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Abstract

Consider a convex polygon P in the plane, and denote by U a homothetical copy of
the vector sum of P and −P . Then the polygon U , as unit ball, induces a norm such
that, with respect to this norm, P has constant Minkowskian width. We define notions like
Minkowskian curvature, evolutes and involutes for polygons of constant U -width, and we
prove that many properties of the smooth case, which is already completely studied, are
preserved. The iteration of involutes generates a pair of sequences of polygons of constant
width with respect to the Minkowski norm and its dual norm, respectively. We prove that
these sequences are converging to symmetric polygons with the same center, which can be
regarded as a central point of the polygon P .
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discrete differential geometry, evolutes, Minkowski geometry, normed plane, equidistants, involutes,
support function, width function.
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1 Introduction
A Minkowski or normed plane is a 2-dimensional vector space with a norm. This norm
is induced by its unit ball U , which is a compact, convex set centered at the origin (or,
shortly, centered). Thus, we write (R2, U) for a Minkowski plane with unit ball U , whose
boundary is the unit circle of (R2, U). The geometry of normed planes and spaces, usually
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called Minkowski Geometry (see [21], [14], and [13]), is strongly related to and influenced
by the fields of Convexity, Banach Space Theory, Finsler Geometry and, more recently,
Discrete and Computational Geometry. The present paper can be considered as one of the
possibly first contributions to Discrete Differential Geometry in the spirit of Minkowski
Geometry. The study of special types of curves in Minkowski planes is a promising subject
(see the survey [15]), and the particular case of curves of constant Minkowskian width has
been studied for a long time (see [3], [4], [11], and § 2 of [13]). A curve γ has constant
Minkowskian width with respect to the unit ball U or, shortly, constant U -width, if h(γ) +
h(−γ) is constant with respect to the norm induced by U , where h(γ) denotes the support
function of γ. Another concept from the classical theory of planar curves important for
our paper is that of involutes and evolutes; see, e.g., Chapter 5 of [8] and, respectively, [9].
For natural generalizations of involutes, which also might be extended from the Euclidean
case to normed planes, we refer to [18] and [2]. And in [20] it is shown how the concept
of evolutes and involutes can help to construct curves of constant width in the Euclidean
plane.

In this paper, we consider convex polygons P of constant Minkowskian width in a
normed plane, for short calling them CW-polygons. If P is a CW polygon, then the unit
ball U is necessarily a centered polygon whose sides and diagonals are suitably parallel to
corresponding sides and diagonals of P (sometimes with diagonals suitably meaning also
sides; see §§ 2.1 below). If, in particular, U is homothetic to P + (−P ), then, and only
then, P is of constant U -width in the Minkowski plane induced by U .

There are many results concerning smooth CW curves in normed planes: Barbier’s
theorem fixing their circumference only by the diameter of the curve (cf. [16] and [12]);
relations between curvature, evolutes, involutes, and equidistants (see [19] and, for appli-
cations of Minkowskian evolutes in computer graphics, [1]); mixed areas, and the relation
between the area and length of a CW curve cut off along a diameter (see [3], (2.1)). In this
paper we prove corresponding results for CW polygons. We note that our results are direct
discretizations of the corresponding results for the smooth case, where the derivatives and
integrals are replaced by differences and sums. It is meant in this sense that the results
of this paper can be considered as one of the first contributions to Discrete Differential
Geometry in the framework of normed planes.

Among the U -equidistants of a smooth CW curve γ, there is a particular one called
central equidistant. The central equidistant of γ coincides with its area evolute, while
the evolute of γ coincides with its center symmetry set (see [6] and [7]). We show that
for a CW polygon P the same results hold: The central equidistant M coincides with the
area evolute, and the evolute E coincides with the central symmetry set (see [5]). Since
the equidistants of P are the involutes of E, we shall choose the central equidistant as a
representative of them, and we write M = Inv(E).

For a Minkowski plane whose unit ball U is a centered convex (2n)-gon, the dual unit
ball V is also a centered convex (2n)-gon with diagonals parallel to the sides of U , and the
sides parallel to diagonals of U . As in the smooth case (cf. [6]), the involutes of the central
equidistant of P form a one-parameter family of polygons having constant V -width. This
one-parameter family consists of the V -equidistants of any of its members, and we shall
choose the central equidistant N as its representative. Thus we write N = Inv(M).
In [6] it is proved that, for smooth curves, the analogous involute N is contained in the
region bounded by M and has smaller or equal signed area. In this paper we prove the
corresponding fact for polygons, namely, that N is contained in the region bounded by M
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and the signed area of N is not larger than the signed area of M .
What happens if we iterate the involutes? Let N(0) = E, M(0) = M , N(1) = N

and define M(k) = Inv(N(k)), N(k+ 1) = Inv(M(k)). Then we obtain two sequences
M(k) and N(k), the first being of constant U -width and the second of constant V -width.
Moreover, we have

N(0) ⊃M(0) ⊃ N(1) ⊃M(1) ⊃ ... ,

where R denotes the closure of the region bounded by R. Denoting by O = O(P ) the
intersection of all these sets, we shall prove that O is in fact a single point. Another form
of describing the convergence of M(k) and N(k) to O is as follows: For fixed c and d,
consider the sequences M(k) + cU of polygons of constant U -width, and the sequences
N(k) + dV of polygons of constant V -width. Then these sequences are converging to
O + cU and O + dV , respectively, which are U - and V -balls centered at O. For smooth
curves the analogous results were proved in [6].

Our paper is organized as follows: In Section 2 we describe geometrically the unit ball
of a Minkowski plane for which a given convex polygon has constant Minkowskian width.
In Section 3, we define Minkowskian curvature, evolutes and involutes for CW polygons
and prove many properties of them. In Section 4 we consider the involute of the central
equidistant, and in Section 5 we prove that the involutes iterates are converging to a single
point.

2 Polygonal Minkowskian balls, their duals, and constant Minkowski-
an width

Since faces and also width functions of convex sets behave additively under (vector or)
Minkowski addition, it is clear that a polygon P is of constant Minkowskian width if and
only if P +(−P ) is a homothetical copy of the unit ball U of the respective normed plane;
see, e.g., §§ 2.3 of [13]. If, moreover, the homothety of U and P + (−P ) is only possible
when P itself is already centrally symmetric, then the only sets of constant U -width are
the balls of that norm; cf., e.g., [22]. In the following we will have a closer look at various
geometric relations between polygons P of constant U -width and the unit ball U , since we
need them later.

Thus, let P be an arbitrary planar convex polygon. By an abuse of notation, we shall
denote by the same letter P also the set of vertices of the polygon, the closed polygonal arc
formed by the union of its sides, and the convex region bounded by P .

2.1 A centered polygon with parallel sides and diagonals

Assume that P = {P1, ..., P2n} is a planar convex polygon with parallel opposite sides,
i.e., the segments PiPi+1 and Pi+nPi+n+1, 1 ≤ i ≤ n, are parallel.

Lemma 2.1. Fix an origin Z and take U1 such that U1 − Z = 1
2a (P1 − P1+n), for some

a > 0. Consider the polygon U whose vertices are

Ui = Z +
1

2a
(Pi − Pi+n) , (2.1)

1 ≤ i ≤ 2n. Then U is convex, symmetric with respect to Z, Ui+1 − Ui ‖ Pi+1 − Pi and
Ui −Z ‖ Pi −Pi+n for 1 ≤ i ≤ n (see Figure 1). Moreover, U is the unique polygon with
these properties.
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Figure 1: A hexagon P with parallel opposite sides and the corresponding homothet U of
P + (−P ).

Proof. It is clear that U is symmetric with respect to Z, Ui+1 − Ui ‖ Pi+1 − Pi and
Ui − Z ‖ Pi − Pi+n for 1 ≤ i ≤ n. Moreover Ui+1 − Ui has the same orientation as
Pi+1 − Pi, which implies that U is convex.

To prove the uniqueness of U , observe that the point U2 is obtained as the intersection
of the lines parallel to P1P2 through U1 and parallel to P2P2+n through Z. The points
U3, ..., Un are obtained inductively in a similar way, while Un+1, .., U2n are reflections of
U1, ...Un with respect to Z.

Consider now a convex polygon P̃ = {P̃1, ..., P̃k} that has not necessarily all opposite
sides parallel. Suppose that exactly 0 ≤ j ≤ k

2 pairs are parallel. Our next lemma shows
that the list of vertices of this polygon can be re-written as P = {P1, P2, .., P2n}, n = k−j,
with ”parallel opposite sides” in a broader sense.

Lemma 2.2. We may re-write the list of vertices of P̃ as {P1, P2, .., P2n} such that, for
each 1 ≤ i ≤ n, PiPi+1 is parallel to Pi+nPi+n+1 or else one of these sides, say
Pi+nPi+n+1, degenerates to a point, in which case the other side PiPi+1 is not degen-
erated and the line through Pi+n = Pi+n+1 parallel to PiPi+1 is outside P (see Figure
2).

Proof. The polygon P̃ = {P̃1, ..., P̃k} defines exactly n = k − j directions θ1, ..., θn,
in increasing order, in the plane. We may assume that P̃1P̃2 is in direction θ1 and define
P1 = P̃1, P2 = P̃2. For the induction step write Pi = P̃l. If PiP̃l+1 is in direction θi,
define Pi+1 = P̃l+1, otherwise define Pi+1 = P̃l. It is now easy to verify that the polygon
P = {P1, P2, .., P2n} satisfies the properties of the lemma.

The construction of Lemma 2.1 can be applied to the polygon P obtained in Lemma
2.2 (see Figure 2). If, for example, P is a triangle, then P + (−P ) is an affinely regular
hexagon (see Figure 3). From now on, we shall assume that Z coincides with the origin of
R2 and that P = {P1, ..., P2n}, with PiPi+1 parallel to UiUi+1.
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Figure 2: A quadrangle and the corresponding symmetric octagon.

Figure 3: When P is a triangle of constant U -width, then U is an affinely regular hexagon.

2.2 The dual Minkowskian ball

Now we introduce the type of duality which is very useful for our investigations. Let (R2)∗

denote the space of linear functionals in R2. The dual norm in (R2)∗ is defined as

||f || = sup{f(u), u ∈ U}.

We shall identify (R2)∗ with R2 by f(·) = [·, v], where [·, ·] denotes the determinant of a
pair of planar vectors. Under this identification, the dual norm in R2 is given by

||v|| = sup{[u, v], u ∈ U}.

We shall construct below a centered polygon V such that, for v in any side of V , we have
||v|| = 1. Such a polygon defines a Minkowski norm equivalent to the dual norm of U .

Now assume that the unit ball U is a centered polygon with vertices {U1, ..., U2n},
Ui+n = −Ui, 1 ≤ i ≤ n. Define the polygon V with vertices

Vi+ 1
2
=
Ui+1 − Ui
[Ui, Ui+1]

.
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Observe that Vi+n+ 1
2
= −Vi+ 1

2
, i.e., V is centered. Now [Vi+ 1

2
− Vi− 1

2
, Ui] = 0, which

implies that Vi+ 1
2
− Vi− 1

2
= −aUi. Multiplying both sides by Vi+ 1

2
we obtain

Ui = −
Vi+ 1

2
− Vi− 1

2

[Vi− 1
2
, Vi+ 1

2
]
,

for 1 ≤ i ≤ 2n.

Figure 4: The centered hexagon U and its dual V .

Lemma 2.3. The polygon V is the dual unit ball.

Proof. We have that, for 1 ≤ i ≤ 2n,

[tUi + (1− t)Ui+1, Vi+ 1
2
] = 1, (2.2)

for any t ∈ R and for j /∈ {i, i + 1}, [Uj , Vi+ 1
2
] ≤ 1. This implies that the vertex Vi+ 1

2
is

from the dual unit circle. Moreover,

[Ui, tVi− 1
2
+ (1− t)Vi+ 1

2
] = 1, (2.3)

and for j 6= i we have [Uj , tVi− 1
2
+ (1 − t)Vi+ 1

2
] ≤ 1, which implies that also the side

tVi− 1
2
+ (1− t)Vi+ 1

2
is from the dual unit circle.

2.3 Polygons of constant Minkowskian width

Consider a Minkowski plane (R2, U), and let P be a convex curve. For f in the dual unit
ball, the support function h(P )(f) of P at f is defined as

h(P )(f) = sup{f(p), p ∈ P}. (2.4)



M. Craizer and H. Martini: Involutes of polygons of constant width in Minkowski planes 113

The width of P in the direction f is defined as w(P )(f) = h(P )(f) + h(P )(−f). We say
that P is of constant Minkowskian width if w(P )(f) does not depend on f .

Consider now a Minkowski plane whose unit ball U is a centered polygon, and let P
be a polygon with parallel corresponding sides and diagonals.

Lemma 2.4. In the Minkowski plane (R2, U), P has constant U -width.

Proof. By Lemma 2.1, we have that Pi − Pi+n = a(Ui − Ui+n), for some constant a.
Since

w(P )(Vi+ 1
2
) = h(P )(Vi+ 1

2
) + h(P )(−Vi+ 1

2
) = [Pi − Pi+n, Vi+ 1

2
],

we obtain
w(P )(Vi+ 1

2
) = 2a,

1 ≤ i ≤ 2n, thus proving the lemma.

Our next corollary says that in fact U is homothetic to the Minkowski sum P + (−P )
(see [21], Th. 4.2.3).

Corollary 2.5. Let P be a convex planar polygon and let U be as in Lemma 2.1. Then U
is homothetic to P + (−P ).

Proof. We have that 2a = h(P )+h(−P ) = h(P +(−P )) = h(2aU), which implies that
P + (−P ) is homothetic to U .

Corollary 2.6. Consider a centered polygon U and a polygon P whose sides are parallel
to the corresponding sides of U . The following statements are equivalent:

1. P has constant U -width.

2. P + (−P ) is homothetic to U .

3. The corresponding diagonals of U and P are parallel to each other.

4. Pi − Pi+n = 2a(Ui − Ui+n), 1 ≤ i ≤ n, for some constant a.

3 Geometric properties of polygons of constant Minkowskian width
Consider a convex polygon P = {P1, ..., P2n} with parallel opposite sides and let U =
{U1, ..., U2n} be the symmetric polygon obtained from P by the construction of Lemma
2.1.

3.1 Central Equidistant, V -length, and Barbier’s theorem

Central equidistant Any equidistant can be written as Pi(c) = Pi + cUi, 1 ≤ i ≤ 2n.
If we take c = −a, we obtain

Mi = Pi +
c

2a
(Pi − Pi+n) =

1

2
(Pi + Pi+n) , 1 ≤ i ≤ 2n, (3.1)

called the central equidistant of P . It is characterized by the condition Mi = Mi+n (see
Figure 5). If we re-scale the one-parameter family of equidistants as

Pi(c) =Mi + cUi, 1 ≤ i ≤ 2n, (3.2)
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we get that the 0-equidistant is exactly the central equidistant.
A vertex Mi of the central equidistant is called a cusp if Mi−1 and Mi+1 are in the

same half-plane defined by the diagonal at Pi. The central equidistant coincides with the
area evolute of polygons defined in [5]. There it is proved that it has an odd number of
cusps, at least three (see Figures 5 and 7).

Figure 5: The two traced octagons are ordinary equidistants. The thick quadrangle is the
central equidistant.

V -Length Let P be a polygonal arc whose sides are parallel to the corresponding ones
of U . More precisely, we shall denote by {Ps, ..., Pt} the vertices of P and assume that
Pi+1 − Pi is parallel to Vi+ 1

2
. We can write

Pi+1 − Pi = λi+ 1
2
Vi+ 1

2
(3.3)

for some λi+ 1
2
≥ 0. Then the V -length of the edge PiPi+1 is exactly λi+ 1

2
, and we write

LV (P ) =

t−1∑
i=s

λi+ 1
2
. (3.4)

Barbier’s theorem The classical Theorem of Barbier on curves of constant width in
the Euclidean plane says that any such curve of diameter d has circumference dπ. For
Minkowski planes, it appears in [16], Th. 6.14(a), and in [12]. We prove here the version
of this theorem for polygons.

Define αi+ 1
2

, 1 ≤ i ≤ 2n, by the equation

Mi+1 −Mi = αi+ 1
2
(Ui+1 − Ui) = αi+ 1

2
[Ui, Ui+1]Vi+ 1

2
. (3.5)

Proposition 3.1. Let P (c) be defined by equation (3.2). Then the V -length of P (c) is

LV (P ) = 2cA(U), (3.6)

where A(U) denotes the area of the polygon U .
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Proof. The V -length of the polygon P (c) is given by

LV (P (c)) =

2n∑
i=1

(αi+ 1
2
+ c)[Ui, Ui+1].

Since αi+n+ 1
2
= −αi+ 1

2
, we obtain

LV (P (c)) = c

2n∑
i=1

[Ui, Ui+1],

which proves the proposition.

If we admit signed lengths, equation (3.6) holds even for equidistants with cusps. In
particular, for c = 0 we obtain

LV (M) = 0. (3.7)

For smooth closed curves this result was obtained in [19] .

3.2 Curvature and evolutes

Minkowskian normals and evolutes In the smooth case, the Minkowskian normal at a
point P is the line P +sU , where P and U have parallel tangents (see [19]). The evolute is
the envelope of Minkowskian normals. For a polygon P , define the Minkowskian normal
at a vertex Pi as the line Pi + sUi, 1 ≤ i ≤ 2n, and the evolute as the polygonal arc whose
vertices are the intersections of Pi + sUi and Pi+1 + sUi+1. These intersections are given
by

Ei+ 1
2
= Pi − µi+ 1

2
Ui = Pi+1 − µi+ 1

2
Ui+1, (3.8)

where µi+ 1
2

, 1 ≤ i ≤ 2n, is defined by

Pi+1 − Pi = µi+ 1
2
(Ui+1 − Ui) . (3.9)

Curvature center and radius In [16], three different notions of Minkowskian curvature
are defined, where the circular curvature is directly related to evolutes. The circular center
E and the corresponding radius of curvature µ are defined by the condition that E + µU
has a 3-order contact with the curve at a given point (see [19]).

For polygons, we define the center of curvatureEi+ 1
2

and the curvature radius µi+ 1
2

of
the side PiPi+1 by the condition that the (i + 1

2 )-side of Ei+ 1
2
+ µi+ 1

2
U matches exactly

PiPi+1 (see Figure 6). Thus we get equations (3.8) and (3.9). From equations (3.3) and
(3.9) we obtain that the curvature radius of the side PiPi+1 is also given by

µi+ 1
2
=

λi+ 1
2

[Ui, Ui+1]
. (3.10)

A vertex Ei+ 1
2

is a cusp of the evolute if the vertices Ei− 1
2

and Ei+ 3
2

are in the same
half-plane defined by the parallel to PiPi+1 through Ei+ 1

2
. The evolute of a CW polygon

coincides with its center symmetry set as defined in [5], where it is proved that it coincides
with the union of cusps of all equidistants of P . It is also proved in [5] that the number of
cusps of the evolute is odd and at least the number of cusps of the central equidistant (see
Figure 7).
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Figure 6: The center of curvature of the side P3P4.

Figure 7: The inner polygonal arc is the central equidistantM of P , and the outer polygonal
arc is its evolute E.

Sum of curvature radii Consider equation (3.9) for two opposite sides, and sum up to
obtain, for 1 ≤ i ≤ n,

Pi+1 − Pi+n+1 + Pi+n − Pi = (µi+ 1
2
+ µi+n+ 1

2
)(Ui+1 − Ui).

Since P has constant Minkowskian width,

2c(Ui+1 − Ui) = (µi+ 1
2
+ µi+n+ 1

2
)(Ui+1 − Ui).

We conclude that
µi+ 1

2
+ µi+n+ 1

2
= 2c. (3.11)

The corresponding result for smooth curves is given in [16], Th. 6.14.(c).

Involutes and equidistants Consider the one-parameter family of equidistants given
by equation (3.2). The radius of curvature of Pi(c)Pi+1(c) is the radius of curvature of
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MiMi+1 plus c. Thus, for 1 ≤ i ≤ 2n,

Ei+ 1
2
(c) =Mi + cUi −

(
µi+ 1

2
+ c
)
Ui = Ei+ 1

2
. (3.12)

We conclude that the evolute of any equidistant of P is equal to the evolute of P . Recipro-
cally, any polygonal arc whose evolute is equal to E(P ) is an equidistant of P . We define
an involute of E as any polygonal arc whose evolute is E. Thus the involutes of E are the
equidistants of P .

3.3 The signed area of the central equidistant

For a simple closed curve P , denote by A(P ) the area of the region bounded by P . Given
two closed curves P and Q, their mixed area is defined by the equation

A(P + tQ) = A(P ) + 2tA(P,Q) + t2A(Q),

(see [17, §§ 5.1]). The Minkowski inequality says that A(P,Q)2 ≥ A(P )A(Q). The next
lemma is well-known, see [10, §§ 6.3].

Lemma 3.2. Take P and Q as convex polygons with k parallel corresponding sides. The
mixed area of P and Q is given by

A(P,Q) =
1

2

k∑
i=1

[Qi, Pi+1 − Pi] =
1

2

k∑
i=1

[Pi+1, Qi+1 −Qi].

Assume that P is a closed convex polygon whose sides are parallel to the sides of the
centered polygon U , and take Q = U in Lemma 3.2. We obtain

A(P,U) =
1

2

2n∑
i=1

[Ui, Pi+1 − Pi] =
1

2

2n∑
i=1

λi+ 1
2
=

1

2
LV (P ),

where we have used (3.3) and (3.4). Moreover, the Minkowski inequality becomes

L2
V (P ) ≥ 4A(U)A(P ). (3.13)

Lemma 3.3. Let M be the central equidistant of a CW-polygon P . Then the mixed area
A(M,M) is non-positive.

Proof. Let P (c) be defined by equation (3.2). Then

A(P (c), P (c)) = A(M,M) + 2cA(M,U) + c2A(U,U).

Now equation (3.7) says that A(M,U) = 0. Moreover, the isoperimetric inequality (3.13)
for curves of constant width says that

A(P ) ≤ c2A(U).

We conclude that
A(M,M) ≤ 0.

Define the signed area of M as SA(M) = −A(M,M). In general, the signed area is
a sum of positive and negative areas, but when M is a simple curve, it coincides with the
area bounded by M .
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3.4 Relation between length and area of a half polygon

Define βi by

βi =
1

2

n+i−1∑
j=i

αj+ 1
2
[Uj , Uj+1]. (3.14)

Observe that βi+n = −βi, 1 ≤ i ≤ n, and

βi+1 − βi = −αi+ 1
2
[Ui, Ui+1]. (3.15)

Denote by A1(i, c) and A2(i, c) the areas of the polygons with vertices
{Pi, Pi+1, ..., Pi+n} and {Pi+n, Pi+n+1, ..., Pi}. Observe that these polygons are bounded
by P and the diagonal PiPi+n.

Proposition 3.4. We have that

A1(i, c)−A2(i, c) = 4cβi,

for 1 ≤ i ≤ 2n.

Proof. Lemma 4.1. of [5] says that

A1(i, c)−A2(i, c) = −2
i+n−1∑
j=i

[Mj+1 −Mj , cUj ]

= −2c
i+n−1∑
j=i

[αj+ 1
2
[Uj , Uj+1]Vj+ 1

2
, Uj ].

Thus

A1(i, c)−A2(i, c) = 2c

i+n−1∑
j=i

αj+ 1
2
[Uj , Uj+1] = 4cβi.

Denote byLV (i, c) the V -length of the polygonal arc whose vertices are {Pi(c), Pi+1(c), ...,
Pi+n(c)}. Then

LV (i, c) =

i+n−1∑
j=i

(αi+ 1
2
+ c)[Uj , Uj+1] = 2cA(U) + 2βi. (3.16)

Corollary 3.5. For 1 ≤ i ≤ 2n, the expression A1(i, c)− cLV (i, c) is independent of i.

Proof. By equation (3.16) and Proposition 3.4, we get

2cLV (i, c)− 2A1(i, c) = 4c2A(U) + 4cβi − 2A1(i, c) = 4c2A(U)−A(P ),

which proves the corollary.

The above corollary presents the “polygonal analogue” of a known theorem holding for
strictly convex curves (see [4], eq. (2.1)).
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4 The involute of the central equidistant
Recall that P = {P1, ..., P2n} is a convex polygon with parallel opposite sides and U =
{U1, ..., U2n} is the Minkowski ball obtained from P by the construction of Lemma 2.1.
The polygon V = {V1, ..., V2n} represents the dual Minkowski ball (see Lemma 2.3) and
M = {M1, ...,Mn} is the central equidistant of P (see equation (3.1)).

4.1 Basic properties of the involute N of M

Define the polygon N by
Ni+ 1

2
=Mi + βiVi+ 1

2
, (4.1)

1 ≤ i ≤ 2n. Observe that Ni+ 1
2
= Ni+n+ 1

2
. Due to equations (3.5) and (3.15), we can

also write
Ni+ 1

2
=Mi+1 + βi+1Vi+ 1

2
. (4.2)

Lemma 4.1. The polygon N has constant V -width, and the evolute of N is M .

Proof. Since

Ni+ 1
2
−Ni− 1

2
= βi

(
Vi+ 1

2
− Vi− 1

2

)
, (4.3)

1 ≤ i ≤ n, the sides of N are parallel to the sides of V . Moreover, the diagonals of N are
zero, so they are multiples of the diagonals of V . We conclude from Corollary 2.6 that N
has constant V -width. Finally, from equation (4.1) we conclude that the evolute of N is
M .

The equidistants of N , which are the involutes of M , are curves of constant V -width
(see Figure 8). In [5], these polygons were called the Parallel Diagonal Transforms of P .

Figure 8: The central equidistant M together with two involutes of M : The inner curve is
the central equidistant N , and the traced curve is an ordinary involute.
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4.2 The signed area of the involute of the central equidistant

For smooth convex curves of constant Minkowskian width, the signed area of N is not
larger than the signed area of M (see [6]). We prove here the corresponding result for
polygons.

Proposition 4.2. Denoting by SA(M) and SA(N) the signed areas of M and N , we have

SA(M)− SA(N) =

n∑
i=1

β2
i

[
Vi− 1

2
, Vi+ 1

2

]
.

Proof. Observe that

[Mi,Mi+1] =
[
Ni+ 1

2
− βiVi+ 1

2
, αi+ 1

2
(Ui+1 − Ui)

]
= αi+ 1

2
[Ni+ 1

2
, Ui+1 − Ui] =

−(βi+1 − βi)[Ni+ 1
2
, Vi+ 1

2
],
[
Ni− 1

2
, Ni+ 1

2

]
= βi

[
Ni+ 1

2
, Vi+ 1

2
− Vi− 1

2

]
,

and so
− [Mi,Mi+1] +

[
Ni− 1

2
, Ni+ 1

2

]
= [Ni+ 1

2
, βi+1Vi+ 1

2
− βiVi− 1

2
].

Thus

SA(M)− SA(N) =

n∑
i=1

− [Mi,Mi+1] +
[
Ni− 1

2
, Ni+ 1

2

]
=

= −
n∑
i=1

[
Ni+ 1

2
−Ni− 1

2
, βiVi− 1

2

]
=

n∑
i=1

β2
i

[
Vi− 1

2
, Vi+ 1

2

]
,

where we have used that the difference

[Ni+ 1
2
, βi+1Vi+ 1

2
]− [Ni− 1

2
, βiVi− 1

2
]

is equal to
[Ni+ 1

2
−Ni− 1

2
, βiVi− 1

2
] + [Ni+ 1

2
, βi+1Vi+ 1

2
− βiVi− 1

2
],

the discrete version of ”integration by parts”.

4.3 The involute is contained in the interior of the central equidistant

We prove now that the region bounded by the central equidistant M contains its involute
N . For smooth convex curves, this result was proved in [6].

The exterior of the curve M is defined as the set of points of the plane that can be
reached from a point of P by a path that does not cross M . The region M bounded by M
is the complement of its exterior. It is well known that a point in the exterior of M is the
center of exactly one chord of P (see [5]).

Proposition 4.3. The involute N is contained in the region M bounded by M .

The proof is based on two lemmas. For a fixed index i, denote by l(i) the line parallel
to Pi+n−Pi through Ni− 1

2
and Ni+ 1

2
. Then l(i) divides the interior of P into two regions

of areas B1 = B1(i) and B2 = B2(i), where the second one contains Pi and Pi+n.
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Lemma 4.4. We have that B1(i) ≥ B2(i), 1 ≤ i ≤ n.

Proof. We have that

B1(i) = A1(i)− (2cβi − δi − ηi), B2(i) = A2(i) + (2cβi − δi − ηi),

where δi is the area of the regions outside P and between l(i), PiPi+n and the support lines
of PiPi+1 and Pi+n−1Pi+n, and ηi is the area of the triangle MiNi+ 1

2
Ni− 1

2
(see Figure

9). Since, by Proposition 3.4, 4cβi = A1 −A2, we conclude that

B1(i) =
A(P )

2
+ δi + ηi, B2(i) =

A(P )

2
− δi − ηi,

which proves the lemma.

Figure 9: The line through Ni+ 1
2

and Ni− 1
2

divides the polygon into two regions of areas
B1 and B2.

Lemma 4.5. Choose C in the segment Ni− 1
2
Ni+ 1

2
. Then C is in the region bounded by

M .

Proof. By an affine transformation of the plane, we may assume that l(i) and MiC are or-
thogonal. Consider polar coordinates (r, φ) with center C and describe P by r(φ). Assume
that φ = 0 at the line l(i) and that φ = −φ0 at Pi. Denote the area of the sector bounded
by P and the rays φ1, φ2 by

A(φ1, φ2) =
1

2

∫ φ2

φ1

r2(φ)dφ.

Consider a line parallel to MiC and passing through the point Q0 of P corresponding
to φ = 0, and denote by Q1 and Q2 its intersection with the rays φ = −φ0 and φ = φ0,
respectively (see Figure 10). By convexity, we have that

A(0, φ0) ≤ A(CQ0Q1) = A(CQ0Q2) ≤ A(−φ0, 0).

A similar reasoning shows that A(π − φ0, π) ≤ A(π, π + φ0). Observe also that, by
convexity, r(φ0) ≤ r(φ0 + π) and r(π − φ0) ≤ r(−φ0).
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Now, if r(φ+ π) > r(φ) for any φ0 < φ < π − φ0, we would have B1(C) < B2(C),
contradicting the previous lemma. We conclude that r(φ + π) = r(φ) for at least two
values of φ0 < φ < π − φ0. Since equality holds also for some π − φ0 < φ < π + φ0,
there are at least three chords of γ having C as midpoint. Thus C is contained in the region
bounded by M .

Figure 10: The line parallel to MiC through Q0 determines the points Q1 and Q2.

We can now complete the proof of Proposition 4.3. In fact, from Lemma 4.5 we have
that each sideNi− 1

2
Ni+ 1

2
is contained in the regionM bounded byM . Therefore, no point

on the boundary of N can be connected with the boundary of P by a curve that does not
intersect M . This implies that the region N bounded by N is contained in M .

5 Iterating involutes
Starting with the central equidistant M = M(0) and its involute N = N(1), we can
iterate the involute operation. We obtain two sequences of n-gons M(k) and N(k) defined
by M(k) = Inv(N(k)) and N(k + 1) = Inv(M(k)). For smooth curves of constant
Minkowskian width, it is proved in [6] that these sequences converge to a constant. We
prove here the corresponding result for polygons.

From Proposition 4.3, we have

M(0) ⊃ N(1) ⊃M(1) ⊃ ...,

and we denote by O = O(P ) the intersection of all these sets.
If we represent a polygon by its vertices, we can embed the space Pn of all n-gons in

(R2)n. In Pn we consider the topology induced by R2n.

Theorem 5.1. The set O = O(P ) consists of a unique point, and the polygons M(k) and
N(k) are converging to O in Pn.

We shall call O = O(P ) the central point of P . A natural question that arises is the
following.

Question Is there a direct method to obtain the central point O from the polygon P ?
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For fixed c and d construct the sequences of convex polygons P (k, c) and Q(k, d)
whose vertices are

Pi(k) =Mi(k) + cUi(k), Qi+ 1
2
(k) = Ni+ 1

2
(k) + dVi+ 1

2
(k) ,

respectively. The polygonsP (k, c) are of constantU -width, while the polygonsQi+ 1
2
(k, d)

are of constant V -width. We can re-state Theorem 5.1 as follows:

Theorem 5.2. The sequences of polygons P (k, c) and Q(k, d) are converging in P2n to
O + c∂U and O + d∂V , respectively.

Figure 11: The inner curves are M = M(0), N = N(1) and M(1). One traced curve is
an ordinary V -equidistant of N , and the other one is an ordinary U -equidistant of M(1).

We shall prove now Theorem 5.1.

Proof. Denote the signed areas of M(k) and N(k) by SA(M(k)) and SA(N(k)), respec-
tively. By Section 3.3, SA(M(k)) ≥ 0, SA(N(k)) ≥ 0, and Proposition 4.2 implies
that

SA(M(k))− SA(N(k + 1)) =
n∑
i=1

β2
i (k)[Ui, Ui+1],

SA(N(k))− SA(M(k)) =

n∑
i=1

α2
i+ 1

2
(k)[Vi− 1

2
, Vi+ 1

2
],

where αi+ 1
2
(k) and βi(k) are defined by

Mi+1(k)−Mi(k) = αi+ 1
2
(k)(Ui+1 − Ui),

Ni+ 1
2
(k)−Ni− 1

2
(k) = βi(k)(Vi+ 1

2
− Vi− 1

2
).
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We conclude that
∞∑
k=1

n∑
i=1

β2
i (k)[Ui, Ui+1] +

∞∑
k=0

n∑
i=1

α2
i+ 1

2
(k)[Vi− 1

2
, Vi+ 1

2
] ≤ SA(M(0)). (5.1)

From the above equation, we obtain that the sequences αi+ 1
2
(k) and βi(k) are converg-

ing to 0 in Rn. So the diameters of M(k) and N(k) are converging to zero, and thus O is
in fact a set consisting of a unique point.
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