (1 + 1) from
Lemma 8.6, when ` is even, or

(ii) one prime VT graph of type (1 + 1) + (1 + 1) + (1 + 1) from Lemma 8.12, and
(`−3)/2 pairwise non-isomorphic prime VT graphs with arc-type (1+1)+(1+1),
when ` is odd.

Case (C): s > 0 and t > 0.

In this case, we can write Π as the sum of the marked partitions Π1 = n1 + · · · + nt
and Π2 = (m1 + m1) + · · · + (ms + ms), and we can deal with most possibilities by
simply taking a Cartesian product of a VT graph X1 with arc-type Π1 and a VT graph X2

with arc-type Π2. Note that case (A) uses the prime VT graphs produced by Lemmas 8.1,
8.3, 8.8 and 8.11, plus the graph K2, while case (B) uses the prime VT graphs produced
by Lemmas 8.2, 8.7, 8.6 and 8.12. These prime graphs can be chosen to be pairwise non-
isomorphic, and hence pairwise relatively prime, in which case X1 and X2 are relatively
prime, and therefore X1 �X2 has arc-type Π1 + Π2 = Π.

All that remains for us to do is to deal with the exceptional situations, namely those
where the sum of the ni or the sum of the mj is so small that no suitable candidate can be
found forX1 orX2. There are two exceptional possibilities for Π1 not covered in case (A),
namely 1 and 1 + 1, and just one for Π2 in case (B), namely (1 + 1).

If Π1 = 1, then we can take a Cartesian product of K2 with a VT graph produced in
case (B), since we are assuming that d ≥ 5.

If Π1 = 1 + 1, then there are two sub-cases to consider, depending on the number `
of terms mj that are equal to 1. If ` < s, then we can adapt the approach taken in case
(B) by replacing the prime VT graph of type (m1 + m1) by a prime VT graph of type
1 + (m1 +m1) from Lemma 8.5, and then also add a single copy of K2 as above. On the
other hand, if ` = s, so that Π2 is the sum of s terms of the form (1 + 1), then we take

(i) two non-isomorphic prime VT graphs with arc-type 1 + (1 + 1) from Lemma 8.9,
when s = 2, or

(ii) a prime VT graph of type 1 + 1 + (1 + 1) from Lemma 8.10, and a 2(s− 1)-valent
VT graph of type (1 + 1) + · · ·+ (1 + 1) as found in case (B) when s ≥ 3.

Finally, if Π2 = (1 + 1), again there are two sub-cases to consider, this time depending
on the number k of terms ni that are equal to 1. If k < t, then we can adapt the approach
taken in case (A) by replacing the prime VT graph of type n1 by a prime VT graph of type
n1 + (1 + 1) from Lemma 8.4. On the other hand, if k = t, so that Π1 is the sum of t terms
all equal to 1, then we take

(i) a single copy ofK2 and a prime VT graph with arc-type 1+1+(1+1) from Lemma
8.10, when t = 3, or

(ii) a prime VT graph of type 1+(1+1) and a (t−1)-valent VT graph of type 1+ · · ·+1
as found in case (A) when t ≥ 4.

This completes the proof.

Corollary 9.2. With the exception of 1 + 1 (for the integer 2), every standard partition of
a positive integer is realisable as the edge-type of a vertex-transitive graph.
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Proof. This follows easily from Theorem 9.1. In fact, every such partition n1 + · · · + nt
(except 1 + 1) occurs as both the edge-type and the arc-type of some VT graph with the
property that all of its arc-orbits are self-paired.
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[19] P. Potočnik, P. Spiga and G. Verret, Bounding the order of the vertex-stabiliser in 3-valent
vertex-transitive and 4-valent arc-transitive graphs, J. Combin. Theory Ser. B 111 (2015), 148–
180, doi:10.1016/j.jctb.2014.10.002, http://dx.doi.org/10.1016/j.jctb.2014.
10.002.

[20] P. Potočnik, P. Spiga and G. Verret, A census of 4-valent half-arc-transitive graphs and
arc-transitive digraphs of valence two, Ars Math. Contemp. 8 (2015), 133–148, http:
//amc-journal.eu/index.php/amc/article/view/559.
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Abstract

When the condition of having three equal sides is imposed upon a (convex) spherical
quadrangle, the four angles of that quadrangle cannot longer be freely chosen but must
satisfy an identity. We derive two simple identities of this kind, one involving ratios of
sines, and one involving ratios of tangents, and improve upon an earlier identity by Ueno
and Agaoka.

The simple form of these identities enable us to further investigate the case in which
all of the angles are rational multiples of π and produce a full classification, consisting of
7 infinite classes and 29 sporadic examples. Apart from being interesting in its own right,
these quadrangles play an important role in the study of spherical tilings by congruent
quadrangles.

Keywords: Spherical quadrangle, rational angle, spherical tiling.

Math. Subj. Class.: 51M09, 52C20, 11Y50

1 Introduction
In general there will be an infinite number of non-congruent spherical quadrangles with
given (ordered) quadruple of angles α, β, γ, δ, provided that 2π < α + β + γ + δ < 6π.
By imposing restrictions on the sides of a quadrangle this is reduced to a finite number.
In this paper we shall investigate the case of a convex quadrangle ABCD with (at least)
three equal sides, say |AB| = |BC| = |CD| = a and derive two simple identities which
must be satisfied by the angles of that quadrangle as a consequence of this restriction (cf.
Theorem 2.1).

A similar, but more complicated identity for this case was already published by Ueno
and Agaoka in [3]. We shall show that our identities are stronger (cf. Section 2) in a sense
to be made clear below.
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The identity of Ueno and Agaoka arose in the search for tilings of the sphere by con-
gruent quadrangles. In that context it is particularly relevant to consider quadrangles all of
whose angles are rational multiples of π (henceforth simply called rational angles).

Indeed, consider a vertex P of such a tiling. P belongs to a certain number (say NA) of
quadrangles in the tiling for which P corresponds to vertex A of the quadrangle. Likewise
there will beNB quadrangles for which P corresponds toB, and similar numbersNC , ND
for C and D. Because the sum of all angles in P must be 2π, we find

NAα+NBβ +NCγ +NDδ = 2π, (1.1)

where α, β, γ, δ are the corresponding angles of the quadrangle (see Figure 1 for naming
conventions). A different vertex P ′ of the tiling will lead to a similar identity, but generally
with different values of NA, NB , NC , ND.

We may treat the set of identities (1.1) that arise from all vertices of a given tiling as a
system of equations with unknowns α, β, γ, δ. Note that all coefficients in these equations
are integers, while every right hand side is equal to 2π. In particular, if this system has rank
4, there will be exactly one solution and it will consist entirely of rational angles.

In Theorem 3.2 we give a full classification of all convex spherical quadrangles with
three equal sides whose angles are rational. There turn out to be 7 infinite families of such
quadrangles and 29 sporadic examples. The proof of Theorem 3.2 hinges on the fact that
our identity (3.2) can be rewritten as an equality between two products of two sines and
that instances of such identities with rational angles were already classified by Myerson [2]
(cf. Theorem 3.1).

β

B

α

A

γ

C

δ
D

a

a
a

b

B

A

C

D
x y

Figure 1: Naming conventions for a spherical quadrangle ABCD with three equal sides.

2 Relations between the angles
In what follows we shall consider a spherical quadrangle ABCD with corresponding an-
gles α, β, γ, δ, sides a, a, a, b and diagonals x, y as indicated in Figure 1. The spherical
quadrangle will be called convex if it satisfies 0 < a, b, x, y, α, β, γ, δ < π. In particu-
lar this means that all constituent spherical triangles ABC, ABD, ACD and BCD are
‘proper’ and satisfy the classical laws of spherical trigonometry.

We take the following inequalities for such quadrangles from [1, Lemma 2.1]:

α+ δ < π + β,
α+ δ < π + γ,
α+ β < π + δ,
γ + δ < π + α.

(2.1)
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As mentioned in the introduction, we also have

E = α+ β + γ + δ − 2π > 0, (2.2)

where E denotes the spherical excess of the quadrangle, which is equal to the area of the
quadrangle on a unit sphere.

Finally, we note that α = δ if and only if β = γ, cf. [1, Lemma 2.3].

Theorem 2.1. In a convex spherical quadrangle ABCD with three equal sides, the fol-
lowing identities hold:

sin(α− γ
2 )

sin γ
2

=
sin(δ − β

2 )

sin β
2

, (2.3)

or equivalently,
tan

(
δ
2 −

β
2

)
tan δ

2

=
tan

(
α
2 −

γ
2

)
tan α

2

. (2.4)

Proof. Consider the equilateral spherical triangle ABC. The (polar) cosine rule for side
BC yields

cos a =
cosφ+ cosφ cosβ

sinφ sinβ
= cotφ · 1 + cosβ

sinβ
= cotφ cot

β

2
, (2.5)

where φ = ∠BAC = ∠ACB as indicated in Figure 2. The sine rules for side AC in both

B

A

C

D

β

φ

φ

δ

a

a
a

b

x

Figure 2: The spherical triangles ABC and ACD.

ABC and ACD, yield

sinβ

sinx
=

sinφ

sin a
,

sin δ

sinx
=

sin(α− φ)

sin a
,

and hence
sin δ

sinβ
=

sin(α− φ)

sinφ
= sinα cotφ− cosα.

Multiplying by cot β2 and using sinβ = 2 cos β2 sin β
2 and (2.5), yields

sin δ

2 sin2 β
2

= sinα cos a− cosα cot
β

2
,

whence
cos a =

sin δ + cosα sinβ

2 sinα sin2 β
2

. (2.6)
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By repeating the argument above for triangles ABD and BCD, or equivalently, by inter-
changing α↔ δ and β ↔ γ, we find

cos a =
sinα+ cos δ sin γ

2 sin δ sin2 γ
2

. (2.7)

We shall now use (2.6–2.7) to compute

∆
def
= 2 cos a sinα sin δ − sin2 α+ cos2 δ = 2 cos a sinα sin δ + cos2 α− sin2 δ

in two ways. From (2.6) we obtain

∆ = csc2
β

2
sin2 δ + csc2

β

2
cosα sinβ sin δ + cos2 α− sin2 δ

=

(
csc2

β

2
− 1

)
sin2 δ + 2 cot

β

2
cosα sin δ + cos2 α

= cot2
β

2
sin2 δ + 2 cot

β

2
cosα sin δ + cos2 α =

(
cot

β

2
sin δ + cosα

)2

.

By symmetry, from (2.7) we obtain

∆ =
(

cot
γ

2
sinα+ cos δ

)2
.

(Note that the original definition of ∆ remains unchanged when interchanging α and δ.)
Combining both values of ∆ we end up with two possibilities:

cot
β

2
sin δ + cosα = ±

(
cot

γ

2
sinα+ cos δ

)
. (2.8)

We consider both cases separately. The second case will turn out to be impossible.
Case 1. Assume there is a plus sign in the right hand side of (2.8). Then (2.8) rewrites

to

cot
β

2
sin δ − cos δ = cot

γ

2
sinα− cosα, (2.9)

which is equivalent to (2.3).
In general, if x1/y1 = x2/y2, then also (x1 − y1)/(x1 + y1) = (x2 − y2)/(x2 + y2).

Applying this to (2.3) yields

sin(δ − β
2 )− sin β

2

sin(δ − β
2 ) + sin β

2

=
sin(α− γ

2 )− sin γ
2

sin(α− γ
2 ) + sin γ

2

,

which transforms to
cos δ2 sin( δ2 −

β
2 )

sin δ
2 cos( δ2 −

β
2 )

=
cos α2 sin(α2 −

γ
2 )

sin α
2 cos(α2 −

γ
2 )
,

and hence
tan

(
δ
2 −

β
2

)
tan δ

2

=
tan

(
α
2 −

γ
2

)
tan α

2

.
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Case 2. Assume there is a minus sign in the right hand side of (2.8), i.e., cot β2 sin δ +
cosα = − cot γ2 sinα− cos δ. This formula can be obtained from the formula for the first
case by replacing α by −α and δ by π − δ. As a consequence, we now have the following
identities:

sin(π − δ − β
2 )

sin β
2

=
sin(−α− γ

2 )

sin γ
2

,
tan

(
π
2 −

δ
2 −

β
2

)
tan

(
π
2 −

δ
2

) =
tan

(
− α

2 −
γ
2

)
− tan α

2

,

equivalent to

sin(δ + β
2 )

sin β
2

= −
sin(α+ γ

2 )

sin γ
2

,
tan δ

2

tan
(
δ
2 + β

2

) =
tan

(
α
2 + γ

2

)
tan α

2

.

Because the tangent function is monotonous in the interval [0, π/2[, the latter is only pos-
sible if β = γ = 0 or if one of 1

2 (δ + β), 12 (α + γ) lies outside that interval. And be-
cause of the signs, this implies that both values must belong to the interval ] 12π, π[. Hence
π < α+γ, β+ δ. Now α+β < π+ δ by (2.1). Hence α+β < β+ 2δ and hence α < 2δ.
By symmetry, also δ < 2α, a contradiction.

In [3] Ueno and Agaoka derived the following identity for spherical quadrangles with
three equal sides:

(1− cosβ) cos2 α− (1− cosβ)(1− cos γ) cosα cos δ + (1− cos γ) cos2 δ
+ cosβ cos γ + sinα sinβ sin γ sin δ − 1 = 0.

(2.10)

We have

Lemma 2.2. Formula (2.10) is equivalent to

cot
β

2
sin δ − cot

γ

2
sinα = ±(cosα− cos δ). (2.11)

Proof. We express cosβ and sinβ in terms of cot β2 as follows:

sinβ =
2 cot2 β2

cot2 β2 + 1
, cosβ =

cot2 β2 − 1

cot2 β2 + 1
, 1− cosβ =

2

cot2 β2 + 1
(2.12)

and similar for cos γ and sin γ. Also note that

cosβ cos γ − 1 =
(cot2 β2 − 1)(cot2 γ2 − 1)

(cot2 β2 + 1)(cot2 γ2 + 1)
− 1 =

−2 cot2 β2 − 2 cot2 γ2
(cot2 β2 + 1)(cot2 γ2 + 1)

. (2.13)

Applying (2.12–2.13) to the left hand side of (2.10) transforms it into

2 cos2 α

cot2 β2 + 1
− 4 cosα cos δ

(cot2 β2 + 1)(cot2 γ2 + 1)
+

2 cos2 δ

cot2 γ2 + 1

−
2 cot2 β2 + 2 cot2 γ2

(cot2 β2 + 1)(cot2 γ2 + 1)
+

4 sinα cot β2 cot γ2 sin δ

(cot2 β2 + 1)(cot2 γ2 + 1)
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which after multiplying by the common denominator and dividing by 2, reduces to

cos2 α
(

cot2
γ

2
+ 1
)
− 2 cosα cos δ + cos2 δ

(
cot2

β

2
+ 1

)
− cot2

β

2
− cot2

γ

2
+ 2 sinα cot

β

2
cot

γ

2
sin δ

= cos2 α− 2 cosα cos δ + cos2 δ

+ cos2 α cot2
γ

2
+ cos2 δ cot2

β

2
− cot2

β

2
− cot2

γ

2

+ 2 sinα cot
β

2
cot

γ

2
sin δ

= (cosα− cos δ)2 −
(

cot
β

2
sin δ − cot

γ

2
sinα

)2

.

Remark that choosing the minus sign in (2.11) yields our formula (2.9) from the proof
of Theorem 2.1. This shows that Theorem 2.1 is stronger than the result of Ueno and
Agaka, as they also allow solutions with a plus sign in the right hand side of (2.11).

3 Rational angles
In what follows we shall investigate spherical quadrangles with three equal sides with the
additional property that the four anglesα, β, γ, δ are rational. Our main tool is the following
theorem from [2].

Theorem 3.1 (Myerson). For all θ we have

sin
π

6
sin θ = sin

θ

2
sin

(
π

2
− θ

2

)
. (3.1)

All other solutions of
sinπx1 sinπx2 = sinπx3 sinπx4 (3.2)

with rational numbers x1, x2, x3, x4 such that 0 < x1 < x3 ≤ x4 < x2 ≤ 1/2, are given
in Table 1.

Table 1: Nongeneric solutions to (3.2).
x1 x2 x3 x4

1/21 8/21 1/14 3/14
1/14 5/14 2/21 5/21
4/21 10/21 3/14 5/14
1/20 9/20 1/15 4/15
2/15 7/15 3/20 7/20
1/30 3/10 1/15 2/15
1/15 7/15 1/10 7/30
1/10 13/30 2/15 4/15

x1 x2 x3 x4
4/15 7/15 3/10 11/30
1/30 11/30 1/10 1/10
7/30 13/30 3/10 3/10
1/15 4/15 1/10 1/6
2/15 8/15 1/6 3/10
1/12 5/12 1/10 3/10
1/10 3/10 1/6 1/6
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Althought our condition (2.3) is almost a direct match with equations (3.1) and (3.2) of
the theorem, there are some additional complications that must be taken into account. Most
importantly, Theorem 3.1 imposes extra conditions on the angles πx1, . . . , πx4 which are
too stringent for the angles α− γ

2 ,
β
2 ,

γ
2 , δ −

β
2 of (2.3).

First, all angles in Theorem 3.1 must lie in the interval ]0, π/2[ while of the four angles
in (2.3) only β

2 and γ
2 satisfy this restriction, while the other two (α − γ

2 , δ −
β
2 ) are only

known to lie in the interval ] − π/2, π[. This means that we have to ‘renormalize’ these
angles by using the identities

sin(π − πxi) = sinπxi, sin(−πxi) = − sinπxi.

As a consequence, we shall always need to consider the following five cases:

{πx1, πx2, πx3, πx4} =



{α− γ
2 ,

β
2 ,

γ
2 , δ −

β
2 },

{π − α+ γ
2 ,

β
2 ,

γ
2 , δ −

β
2 },

{α− γ
2 ,

β
2 ,

γ
2 , π − δ + β

2 },
{π − α+ γ

2 ,
β
2 ,

γ
2 , π − δ + β

2 },
{γ2 − α,

β
2 ,

γ
2 ,

β
2 − δ}.

(3.3)

(Note that α − γ
2 < 0 automatically implies δ − β

2 < 0 because the signs of both sides of
(2.3) must be the same.)

Furthermore Theorem 3.1 assumes a specific ordering of the variables x1, x2, x3, x4,
which again we cannot guarantee. In principle we must therefore consider eight different
ways to assign the angles on the right hand side of (3.3) to the angles of the left hand side,
yielding 40 possibilities in total. We can reduce this amount by half by taking into account
the symmetry α↔ δ, β ↔ γ.

Finally, Theorem 3.1 does not consider the ‘trivial’ cases where one (and then at least
two) of the angles is zero, or where {sinπx1, sinπx2} = {sinπx3, sinπx4}.

Taking all of this into consideration leads to

Theorem 3.2. Consider a convex spherical quadrangle with three equal sides, with angles
and sides as indicated in Figure 1.

If the angles α, β, γ, δ are rational multiples of π, then they must satisfy one of the
following properties, or a property derived from these by interchanging α↔ δ and β ↔ γ:

1. α = γ and β = δ (and all four sides are equal),

2. α = δ and β = γ,

3. α = γ
2 and δ = β

2 , with α+ δ < π,

4. α = 3γ
2 , β = π

3 and δ = 2π
3 −

γ
2 , with π

2 < γ < 2π
3 .

5. α = π
6 + γ

2 , β = 2γ and δ = π
2 + γ

2 , with π
3 < γ < π

2 ,

6. α = π
6 + γ

2 , β = 2γ and δ = π
2 + 3γ

2 (= 3α), with 4π
15 < γ < π

3 ,

7. α = π
6 + γ

2 , β = 2π − 2γ and δ = 3π
2 −

3γ
2 , with π

2 < γ < 5π
6 ,

8. (sporadic cases) α/π, β/π, γ/π, δ/π are as listed in Table 2.
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Table 2: Sporadic cases of Theorem 3.2.
α/π β/π γ/π δ/π

29/42 8/21 3/7 23/42
31/42 8/21 3/7 23/42
5/6 8/21 5/7 17/42

37/42 8/21 5/7 17/42
5/6 3/7 20/21 17/42

11/42 5/7 20/21 1/6
29/42 5/7 20/21 23/42
49/60 4/15 7/10 17/60
53/60 4/15 7/10 17/60
7/10 4/15 13/15 7/30
49/60 3/10 14/15 17/60
23/30 1/3 14/15 3/10
11/15 7/15 3/5 8/15
13/15 7/15 3/5 8/15
17/30 7/15 14/15 3/10

α/π β/π γ/π δ/π
5/6 8/15 3/5 19/30

23/30 8/15 3/5 19/30
5/6 8/15 11/15 17/30
9/10 8/15 11/15 17/30
23/60 8/15 9/10 13/60
31/60 8/15 9/10 19/60
17/30 8/15 13/15 11/30
31/60 3/5 5/6 23/60
11/15 3/5 13/15 8/15
19/30 3/5 14/15 13/30
5/6 3/5 14/15 17/30

19/60 7/10 14/15 13/60
37/60 7/10 14/15 29/60
23/30 11/15 14/15 19/30

Proof. (The proofs of the inequalities in the statement of the Theorem are left to the reader.
They are immediate consequences of (2.1–2.2).)

We split the proof into three parts.
Part 1. We first consider the ‘trivial’ cases. The only angles in (2.3) which are allowed

to be zero, are α− γ
2 and δ− β

2 . This corresponds to case 3 in the statement of this theorem.
Next, {sinπx1, sinπx2} = {sinπx3, sinπx4} corresponds to either

sin
(
α− γ

2

)
= sin

γ

2
and sin

(
β − δ

2

)
= sin

β

2
, (3.4)

or

sin
(
α− γ

2

)
= sin

(
δ − β

2

)
and sin

β

2
= sin

γ

2
. (3.5)

Equation (3.4) further splits into 4 different cases:

α− γ
2 = γ

2 and δ − β
2 = β

2 ,

α− γ
2 = ±π − γ

2 and δ − β
2 = β

2 ,

α− γ
2 = γ

2 and δ − β
2 = ±π − β

2 ,

α− γ
2 = ±π − γ

2 and δ − β
2 = ±π − β

2 .

The first case corresponds to case 1 in the statement of this theorem, the other three are not
allowed because then α = ±π or β = ±π.

Similarly, equation (3.5) splits into the following cases:

α− γ
2 = δ − β

2 and β
2 = γ

2 ,

α− γ
2 = ±π − δ + β

2 and β
2 = γ

2 ,

α− γ
2 = δ − β

2 and β
2 = π − γ

2 ,

α− γ
2 = ±π − δ + β

2 and β
2 = π − γ

2 .
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The first of these reduces to α = δ and β = γ, i.e., case 2 in the statement of this theorem.
The second implies β = γ, α+ δ = π + γ which is disallowed by (2.1). The third leads to
α + π = γ + δ, again forbidden by (2.1). The last yields either α = 2π − δ or α = −δ,
which again is not allowed.

Part 2. Let us now consider formula (3.1). As mentioned above, this formula must be
applied to our problem in 20 different ways, 4 permutations of the angles in (3.1) each time
matched to the 5 cases listed in (3.3).

In Table 3 we list each of these 20 possibilities (columns 1–4), and the corresponding
values of α, β, γ, δ (columns 5–8). In each of the four tables, columns 1–4 contain the same
values but correspond to different angles of (3.1), as indicated in the column headers.

Table 3: The generic case of Theorem 3.2.

θ π
6

θ
2

π
2
− θ

2
α β γ δ

α− γ
2

β
2

γ
2

δ − β
2

3θ
2

π
3

θ 2π
3
− θ

2
α+ · · ·+ δ < 2π

α− γ
2

β
2

γ
2

π − δ + β
2

3θ
2

π
3

θ 2π
3

+ θ
2

α+ δ < β + π ⇒ θ < π
3

but

α+ · · ·+ δ > 2π ⇒ θ > π
3

π − α+ γ
2

β
2

γ
2

δ − β
2

π − θ
2

π
3

θ 2π
3
− θ

2
α+ · · ·+ δ = 2π

π − α+ γ
2

β
2

γ
2

π − δ + β
2

π − θ
2

π
3

θ 2π
3

+ θ
2

α+ δ > π + β
γ
2
− α β

2
γ
2

β
2
− δ − θ

2
π
3

θ −π
3
+ θ

2
α < 0

θ π
6

π
2
− θ

2
θ
2

α β γ δ

α− γ
2

β
2

γ
2

δ − β
2

π
2
+ θ

2
π
3

π − θ π
6
+ θ

2
α+ · · ·+ δ = 2π

α− γ
2

β
2

γ
2

π − δ + β
2

π
2
+ θ

2
π
3

π − θ 7π
6
− θ

2
α+ δ = π + β

π − α+ γ
2

β
2

γ
2

δ − β
2

3π
2
− 3θ

2
π
3

π − θ π
6
+ θ

2

π − α+ γ
2

β
2

γ
2

π − δ + β
2

3π
2
− 3θ

2
π
3

π − θ 7π
6
− θ

2
α+ δ > π + β

γ
2
− α β

2
γ
2

β
2
− δ π

2
− 3θ

2
π
3

π − θ π
6
− θ

2
α+ · · ·+ δ < 2π

π
6

θ θ
2

π
2
− θ

2
α β γ δ

α− γ
2

β
2

γ
2

δ − β
2

π
6
+ θ

2
2θ θ π

2
+ θ

2

α− γ
2

β
2

γ
2

π − δ + β
2

π
6
+ θ

2
2θ θ π

2
+ 3θ

2

π − α+ γ
2

β
2

γ
2

δ − β
2

5π
6

+ θ
2

2θ θ π
2
+ θ

2
α+ δ > π + γ

π − α+ γ
2

β
2

γ
2

π − δ + β
2

5π
6

+ θ
2

2θ θ π
2
+ 3θ

2
α+ δ > π + β

γ
2
− α β

2
γ
2

β
2
− δ −π

6
+ θ

2
2θ θ −π

2
+ 3θ

2
α+ · · ·+ δ < 2π

π
6

θ π
2
− θ

2
θ
2

α β γ δ

α− γ
2

β
2

γ
2

δ − β
2

2π
3
− θ

2
2θ π − θ 3θ

2

α− γ
2

β
2

γ
2

π − δ + β
2

2π
3
− θ

2
2θ π − θ π + θ

2
γ + δ > π + α

π − α+ γ
2

β
2

γ
2

δ − β
2

4π
3
− θ

2
2θ π − θ 3θ

2
α+ β > π + δ

π − α+ γ
2

β
2

γ
2

π − δ + β
2

4π
3
− θ

2
2θ π − θ π + θ

2
α+ δ > π + γ

γ
2
− α β

2
γ
2

β
2
− δ π

3
− θ

2
2θ π − θ θ

2
α+ · · ·+ δ < 2π

It turns out that 16 of these options are disallowed by the inequalities (2.1–2.2). We list
the corresponding details in the right hand column of each table. The four possibilities that
remain are listed as cases 4–7 in the statement of the theorem.
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Part 3. For the sporadic examples from Table 1 we could proceed in the same manner
as in part 2 of this proof. Although there are some shortcuts which could be taken to avoid
to have to consider each of the 20 × 15 = 300 cases separately, we thought it less error
prone to enlist the help of a computer.

Recall that i sin 2mπ
n belongs to the cyclotomic field Q(ζn) where ζn is a primitive n-th

root of unity. Modern computer algebra systems can do exact arithmetic over such cyclo-
tomic fields, hence we may use such a system to directly check all instances of equation
(2.3) in which α, β/2, γ/2, δ are integral multiples of 2π

n and are in the required range.
From Table 1 we may derive all values of n which we are required to try: for each row let n
denote twice the least common multiple of the four denominators. In fact, many rows will
yield the same value of n and it turns out to be sufficient to do the computations only for
n = 84 and n = 120. We used this method to obtain the values in Table 2. (The source code
for these computations is available from http://caagt.ugent.be/ratquad/.)

The same method, with n = 12p, p a prime > 7, was used to verify the results of part
2 of this proof.

Note that in case 3 of Theorem 3.2 the quadrangle is a union of three disjoint congruent
triangles with angles α, δ and π/3 — cf. Figure 3.

δ
δ

α

α
α

δ
π
3 π

3

π
3

Figure 3: The special case α = γ
2 , δ = β

2 .
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The Petra Šparl Award Committee is now calling for nominations for the first award.

ELIGIBILITY: Each nominee must be a woman author or co-author of a paper published
either in AMC or ADAM in the last five years, who was at most 40 years old at the time of
the paper’s first submission.

NOMINATION FORMAT: Each nomination should specify the following:

(a) the name, birth-date and affiliation of the candidate;

(b) the title and other bibliographic details of the paper for which the award is
recommended;

(c) reasons why the candidate’s contribution to the paper is worthy of the award,
in at most 500 words; and

(d) names and email addresses of one or two referees who could be consulted
with regard to the quality of the paper.

PROCEDURE: Nominations should be submitted by email to any one of the three members
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