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Abstract. Intelligent systems are a new wave of the embedded and real-time systems that are highly connected, 

with a massive processing power and performing complex applications. Their pervasiveness is reshaping the real 

world and teh way, we interact with our digital life. These intelligent systems are creating new opportunities for 

industry and business, and new experiences for users and consumers. They can be found in all domains: 

automotive, rail, aerospace, defence, energy, healthcare, telecoms and consumer electronics. In this paper we use 

an intelligent system method to predict the roughness of hardened specimens. We use an algorithm for the 

construction visibility graphs in a 3D space to analyse topographical properties of hardened specimens. Drawing 

graphs as nodes connected by links in 3D space is visually compelling but computationally difficult. Thus, the 

construction of the 3D visibility graphs is highly complex and requires in their professional computers or 

supercomputers. The microstructure of the robot-laser-hardened specimens is very complex; however, we can 

present it using 3D visibility graphs. For predicting the surface roughness of the hardened specimens we use the 

neural network, genetic algorithm and multiple regression. Using the intelligent systems we increase production 

of the laser-hardening process by decreasing the time process and increasing the topographical property of 

materials. 
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Uporaba metod inteligentnih sistemov v inženirstvu za 

napoved topografske lastnosti materialov 

Inteligentni sistemi so nov val vgrajenih sistemov v realnem 

času, ki so zelo povezani, z veliko procesorske moči in 

izvajajo zahtevne aplikacije. Njihova vseprisotnost je vplivala 

tudi na realni svet in na  interakcijo na naše digitalno življenje. 

Ti inteligentni sistemi ustvarjajo nove priložnosti za industrijo 

in podjetja in nove izkušnje za uporabnike in porabnike. Te je 

mogoče najti na vseh področjih: avtomobilske, železniške in 

vesoljske industrije, obrambe, energije, zdravstva, 

telekomunikacij in zabavne elektronike. V tem članku smo 

uporabili metode inteligentnih sistemov za napovedovanje 

hrapavosti kaljenih vzorcev z metodami inteligentnih 

sistemov. Uporabili smo algoritem za graditev grafov 

vidljivosti v 3D prostoru za analiziranje topografske lastnosti 

kaljenih vzorcev. Risanje grafov vidljivosti v 3D prostoru je 

vizualno privlačno, vendar računsko težko. Tako je graditev 

grafov vidljivosti v 3D prostoru zelo zapletena in zahteva 

zmogljive računalnike ali superračunalnike.  Mikrostruktura 

robotskih lasersko kaljenih vzorcev je zelo kompleksna; 

vendar jo lahko opišemo s pomočjo grafov vidljivosti v 3D 

prostoru. Za napovedovanje  hrapavosti kaljenih vzorcev 

bomo uporabili nevronske mreže, genetske algoritme in 

multiplo regresijo. Z inteligentnim sistemom smo povečali 

proizvodnjo procesa laserskega kaljenja, saj smo pridobili čas 

procesa in povečali topografske lastnosti materiala. 

1 INTRODUCTION 

Philosophers have been trying for over two thousand 

years to understand and resolve two big questions of the 

universe: how does a human mind work, and do non-

humans have minds? However, these questions are still 

unanswered. Some philosophers have picked up the 

computational approach originated by computer 

scientists and accepted the idea that machines can do 

everything that humans can do. Requirements for an 

intelligent system [1] include security, connectivity,  

ability to adapt according to the current data and  

capacity for remote monitoring and management. 

Essentially, an intelligent system is anything that 

contains a functional, although not usually general-

purpose, computer with Internet connectivity.  An 

embedded system may be powerful and capable of 

complex processing and data analysis, but it is usually 

specialized for tasks relevant to the host machine. 

Intelligent systems exist all around us in point-of-sale 

(POS) terminals, digital televisions, traffic lights, smart 

meters, automobiles, digital signale and airplane 

controls, and among a great number of other 

possibilities. As this ongoing trend continues, many 

 
Received 28 November 2014 

Accepted 30 January 2015 



32  BABIČ 

foresee a scenario known as the Internet of Things 

(IoT), in which objects, animals and people can all be 

provided with unique identifiers and the ability to 

automatically transfer data over a network without 

requiring human-to-human or human-to-computer 

interaction. In this paper we use an intelligent system to 

predict topography of specimens after  heat treatment. 

3D visibility graphs can be used in many 3D geometric 

problems. In this work,  the visibility network in a 3D 

space, which contains more information than the 

visibility graph, is used to analyse the microstructure of 

the robot laser-hardened specimens. This algorithm is 

also useful in many other cases, such as: illumination 

and rendering, motion planning, pattern recognition, 

computer graphics, computational geometry and sensor 

networks. The robot laser surface-hardening [2] heat 

treatment is complementary to the conventional flame 

or inductive hardening. Laser hardening is a process of 

projecting features, such as a non-controlled energy 

intake, high-performance constancy and an accurate 

positioning process. A hard martensitic microstructure 

provides improved surface properties, such as wear 

resistance and high strength [3]. The aim of the paper is 

to outline the possibilities of applying the neural 

network, genetic programming and multyple regression 

for the prediction of the roughness after robot-laser heat 

treatment with the topological property density visibility 

graphs in a 3D space of a microstructure and to assess 

their perspective use in this field. An application of the 

algorithm for construction of a 3D visibility graph to 

analyse the microstructure of the laser technique in 

hardening a specimen is illustrated in Section 3. 

 

2 MATERIALS PREPARATION 

The study was undertaken using the tool-steel standard 

label DIN standard 1.7225. The tool steel was forged 

with the laser at different speeds and at different 

powers. So we changed two parameters the speed v ∈ 

[2, 5] mm/s with steps of 1 mm/s and the temperature T 

∈ [1000, 1400] °C. Prior to testing, the specimens were 

subjected first to the mechanical and then to electrolytic 

polishing in H3Po4+CrO3 at the Institute of Metals and 

Technology of Ljubljana, Slovenia. After polishing we 

made images with a scanning electron microscope, 

JEOL JSM-7600F. Fig. 1 presents the microstructure of 

the robot-laser-hardened specimens. On these specimens 

we measured the roughness and hardness before and 

after the robot-laser-hardening. A profilometer 

(available from the Jozef Stefan Institute of Ljubljana) 

was used to measure the surface roughness parameter Ra 

(arithmetic mean deviation of the roughness profile) and 

hardness of the robot-laser-hardened specimens.  

 

 
Figure 1. Microstructure of the robot-laser-hardened specimen 

 

3 METHOD 

We used a new mathematical method to describe the 

geometry  microstructure the of robot-laser-hardened 

specimens. In this paper we use the mathematical 

method graph theory to describe the complexity 

geometry of the robot-laser-hardened specimens and 

visibility graphs in a 3D space. Teh algorithms for the 

2D visibility graphs already exist [4]. Two arbitrary data 

values (xa, ya) and (xb, yb) will have visibility, and 

consequently will become two connected nodes of the 

associated graph, if any other data (xc, yc) placed 

between them fulfills (1). 

 

yc < yb + (ya−yb)*(xb−xc)/(xb−xa) . (1) 

 

Firstly, we have a point (vertex) in a 3D space and know 

how to connect it in a 3D space.  

 
 

Figure 2. Point in a 3D space microstructure of  Fig. 1 

 

The problem of constructing the visibility graph in a 3D 

space was solved in [5]. Fig. 3 presents a solution of the 

visibility graph in a 3D space microstructure of Fig. 1. 

Density  for each visibility graph was calculated with 

equation (2)  
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=2m/n×(n-1), (2) 

 

wher m is the number of the edges and n is the number 

of verteces in the visibility graphs. 

 

 

Figure 3. Visibility graph in a 3D space microstructure  

of Fig. 1 

 

To model the results, we used the intelligent system 

methods, i.e. the neural network, genetic programming 

method and multiple regression. 

The neural networks [8] have a large appeal to many 

researchers due to their great closeness to the structure 

of the brain, a characteristic not shared by more 

traditional systems. In an analogy to the brain, an entity 

made up of interconnected neurons, the neural networks 

are made up of interconnected processing elements 

called units, which respond in parallel to a set of the  

input signals given to each. The unit is an equivalent of 

its brain counterpart, the neuron. Learning is essential to 

most of these neural network architectures and hence 

the choice of a learning algorithm [9] is a central issue 

in the network development. Learning implies that a 

processing unit is capable of changing its input/output 

behavior as a result of changes in the environment. 

Since the activation rule is usually fixed when the 

network is constructed and since the input/output vector 

cannot be changed, to change the input/output behavior, 

the weights corresponding to that input vector need to 

be adjusted. A method is thus needed with which, at 

least during the training stage, the weights can be 

modified in response to the input/output process. Their 

is a number of such learning rules available for the 

neural network models. In a neural network, learning 

can be supervised, in which the network is provided 

with a correct answer for the output during training, or 

unsupervised, in which no external teacher is present. 

 

Figure. 4. General multi-layer neural network system 

 

Genetic programming (GP) [9] is an automated method 

for creating a working computer program from a high-

level problem statement of a problem. GP starts from a 

high-level statement of “what needs to be done” and 

automatically creates a computer program to solve the 

problem. GP starts with a primordial ooze of thousands 

of randomly created computer programs. This 

population of programs is progressively evolved over a 

series of generations. The following evolutionary 

parameters were selected for the process of simulated 

evolutions: 500 for the size of the population of 

organisms, 100 for the maximum number of 

generations, 0.4 for the reproduction probability, 0.6 for 

the crossover probability, 6 for the maximum 

permissible depth in the creation of the population, 10 

for the maximum permissible depth after the operation 

of crossover of two organisms, and 2 for the smallest 

permissible depth of organisms in generating new 

organisms. Genetic operations of reproduction and 

crossover were used. For selection of organisms the 

tournament method with the tournament size 7 was 

used. 

 
 

 
Figure. 5. Randomly generated mathematical model for the 

surface roughness of the hardened specimens prediction, 

represented in the program-tree form 
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The multiple regression [6] is a straightforward 

extension of the simple regression from one to several 

quantitative explanatory variables. In the multiple 

regression, we still make the xed-x assumption which 

indicates that each of the quantitative explanatory 

variables is measured with a little or no imprecision. All 

the error model assumptions also apply. They assume 

teh outcome that for each subject having the same level 

of the explanatory variables is normally distributed 

around the true mean (or that the errors are normally 

distributed with the mean zero), and that the variance, 


2
, of the outcome around the true mean (or of the 

errors) is the same for every other set of the values of 

the explanatory variables [7]. It is assumed that the 

errors are independent from each other. The standard 

ANCOVA model incorporates covariates into an 

ANOVA model in a straightforward way. If there is one 

grouping variable, for example, the model for the 

multiple linear regression, given m observations, is (3) 

 

Y = b + b1X1 + b2X2 + ... + bmXm + ,   (3) 

 

where αi is the corrected effect on y given that you are 

in group i (corrected in the sense that the covariates x1, . 

. . , xm are taken into account). 

 

 
Figure 6. Analysis of covariance 

 

4 RESULTS 

In Table 1, the parameters of the hardened specimens 

impacting the roughness are presented. The specimens 

from P1 to P22 are marked. Parameter X1 presents the 

temperature in degrees of Celsius [C], X2 presents the 

speed of hardening [mm/s], X3 presents the density of 

the visibility graphs in a 3D space and X4 presents the 

basic roughness of specimens. The last parameter Y is 

the measured surface roughness of the laser-hardened 

robot specimens. Table 2 presents experimental and 

prediction data regarding the surface roughness of the 

laser hardened robot specimens. In Table 2, symbol S 

presents the name of the specimens, E experimental 

data, R prediction with regression, NM1 prediction with 

the neural network with a 50% learn set, NM2 

prediction with the neural network with the method one 

live out, and GP prediction with genetic programming. 

In Table 1, we can see that specimen P20 has the largest 

density of the visibility graphs in 3D; 0.2960, thus 

specimen P20 is most complex. Specimen P13 has most 

roughness after hardening, that is 2350nm. The 

measured and predicted surface roughness of the laser-

hardened robot specimens is shown in the graph in Fig. 

8. The genetic programming model is presented in Fig. 

7. The genetic programming model presents a 19. 67% 

deviation from the measured data, which is less than the 

regression model, which presents a 133. 97% deviation. 

The best neural network presents a 39. 10% deviation 

from the measured data.  
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Figure 7. Model of genetic programming 

 
Table 1. Parameters of the hardened specimens 

S X1 X2 X3 X4 Y 

P1 1000 2 0,1936 24 201 

P2 1000 3 0,2208 24 171 

P3 1000 4 0,2144 24 109 

P4 1000 5 0,2256 24 76,3 

P5 1400 2 0,2445 24 1320 

P6 1400 3 0,2221 24 992 

P7 1400 4 0,2036 24 553 

P8 1400 5 0,2096 24 652 

P9 1000 2 0,2352 201 337 

P10 1000 3 0,2288 171 307 

P11 1000 4 0,2144 109 444 

P12 1000 5 0,2352 76,3 270 

P13 1400 2 0,2208 1320 2350 

P14 1400 3 0,232 992 1900 

P15 1400 4 0,1984 553 661 

P16 1400 5 0,1904 652 759 

P17 800 0 0,2832 24 183 

P18 1400 0 0,2688 24 1330 

P19 2000 0 0,2416 24 1740 

P20 950 0 0,2128 24 502 

P21 850 0 0,208 24 166 

P22 0 0 0,296 24 24 
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Table 2. Experimental and prediction data 

S ED R NM1 NM2 GP 

P1 201 305,65 199,6 317,1 214,1 

P2 171 407,70 151,2 150,2 205,1 

P3 109 305,54 105,3 67,9 137,3 

P4 76,3 310,35 101,0 129,8 83,9 

P5 1320 1187,6 1314,0 1240,0 1779,3 

P6 992 988,25 993,0 987,8 936,6 

P7 553 812,56 569,6 706,8 567,1 

P8 652 785,76 641,0 562,0 431,3 

P9 337 558,47 354,6 419,5 331,7 

P10 307 456,31 291,2 215,3 218,0 

P11 444 305,54 440,1 404,7 137,3 

P12 270 368,69 138,0 19,2 83,4 

P13 2350 1043,6 1372,8 2302,5 1367,2 

P14 1900 1048,4 953,5 1928,5 1032,7 

P15 661 780,95 1465,8 684,4 540,0 

P16 759 669,08 673,7 749,4 372,0 

P17 183 690,38 465,8 170,9 193,3 

P18 1330 1461,8 1990,3 1350,3 731,1 

P19 1740 2155,5 2367,7 1759,8 1742,5 

P20 502 477,27 621,2 365,0 201,3 

P21 166 304,94 266,5 272,9 151,7 

P22 24 -377,1 115,2 -64,6 24,3 

      

 
Figure 8. Measured and predicted surface roughness of the 

laser-hardened robot specimens 

 

Model Regression 

 

Y=−2176,047851+1,431627245×X1−63,25871916×X2

+6077,409979×X3 

 

5 DISCUSSION  

We use the topological property of the visibility graphs 

to describe the topographical properties of the hardened 

specimens. Using an algorithm for constructiong the 

visibility graphs in a 3D space, we describe the 

complexity of the hardened specimens. A statistically 

significant relationship was found between the 

roughness, parameters of the robot-laser cell and 

topological property density of the visibility graphs in 

3D. In addition, image analysis of the SEM images of 

the robot-laser-hardened specimens is an interesting 

approach. We use three methods of the intelligent 

system to predict porosity of the robot-laser-hardened 

specimens. We show that the genetic programming 

model gives the best prediction results. The neural 

network model is better than the regression model and 

as good as the genetic programming model. 

 

6 CONCLUSSION 

In the paper we present the use of an intelligent system 

method, genetic programming and multyple regression 

to predict the hardness of hardened specimens. We 

describe a method of the visibility graph in a 3D space 

to analise complexity of the robot-laser-hardened 

specimens. The main findings can be summarised as 

follows: 

1. We describe the topographical properties of the 

hardened specimens by using the topological properties 

of the visibility graphs in a 3D space. 

2. We describe the relationship between roughness and 

the parameters of the robot-laser cell by using the 

topological properties of the 3D visibility graphs. This 

finding is important with regard to certain alloys that are 

hard to mix because they have different melting 

temperatures; however, such alloys have better technical 

characteristics. By varying different parameters (e.g., 

temperature), the robot-laser cells produce different 

patterns with different topological properties of the 3D 

visibility graphs.  

3. To predict the roughness of the hardened specimens, 

we use a neural network, genetic algorithm and multiple 

regression. 

4. Using the presented intelligent system we increase 

production of the laser-hardening process by decreasing 

time of the process and increase the topographical 

property of materials. 
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