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Abstract

We determine the conditions for matrix centralizers which can guarantee the connect-
edness of the commuting graph for the full matrix algebra Mn(F) over an arbitrary field
F. It is known that if F is an algebraically closed field and n ≥ 3, then the diameter of
the commuting graph of Mn(F) is always equal to four. We construct a concrete example
showing that if F is not algebraically closed, then the commuting graph of Mn(F) can be
connected with the diameter at least five.
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1 Introduction

Let n ≥ 2 and let Mn(F) be a ring of all n × n matrices over a field F. The commuting
graph Γ(Mn(F)) of Mn(F) is a simple graph with the vertex set consisting of all non-
scalar matrices from Mn(F), and two vertices form an edge if the corresponding matrices
are distinct and commute.

Recently, connections between various algebraic structures and their commuting graphs
were investigated, see, e.g. [1, 3, 4, 5, 8, 9, 10, 12, 15]. For example, Mohammadian
[15] recently proved that a ring is isomorphic to M2(F), with F finite, if and only if the
commuting graph of the ring under consideration is isomorphic to Γ(M2(F)). Akbari,
Ghandehari, Hadian and Mohammadian conjectured in [3] that this is also true for Mn(F),
where n ≥ 2.

The connectedness and diameter of the commuting graph of a matrix ring Mn(F) have
been also studied extensively. If F is an algebraically closed field and n ≥ 3, Akbari,
Mohammadian, Radjavi, and Raja [4, Corollary 7] proved that the diameter of Γ(Mn(F))
is always equal to four. For fields which are not algebraically closed the situation is com-
pletely different, e.g. if F is the field of rational numbers, then the commuting graph is never
connected (see [2, Remark 8]). A necessary and sufficient condition for which Γ(Mn(F))
is connected was given in [2, Theorem 6]. Namely, it was proven that Γ(Mn(F)) is con-
nected if and only if every field extension of F of degree n contains at least one proper
intermediate field. In the case when commuting graph of Mn(F) is connected, its diameter
is known to be at most six and it is conjectured that it is at most five, see [4, Theorem 17]
and [4, Conjecture 18]. In the present paper, we show that Γ(M9(Z2)) is connected and
has the diameter at least 5, where Zm is the ring of integers modulo m. We also char-
acterize connected commuting graphs in the language of centralizers. Observe that this
characterization is different from [2, Theorem 6], where the language of field extension
was used.

Definition 1.1. For a matrix A ∈Mn(F), the centralizer of A, denoted by C(A), is the set
of all matrices in Mn(F) commuting with A.

Let us remark that the set of non-scalar matrices in C(A) coincides with the closed
neighborhood of vertex A ∈ Γ(Mn(F)).

Centralizer induces a natural equivalence relation on Mn(F):

Definition 1.2. Matrices A and B are C-equivalent (abbreviated A ∼ B) if C(A) = C(B).

Definition 1.3. A matrix A is C-minimal if for every X ∈ Mn(F) with C(A) ⊇ C(X) it
follows that A ∼ X .

Definition 1.4. A non-scalar matrix A is C-maximal if for every non-scalar X ∈ Mn(F)
with C(A) ⊆ C(X) it follows that A ∼ X .

Let us remark that C-minimal and C-maximal matrices in Mn(F) were already classi-
fied, see Šemrl [16] and recent paper [7] by the authors. Also, C-minimal and C-maximal
matrices were used as a main tool by Dolinar, Kuzma, and Oblak [8] to investigate dis-
tances between vertices in the commuting graph Γ(Mn(F)) and they will be used to prove
the results of this paper as well.

We use the following notations. By Eij we denote the matrices with 1 on (i, j)-th
position and 0 elsewhere. By 0k and Ik we denote the k × k zero matrix and the k × k
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identity matrix, respectively. When it is clear from the context, we omit the subscript. For
a given scalar λ ∈ F, define Jk(λ) = λI +

∑k−1
i=1 Ei(i+1) to be an elementary upper-

triangular Jordan matrix. We denote Jk = Jk(0). A matrix A ∈Mn(F) is an idempotent if
A2 = A, it is a nilpotent if there exists an integer k ≥ 1 such thatAk = 0. Non-zero matrix
A with A2 = 0 is called a square-zero matrix. For a monic polynomial m ∈ F[x] we let
C(m) =

∑n−1
i=1 E(i+1)i −

∑n
i=1mi−1Ein ∈ Mn(F) be a companion matrix of m, where

m(x) = m0+m1x+· · ·+mn−1x
n−1+xn. Given a matrixA, let F[A] = {p(A)| p ∈ F[x]}

be the unital algebra generated by A.

2 Connectedness of commuting graphs
In this section we provide a characterization of matrices for which Γ(Mn(F)) is connected
in the language of extremal centralizers. We need the following result on C-maximal ma-
trices from our recent paper [7].

Proposition 2.1. [7, Theorem 3.2] Let F be an arbitrary field. The following statements
are equivalent for a non-scalar matrix A ∈Mn(F).

(i) A is C-maximal.

(ii) A belongs to one of the following three classes:

(a) A is C-equivalent to an idempotent,

(b) A is C-equivalent to a square-zero matrix,

(c) A is similar to C ⊕ · · · ⊕ C, where C is a companion matrix of an irreducible
polynomial, such that there is no proper intermediate field between F and F[C].

Theorem 2.2. Let n ≥ 2 and let F be an arbitrary field. A commuting graph Γ(Mn(F))
is not connected if and only if there exists a matrix in Mn(F) which is simultaneously
C-minimal and C-maximal.

Proof. First, let n = 2. Then, Γ(M2(F)) is never connected because every non-scalar
matrix in C(E11) is diagonal, hence C-equivalent to E11 and thus E11 and E12 are not
connected in Γ(M2(F)) (see also Akbari and Raja [5, Remark 8]). Moreover,E11 is always
a C-minimal and C-maximal matrix, so the theorem is true in the case n = 2 for every field
F.

Second, let n ≥ 3. We will prove each direction of the equivalence in the theorem
separately.

(i). Suppose A is a C-minimal and C-maximal matrix. According to Proposition 2.1 we
have to consider three cases separately.

Case 1. Let A be C-equivalent to an idempotent. Then we may assume that A =
Ir ⊕ 0n−r for some r ∈ {2, . . . , n − 1}. Thus C(A) = Mr(F) ⊕Mn−r(F). Recall that
Jr ∈ Mr(F) is a nilpotent upper-triangular Jordan cell, so C(Ir + Jr) = {α0Ir + α1Jr +
· · ·+ αr−1J

r−1| αi ∈ F} = F[Jr]. It easily follows that

C((Ir + Jr)⊕ 0n−r) = F[Jr]⊕Mn−r(F).

Hence C((Ir + Jr)⊕ 0n−r) ( C(A), so A is not C-minimal, a contradiction.
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Case 2. LetA be C-equivalent to a non-scalar square-zero matrix. Then we may assume

A =

0r 0 Ir
0 0n−2r 0
0 0 0r

 = Jn−rn for some integer r, 1 ≤ r ≤ n
2 . However, C(Jn) (

C(A), hence A is not C-minimal, a contradiction.

Case 3. Let A = C ⊕ · · · ⊕ C, where C is a companion matrix of some irreducible
monic polynomial m ∈ F[x], such that there is no proper intermediate field between F and
F[C]. We will prove that actually A = C.

Suppose F is an infinite field. ThenA being C-minimal implies thatA is non-derogatory
(see [7, Lemma 2.7]). Therefore A = C, i.e. A contains only one summand. Hence F[C]
is a field extension of F of degree n. Recall that C is a companion matrix of an irreducible
polynomial, such that there is no proper intermediate field between F and F[C] thus it
follows by [2, Theorem 6] that Γ(Mn(F)) is not connected.

Suppose F = GF (pk) is a finite field and suppose that A = C ⊕ · · · ⊕ C contains
more than one summand. Since F[C] is a field extension of F with degree d = degm,
it is isomorphic to K = GF (pkd). Let γC ∈ K correspond to matrix C under this iso-
morphism. Since A contains more than one summand, d is a proper divisor of n. So,
K = GF (pkd) is a proper intermediate field between F and GF (pkn). It is known that
the multiplicative group of GF (pkn) is cyclic, so let ξ ∈ GF (pkn) be its generator. Then
F[ξ] = GF (pkn) and minimal polynomial f ∈ F[x] for ξ is irreducible over F of degree
n. For matrix X = C(f) ∈ Mn(F), F[X] is a field isomorphic to GF (pkn). Since
GF (pkd) ⊆ GF (pkn), some polynomial in X is isomorphic to γC ∈ GF (pkd), and
hence also to C. Consequently, by Skolem-Noether theorem, p(X) is similar to a ma-
trix A = C ⊕ · · · ⊕ C for some p ∈ F[x]. By applying a suitable similarity to X we can
assume that p(X) = A, hence C(X) ⊆ C(A). Since A is C-minimal, C(X) = C(A), so X
is a polynomial inA by the centralizer Theorem (see [13, p. 113, Corollary 1] and also [17,
p. 106, Theorem 2]). Therefore the rational form of X (see [11, Chapter 3] for details) has
at least as many cells as the rational form of A. A contradiction to the fact that X is similar
to C(f). It follows that A = C and we conclude as in the infinite case that Γ(Mn(F)) is
not connected.

(ii). Suppose the commuting graph Γ(Mn(F)) is not connected. By [4, Theorem 11]
any two non-scalar idempotents are connected and thus there exists a non-scalar matrix A
which is not connected to any non-scalar idempotent. We may assume that A is already
in its rational form. Then A consists of a single cell because otherwise a matrix A1 ⊕ A2

would be connected to an idempotent I ⊕ 0. Hence A = C(mα) for some irreducible
polynomial m and positive integer α. If α ≥ 2, then A would be connected to a non-scalar
square-zero matrix B = m(A)α−1. It is easy to see that B commutes with a rank-one
matrix which further commutes with an idempotent, a contradiction. So, α = 1 and thus
A is non-derogatory, hence C-minimal as it was proved in [7, Theorem 2.6]. If A = C(m)
is not C-maximal, then there exists a proper intermediate field K between F and F[A] by
Proposition 2.1. We can assume K = F[X] is a simple extension for some X ∈ F[A]. The
minimal polynomial of X has smaller degree than the minimal polynomial of A, otherwise
F[X] = F[A]. Hence the rational form of X contains more than one cell and therefore X ,
and thus also A is connected to a non-scalar idempotent, a contradiction.
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3 Commuting graph with diameter greater than four
Recall that the diameter of a commuting graph Γ(Mn(F)), where F is algebraically closed
and n ≥ 3, is equal to four [4]. Below we provide an example showing that if F is not
algebraically closed, then the diameter of Γ(Mn(F)) can be indeed greater than 4.

Theorem 3.1. The graph Γ(M9(Z2)) is connected with diameter at least 5.

Proof. Note that Z2 permits only one field extension of degree n = 9, the Galois field
GF (29) which contains GF (23) as the only proper intermediate field. So, by [2, Theorem
6] the commuting graph of M9(Z2) is connected. To see that its diameter is at least 5,
consider a polynomial m(λ) = λ9 + λ8 + λ4 + λ2 + 1 ∈ Z2[λ]. It is easy to see that
this polynomial is irreducible. Let Â = C(m) ∈ M9(Z2) be its companion matrix. Since
Â has a cyclic vector, C(Â) = Z2[Â] by a well known Frobenius result on dimension
of centralizer (see for example [2, Corollary 1]), and this is a field extension of Z2 [14,
Theorem 4.14, p. 472] of index n = 9. Actually, C(Â) is isomorphic to GF (29) by the
uniqueness of field extensions for finite fields. In the sequel we identify these two fields.

Since the field extension Z2 ⊂ GF (29) contains only GF (23) as a proper intermediate
field, we see that each X ∈ C(Â) \ GF (23) satisfies Z2[X] = Z2[Â] = C(Â) and in
particular X and Â are polynomials in each other so they are C-equivalent. Moreover, each
non-scalar Ŷ ∈ GF (23) satisfies Z2[Ŷ ] = GF (23), because no proper intermediate fields
exist between Z2 and its overfield GF (23), and in particular, C(Ŷ1) = C(Ŷ2) for any two
non-scalar Ŷ1, Ŷ2 ∈ GF (23) ⊂ GF (29) = C(Â).

There exists a polynomial p so that Ŷ = p(Â) ∈ GF (23)\{0, 1}. As the field GF (23)

contains no idempotents other than 0 and 1 we see that the rational canonical form of Ŷ
consists only of cells which correspond to some powers of the same irreducible polyno-
mial. Likewise, the field contains no non-zero nilpotents, so each cell of Ŷ corresponds
to the same irreducible polynomial. Moreover, GF (23) has no subfields other than Z2,
so Z2[Ŷ ] = GF (23) and hence the minimal polynomial of Ŷ ∈ GF (23) has degree
[GF (23) : Z2] = 3. This polynomial is relatively prime to its derivative, so in a split-
ting field, Ŷ has three distinct eigenvalues. It easily follows that Ŷ is similar to a matrix
C ⊕ C ⊕ C, with C being a 3 × 3 companion matrix of some irreducible polynomial of
degree 3. Let S1 be an invertible matrix such that Ŷ = S−11 (C ⊕ C ⊕ C)S1 and define

A = S1ÂS
−1
1 .

Clearly, p(A) = S1Ŷ S
−1
1 = C ⊕ C ⊕ C and it follows that

C(p(A)) =

Z2[C] Z2[C] Z2[C]
Z2[C] Z2[C] Z2[C]
Z2[C] Z2[C] Z2[C]

 . (3.1)

Since Z2[Ŷ ] = GF (23) we obtain Z2[C] = GF (23).
Consider a 3× 3 block matrix

N =

E13 0 0
0 0 E13

E32 0 0

 , E13, E13, E32 ∈M3(Z2).
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It is immediate that N3 = 0, so I +N is invertible. Define

B = (I +N)A(I +N)−1.

We will show that d(A,B) ≥ 5.
Suppose there exists a pathA—V —Z —W —B of length 4. Note that V ∈ GF (23)

⊂ C(A). Otherwise, if V ∈ C(A)\GF (23), then C(V ) = C(A) and such V has exactly the
same neighbours as A. Since B = (I + N)A(I + N)−1, it follows W = (I + N)U(I +
N)−1 for some U ∈ GF (23) ⊂ C(A) = (I + N)−1 C(B)(I + N). Recall that any
two non-scalar elements in GF (23) have the same centralizer. So in particular we might
take U = V = p(A) = C ⊕ C ⊕ C where polynomial p was defined before. For any
Z ∈ C(V ) ∩ C((I +N)V (I +N)−1) we have

Z = (I +N)Ẑ(I +N)−1, Z, Ẑ ∈ C(V )

and hence, by postmultiplying with (I +N) and rearranging,

Z − Ẑ = NẐ − ZN. (3.2)

Let us write Z =
[
Zij
]
1≤i,j≤3 and Ẑ =

[
Ẑij
]
1≤i,j≤3 as 3× 3 block matrices and by (3.1)

we have that Zij , Ẑij ∈ Z2[C] = GF (23) ⊆M3(Z2), hence each of them is either zero or
invertible. Then (3.2) implies

[
Zij − Ẑij

]
ij

=

−Z11E13 − Z13E32 + E13Ẑ11 E13Ẑ12 E13Ẑ13 − Z12E13

−Z21E13 − Z23E32 + E13Ẑ31 E13Ẑ32 E13Ẑ33 − Z22E13

−Z31E13 − Z33E32 + E32Ẑ11 E32Ẑ12 E32Ẑ13 − Z32E13

 .
Observe that each block on the left side belongs to Z2[C] = GF (23) ⊆ M3(Z2), and so
is either zero or invertible. On the other hand, on the right side, each block in the last two
columns has rank at most two. We deduce that the last two columns on both sides are zero.
In particular, comparing the second columns we see that Ẑ12 = Z12 = 0 and Ẑ32 = 0,
so Z22 = Ẑ22, and Z32 = Ẑ32 = 0. Putting this in the above equation and simplifying,
the last column gives Ẑ13 = 0, so Z13 = Ẑ13 = 0, Z23 = Ẑ23, and Z33 = Ẑ33. Also,
comparing the (2, 3) positions, we obtain

0 = Z23 − Ẑ23 = E13Ẑ33 − Ẑ22E13 = e1(ẐT
33e3)T − Ẑ22e1e

T
3 .

Moreover, ẐT
33e3 = λe3 and Ẑ22e1 = λe1, λ ∈ Z2. Since Ẑ33, Ẑ22 ∈ Z2[C] and every

vector is cyclic for C we see that Ẑ33 = Ẑ22 = λI3. The matrix equation therefore
simplifies toZ11 − Ẑ11 0 0

Z21 − Ẑ21 0 0

Z31 − Ẑ31 0 0

 =

 −Z11E13 + E13Ẑ11 0 0

−Z21E13 − Ẑ23E32 + E13Ẑ31 0 0

−Z31E13 − λE32 + E32Ẑ11 0 0

 .
Comparing the position (1, 1) gives by similar arguments as above that Ẑ11 = Z11 = µI3.
Inserting this into the equation we see after rearrangement that the rank of the block at
position (3, 1) is equal to rk((µ − λ)E32 − Z31E13) ≤ 2, which forces the two blocks at



G. Dolinar et al.: Commuting graphs and extremal centralizers 459

position (3, 1) to be zero, i.e. Z31 − Ẑ31 = 0 = (µ− λ)E32 − Z31E13 = (µ− λ)e3e
T
2 −

Z31e1e
T
3 . We immediately get Z31 = Ẑ31 = 0 = (µ − λ). Therefore, Z11 = Z22 =

Z33 = λI3. Finally, comparing the (2, 1) positions gives

Z21 − Ẑ21 = −Z21E13 − Ẑ23E32,

and arguing as above, Z21 = Ẑ21 = 0. Hence, Z is a scalar matrix. So, C(V ) ∩ C(W )
contains only scalar matrices, which gives that d(A,B) ≥ 5.
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