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Abstract

In this paper we consider inference regarding the ratio of two normal and the ratio

of two t-distributed random variables, using both the popular Fieller interval, as well

as, exact distributions. We apply these methods to a historical dataset regarding the

shape of the Earth, and estimate the Earth’s flatness coefficient as a ratio of regression

coefficients. We demonstrate the equivalence of the inference using the exact density

of this ratio with that using the Fieller interval.

1 Introduction

This paper grew out of our attempt to use a historical dataset to motivate least squares

estimation and inference in our graduate econometrics course. The dataset in question

concerns the shape of the Earth and consists of five observations of the length of 1◦ of

latitude first analyzed by Roger Boscovich in the 1750’s. The dataset and its story are

discussed in length in Stephen Stigler’s classic book The History of Statistics (Stigler,

1986: 39-50).

There are several reasons that make the analysis of this particular dataset interesting.

First, from a physical perspective it provided an early support to Newton’s theory of

gravitation. Second, from a statistical standpoint, it illustrates the early history of various

attempts to combine noisy observations in order to obtain less noisy estimates. Third, the

parameters in question are known today, so the student can judge for him- or her-self the

effectiveness of the “scientific method”: careful collection of observations coupled with

sound statistical analysis can reveal the “truth”.

The most challenging part of the analysis is to compute the distribution and obtain

confidence intervals for the Earth’s flatness coefficient f that is defined as the ratio of

the two coefficients (slope/intercept) of a simple regression model. To obtain confidence

intervals for f we use Fieller’s theorem, and to compute the entire distribution of f we

use the the ratio of normals distribution derived by Marsaglia (1965), as well as, the ratio

of t-distributed random variables derived by Press (1969). We show that the two methods,

i.e. Fieller intervals and exact distribution computation, yield identical results, that is, we

show that the probability under the ratio density function between the Fieller bounds is

indeed equal to the specified confidence level. Given that the two literatures, that of Fieller
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intervals and that of exact distributions of normal ratios, have grown almost independently

of each other, it is, to the best of our knowledge, the first time that the two approaches are

used simultaneously and are shown to yield identical results.

Section 2 of this paper presents briefly the historical background of the question of

the shape of the Earth, and discusses the dataset used by Boscovich. Section 3, presents

the OLS estimates along with Fieller intervals for the Earth’s flatness coefficient under

alternative assumptions. Section 4, takes up the question of computing the exact distri-

bution of f and establishes the equivalence of the inference based on exact distributions

with that based on Fieller intervals. The source R code used in the empirical application

is provided in an Appendix.

2 The Ellipticity of the Earth

One of the implications of Isaac Newton’s Theory of Universal Gravitation, introduced

in his epoch-making book Philosophia Naturalis Principia Mathematica, often referred

to as simply the Principia, was that, due to gravity, the rotation of the Earth around its

axis would cause the Earth to bulge at the equator and flatten at the poles. More precisely,

Newton proved that a rotating self-gravitating fluid body in equilibrium takes the form

of an oblate ellipsoid of revolution (a spheroid). The exact amount of flattening depends

on the body’s density and the balance between the resulting gravitational and centrifugal

forces. If gravity is therefore operational, it is unlikely that the Earth is a perfect sphere,

but it should be an oblate spheroid, much like an orange.

Newton’s theory was not the only theory around purporting to explain the motion

of the celestial spheres. The French mathematician and physicist René Descartes had

proposed the competing Theory of Vortices. According to Descartes’ theory, space is

filled with an invisible substance called the ether, that, much like water, creates vortices

that sweep the planets into their apparent orbits. Now, plastic spherical objects inside

a water vortex tend to flatten at the equator and bulge at the poles, so if the theory of

Vortices was correct, the Earth should be a prolate spheroid, i.e., more like an egg or a

lemon instead of an orange.

The two competing theories led to a prolonged controversy, much along nationalistic

lines, between the English and their Continental rivals. Voltaire, who happened to be

visiting London when Newton died in 1727, was greatly impressed by the State funeral

and the honors bestowed on the great scientist, and, on the subject of the controversy,

commented that:

A Frenchman arriving in London finds things very different. [. . . ] For us it

is the pressure of the Moon that causes the tides of the sea; for the English it

is the sea that gravitates towards the Moon. [. . . ] In Paris you see the Earth

shaped like a melon, in London it is flattened out on two sides.

The equation of a 3D ellipsoid centered at the origin with semi-axes a, b and c aligned

along the coordinate axes is

x2

a2
+
y2

b2
+
z2

c2
= 1.
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Figure 1: Location of available measurements on the World Map

Because planets revolve around their north-south axis, physical considerations dictate that

planets are solids of revolution, i.e., solids that can be obtained by revolving a 2D curve

around the z (North-South) axis to obtain a 3D body. This means that for planets a = b,
so the equation becomes

x2 + y2

a2
+
z2

c2
= 1.

If c < a the ellipsoid is called oblate (orange-like), while if c > a the ellipsoid is prolate

(lemon-like). Of course, if c = a we get a perfect sphere. Our interest is in the quantity

of polar flattening or ellipticity f given by

f =
a− c

a
= 1− c

a
.

Letting a = RE be the Earth’s equatorial radius and c = RP be its polar radius, we can

write

f = 1− RP

RE

.

The Earth is oblate if f > 0, prolate if f < 0, and spherical if f = 0.

To settle the matter once and for all, in 1735 the Académie des Sciences Française

send expeditions to Ecuador, Lapland, and South Africa to measure meridians at widely

separated latitudes. Along with the pre-existing measurements from Paris and Rome, the

Académie managed to collect the five data points given in Table 1 (Stigler, 1986).

The length of 1◦ of latitude ` at the various locations was measured in toise, a popular

measure of the time. To get a better idea, the table also presents these lengths in kilome-

ters. A simple inspection of the table makes it apparent that the length of 1◦ of latitude
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Table 1: Data on the length of 1◦ of latitude at various locations

Location Latitude θ sin2(θ)
Length of 1◦

` [toises]a

Length of 1◦

` [km]

Quito, Ecuador 0◦0′ 0.0000 56,751 110.551
COGHb, S. Africa 33◦18′ 0.2987 57,037 111.108
Rome, Italy 42◦59′ 0.4648 56,979 110.995
Paris, France 49◦23′ 0.5762 57,074 111.180
Lapland, Finland 66◦19′ 0.8386 57,422 111.858

a 1 toise = 1948 meters
b Cape of Good Hope

grows as we move from the equator (θ = 0◦) to the poles (θ = 90◦). At Quito, which is

on the equator, the length of a degree was measured to be 110.551 km, while at Lapland,

which is the closest people of the time could get to the north pole on account of the cold,

the length of the degree was measured to be more than a kilometer longer. Clearly these

data favor Newton’s prediction that the Earth flattens at the poles. There are, however,

discrepancies too: at the Cape of Good Hope the length of a degree is longer than that at

Rome, despite the fact that Rome has a larger (north) latitude than the (south) latitude of

the Cape of Good Hope. Graphing these measurements we see that, with the exception

of the (Cape of Good Hope - Rome) pair, there seems to be a consistent tendency for the

length to grow as we move away from the equator.

For short arcs, the approximation (see Stigler, 1986)

` = β0 + β1(3 sin
2 θ) + higher-order terms,

where ` is the length of 1◦ of latitude and θ is the angle of the latitude, was known to be

satisfactory. The parameters β0 and β1 can be interpreted as the length of 1◦ of latitude

at the equator and the excess in length of 1◦ at the poles over its value at the equator,

respectively. Ellipticity is therefore given by f = β1/β0.

These parameters are, of course, “known” today. Table 2 (from Abramowitz and Ste-

gun, 1972, p. 8.) presents the geodetic constants for the International Hayford Spheroid

(IHS). We see that the Earth flattens at the poles with an average oblate ellipticity of

f = 1/297. The length of 1◦ of latitude at the equator is 60 × 1, 842.925 = 110, 576 m,

while that at the poles is 60×1, 861.666 = 111, 700 m. This means that the circumference

of the Earth around the equator is approximately2 CE = 39, 807 km, while that around

the poles is approximately CP = 39, 807 × (1 − 1/297) = 39, 673 km, a mere 134 km

less than that around the equator.

In Book III of the Principia, Newton himself predicted that:

[...] the diameter of the Earth at the equator is to its diameter from pole to

pole as 230 to 229. – Principia, Book III, Proposition XIX, Problem III.

2That the circumference of the earth in km’s is almost a round number (40,000 km) is not a coincidence.

The meter was originally defined as the one ten-millionth (1/10,000,000) of the distance between a pole

and the equator along a great circle over water. Since to go around the earth one has to travel 4 times this

distance, the circumference of the earth is 40 million meters.
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Figure 2: Graph of ` against 3 sin2 θ, along with the least squares line

That is, Newton gave f = 1/230. Fitzpatrick (2009: Section 2.12), presents a theoretical

model of rotational flattening that, under simplifying homogeneity assumptions about

the rotating body, predicts f = 1/233. He says that this is (essentially) the model that

Newton used to make his prediction, and comments that “the discrepancy [with the actual

f = 1/297 value] is due to the fact that the Earth is strongly inhomogeneous, being much

denser at its core than in its outer regions”.

In terms of our model, β0 = 110.576 km, while from f we obtain a polar exceedance

of β1 = 110.576/297 = 0.3723 km per 1◦ of latitude. In what follows, we will estimate

β0, β1, and f from the data in Table 1 and see how close the scientists of the time came to

discovering the “truth”.

3 Estimating the Ellipticity of the Earth

Using the data in Table 1 we estimate by least squares the regression model

` = β0 + β1(3 sin
2 θ) + u.

According to the Earth parameters in Table 2, the “true” equation is

` = 110.576 + 0.3723 (3 sin2 θ)
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Table 2: Geodetic Constants – Hayford International Spheroida

a = 6, 378, 388m; c = 6, 356, 912m; f = 1/297

Latitude [◦]
Length of 1′ of

longitude [m]

Length of 1′ of

latitude [m]

Acceleration of

gravity [m/s2]

0 1855.398 1842.925 9.780 350
15 1792.580 1844.170 9.783 800
30 1608.174 1847.580 9.793 238
45 1314.175 1852.256 9.806 154
60 930.047 1856.951 9.819 099
75 481.725 1860.401 9.828 593
90 0.000 1861.666 9.832 072

a From Abramowitz and Stegun (1972), p. 8

so that,

f = 0.3723/110.576 = 1/297 ;

CE = 110.576× 360 = 39, 807 km.

The OLS estimates (along with their s.e.’s in parentheses below them) are

ˆ̀ = 110.525 + 0.4697 (3 sin2 θ), R2 = 0.8773
(0.158) (0.1014) σ̂u = 0.1903

so that,

f̂ = 0.4697/110.525 = 1/235.3 ;

ĈE = 110.525× 360 = 39, 789 km.

The variance-covariance matrix for β̂ is given by

V (β̂) = σ̂2
u(X

′X)−1 =

(

Var(β̂0) Cov(β̂0, β̂1)

Cov(β̂1, β̂0) Var(β̂1)

)

=

(

0.02481 −0.01344
−0.01344 0.01028

)

.

Given the smallness of the sample size, the only way to perform inference is to assume

that the neoclassical (normal and spherical errors) model applies. Assuming normal and

spherical errors, we see that β̂0 is very statistically significant with a t-statistic of 702,

while β̂1 is less significant, but still significant at the 5% level, with a t-statistic of 4.63 (p-

value of 0.019 on 3 d.f.). Compared to the now known quantities, we see that β0 and β1,
and therefore CE and f also, were estimated quite accurately by these data, and that the

data clearly support Newton’s prediction that the Earth bulges at the equator and flattens

at the poles. Figure 3 presents individual 95% CI’s for β0 and β1, as well as, a joint 95%
confidence region for the two parameters. The joint confidence region is given by the set

of values for which the quadratic form

1

2

(

110.525− β0
0.4697− β1

)

′
(

0.02481 −0.01344
−0.01344 0.01028

)

−1 (
110.525− β0
0.4697− β1

)
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Figure 3: The 95% joint confidence region for β0 and β1 along with the marginal 95% CI’s.

The marginal 95% CI for β0 is [110.023, 111.026], while that for β1 is [0.1470, 0.7924]. The

now known true parameter values of β0 = 110.576 and β1 = 0.3723 are also shown as point

×.

is less than or equal to the critical F1−α,2,n−k = F.95,2,3 = 9.552 value.

In order to obtain a first approximate confidence interval for ψ = 1/f we resort to a

trick: we divide both sides by β̂0 and estimate the OLS regression

`

β̂0
= 1 +

1

ψ
(3 sin2 θ) +

u

β̂0
.

This regression has the same R2 as the original regression and the t-statistic for 1/ψ is the

same as the t-statistic for β1. We get 1/ψ̂ = .0042498 with an s.e. of .0009174, so, using

the t.975,3 = 3.182 critical value, we obtain the 95% CI for 1/ψ as [.001330, .007169].

Upon inverting we get ψ̂ = 235.3 as above, and the 95% CI for ψ is given by

CInaive(ψ; .95) = [139.48, 751.77].

The CI is quite wide, but it importantly contains only positive values for ψ that correspond

to a prolate Earth.

This CI for ψ treats β0 as known and equal to the estimated value without uncertainty,

i.e., it does not take into account the variability in β̂0. Since, in our application, β0 is es-

timated very accurately (i.e., it’s s.e. is very small relative to its magnitude) this omission
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should not matter a lot. In any case, the correct 95% CI should be wider3.

To obtain the correct CI we use Fieller’s (1944) theorem. The following Aside presents

the method as it is adapted to the General Linear Model by Zerbe (1978).

Aside (Fieller’s Theorem) (Zerbe, 1978) Let

ψ = Kβ/Lβ,

where K and L are 1× k vectors of known constants, be the ratio of two linear combina-

tions of a k × 1 parameter vector β. If an estimator β̂ is distributed as β̂ ∼ N(β,Σ), we

have that, for a
√
n-estimator Σ̂ of Σ,

T =
Kβ̂ − ψLβ̂

[

KΣ̂K ′ − 2ψKΣ̂L′ + ψ2LΣ̂L′

]1/2
∼ tn−k.

Letting t = t1−α/2,n−k be the critical value from the tn−k distribution, we have

1− α = Pr{−t ≤ T ≤ t} = Pr{T 2 − t2 ≤ 0} = Pr{aψ2 + bψ + c ≤ 0},

where,

a = (Lβ̂)2 − t2LΣ̂L′,

b = 2
[

t2KΣ̂L′ − (Kβ̂)(Lβ̂)
]

,

c = (Kβ̂)2 − t2KΣ̂K ′.

The last expression says that the interval containing the required 1 − α probability is

characterized by the values for which the binomial aψ2+bψ+c is negative. If a is positive,

the function is convex and takes negative values. If, furthermore, the discriminant b2−4ac
is also positive, the binomial has two distinct real roots that define the required CI. Thus,

the 100(1− α)% CI for ψ is given by

[−b−
√
b2 − 4ac

2a
,
−b+

√
b2 − 4ac

2a

]

,

provided that a > 0 and b2 − 4ac > 0. For the pathological a < 0 and/or b2 − 4ac < 0
cases, as well as, for a nice geometrical interpretation of Fieller’s theorem, see Luxburg

and Franz (2009).

In our application, ψ = β0/β1, and β̂ is the OLS coefficient that, under the normal

and spherical errors assumption, is distributed as N(β, σ2
u(X

′X)−1). Letting K = (1, 0)
and L = (0, 1), we can write ψ = Kβ/Lβ as required. Then, using t = t.975,3 = 3.182,

we compute

a = 0.1165 > 0, b = −104.1, c = 12, 215.4

3Note that we can obtain a correct CI for ψ by evaluating the Sum of Square Residuals on a grid of

values for β0 to obtain the profile likelihood for ψ. Then, upon inverting the LR-test statistic we can obtain

an asymptotically correct CI. To avoid confusing the discussion, we do not pursue this alternative here.
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Figure 4: The Fieller binomial aψ2 + bψ + c (thin line) that, when negative, defines the

Fieller 95% CI for ψ (bold line). The point estimate ψ̂ = 235.3 is also shown.

and

b2 − 4ac = 5, 144.7 > 0,

and the Fieller (correct) 95% CI for ψ is given by

CIFieller,t(ψ, .95) = [138.95, 754.66]. (3.1)

As expected, since β0 is estimated quite accurately here, this correct CI for ψ (that

takes into account the variability in both β̂0 and β̂1) is only marginally wider than the naive

CI we computed above. Note that both CI’s are asymmetric around the point estimate

ψ̂ = 235.3 (see Figure 4), with the longer tail towards large ψ’s that correspond to a less

oblate and more spherical Earth.

For comparison purposes, we can also treat the means, variances and correlation as

known, so that the ratio f = β0/β1 is a ratio of normals standardized by their true vari-

ances and correlation (see Section 4). This simply amounts to using t = zα/2 = 1.96, so

that

a = 0.1811 > 0, b = −103.9, c = 12, 215.6

and

b2 − 4ac = 1, 951.4 > 0,

which yields the much shorter interval

CIFieller,normal(ψ, .95) = [164.96, 408.84]. (3.2)

Yet a fourth, albeit only asymptotically valid, method of obtaining a CI for ψ is the

δ-method, which produces s.e.(ψ̂) = 51.08, so the 95% CI is given by

CIδ−method(ψ, .95) = 235.3± t.975,351.08 = [72.75, 397.86].
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This CI is symmetric around the point estimate, but it disagrees with the correct Fieller-t

CI enormously because it disregards the extreme smallness of the sample size.

Compared to the now known quantities, the estimates obtained from the data in Table

1 were indeed quite accurate. When published in the mid 1700’s, these data lent con-

siderable support to Newton’s Theory of Gravitation. One could indeed compare this

verification of Newton’s predictions to the experimental verifications of Einstein’s Gen-

eral Theory of Relativity in the 20th century, that was found to correctly account for many

anomalies that were left unexplained by Newtonian mechanics, the most famous of which

are the advance of Mercury’s perihelion and the bending of light rays passing through the

gravitational field of the Sun.

4 Ratios of Normal and t Random Variables

In the previous section we obtained several CI’s for ψ under alternative assumptions. In

this section we wish to compute the entire distribution of ψ̂ under the same assumptions

and verify that the two approaches yield identical results. We start with the case in which

the parameters (means, variances and correlation) of the joint normal distribution are

known, and then discuss how the analysis should be modified if these parameters are

treated only as estimates from a small sample, as it is the case here.

The distribution of the ratio of normal random variables has been derived by several

authors, including Marsaglia (1965), Hinkley (1969), and Cedilnik, Kos̆melj, and Blejec

(2004). In our developments below we use the form given by Marsaglia (1965) because

his result was extended by Press (1969) to ratios of t-distributed random variables that we

will also need.

Marsaglia (1965) considered the distribution of the ratio

R =
Z + a

W + b
, a ≥ 0, b ≥ 0, (4.1)

where a, b are nonnegative real constants and Z and W are independent standard normal

random variables. The following lemma gives the distribution of R.

Lemma 1 (Marsaglia, 1965) If Z and W are independent normal random variables, the

probability density function of the ratio R in (4.1) is given by

fR(t) =
e−(a2+b2)/2

π(1 + t2)

{

1 +
q[2Φ(q)− 1]

2φ(q)

}

, −∞ < t <∞, (4.2)

where,

q =
at+ b√
1 + t2

,

and φ(·) and Φ(·) are the standard normal density and distribution functions, respectively.

Press (1969) considered again the ratio in (4.1), only this time he assumed that Z and

W are independent tν random variables.



The Distribution of the Ratio of Normal Random . . . 29

Lemma 2 (Press, 1969) If Z andW are independent tν random variables, the probability

density function of the ratio R in (4.1) is given by

gR,ν(t) =
k1

1 + t2

{

1 +
k2q

q∗ν+1

[

2Fν+1

(

q
√
ν + 1

q∗

)

− 1

]}

, −∞ < t <∞,

where Fn is the c.d.f of the Student t-distribution with n degrees of freedom, q is as in

Lemma 1, q∗ =
√

a2 + b2 + ν − q2 and

k1 =
1

π

(

1 +
a2 + b2

ν

)

−ν/2

, k2 =

√
πνν+2 Γ

(

ν + 1

2

)

2Γ

(

ν + 2

2

)(

1 +
a2 + b2

ν

)

−ν/2
.

Press (1969) shows that as ν → ∞, gR,ν(t) converges to fR(t). Both results in Lem-

mas 1 and 2 provide the distribution for uncorrelated standardized variables, with only

their means a and b being nonzero. To use these distributions in applications we need

a way of transforming arbitrary jointly normal or jointly t-distributed random variables

to the form considered in (4.1). Marsaglia (1965) states that there are constants c1 and

c2 for which the ratio of arbitrary jointly normal variables X and Y , can be written as

X/Y = c1 + c2(Z + a)/(W + b), i.e., that the distribution of X/Y is a translation of that

of R. After we had derived the transformation ourselves we found the paper by Marsaglia

(2006) that gives exactly the same formulas. In the hope that our derivation of the for-

mulas is more transparent than that of Marsaglia, we include here a brief account of our

derivation of the constants c1, c2, a and b.
It is a well-known fact that if U1 and U2 are independent N(0, 1) random variables

and ρ ∈ R such that |ρ| < 1, then

Z1 = U1 and Z2 = ρU1 +
√

1− ρ2U2,

are BV N(0, 0, 1, 1, ρ). Also, for µ1, µ2 ∈ R and σ1 > 0, σ2 > 0, X1 = µ1 + σ1Z1 and

X2 = µ2 + σ2Z2 are BV N(µ1, µ2, σ1, σ2, ρ). Now let Z and W be independent N(0, 1)
random variables and consider the rotations

X = σxρ(W + b) + σx
√

1− ρ2(Z + a) and Y = σy(W + b),

where a and b are nonnegative constants and |ρ| < 1. Then, X and Y are jointly normal

with variances σ2
x and σ2

y and correlation ρ. Their ratio is

X

Y
=
σxρ

σy
+
σx
√

1− ρ2

σy

(

Z + a

W + b

)

,

as required, with

c1 =
σx
σy
ρ and c2 =

σx
σy

√

1− ρ2. (4.3)

The means of X and Y are µx = bσxρ + aσx
√

1− ρ2 and µy = σyb, respectively, from

which we obtain,

a =
µx/σx − ρµy/σy

√

1− ρ2
and b =

µy

σy
. (4.4)
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Since the distributions of Z and −Z and W and −W are the same, if a and b have the

same sign, c1 and c2 can be taken as given in (4.3). If, however, only one of the constants

a or b is positive, we take c2 = −σx
√

1− ρ2/σy.

We have the following lemma.

Lemma 3 LetX and Y be jointly normal random variables with means µx, µy, variances

σx, σy and correlation ρ, and let R′ = X/Y be their ratio.

1. The distribution ofR′ is unaffected if µx, µy, σx and σy are all rescaled by a common

positive factor.

2. If fR(t) is the density of R in (4.1) where a and b are as given in (4.4) then the

density of R′ is given by

fR′(t) =
1

c2
fR

(

t− c1
c2

)

, −∞ < t <∞,

where c1 and c2 are given in (4.3).

Part 1. of the lemma says that, as far as ratios are concerned, of the five parameters in a

bivariate normal distribution, only four are free: the ratios R1 = X1/Y1 from (X1, Y1) ∼
BV N(µx, µy, σx, σy, ρ) andR2 = X2/Y2 from (X2, Y2) ∼ BV N(λµx, λµy, λσx, λσy, ρ),
where λ > 0, have the same distribution. This answers Hinkley’s (1969) objection that in

the general problem there are five parameters but Marsaglia (1965) uses only four, namely

(a, b, c1, c2).
Part 2. of the lemma gives the relation between the two sets of parameters and yields

some interesting insights into the problem. The location and scale constants c1 and c2
depend only on the parameters of the covariance matrix of X and Y , and although neces-

sary to pin down the exact distribution of R for each set of parameters, they are not very

interesting in terms of the various shapes that this distribution assumes. As Marsaglia

(1965) asserted, the shape is indeed determined by the constants a and b, which we will

call “the numerator and denominator standardized means”, respectively: b is indeed the

standardized mean µy/σy of the denominator variable Y , while a is the standardized mean

of the numerator variable X , albeit adjusted for correlation if ρ 6= 0. For example, since,

for µy 6= 0, a = 0 if and only if (µx/σx)/(µy/σy) = ρ, and since c1 and c2 do not depend

on µx and µy, the ratio R1 from (X1, Y1) ∼ BV N [µx = m,µy 6= 0, σx, σy, ρ = 0] has the

same distribution as the ratio R2 from (X2, Y2) ∼ BV N [µx = m/σx − ρµyσx/σy, µy 6=
0, σx, σy, ρ]. So, although the statement “b is small, large, or zero” is equivalent to “µy/σy
is small, large, or zero, respectively”, the statement “a is small, large or zero” should be

interpreted as: “there is an equivalent model (shifted by c1 and scaled by c2) with ρ = 0
for which a = µx/σx is small, large or zero, respectively”.

Recall that U follows a Cauchy C(ξ, ν) distribution if

gU(u) =

{

πν

[

1 +

(

u− ξ

ν

)2
]}

−1

and GU(u) =
1

2
+

1

π
tan−1

(

u− ξ

ν

)

, (4.5)

for −∞ < u < ∞. The following corollary characterizes the Cauchy densities that are

included in fR(t).
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Corollary 1 Taken together, Lemmas 1 and 3 yield that:

1. The ratioR of two centered jointly normal random variables (X, Y ) ∼ BV N(µx =
0, µy = 0, σx, σy, ρ) is distributed as C(ξ = c1, ν = c2).

2. The distribution of the ratio R of two jointly normal random variables for which

either µx 6= 0 and/or µy 6= 0, does not belong to the Cauchy C(ν, ξ) family.

The familiar result that the ratio of two independent standard normal variables is dis-

tributed as standard Cauchy C(0, 1) is a special case of (i). Note also that by (i), C(0, 1)
is also the distribution of the ratio of any independent centered jointly normal random

variables with equal variances. Furthermore, the general variances and correlation with

zero means, completely exhaust the Cauchy location-scale family: the negative result in

part (ii) means that the densities graphed by Marsaglia and other authors for a 6= 0 and/or

b 6= 0, although Cauchy-like in some cases, do not belong to the C(ξ, ν) location-scale

family.

In the form given in (4.2), the density of R is numerically unstable for large a and

b. To see this, note that when a and/or b is large e−(a2+b2)/2 becomes very small, while

1/φ(q) in the expression inside the brackets becomes very large, leading to 0 × infinity

computations in terms of floating-point computer accuracy. Also, as given, the normal

approximation in eq. (4.2) is not apparent. To make the density numerically stable and

reveal the nature of the normal approximation let

h =
bt− a√
1 + t2

,

and use

2πφ(h)φ(q) = e−(a2+b2)/2,

to rewrite the density in (4.2) as

fR(t) =
q

1 + t2
φ(h){2Φ(q)− 1}+ e−(a2+b2)/2

π(1 + t2)
(4.6)

= φ(h)

[

q{2Φ(q)− 1}+ 2φ(q)

1 + t2

]

. (4.7)

Either of the above representations are completely general and have the added advantage

that they can be easily evaluated without numerical problems for any a and b no matter

how large or small they happen to be.

To see what happens as b gets large, or as a and b get small, let

f ∗

R(t) =
q

1 + t2
φ(h) =

dh

dt
φ(h) =

d

dt
Φ(h),

and write

fR(t) = f ∗

R(t)× δ(t),

where

δ(t) = {2Φ(q)− 1}+ 2φ(q)

q
.
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Figure 5: The distribution of ψ̂ under bivariate normality of β̂0 and β̂1 (solid line) and under

bivariate t-distribution with 3 degrees of freedom (dotted line). Also shown are the

corresponding 95% CI’s in each of the two cases, that is, [164.96, 408.84] under normality,

and [138.95, 754.66] under t-distribution.

As b becomes large, the first term of δ(t) goes to one and the second term goes to zero

so, for large b, fR(t) is approximated by the normal density f ∗

R(t) in (16), and fR′(t)
by the shifted and rescaled according to Lemma 3 normal density f ∗

R′(t). Note that this

approximation is valid irrespective of the value of a. On the other hand, as both a and b go

to zero, fR(t) goes to the standard Cauchy density and fR′(t) goes to the C(ξ, ν) density

in (4.5) with ξ = c1 and ν = c2. This is obvious from either (4.2) or (4.6) and Lemma 3.

To use these results in our application, we compute the four parameters in (4.3) and

(4.4) and obtain:

a = 1305.7, b = 4.632, c1 = −1.307, and c2 = 0.8395,

from which we obtain the distributions in Figure 5. Note that for these large values of

a and b, the density in (4.2) cannot be evaluated due to the above-mentioned numerical

problems, but the alternative forms in (4.6) and (4.7) can be evaluated without any prob-

lems. The solid line in Figure 5 corresponds to the Marsaglia distribution and the solid

vertical lines define the Fieller-normal 95% CI in (3.2). Using numerical integration in R,

we compute the area under the curve between the bounds in (3.2) and find that the area

is indeed 95%: Using the marsaglia() function in R given in the Appendix and the



The Distribution of the Ratio of Normal Random . . . 33

OLS estimates from Section 3 to specify par = (µx, µy, σx, σy, ρ), we obtain

> par <- c(110.525,0.4697,0.15751,0.10140,-0.84139)

> mars <- function(x){marsaglia(x,par)}

> integrate(mars,164.96,408.84)

0.9499881 with absolute error < 6e-07

Similarly, the dotted line in Figure 5 corresponds to the Press distribution and the

dotted vertical lines define the Fieller-t 95% CI in (3.1). Using again numerical integration

in R, we compute the area under the dotted curve between the bounds in (3.1) and find that

the area is also 95% as expected: Using the press() function given in the Appendix,

the same par vector and nu = 3 d.f. we compute

> pres <- function(x){press(x,par,3)}

> integrate(pres,138.95,754.66)

0.9499949 with absolute error < 1.2e-07

We conclude that inference based on Fieller intervals and that based on exact distribution

computations yield identical results.

Appendix: Source R Code for Fieller Intervals and Ratio

Densities

The following R functions compute the densities discussed in the main text. The func-

tion marsaglia() computes the ratio of normals density in (4.10), while the function

press() computes the ratio of t’s density in Lemma 2. Their inputs are z, a vector

of values over which the density is to be evaluated, and par a 5 × 1 vector containing

(µx, µy, σx, σy, ρ), in that order. Function press() also takes the single-value parame-

ter nu, the degrees of freedom of the t variables. The parameters a, b, c1, c2 in (4.3) and

(4.4) are computed internally from par.

marsaglia <- function(z,par){

mx <-par[1];my<-par[2];sx<-par[3];sy<-par[4];r<-par[5]

vx <-sx^2;vy<-sy^2

a <- mx/(sx*sqrt(1-r^2))-(r*my)/(sy*sqrt(1-r^2)); b<-my/sy

c1 <- (sx*r)/sy; c2 <-(sx*sqrt(1-r^2))/sy

zn <- (z-c1)/c2

q <- (b+a*zn)/sqrt(1+zn^2)

h <- (b*zn-a)/sqrt(1+zn^2)

f1 <- b/sqrt(1+zn^2)*dnorm(h)

f2 <- q*(2*pnorm(q)-1)/(b*sqrt(1+zn^2))

f3 <- exp(-.5*(a^2+b^2))/(pi*(1+zn^2))

prob <- (1/c2)*(f1*f2+f3)

return(prob)

}

press <- function(z,par,nu){

mx <-par[1];my<-par[2];sx<-par[3];sy<-par[4];r<-par[5]
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vx <-sx^2;vy<-sy^2

a <- mx/(sx*sqrt(1-r^2))-(r*my)/(sy*sqrt(1-r^2)); b<-my/sy

c1 <- (sx*r)/sy; c2 <-(sx*sqrt(1-r^2))/sy

zn <- (z-c1)/c2

k1 <- 1/(pi*(1+(a^2+b^2)/nu)^(nu/2))

k2 <- (sqrt(pi)*nu^((nu+2)/2)*gamma((nu+1)/2))/

(2*gamma((nu+2)/2)*(1+(a^2+b^2)/nu)^(-nu/2))

q1 <- -(a*zn+b)/sqrt(1+zn^2)

q2 <- sqrt(a^2+b^2+nu-q1^2)

prob <- (1/c2)*((k1/(1+zn^2))*(1+(k2*q1/q2^(nu+1))*
(2 * pt(q1*sqrt(nu+1)/q2,nu+1) -1)))

return(prob)

}

The following R code computes the OLS estimates and implements Zerbe’s (1978)

algorithm to compute the 95% Fieller-t interval for ψ, for the data in Table 1.

X <- cbind(c(1,1,1,1,1), 3*c(0,.2987,.4648,.5762,.8386))

y <- c(110.551,111.108,110.995,111.18,111.858)

bhat <- solve(t(X)%*%X)%*%t(X)%*%y

print(bhat)

[,1]

[1,] 110.5245067

[2,] 0.4697037

yhat <- X%*%bhat; uhat<-y-yhat; shat<-sqrt(sum(uhat^2)/3)

Vhat <- shat^2 * (solve(t(X)%*%X))

print(Vhat)

[,1] [,2]

[1,] 0.02480802 -0.01343743

[2,] -0.01343743 0.01028128

psi <- bhat[1]/bhat[2]

print(psi)

[1] 235.3069

K <- matrix(c(1,0),1,2); L <- matrix(c(0,1),1,2)

a1 <- (L%*%bhat)^2 - qt(.975,3)^2 * (L%*%Vhat%*%t(L))

a2 <- 2*(qt(.975,3)^2*(K%*%Vhat%*%t(L))-(K%*%bhat)*(L%*%bhat))

a3 <- (K%*%bhat)^2-qt(.975,3)^2*(K%*%Vhat%*%t(K))

low <- (-a2-sqrt(a2^2-4*a1*a3))/(2*a1)

up <- (-a2+sqrt(a2^2-4*a1*a3))/(2*a1)

print(c(low,up))

[1] 138.9486 754.6641
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