
 Informatica 32 (2008) 437–444 437

Improving Morphosyntactic Tagging of Slovene Language through

Meta-tagging

Jan Rupnik, Miha Grčar and Tomaž Erjavec
Jožef Stefan Institute, Jamova cesta 39, Ljubljana
E-mail : {jan.rupnik, miha.grcar, tomaz.erjavec}@ijs.si
http://kt.ijs.si

Keywords: PoS tagging, meta-tagger, Slavic languages, FidaPLUS, JOS corpus, machine learning, Orange, decision
trees, CN2 rules, Naive Bayes

Received: June 17, 2008

Part-of-speech (PoS) or, better, morphosyntactic tagging is the process of assigning morphosyntactic

categories to words in a text, an important pre-processing step for most human language technology

applications. PoS-tagging of Slovene texts is a challenging task since the size of the tagset is over one

thousand tags (as opposed to English, where the size is typically around sixty) and the state-of-the-art

tagging accuracy is still below levels desired. The paper describes an experiment aimed at improving

tagging accuracy for Slovene, by combining the outputs of two taggers – a proprietary rule-based

tagger developed by the Amebis HLT company, and TnT, a tri-gram HMM tagger, trained on a hand-

annotated corpus of Slovene. The two taggers have comparable accuracy, but there are many cases

where, if the predictions of the two taggers differ, one of the two does assign the correct tag. We

investigate training a classifier on top of the outputs of both taggers that predicts which of the two

taggers is correct. We experiment with selecting different classification algorithms and constructing

different feature sets for training and show that some cases yield a meta-tagger with a significant

increase in accuracy compared to that of either tagger in isolation.

Povzetek: V članku je opisan poskus izboljšanja točnosti označevanja slovenskih besedil z združevanjem

dveh neodvisnih orodij za označevanje.

1 Introduction

Morphosyntactic tagging, also known as part-of-
speech tagging or word-class syntactic tagging is a
process in which each word appearing in a text is
assigned an unambiguous tag, describing the
morphosyntactic properties of the word token. Such
tagging is the basic pre-processing step for a number of
applications or more advanced analysis steps, such as
syntactic parsing. Morphosyntactic tagging is, in general,
composed of two parts: the program first assigns, on the
basis of a morphological lexicon all the possible tags that
a word form can be associated with (morphological look-
up), and then chooses the most likely tag on the basis of
the context in which the word form appears in the text
(disambiguation). For words not appearing in the lexicon,
various taggers either ignore them or employ heuristics
to guess at their tag.

Unlike English, morphologically richer Slavic
languages such as Czech (Hajič and Hladka, 1998) or
Slovene typically distinguish more than a thousand
morphosyntactic tags. In the multilingual MULTEXT-
East specification (Erjavec, 2004) almost 2,000 tags
(morphosyntactic descriptions, MSDs) are defined for
Slovene. MSDs are represented as compact strings, with
positionally coded attribute values, so they effectively
serve as shorthand notations for feature-structures. For
example, the MSD Agufpa expands to Category =
Adjective, Type = general, Degree =

undefined, Gender = feminine, Number =

plural, Case = accusative.
Having such a large number of tags makes assigning

the correct one to each word token a much more
challenging task than it is e.g. for English. The problem
for Slovene has been exacerbated by the lack of large and
available validated tagged corpora, which could serve as
training sets for statistical taggers.

Recently, new annotated language resources have
become available for Slovene. FidaPLUS1 (Arhar &
Gorjanc, 2007) is a 600 million word monolingual
reference corpus automatically annotated with
MULTEXT-East MSDs by the Slovene HLT company
Amebis2. But while FidaPLUS is freely available for
research via a Web concordancer, it is not generally
available as a dataset. In order to remedy the lack of
publicly available annotated corpora for HLT research on
Slovene, the JOS project (Erjavec and Krek, 2008) is
making available two corpora under the Creative
Commons license. Both contain texts sampled from
FidaPLUS, with the smaller jos100k containing 100,000
words with fully validated morphosyntactic annotations,
and the larger, jos1M having 1 million words, and
partially hand validated annotations – project resources
preclude fully validating the latter.

Previous experiments (Erjavec et al., 2000) showed
that from various publicly accessible taggers the best

1 http://www.fidaplus.net/
2 http://www.amebis.si/

438 Informatica 32 (2008) 437–444 J. Rupnik et al.

results were achieved by TnT (Brants, 2000). TnT is a
Hidden Markov Model tri-gram tagger, which also
implements an unknown-word guessing module. It is fast
in training and tagging, and is able to accommodate the
large tagset used by Slovene.

Having the validated jos100k at our disposal, we
experimented with training TnT and seeing how its errors
compare to the ones assigned by the Amebis tagger. It
turned out that the two taggers are comparable in
accuracy, but make different mistakes. This gave us a
method of selecting the words that should be manually
corrected in jos1M – only those tokens where the
annotations between the taggers differ were selected for
manual inspection. This approach concentrated on
validating the words where state-of-the-art taggers are
still able to make correct decisions, at the price of
ignoring cases where both taggers predict the same but
incorrect tag, i.e. the truly difficult cases.

Having several automatically tags for each word also
offers the possibility of combining their outputs in order
to increase accuracy, say, over the whole FidaPLUS
corpus. Experiments in combining PoS taggers have been
attempted before, using various learning strategies, and
for various languages, e.g. voting, stacking, etc. for
Swedish (Sjöbergh, 2003) or multi-agent systems for
Arabic (Othmane Zribi et al., 2006). An experiment,
more similar to ours, is reported in Spoustová et al.
(2007) for Czech, also using a rich positional tagset,
where several stochastic taggers are combined with a rule
based one; the rule based tagger is used predominantly as
a pre-disambiguation step, to filter out unacceptable tags
from the ambiguity classes of the tokens.

This paper presents a similar experiment, which,
however, uses only two independent taggers therefore
precluding combination methods such as voting or
pipelining. But as in the Czech case, we also need to deal
with a very large and positionally encoded tagset.

The rest of this paper is structured as follows:
Section 2 presents the dataset used in the experiments,
Section 3 explains the methods used to combine the
output of the taggers, Sections 4 and 5 give the results of
experiments on the jos100k and jos1M corpora with
different methods and features, and Section 6 gives the
conclusions and directions for further work.

2 Dataset

The dataset used in the first set of experiments is based
on the jos100k corpus; the corpus contains samples from
almost 250 texts from FidaPLUS, cca. 1,600 paragraphs
or 6,000 sentences. The corpus has just over 100,000
word tokens, and, including punctuation, 120,000 tokens.
jos100k contains only manually validated MSDs, of
which 1,064 different ones appear in the corpus.

For the dataset we added MSDs assigned by Amebis
and TnT to the manually assigned ones. Two sentences
from the dataset are given in Figure 1. Annotations
marking texts and paragraphs have been discarded and
end of sentence is marked by an empty line. Punctuation
is tagged with itself.

Prišlo Vmep-sn Vmep-sn Vmep-sn

je Va-r3s-n Va-r3s-n Va-r3s-n

do Sg Sg Sg

prerivanja Ncnsg Ncnsg Ncnsg

in Cc Cc Cc

umrla Vmep-sf Vmep-sf Vmep-sf

je Va-r3s-n Va-r3s-n Va-r3s-n

. . . .

Tega Pd-nsg Pd-msa Pd-msg

se Px------c Px------c Px------c

sploh Q Q Q

nisem Va-r1s-y Va-r1s-y Va-r1s-y

zavedel Vmep-sm Vmep-sm Vmep-sm

. . . .

Figure 1: Example stretch of the corpus dataset (“Prišlo

je do prerivanja in umrla je. Tega se sploh nisem

zavedel.”). First column is the word-form, second the
gold standard manually assigned tag, third the one
assigned by TnT, and the fourth by Amebis. Note the
first word of the second sentence, where both taggers
make a mistake.

The source FidaPLUS corpus also contains, for each
word token, all possible MSDs that could be assigned to
it, i.e. its ambiguity class. Based on this information, we
computed the average per-word MSD ambiguity which
turns out to be 3.13 for the jos100k corpus. So, on the
average, a tagger needs to choose the correct MSD tag
between three possibilities. Note that disambiguation is
only possible for known words.

2.1 Amebis MSDs

The Amebis MSDs were taken from the source
FidaPLUS corpus; as mentioned, the Amebis tagger is
largely a rule-based one, although with heuristics and
quantitative biases. The tagger uses a large lexicon,
leaving only 2% of the word tokens in jos100k unknown.
Amebis doesn’t tag these words, and they have all been
given a distinguished PoS/MSD “unknown”.
Furthermore, FidaPLUS is annotated according to the
MULTEXT-East specification, while the JOS corpus
uses a modification, based on, but different from the
MULTEXT-East/FidaPLUS one. Differences concern
reordering of attribute positions, changes in allowed
values, etc., as well as lexical assignment. For the most
part an information-preserving conversion is possible,
but for MSDs (attributes) of some lexical items only
heuristics can be used for the conversion. Taking into
account that all Amebis “unknowns” are by definition
wrong, as all words are manually annotated with specific
MSDs, and that a certain number of errors is introduced
by the tagset mapping, Amebis obtains 87.9% accuracy
on all tokens (incl. punctuation) in the dataset.

IMPROVING MORPHOSYNTACTIC TAGGING... Informatica 32 (2008) 437–444 439

2.2 TnT MSDs

The TnT tagger was trained on the dataset itself, using
10-fold cross-tagging. The dataset was split into 10 parts,
with 9 folds used for training, and the remaining fold
tagged with the resulting model, and this process
repeated for all 10 folds. As the lexical stock of jos100k
is small, the tagging model used a backup lexicon which
was extracted from the FidaPLUS corpus and its
annotations. In other words, tri-gram statistics and
lexicon containing uni-gram statistics of word-forms
(their ambiguity classes) of frequent words were learned
from jos100k, while less frequent words obtained their
ambiguity classes from MSDs assigned by the Amebis
tagger. Given such a tagging set-up, the obtained
accuracy over the all dataset tokens (incl. punctuation)
for TnT is 88.7%, slightly better than Amebis; but TnT
has the advantage of learning how to correctly tag at least
some unknown words (such as those marked as
“foreign”, i.e. tokens in spans of non-Slovene text), as
well as having less problems with tagset conversion.
Nevertheless, on the dataset it performs better than
Amebis, so the TnT accuracy can be taken to constitute
the baseline for the experiment.

2.3 Error comparison

Table 1 compares the errors made by the taggers against
the gold standard. The first line gives the complete size
of the corpus in words. The second gives the number of
correct MSD assignment to word tokens for TnT (86.6%
per-word accuracy), and the third for Amebis (85.7%).
The fourth line covers cases where both taggers predict
the correct MSD, for 78% of the words.

Lines 5 and 6 cover cases where one tagger correctly
predicts the tag, while the other makes a mistake. These
two lines cover a significant portion (2/3) of all the
errors, so if such mistakes can be eliminated by deciding
which tagger made the correct choice, the gains in
accuracy are considerable.

The last two lines indicate upper bounds on the gains
achieved by concentrating on choosing the correct tag.
Line 7 gives cases where both taggers agree, but on an
incorrect tag (3.2%), and line 8 the number of cases
where both are wrong, but in different ways (2.4%); the
upper bound on combination accuracy is thus 94.3%.

Let us look at two typical examples of cases 7 and 8.
An example of both taggers being wrong, but agreeing
on the assigned tag is exemplified in the fragment “ni

mogoče povedati” (it is not possible to tell) where
“mogoče” should be an adverb but both taggers assign it
an adjectival tag. An example of both taggers being
wrong in different ways is the fragment “ni

priporočene/Adj zgornje/Adj mejne/Adj vrednosti/Adj”

(there is no recommended upper bound value). The
correct tag for the noun is Ncfsg, i.e. feminine singular
genitive, the genitive being determined by the (long
distance) dependency on “ni”. The Amebis tagger
correctly predicts this tag, while TnT makes a mistake,
and assigns to the noun the plural accusative. As
adjectives must agree with the noun in gender, number
and case, the three adjectives preceding the noun must

also be tagged as feminine singular genitive. Here both
taggers are wrong: while TnT correctly posits the
agreement between the noun and adjectives, all the
adjective tags are wrong, due to the noun being
incorrectly tagged. Amebis, on the other hand, does not
pick up the agreement, and tags all three adjectives as
masculine ones.

 Words Gold Amebis TnT Gloss

1 100,003 MSD1
Words in
dataset

2 86,623 MSD1 MSD1
TnT tagger
correct

3 85,718 MSD1 MSD1
Amebis tagger
correct

4 78,018 MSD1 MSD1 MSD1
Both taggers
correct

5 7,700 MSD1 MSD1 MSD2
Amebis correct,
TnT error

6 8,605 MSD1 MSD2 MSD1
Amebis error,
TnT correct

7 3,232 MSD1 MSD2 MSD2
Both wrong,
and identical

8 2,448 MSD1 MSD2 MSD3
Both wrong,
and different

Table 1: Comparison of tagging accuracy of Amebis and
TnT over the 100k dataset.

3 Combining the taggers

As mentioned, our meta-tagger is built on top of two
taggers, the Amebis rule-based tagger and TnT. The sole
task of the meta-tagger is to decide which tag to consider
correct. The meta-tagger is implemented as a classifier
which, if the two underlying taggers disagree, classifies
the case into one of the two classes indicating which of
the two taggers is more likely to be correct. To train the
classifier, we needed two things: a way to describe a case
with a set of features, and a classification algorithm. The
following section describes the feature construction
process and the subsequent section the classification
algorithms we tried out for this task.

3.1 Feature construction

To be able to train the classifier we needed to describe
each case with a set of features. We decided to keep our
meta-tagger relatively simple and to construct features
solely out of tags predicted by the underlying taggers.
Alternatively, we could compute content features as well
(such as n-grams, prefixes, and suffixes) as it is the case
with the SVM-based taggers such as SVMTool (Giménez
& Márquez, 2004).

For training and testing we used the dataset
discussed in Section 2, with each word assigned three
tags: the correct tag (assigned manually), the tag assigned
by TnT, and the tag assigned by the Amebis tagger. Each
of these three tags can be decomposed into 15 attributes
such as the part-of-speech category, type, gender,
number, and so on. For a given tag, not all attribute

440 Informatica 32 (2008) 437–444 J. Rupnik et al.

values are set, therefore the data is sparse in this sense
(e.g. the value of gender and number for prepositions is
“undefined”).

The attributes of the tags assigned by the two taggers
(but not those of the manually assigned tags) were
directly used as features for training. In addition, we
constructed features that indicate whether the two taggers
agree on a particular attribute value or not (the so called
agreement features). The example was labeled according
to the tagger which correctly tagged the word (the label
was thus either TnT or Amebis). Note that we built a
training feature vector only when the two taggers
disagreed and one of them was correct (if none of the
taggers was correct, we were unable to label the feature
vector). The entire feature construction process is
illustrated in Figure 2.

For the first set of experiments we used the tag
attributes and agreement features of the current word to
construct a feature vector (termed non-contextualized
features in Figure 2). In the second set of experiments, on
the other hand, we also added tag features (from both,
TnT and Amebis) from the previous and the next word
(termed contextualized features in Figure 2). It is also
important to mention that we ran a set of experiments
where we excluded punctuation from the text and a set of
experiments where each different type of punctuation
was treated as a separate part-of-speech category (e.g.
POST=,) with all the other attributes set to “not
applicable”. Each of these settings gave slightly different
results. The results are discussed in Section 4 in more
detail.

3.2 Learning algorithms

We experimented with three different classification
algorithms: the Naive Bayes classifier, CN2 rule-
induction algorithm, and C4.5 decision tree building
algorithm. In this section, we briefly describe each of
them.

The Naive Bayes (NB) classifier is a probabilistic
classifier based on Bayes’ theorem.3 It naively assumes a
strong independence of features. Furthermore, it is a
black box classifier in the sense that its decisions are not
easily explainable.

CN2 is an if-then rule-induction algorithm (Clark &
Niblett, 1989). It is a covering algorithm meaning that
each new rule covers a set of examples which are thus
removed from the dataset. Unlike the Naive Bayes
classifier, the trained model (i.e. a set of induced rules)
provides an explanation for a decision (i.e. an if-then rule
that was taken into account when classifying the
example). Looking at the induced rules, it is also possible
to read, understand, and also verify the knowledge that
was discovered in the training set.

3 c.f. http://en.wikipedia.org/wiki/Naive_Bayes_classifier

~100,000 words:
…, prepričati, italijanske, pravosodne, oblasti, ...

Word: pravosodne
Correct tag: Agufpa
Amebis tag: Agufpa
TnT tag: Agufpn

The corresponding feature vector (non-contextualized):
Amebis tag attributes:
 POSA=Adjective, TypeA=general, GenderA=feminine, NumberA=plural,

 CaseA=accusative, AnimacyA=n/a, AspectA=n/a, FormA=n/a, PersonA=n/a,

 NegativeA=n/a, Degree=undefined, DefinitenessA=n/a, ParticipleA=n/a,

 Owner_NumberA=n/a, Owner_GenderA=n/a

TnT tag attributes:
 POST=Adjective, TypeT=general, GenderT=feminine, NumberT=plural,

 CaseT=nominative, AnimacyT=n/a, AspectT=n/a, FormT=n/a, PersonT=n/a,

 NegativeT=n/a, DegreeT=undefined, DefinitenessT=n/a, ParticipleT=n/a,

 Owner_NumberT=n/a, Owner_GenderT=n/a

Agreement features:
 POSA=T=yes, TypeA=T=yes, …, NumberA=T=yes, CaseA=T=no,

 AnimacyA=T=yes, …, Owner_GenderA=T=yes

 (Optionally)

Extended feature vector (contextualized):

Tag-related
features of the
previous word
(italijanske)

Tag and
agreement
features of the
current word
(pravosodne)

Tag-related
features of the
next word
(oblasti)

…

Figure 2: The feature construction process.

C4.5 is an algorithm for building decision trees; it is
based on information entropy4 (Quinlan, 1993). C4.5
uses the fact that each attribute of the data can be used to
make a decision that splits the data into smaller subsets.
It examines the normalized information gain (difference
in entropy) that results from choosing an attribute for
splitting the data. The attribute with the highest
normalized information gain is the one used to make the
decision. This process is repeated several times on
smaller and smaller subsets of data. Similarly to CN2
(the rule-induction algorithm), C4.5 builds glass box
models. Unlike its predecessor, the ID3 algorithm, C4.5
knows how to handle data with missing values (i.e.
sparse data) and prunes the tree by cutting off branches
that do not contribute to the classification accuracy.

4 c.f. http://en.wikipedia.org/wiki/C4.5_algorithm

In this case,
Amebis is
correct, TnT is
not. The
corresponding
feature vector
will thus be
labeled
“Amebis”.

IMPROVING MORPHOSYNTACTIC TAGGING... Informatica 32 (2008) 437–444 441

4 Experiments

In this section, we present tagging accuracies of the
meta-tagger for different combinations of feature sets and
underlying classification models. The size of the set of
examples for training and testing is 16,305 and consists
of 8,605 cases where TnT tagger predicted the correct tag
and Amebis tagger did not and 7,700 cases where
Amebis was correct and TnT was not. All experiments
were conducted with the Orange data mining tool
(Demšar et al., 2004). 5-fold cross validation method was
used to evaluate the tagging accuracy of the meta-tagger
in all experimental scenarios. We first discuss two
baseline models for the meta-tagger, after that we define
several different feature sets, then continue with the
description of non-contextualized models and end the
section with models that incorporate context features.

4.1 Baselines

The first baseline is the majority classifier which always
predicts that TnT tagger is correct. This classifier
achieves the accuracy of 52.8%.

The second baseline model is a Naive Bayes model
trained on only one feature: Amebis MSD. This is a very
simple model, since to classify a new example (with only
one feature f , that is the Amebis MSD), all one needs to
do is count the number of cases with MSD equal to f

where Amebis was correct and the number of cases with
MSD equal to f where Amebis was incorrect (P(x = f, y =

amebis-correct) and P(x = f, y = amebis-incorrect)) and
predict the class (amebis-correct or amebis-incorrect)
with the higher count. This model achieves the accuracy
of 70.95% (approx. 18% higher than the first baseline).

Let us consider two examples. Assume that there
were 200 cases where Amebis predicted the tag Pd-nsg,
and it was correct in 150 of these cases (this means the
TnT was correct in the remaining 50 cases). This means
that P(Amebis-predicts: Pd-nsg, Amebis-correct) = 0.75.
In this case the meta-tagger would always predict the tag
Pd-nsg if Amebis predicted it as well.

Now, if we assumed that Amebis was correct in 80
of 200 cases, P(Amebis-predicts: Pd-nsg, Amebis-
correct) = 0.4), then the meta-tagger would always
predict the tag predicted by TnT, given that Amebis
predicted Pd-nsg (the evidence in the training data tells
us not to trust the Amebis tagger, since the probability of
it being correct is less than 0.5).

4.2 Feature sets

We will now describe the features for the non-
contextualized models. The first set of features for the
non-contextualized models are the so called FULL
features; they only include full Amebis MSD and full
TnT MSD (two features). The second set of features
called DEC is a decomposition of the FULL features as
described in Section 3.1 (45 features: 15 Amebis
features, 15 TnT features, 15 Agreement features). The
third set of features, BASIC, is a subset of DEC features,
where we only take the features corresponding to
Category, Type, Gender, Number and Case into account

(10 features: 5 for Amebis and 5 for TnT). The final set
of features, ALL, is a union of FULL and DEC (47
features).

Feature sets for contextualized models (with and
without punctuation) are extensions of non-
contextualized feature sets, where the features of
examples surrounding our training example are added
(see Section 3.1). The context features (i.e. the features
of the previous and next word) are the same ones as that
of the current word except for the Agreement features
which are only computed for the current word (in the
DEC feature set we thus keep only 15 Agreement
features: the ones of the current word).

Features ALL, when contextualized, include six
features for MDS tags (Amebis-Prev, Amebis, Amebis-
Next, TnT-Prev, TnT, TnT-Next), 45 for Amebis tag
features (3 × 15 features), 45 for TnT tag features and 15
Agreement features, which sums up to 111 features.

4.3 Non-contextualized models

Experiments with features that do not take context into
account (Table 2) show that C4.5 is the most robust
classifier with respect to different feature sets and that it
can achieve the highest accuracy. We can also observe
that tag features are not very suitable for the Naive Bayes
classifier because the conditional independence
assumptions are too strongly violated.

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.90 67.55 67.50 69.65

C4.5 73.51 74.70 74.23 73.59

CN2 60.61 72.57 71.68 70.90

Table 2: Non-contextualized models (accuracy in %).
Feature sets FULL, DEC, BASIC and ALL are explained
in Section 4.2.

Even though the CN2 algorithm results in slightly lower
accuracy it can prove useful since the rules that it
produces are easy to interpret and thus discover the
strengths and weaknesses of the TnT and Amebis
classifiers (see Figure 3).

442 Informatica 32 (2008) 437–444 J. Rupnik et al.

Figure 3: List of rules discovered by CN2 in Orange.
Rules are ordered by their quality which is a function of
rule coverage and rule accuracy. The second rule, for
example, tells us that if Amebis predicted locative case
and TnT predicted some other case and TnT predicted
common type, then the meta-tagger should predict the
same tag as Amebis. The first rule, IF
Amebis_POS=[‘Residual’] AND TnT_Form=[‘0.000’]
THEN Correct = TnT, covers the examples mentioned in
Section 2.1, where Amebis predicts POS tag “unknown”
(by definition incorrect). The rule says that in such case,
TnT is always correct, which is what is expected.

4.4 Context and punctuation

When comparing the results of experiments with context,
we notice that taking punctuation into account (see
Section 3.1) is beneficial in almost all cases (see Tables 3
and 4). This can be explained by the fact that ignoring
punctuation can yield unintuitive context tags, for
instance the sequence of tags T1, T2, T3, where T1 is the
last word of a sentence, T2 the first word and T3 the
second word of the next sentence.

We notice that C4.5 can best benefit from extra
contextual features, whereas the performance of the other
algorithms does not change notably.

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.10 68.29 67.96 70.55

C4.5 73.10 78.51 79.23 76.72

CN2 62.16 73.26 72.75 72.29

Table 3: Context without punctuation (accuracy in %).

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.44 68.32 68.14 70.53

C4.5 74.18 78.91 79.73 77.68

CN2 62.23 74.27 72.82 73.01

Table 4: Context with punctuation (accuracy in %).

5 Large-scale experiment

In addition to the experiments on the jos100k corpus, we
also performed a large-scale experiment on a larger
subset of FidaPLUS, the jos1M corpus, consisting of
1,000,017 word tokens (without punctuation). The corpus
was first tagged by both taggers (i.e. Amebis and TnT).
Amebis is a rule-based tagger and does not require
training, TnT, on the other hand, was trained on the
complete jos100k corpus. Then, if (and only if) the two
taggers disagreed on a particular word token, the token
was manually validated. Consequently, we are unable to
determine cases when both taggers are correct or agree
on an incorrect tag. Dataset statistics (analogous to the
ones in Table 1) are given in Table 5.

 Words Gold Amebis TnT Gloss

1 1,000,017 Words in
dataset

2 809,897 MSD1 MSD1
Both taggers
agree

3 75,378 MSD1 MSD1 MSD2 Amebis correct,
TnT error

4 88,657 MSD1 MSD2 MSD1
Amebis error,
TnT correct

5 26,085 MSD1 MSD2 MSD3 Both wrong,
and different

Table 5: The jos1M corpus statistics.

5.1 Experimental setting

We confronted Naive Bayes with C4.5 (building CN2
rules was computationally too expensive). We
experimented with all defined feature sets: FULL, DEC,
BASIC, and ALL, with and without context. Punctuation
was included in the contextualized cases. For some
reason, the C4.5 algorithm was unable to handle feature
sets FULL and ALL when contextualized. We speculate
that the implementation in Orange does not manage
memory efficiently when it comes to attributes with
1000+ different values. The results of the experiments
are presented in the following section.

5.2 Results

In this section, we present tables analogous to the ones in
Section 4. We show how the algorithms perform under
different feature sets. As already said, we do not show
results for the CN2 algorithm and for C4.5 under certain
conditions (denoted with “N/A”). The results fully
support our observations on the smaller jos100k corpus
and are presented in Tables 6 and 7. Note also that the
second baseline yields 72.39% accuracy on the jos1M
corpus.

IMPROVING MORPHOSYNTACTIC TAGGING... Informatica 32 (2008) 437–444 443

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.93 66.85 66.67 69.81

C4.5 76.45 76.56 76.29 76.49

Table 6: The jos1M corpus – non-contextualized models
(accuracy in %).

Feature set /
Classifier FULL DEC BASIC ALL

NB 73.74 67.59 67.86 70.28

C4.5 N/A 84.18 84.01 N/A

Table 7: The jos1M corpus – context and punctuation
(accuracy in %).

6 Conclusions

The paper presents a meta-tagger built on top of two
taggers, namely the TnT HMM-based tagger and the
Amebis rule-based tagger. The purpose of the meta-
tagger is to decide which tag to take into account if the
two taggers disagree in a particular case.

The experimental results show that the two taggers
are quite orthogonal since very little information is
needed to get a significant increase in performance from
the first baseline.

Furthermore, using context can improve the
performance of some models and taking punctuation into
account when constructing context features is better than
ignoring it. C4.5 with context and punctuation features
achieves the highest accuracy, 79.73% on jos100k and
84.18% on jos1M, which results in a meta-tagger with
significantly higher accuracy than Amebis tagger or TnT
tagger. The overall accuracies are given in Figure 4. Note
that the first baseline is equal to the TnT overall
accuracy.

There are roughly 5% cases in which both taggers
assign an incorrect tag. By using the technique discussed
in this paper (i.e. rule inference), it would be possible to
learn under which conditions the two taggers are both
mistaken and thus alert the user about such tags.

Furthermore, it would be possible to apply our
technique on a per-attribute basis. We would be able to
predict incomplete tags, i.e. tags with some attributes
missing, where the missing attributes would be those
most likely predicted falsely by both taggers. This would
be very useful as guidance for human taggers preparing
the JOS corpus. The missing attributes would have to be
entered manually; the rest would only need to be
validated.

Tagging on a per-attribute basis and looking at cases
in which both taggers predict an incorrect tag will be the
focus of our future research. In addition, we will consider
including more taggers into the system. The main idea is
to develop taggers, specialized to handle cases in which
the two currently used taggers are not successful.

85.72

86.62

89.58

91.02

85.61

86.94

89.95

91.88

82

83

84

85

86

87

88

89

90

91

92

93

Amebis TnT Base2 (Naive Bayes

on only one feature;

see Section 4.1)

Best (Context w ith

punctuation, feature

set BASIC on

jos100k, DEC on

jos1M)

Experimental setting

O
v

e
ra

ll
 a

c
c
u

ra
c

y
 (

%
)

jos100k

jos1M

Figure 4: The overall accuracies (%). We can see that our
meta-tagger exhibits around 4%–5% overall
improvement over the two underlying taggers (i.e. TnT
and Amebis). For computing the accuracies on the jos1M
corpus, we needed to estimate the number of cases where
the two taggers agreed on a correct tag. Looking at the
statistics of the jos100k corpus (Table 1), we can see that
the taggers are correct in 96.4% of the cases where they
agree on the tag. Therefore, we computed the required
number as 96.4% of 809,897 which is 780,740.71.

Acknowledgements

The work described in this paper was supported in part
by grant ARRS J2-9180 “Jezikoslovno označevanje
slovenskega jezika: metode in viri” and EU 6FP-033917
SMART “Statistical Multilingual Analysis for Retrieval
and Translation”.

References

[1] Arhar, Š. and Gorjanc, V. (2007). Korpus
FidaPLUS: nova generacija slovenskega
referenčnega korpusa. Jezik in slovstvo, 52(2): 95–
110.

[2] Brants T. (2000). TnT – A Statistical Part-of-
Speech Tagger. In Proceedings of the Sixth Applied
Natural Language Processing Conference ANLP-
2000, 224–231.

[3] Clark, P. and Niblett, T. (1989). The CN2 Induction
Algorithm. Machine Learning, 3(4): 261–283.

[4] Demšar J., Zupan B. and Leban G. (2004). Orange:
From Experimental Machine Learning to
Interactive Data Mining. White Paper
(www.ailab.si/orange), Faculty of Computer and
Information Science, University of Ljubljana.

[5] Erjavec, T., Džeroski, S. and Zavrel, J. (2000).
Morphosyntactic Tagging of Slovene: Evaluating
PoS Taggers and Tagsets. In Proceedings of the
Second International Conference on Language
Resources and Evaluation (LREC’2000). ELRA,
Paris.

[6] Erjavec, T. (2004). MULTEXT-East Version 3:
Multilingual Morphosyntactic Specifications,
Lexicons and Corpora. In Proceedings of the Fourth

444 Informatica 32 (2008) 437–444 J. Rupnik et al.

International Conference on Language Resources
and Evaluation, LREC 2004, 1535–1538.

[7] Erjavec, T. and Krek, S. (2008). The JOS
morphosyntactically tagged corpus of Slovene. In
Proceedings of the Sixth International Conference
on Language Resources and Evaluation, LREC
2008.

[8] Giménez, J. and Márquez, L. (2004). SVMTool: A
General POS Tagger Generator Based on Support
Vector Machines. In Proceedings of the 4th
International Conference on Language Resources
and Evaluation (LREC'04).

[9] Hajič, J. and Hladka, B. (1998). Tagging Inflective
Languages: Prediction of Morphological Categories
for a Rich, Structured Tagset. COLING-ACL'98.
ACL.

[10] Quinlan, J.R. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, Inc.

[11] Sjöbergh, J. (2003). Combining POS-taggers for
improved accuracy on Swedish text. In NoDaLiDa
2003, 14th Nordic Conference on Computational
Linguistics. Reykjavik.

[12] Spoustová, D., Hajič, J., Votrubec, J., Krbec, P. and
Květoň, P. (2007). The Best of Two Worlds:
Cooperation of Statistical and Rule-Based Taggers
for Czech. Proceedings of the Workshop on Balto-
Slavonic Natural Language Processing. June 2007.
Prague, Czech Republic. Association for
Computational Linguistics.

[13] Zribi, C.B.O., Torjmen, A. and Ahmed, M.B.
(2006). An Efficient Multi-agent System
Combining POS-Taggers for Arabic Texts. In
Computational Linguistics and Intelligent Text
Processing. LNCS Volume 3878/2006, Springer.

