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ABSTRACT

The paper deals with modeling of segment systems in a bounded planar set (a cell) by means of random
segment processes. Two models with a density with respect to the Poisson process are presented. In model
I interactions are given by the number of intersections, model II includes the length distribution and takes
into account distances from the centre of the cell. The estimation of parameters of the models is suggested
based on Takacz-Fiksel method. The method is tested first using simulated data. Further the real data from
fluorescence imaging of stress fibres in mesenchymal human stem cells are evaluated. We apply model II
which is inhomogeneous. The degree-of-fit testing of the model using various characteristics yields quite
satisfactory results.

Keywords: parameter estimation, random segment process, stem cell, stress fibre.

INTRODUCTION

In stochastic geometry (Chiu et al., 2013) random
geometrical objects and their systems are studied. The
basic model is a stationary spatial point process on
the whole Euclidean space. Sometimes, however, a
stochastic model in a bounded set is needed, e.g. in
the biological example investigated in this paper. We
will study the distribution of actin stress fibres in
individual stem cells. The goal is to model this system
for each cell by means of a finite point process (Møller
and Waagepetersen, 2007; Baddeley, 2007) including
marks which leads to a segment process (Chiu et al.,
2013; Pawlas, 2014).

The goal of our present paper splits into
two aims. First we develop background theory of
segment processes. Particularly we are interested in
parameter estimation in models given by a density
with respect to the Poisson process (Møller and
Waagepetersen, 2004). For systems of objects the
disc process case was developed in Møller and
Helisova (2008; 2010), the facet process in Večeřa
and Beneš (2016); Večeřa (2016), where facets are
compact subsets of hyperplanes in Rd . Because of
problems with normalizing constant the Takacz-Fiksel

method or maximum pseudolikelihood method are
suitable choices, cf. Coeurjolly et al. (2012) for
spatial point processes and Dereudre et al. (2014)
for disc processes. The applicability of the Takacz-
Fiksel method is first successfully tested on simulated
data. The simulation of a realization of a finite
segment process is obtained by means of the birth-
death Metropolis-Hastings algorithm of Markov chain
Monte Carlo (Geyer and Møller, 1994).

The second aim of the paper consists in an
application of the suggested methods to the real data
from fluorescence imaging of stress fibres in adult
human mesenchymal stem cells. The stem cells have
been cultured on gels for a time span of 24 hours. We
evaluate especially the cells on a low stiffness gel since
they present more randomness and less inhomogeneity
than the others. Using the Filament Sensor (Eltzner
et al., 2016) algorithm it is possible to transform
the raw data onto a system of segments. Here, the
true window corresponds to a single cell which is
roughly approximated by an ellipse. The parameters of
a suitable model with density with respect to a Poisson
segment process are estimated. The degree of fit of
real data with the model is then tested using various
statistics by means of Monte-Carlo testing.
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MATERIALS AND METHODS

In many applications, systems of randomly
dispersed segments in the plane or space are
investigated. In biology, such systems occur e. g. when
using fluorescence imaging to observe stress fibres in
stem cells. Real data from an ongoing research consists
of actin stress fibres in human mesenchymal stem
cells (hMSCs) taken from the bone marrow. In the
experiment, stem cells have been cultured on gels of
different stiffness for 24 hours. This stiffness is given
in terms of the Young’s modulus, the ratio of stress
by strain, i.e. the force per area needed to deform the
material.

Earlier experiments have found that hMSCs can be
mechanically guided to differentiate towards various
cell types depending on the substrate elasticity they
are grown on, namely neuron precursor cells for 1 kPa,
muscle precursor cells for 10 kPa and bone precursor
cells for 30 kPa (Engler et al., 2006). Especially
the differentiation into neuron precursor cells is
remarkable, since hMSC stem from the mesodermal
tissue layer, while neurons are ectodermal cells. It has
also been found that these three populations of cells
on different gels express significantly disparate fibre
patterns after 24 hours on the gel, (Zemel et al., 2010).
It is therefore interesting to closely examine the stress
fibre patterns especially for cells on a gel with 1 kPa
stiffness. In the present paper we investigate group
G1 of n1 = 138 cells which corresponds to a Young’s
modulus of 1 kPa and it is mostly suitable for a simple
stochastic modeling.

Using the Filament Sensor algorithm (Eltzner et
al., 2016) it is possible to transform the raw data into a
system of segments. Fig. 1 shows an example cell and
the automatic line detection result. The corresponding
segment systems of each cell are characterized by the
following geometrical parameters:

– cell shape,

– spatial distribution of segments,

– length distribution,

– directional distribution.

In the following we suggest a methodology of
quantitative description of these attributes.

Fig. 1. Cell 12 on 1 kPa gel, original microscopy image
(upper image) and microscopy image overlayed with
fibers (lower image) detected by the Filament Sensor
(Eltzner et al., 2016).

DESCRIPTION OF THE CELL SHAPE

The cell shape is determined automatically by the
Filament Sensor. From the raw shape, the program
derives the center point, the area and the aspect ratio
of the cell. This yields a simple approximation of the
shape by an ellipse. An elliptical window with axes
e1 ≥ e2 can be realized in our simulations, however
this suggests restricting attention to cells whose
real shape closely fits the elliptical approximation.
For the example cell from Fig. 1 we illustrate the
corresponding elliptical approximation in Fig. 2. If
A is the cell and B is the ellipse, the number of
pixels card(B \ A) = card(A \ B) and this number is
minimized. For the cells considered in our study, less
than 10% of the cells’ pixels lie outside the ellipse.
Of the segment pixels even less than 3% lie outside
the ellipse for every image. For these images we can
therefore consider the elliptical approximation of the
cell shape as sufficient and to accept an assumption
that the segments are completely included in the
ellipse.
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Fig. 2. The shape of cell 12 on 1 kPa gel as detected by
the Filament Sensor (Eltzner et al., 2016) compared to
the elliptical approximation.

SPATIAL POINT PROCESS GIVEN BY
A DENSITY
Consider a bounded measurable planar set B⊂ R2

of area |B|> 0 and a measurable space (N,N ) of finite
point subsets of B. Here N is the space of outcomes and
N a system of measurable subsets of N, see Baddeley
(2007) for more details. A random element having
values in (N,N ) is called a finite point process. Let
a Poisson point process η on B have finite intensity
measure λ (mean number of points in a given subset of
B) and probability distribution Pη on N . We consider
a finite point process µ on B given by a density p with
respect to Pη , i. e. with distribution Pµ

dPµ(x) = p(x)dPη(x), x ∈ N , (1)

where p : N→ R+ is measurable satisfying∫
N

p(x)dPη(x) = 1 .

For a measurable map F : N→ R, F(µ) is a random
variable. The distribution of the process is alternatively
determined by the conditional intensity,

λ
∗(x,u) =

p(x∪u)
p(x)

,

where λ ∗(x,u)|du| is interpreted as the probability that
there is a point of the process in a small neighbourhood
du of u given that the process is equal to x outside
du. An important tool is the Georgii-Nguyen-Zessin
formula

E

[
∑
u∈µ

q(u,µ \{u})

]
=
∫

B
E[λ ∗(µ,u)q(u,µ)]du ,

(2)
valid for any measurable test function q on B×N.

THE SEGMENT PROCESS WITH
REFERENCE DIRECTIONAL
DISTRIBUTION

Let B⊂R2 be as above, let [0,π) be the semicircle
of axial directions, and put

Y = B× [0,π) . (3)

A segment x = (s,φ) ∈ Y has centre s and direction φ

(we will assume for simplicity a fixed segment length
r > 0 here).

Consider a measurable space (M,M ) of finite
point sets in Y. A random element having values in
(M,M ) is called a finite segment process.

We deal with the Poisson segment process η(s)
with the intensity measure λ on Y, where

λ (d(y,φ)) =
s
π

dydφ

for a constant s > 0. Let the segment process X have a
density p w.r.t. η(1), we consider model I:

p(x) = cexp(aN(x))zn(x)
∏
xi∈x

g(φi) , (4)

with parameters a≤ 0, z > 0, the normalizing constant
c, the statistics n(x) (the total number of segments in
x), N(x) (the total number of intersections between
segments in x). Finally φi is the direction of i−th
segment xi and g is a reference probability density on
[0,π). The conditional intensity corresponding to the
density p in (4) is for u = (y,φ), u /∈ x,

λ
∗(x,u) = zg(φ)exp(aNx(u)) ,

where Nx(u) is the number of segments from x which
hit u. The Metropolis-Hastings birth-death algorithm
for simulating a realization of the segment process X
is that of Geyer and Møller (1994) where the Hastings
ratio for birth is

H(x,u) = exp(aNx(u))
zg(φ)|B|
(n(x)+1)

and the proposal density is uniform on Y.

Example: Let the directional density g be that of
von Mises distribution on [0,π) with parameters κ ≥
0, ν ∈ R, which is suitable for unimodal distribution
(ν is the mode and κ reflects the concentration around
ν):

g(φ) = d(κ)exp(κ cos(2(φ −ν))) , φ ∈ [0,π] ,
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d(κ) = 1
πI0(κ)

, I0(κ) is the modified Bessel function of
the first class and order 0. Then

p(x) = c(θ)exp(〈θ , G(x)〉) , x ∈M , (5)

where 〈., .〉 is the scalar product,

θ = (a, log(zd(κ)), κ) ,

G(x) = (N(x), n(x), ∑
xi∈x

cos(2(φi−ν))) ,

segments xi = (si,φi) have centres si ∈B and directions
φi ∈ [0,π). The normalizing constant c(θ) is defined as

c(θ) =
1∫

exp{〈θ , G(x)〉}dPη(1)(x)
.

Also

{θ ∈ R3 :
∫

exp{〈θ , G(x)〉}dPη(1)(x)< ∞}

is the largest set of θ such that the density (Eq. 5)
is well defined. It is the exponential class density
(Møller and Waagepetersen, 2004) where classical
maximum likelihood estimation (MLE) or Bayesian
estimation of parameters are available, but they depend
on an unknown normalizing constant, which may
cause computational problems.

PARAMETER ESTIMATION, MODEL I
We will demonstrate the Takacz-Fiksel method of

parameter estimation in the above model (Eq. 5). From
the Georgii-Nguyen-Zessin formula (Eq. 2) we obtain
the so called innovation

∑
u∈X

q(u,X \u)−
∫

Y
λ
∗(X ,u)q(u,X)du

which is a centered random variable. Using suitable
test functions q and setting innovations equal to
zero leads to a system of equations for unknown
parameters κ, a, z given that r and ν are known. These
latter parameters are observable, the length r directly,
the dominant direction ν by the methods of mode
estimation. The asymptotic properties of this estimator
are studied in Coeurjolly et al. (2012). We use test
functions Nx(u), cos(2(φ −ν)),1, respectively, where
u = (y,φ). Dividing the first two equations by the third
one we obtain a system of two equations for unknown
a, κ:

1
n(x) ∑

u∈x
Nx\u(u) =

∑
J
i=1 b(a,κ,x,ui)Nx(ui)

∑
J
i=1 b(a,κ,x,ui)

,

1
n(x) ∑

u∈x
cos(2(φ −ν)) =

=
∑

J
i=1 b(a,κ,x,ui)(cos(2(φi−ν)))

∑
J
i=1 b(a,κ,x,ui)

,

where

b(a,κ,x,ui) = exp(aNx(ui)+κ cos(2(φi−ν))) .

On the left hand side of the equations we have statistics
of the data x. Integrals on the right hand side are
approximated by sums, using simulations of additional
segments ui = (yi,φi), i = 1, . . . ,J, of fixed length r
from the uniform distribution on Y. Having solved
(numerically) the above system of two equations we
estimate the third parameter z as

z =

(
|B|

n(x)I0(κ)J

J

∑
i=1

b(a,κ,x,ui)

)−1

.

THE SEGMENT PROCESS WITH
REFERENCE LENGTH DISTRIBUTION

Next we extend the previous model by dealing
also with a random segment length. The shape of the
window and the location of segments take into account
the intended biological application. Consider an ellipse
B ⊂ R2 centred in the origin, with axes lengths e1 ≥
e2 > 0 and area |B|= πe1e2/4. Let Lo = (0,e1] be the
interval of possible segment lengths, then

Y = B×Lo× [0,π) (6)

is the space of segments u = (s,r,φ) which have centre
s, length r = l(u) and axial direction φ .

Let the Poisson segment process η(s) have the
intensity measure λ on Y of the form

λ (d(y,r,φ)) =
s

e1π
dydr dφ

for a constant s > 0. Let the segment process X have a
density p with respect to η(1), model II:

p(x) = c1[x⊂B] exp(bD(x))zn(x)
∏
xi∈x

g
(

ri

e1

)
, (7)

with parameters b > 0, z > 0, n(x) is the total number
of segments in x, c is the normalizing constant, ri is the
length of i−th segment xi, g is a reference probability
density on Lo and

D(x) = ∑
u∈x

d(u) , d(u) = max
w∈u

||w||
e1

.

For u ⊂ B we have d(u) ∈ (0, 1
2) which reflects the

distance of the most distant point of the segment u from
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the centre of the cell. The corresponding conditional
intensity is

λ
∗(x,u) = 1[x∪u⊂B]zg

(
r
e1

)
exp(bd(u)) .

Example: We use the reference length density g of the
beta distribution with parameters α,β > 0

g(r) =
rα−1(1− r)β−1

B(α,β )
, r ∈ (0,1) ,

with the beta function in the denominator. It is a natural
unimodal distribution where two parameters enable the
shift of the mode along the interval and also flexibility
of the variance.

PARAMETER ESTIMATION, MODEL II
For the parameter estimation we suggest again

the Takacz-Fiksel method. The parameters e1, e2 are
known as described in the subsection on cell shape.
Using four test functions

d(u), log(
l(u)
e1

), log(1− l(u)
e1

), 1 ,

and dividing the equations corresponding to the first
three test functions by the equation corresponding to
the fourth test function we obtain the system of three
equations for unknown b,α,β :

D(x)
n(x)

=
∑

J
i=1 exp(bd(ui))g(

ri
e1
)d(ui)

∑
J
i=1 exp(bd(ui))g(

ri
e1
)

,

∑u∈x log(l(u))
n(x)

=
∑

J
i=1 exp(bd(ui))g(

ri
e1
) log(ri)

∑
J
i=1 exp(bd(ui))g(

ri
e1
)

,

∑u∈x log(e1− l(u))
n(x)

=

=
∑

J
i=1 exp(bd(ui))g(

ri
e1
) log(e1− ri)

∑
J
i=1 exp(bd(ui))g(

ri
e1
)

,

and finally we put the estimators of b,α,β in the
equation for z :

z =
Mn(x)

|B|∑J
i=1 exp(bd(ui))g(

ri
e1
)
.

The segments ui = (yi,ri,φi) are generated from the
uniform distribution on Y, i = 1, . . . ,M and only J of
them which lie completely in B are used.

TESTING OF THE FIT OF THE MODEL
Once we have estimated parameters of the model

from the data, it is necessary to test whether the model

fits the data well. Monte Carlo tests are common in
spatial statistics, which are based on some scalar or
functional test statistics of the data pattern (Møller and
Waagepetersen, 2004). Then we simulate realizations
of the model based on estimated parameters, and find
upper and lower limits of values of estimated test
statistics. In the case of test functions the envelopes
formed by pointwise minima and maxima are plotted
and it is evaluated how well the test function estimated
from the data falls between the envelopes. Various
designs of these methods are developed in Myllymäki
et al. (2015).

In the present paper we restrict ourselves to scalar
test statistics. Let Ti, i = 1, . . . ,n, be a random sample
of a statistic T,

Tl = min(T1, . . . ,Tn) , Tu = max(T1, . . . ,Tn) , (8)

obtained from independent simulations of the model
with estimated parameters, and T̂ is the observed
value from the data. If T̂ > Tu or T̂ < Tl we
reject the hypothesis that the data come from the
model. The significance level is unknown since the
testing procedure is not independent of the estimation
procedure. Using the double Monte Carlo procedure
from Dao and Genton (2014) it is possible to avoid this
problem and reach the prescribed significance level
which is computationally demanding.

Consider the null hypothesis that the segment
directions a1, . . . ,an come from uniform directional
distribution. Alternative hypothesis says that this is not
the case. Axial data come from the interval [0,180]
in degrees. Let a(1) ≤ a(2) ≤ ·· · ≤ a(n) be the ordered
sample. Evaluate

Vn = max
i=1,...,n

(
a(i)
180
− i

n

)
− min

i=1,...,n

(
a(i)
180
− i

n

)
+

1
n
(9)

and the modified Kuiper’s test statistic (Mardia and
Jupp, 1999) is

V (x) =Vn

(√
n+0.155+

0.24√
n

)
. (10)

Critical values for the test are tabulated, but data x from
a single cell are not independent, therefore also here
the Monte-Carlo approach described above has to be
used. Having in mind that model II is isotropic on a
circle, we consider the data xc transformed from the
elliptic cell shape onto a circle Bc by means of new
planar coordinates

x′ =
e2

e1
x , y′ = y . (11)

Then we pose a null hypothesis that xc has uniform
directional distribution and use the above described
modified Kuiper’s test.
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BENEŠ V ET AL: Planar segment process

RESULTS

SIMULATION RESULTS

For a numerical demonstration of the Takacz-
Fiksel method we simulated n = 100 realizations
of the segment process on [0,1]2 of both model I
(with parameters ν = π/2, z = 1000, a = −3, κ =
1, r = 0.06) and model II (with parameters e1 =
e2 = 1, z = 100, b = 0.5, α = 3, β = 3). Finding all
intersections of a segment system is a problem from
computational geometry. One can use the Bentley-
Ottmann algorithm, (Bentley and Ottmann, 1979). In
Fig.3 we demonstrate how model I depends on the
interaction parameter a. The Takacz-Fiksel estimators
of (a,z,κ) (model I) and of (z,b,α,β ) (model II) were
evaluated with J = 1000 for each realization. Empirical
means and standard deviations (sd) of the estimators
are printed in Table 1. It should be mentioned that
in practice we have typically a single realization,
while here we simulate one hundred independent
realizations.

Fig. 3. Simulated realizations of model I segment
processes on [0,1]2 with parameters ν = π/2, z =
1000, κ = 1, r = 0.06, in the upper pattern we have
a = −0.6 and statistics n(x) = 624, N(x) = 204. In
the lower pattern we have a = −3 (more repulsion)
and statistics n(x) = 433, N(x) = 5.

Table 1. Means and standard deviations (sd) of Takacz-
Fiksel estimates from 100 simulations on [0,1]2 of
model I (with observable parameters µ = π/2, r =
0.06) and model II (with e1 = e2 = 1). The true values
of estimated parameters are in the table.

Model I true mean sd
a -3 -2.998 0.299
κ 1 0.999 0.078
z 1000 1008.9 64.2

Model II true mean sd
b 0.5 0.525 0.463
α 3 3.089 0.296
β 3 3.147 0.458
z 100 104.32 40.25

REAL DATA RESULTS

In Fig. 4 there are twenty cells from group G1 for
further analysis. Those cells were selected which fit
the ellipsoidal shape best. The cell numbers and the
relative amount of pixels outside the ellipse are given
in Table 2.

Table 2. Shape description: the numbers of cells from
group G1 investigated and their area outside ellipse
(AOE) in percent of pixels.

No. AOE [%] No. AOE [%]
001 3.03 043 5.87
002 4.98 049 4.63
005 7.96 055 3.61
006 5.76 059 2.78
018 6.91 060 5.00
019 8.39 064 6.99
020 7.20 092 6.98
030 9.75 093 7.01
031 7.75 127 5.59
034 7.71 131 5.50
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1 2 5

6 18 19

20 30 31

34 43 49

55 59 60

64 92 93

127 131

Fig. 4. Analysed segment systems corresponding to
stress fibres in cells from group G1 and their numbers.
The shape of the cell is approximated by ellipse with
axes lengths in Table 3.

The selected cells were then fitted to the model
II with reference length distribution. The estimated
parameter values are in the Table 3.

The test of the fit of the model II is based on scalar
test statistics n(x),D(x) from the model and moreover
on N(x),L(x), the total number of intersections, total
length of segments, respectively. In Fig. 5 the results
from n = 20 simulations are presented for each cell.
The bounds (8) are plotted by dashed lines and the
values of the test statistic from real data lie between
the bounds in all cases. For the test statistics n(x),D(x)
from the model naturally the fit is better and the line
corresponding to data lies almost in the middle of
the bounds. We summarize that based on the selected
statistics we cannot reject the hypothesis of model
compatibility for any cell. To obtain the level of our
test is computationally demanding as explained above.

Finally we used the modified Kuiper’s statistics (10) to
the transformed data xc in (11) and the result is in Fig.
6. For one cell the test statistic lies outside the interval
and in this case we reject the null hypothesis.

Fig. 5. The result of model II testing for the statistics
D(x),n(x),N(x),L(x) for analysed segment systems
corresponding to selected cells from group G1. On
the horizontal axis there are numbers of cells. The
bounds (8) are plotted and joined by dashed lines, the
values of the test statistics from real data lie between
them (joined by a full line). This does not lead to the
rejection of model II fit.
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Table 3. The results of the Takacz-Fiksel estimator
with reference beta length distribution, model II. The
columns involve subsequently: the cell number, the
axes lengths e1, e2 (in pixels, where 1 pixel=0.32 µm),
estimated parameters z,b,α,β and the ratio I = n(x)

e1e2
which is proportional to number density of segments.

No e1 e2 z.103 b.102 α β I.102

001 59 54 0.46 4.99 1.76 4.27 0.83
002 76 43 1.67 2.88 1.58 4.35 1.13
005 83 46 4.49 0.45 1.59 4.50 0.97
006 57 53 1.98 1.70 2.00 4.47 0.76
018 97 69 1.77 1.65 1.34 4.95 1.03
019 62 46 1.12 3.97 1.87 4.05 1.05
020 94 78 4.07 0.41 1.41 4.67 1.12
030 69 57 3.54 1.13 1.75 4.38 1.27
031 88 50 1.18 2.40 1.44 4.46 0.81
034 92 83 9.44 -1.05 1.43 4.71 1.07
043 67 64 2.43 1.38 1.81 4.52 0.95
049 63 56 2.54 -0.02 1.86 4.34 0.48
055 72 66 2.25 1.85 1.91 5.22 1.20
059 49 45 19.03 -5.41 2.74 4.42 0.49
060 46 34 19.10 -2.57 2.84 4.92 1.31
064 109 89 1.48 0.28 1.29 5.75 0.42
092 86 80 7.89 -1.00 1.69 5.91 0.98
093 108 76 1.98 1.42 1.25 4.63 1.13
127 70 65 7.63 -0.60 1.65 4.28 1.13
131 48 34 0.14 10.26 5.73 12.3 0.90

Fig. 6. The result of testing the uniformity of
directional distribution for the data xc transformed to
a circle. The full line corresponds to V (xc), cf. (10), the
bounds (8) are based on 20 simulations of the model on
a circle with parameters estimated from transformed
data. Cell 19 is omitted since the estimator has not
been achieved, for the cell 93 we observe that V (xc)
does not lie between the bounds which leads to the
rejection of null hypothesis.

DISCUSSION

As written in the Introduction, the paper has
two aims, a mathematical and an applied one.
The segment process having a density with respect
to the Poisson process and reference directional
and/or length distributions presents a new model for
segment systems on a bounded set which may posses
interactions. More complex models can be built by
using joint direction-length distribution models, but
in fact model II is of this kind where the directional
distribution is uniform. It should be mentioned that
generally the reference distribution need not coincide
with the observed distribution. The model I is a
Gibbs type homogeneous process while model II is
an inhomogeneous Poisson process. We suggested the
parameter estimator based on Takacz-Fiksel method
for both models, the estimating equations were solved
numerically using the Nelder-Mead method. First we
showed the capabilities of the estimation procedure in
simulated segment systems.

Model I was introduced for simulation and
demonstration purposes, because of its homogeneity
it arised not to be useful for the modeling of real
data from hMSCs. Theferore we tried to apply the
model II to real data of stress fibres observed by
fluorescence imaging and transformed into segment
systems. In model II we involve a special statistics
D(x) which performs quite well. The negative
values of the corresponding parameter b for cells
34,49,59,60,92,127 (cf. Table 3) correspond to a
uniform distribution of short filaments across the
cell or even tendency to cluster around the centre.
Positive values in other cases correspond to a typical
accumulation more close to the boundary than to
the centre of the cell. The beta distribution of the
length is also stable in parameters α,β (with the
exception of cell 131). Positive results of the degree-
of-fit test in Fig.5 do not yet mean that the data
completely correspond to the model since the test
is conservative. Moreover functional characteristics
(like the contact distribution function) could be
implemented as descriptors of spatial distribution.
Nevertheless all the presented arguments together
make the model II interesting and valuable for the
underlying biological problem.
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