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A B S T R A C T	   A R T I C L E   I N F O	

In	this	study,	a	fuzzy	mathematical	model	is	developed	using	a	multi‐response	
surface	methodology	with	fuzzy	logic	to	optimize	all	response	variables	sim‐
ultaneously.	The	model	has	 the	 flexibility	 to	weight	 the	response	 factors	de‐
pending	on	the	decision	maker’s	choices.	The	model	has	been	applied	to	the	
drilling	process	using	a	high	speed	steel	drill	bit	on	PVC	samples	in	an	upright	
drill.	The	aim	of	the	study	is	to	minimize	surface	roughness	and	cutting	forces.	
The	input	variables	and	their	experiment	intervals	are	determined	as	cutting	
speed	(360‐1080	rev/min),	feed	rate	(0.10‐0.30	mm),	and	material	thickness
(15‐45	mm).	Surface	roughness,	radial	 force‐X	and	radial	 force‐Y	are	chosen	
as	 response	variables.	According	 to	 the	 experiments	 and	 statistical	 analysis,	
the	 optimum	 levels	 of	 cutting	 speed,	 feed	 rate,	 and	material	 thickness	were	
calculated	as	1068	rev/min,	0.1195	mm,	and	21.33	mm	respectively.	
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1. Introduction  

Recently	the	usage	of	polymers	has	increased	dramatically.	Polyvinyl	chloride	(PVC)	is	the	sec‐
ond	most	commonly	used	thermoplastic	[1].	PVC	is	used	in	a	variety	of	products	such	as	pipes,	
profiles,	cable	 insulation,	packaging	and	bottling	[2].	This	wide	usage	of	PVC	makes	 its	surface	
properties	important	after	machining	processes.	Drilling	is	one	of	the	most	important	machining	
processes	[3].	In	the	drilling	process,	the	cutting	speed,	feed	rate	and	drill	bit	may	affect	surface	
roughness	 and	 cutting	 forces	 [4,	 5].	 In	 this	 study,	 PVC	 samples	 with	 different	 heights	 were	
drilled	at	different	cutting	speeds	and	feed	rates.	During	drilling,	cutting	forces	were	measured	
with	the	help	of	a	dynamometer.	In	this	way,	the	relationship	between	cutting	parameters	and	
surface	roughness	was	discovered	and	statistically	analyzed.	

Fuzzy	logic	is	an	approach	used	to	formalize	the	uncertain	or	approximate	reasoning	of	hu‐
man	 capacity.	 This	method	 is	 applied	 to	make	 decisions	 as	 a	 human	 being	 for	 approximately	
reasoning	and	judgement	in	ambiguity.	In	fuzzy	logic,	the	fact	is	adjacent.	In	this	way,	the	reason‐
ing	is	called	interpolative	reasoning.	 Interpolation	between	the	binary	extremes	of	correct	and	
incorrect	operation	is	represented	by	the	ability	of	fuzzy	logic	to	include	partial	truths	[6].	It	is	
seen	 that	 there	are	both	variations	of	 repetitive	 experiments	 and	numerical	data	which	 cause	
the	 complexity	 and	 the	 imprecision.	 In	 order	 to	 overcome	 this	 uncertainty	 and	 intricacy,	 the	
fuzzy	 logic	method,	which	addresses	approximate	reasoning,	 is	adopted.	In	this	study,	a	multi‐
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response	 surface	 methodology	 achieved	 by	 applying	 fuzzy	 logic	 in	 machining	 is	 presented.	
Hence	a	more	robust	model	has	been	developed.	

The	main	aim	of	the	study	is	to	determine	the	optimum	factor	 levels	for	surface	roughness,	
radial‐X,	and	radial‐Y	forces.	The	input	variables	are	cutting	speed,	feed	rate,	and	material	thick‐
ness.		

Several	methods	have	been	developed	to	understand	the	effects	of	cutting	parameters	on	sur‐
face	roughness	and	cutting	forces	in	the	machining	process	[7‐9].	Response	surface	methodology	
(RSM)	is	an	empirical	statistical	technique,	which	can	be	employed	to	study	the	interactions	be‐
tween	factors	and	optimize	operating	parameters	[10].	Response	surface	design	is	useful	when	
several	process	parameters	potentially	influence	the	quality	properties	of	the	product,	which	is	
called	a	response	[11].	Also,	when	many	factors	and	interactions	affect	the	desired	responses	for	
a	given	process,	RSM	 is	an	effective	 technique	 for	evaluating	 the	process	parameters	with	 the	
least	number	of	experiments	[12].	Using	a	second‐order	response	surface	design,	we	can	gather	
data,	estimate	the	mathematical	second‐order	relationship	between	the	response	variables	and	
process	parameters,	and	obtain	the	optimal	conditions	of	process	parameters.	The	Box–Behnken	
design	is	an	efficient	three‐level	design	for	fitting	second‐order	models	[13].	

This	paper	is	constructed	as	follows;	the	second	section	includes	details	about	the	fuzzy	ap‐
proach	 and	 the	 proposed	 methodology.	 An	 illustrative	 example	 of	 a	 multi‐response	 surface	
methodology	attained	by	applying	fuzzy	logic	in	machining	is	presented	in	the	third	section.	Fi‐
nally,	the	results	are	provided	and	discussed.	

2. Used methods 

In	this	study,	multi‐response	surface	methodology	with	fuzzy	logic	is	used	to	consider	variation	
in	repetitive	experiments.	In	next	section,	the	developed	model	by	using	fuzzy	numbers	is	pre‐
sented.	

2.1 Fuzzy logic 

In	the	fuzzy	logic	approach,	factors	and	criteria	can	be	classified	without	any	concrete	limitation.	
Fuzzy	 logic	 is	 very	 useful	 in	 the	 definition	 and	 solution	 of	 uncertain	 and	 ambiguous	 real‐life	
problems.	 Fuzzy	 sets	 are	 defined	with	membership	 functions.	 The	membership	 function	 of	 a	
fuzzy	set	A	is	shown	by	ܣߤሺݔሻ	and	the	membership	of	a	factor	is	defined	with	a	number	between	
0	and	1.	If	factor	x	certainly	belongs	to	set	A,	then	ܣߤሺݔሻ ൌ 1,	or	if	not,	then	ܣߤሺݔሻ ൌ 0.	A	larger	
membership	value	shows	that	the	degree	of	belonging	to	set	A	is	greater	for	factor	x.		
	 Triangular	fuzzy	numbers	can	be	used	to	facilitate	arithmetical	operations.	A	triangular	fuzzy	
number	(ܣሚ)	is	represented	by	three	certain	numbers	ሺ݈ ൑ ݉ ൑ 	function	membership	the	and	ሻݑ
is	defined	according	to	these	numbers.	The	membership	function	of	a	triangular	fuzzy	number	is:	

ሻݔሺܣߤ ൌ ൞

௑ି௟

௠ି௟
, ݈ ൑ ݔ ൒ ݉

௨ି௫

௨ି௠
, ݉ ൑ ݔ ൒ ݑ

0, otherwise

	 (1)

With	a	fuzzy	number	(ܣሚ)	that	is	represented	by	ሺ݈,݉, ,݉,ሻݑ ݈,	and	u	show	respectively	the	possi‐
ble	value	of	the	fuzzy	number,	the	lower	and	upper	limits,	i.e.	the	sphere	of	fuzziness	[14].	

2.2 Proposed methodology 

In	multi‐response	surface	optimization	studies,	when	the	experiments	are	done	with	replicates,	
only	 the	mean	and	variance	of	 the	collected	data	are	 taken	 into	consideration	 to	acquire	opti‐
mum	factor	 levels.	But	a	great	deal	of	unexpected	noise	might	exist	 in	experiments	[15].	Thus,	
uncertainties	associated	with	the	predicted	responses	should	be	incorporated	into	the	method‐
ology	to	acquire	more	reliable	solutions.	Because	some	data	are	usually	neglected	in	these	prob‐
lems,	in	this	paper,	we	cover	it	by	using	Triangular	Fuzzy	Numbers	for	considering	the	mean	and	
variance	 of	 data	 simultaneously	 to	 obtain	more	 robust	 results.	 Using	 the	 desirability	 function	
approach,	an	attempt	is	made	to	simultaneously	optimize	different	response	variables. The	algo‐
rithm	of	the	proposed	methodology	which	consists	of	8	steps	is	shown	in	Fig.	1.	
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Fig.	1	Algorithm	of	the	proposed	methodology	
	
Step	1:	A	multi	 response	experiment	 is	designed	which	 is	 related	 to	 a	process	 including	more	
than	one	response	with	replicates	shown	in	Table	1,	where	ݔ௜௝	is	the	݆th	(j	=	1,	2,…,	J)	factor	level	
value	 and	ݕ௞௜௥	 is	 ݇th	 ሺ݇ ൌ 1, 2, … , 	ሻܭ response	 value	 for	 the	 	thݎ ሺݎ ൌ 1, 2, … , ܴሻ	 replicates	 in	 ݅th	
ሺ݅ ൌ 1, 2, … , ܰሻ	experiment	respectively.	
	

Table	1	Results	of	experiments	for	a	multi	response	process	

Run	order	
Factor	levels	 Responses	

௜ܺଵ	 …	 ௜ܺ௃	
ଵܻ	 …	 ௄ܻ 	

	ଵ௜ଵݕ …	 ଵ௜ோݕ 	 …	 y୏୧ଵ	 …	 ௄௜ோݕ 	
1	 	ଵଵݔ …	 ଵ௃ݔ 	ଵଵଵݕ …	 ଵଵோݕ 	 …	 	௄ଵଵݕ …	 ௄ଵோݕ 	
…	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	
N	 	ேଵݔ …	 x୒୎ 	ଵேଵݕ …	 ଵேோݕ 	 …	 	௄ேଵݕ …	 ௄ேோݕ 	

	
Step	2:	The	response	surface	regression	for	ݎth	replicates	is	

ܣߤ ௞ܻ
௥ ൌ ଴ߚ

௥ 	൅ ∑ ௝ߚ
௥

௝ܺ
௃
௝ୀଵ ൅ ∑ ௝௝ߚ

௥
௝ܺ
ଶ௃

௝ୀଵ ൅ ∑ ∑ ௜௣ߚ
௥

௜ܺ
௃ ܺ௉

௃
௜ழ௣ ൅ ࣟ		 (2)

where	 ௥ܻ
௞	 represents	 the	 	thݎ response	 surface	 regression	model	 for	 the	 ݇th	 response	 variable	

which	is	obtained	based	on	experimental	data	and	ࣟ	is	noise	or	error	observed	in	the	response	
value.	ߚ଴

௥	is	a	model	constant	and	ߚ௝
௥,	ߚ௝௝,	ߚ௜௣	are	coefficients	for	the	main	effects,	square	effects	

and	interaction	effects	of	factors,	respectively.		

Step	3:	The	fuzzy	response	surface	regression	can	be	expressed	as:	

෨ܻ௞ ൌ ෨଴ߚ	 	൅ ∑ ෨௝ߚ ௝ܺ
௃
௝ୀଵ ൅ ∑ ෨௝௝ߚ ௝ܺ

ଶ௃
௝ୀଵ ൅ ∑ ∑ ෨௜௣ߚ ௜ܺ

௃ ܺ௉
௃
௜ழ௣ ൅ ࣟ		 (3)

where	 ෨ܻ௞	express	the	fuzzy	response	surface	regression	model	for	the	݇th	response	variable.	ߚ෨଴,	
	,෨௝ߚ 	෨௝௝ߚ and	 	෨௜௣ߚ fuzzy	 coefficients	 are	 calculated	 by	 applying	 the	 following	 procedure.	 Let	
௝ߚ
௥ ൌ ሺߚ௝

ଵ, ௝ߚ
ଶ, … , ௝ߚ

ோሻ	be	crisp	values,	mean	and	standard	deviation	of	ߚ௝
ଵ, ௝ߚ

ଶ, … , ௝ߚ
ோ	are	calculat‐

ed	as	follows:	

 ߚ௝
௠ ൌ	Mean	(ߚ௝

ଵ, ௝ߚ
ଶ, … , ௝ߚ

ோ)	
 ߚ௝

௟ ൌ	Mean	(ߚ௝
ଵ, ௝ߚ

ଶ, … , ௝ߚ
ோ)	–	Standard	Deviation	(ߚ௝

ଵ, ௝ߚ
ଶ, … , ௝ߚ

ோ)	
 ߚ௝

௨ ൌ	Mean	(ߚ௝
ଵ, ௝ߚ

ଶ, … , ௝ߚ
ோ)	+	Standard	Deviation	(ߚ௝

ଵ, ௝ߚ
ଶ, … , ௝ߚ

ோ)	
 Thus,	fuzzy	regression	coefficients	obtained	as	ߚ෨௝ ൌ ሺߚ௝

௟, ௝ߚ	
௠, ௝ߚ

௨ሻ	

Step	4:	The	most	typical	approach	for	the	optimization	of	multiple	responses	is	the	desirability	
function	technique	introduced	by	[9].	The	desirability	function	technique	is	to	first	convert	each	
response	( ௞ܻ)	into	an	individual	desirability	value	ሺ݀௞ሻ,	where	0 ൑ ݀௞ ൑ 1.	Then	the	design	fac‐

Designing	a	multi	response	experiment

Obtaining	response	surface	regression	for	each	replicate

Obtaining	fuzzy	response	surface	regression	using the	mean	and	variance	of	data	

Describing	the	desirability	function	for	each	fuzzy	response	surface	

Describing	the	composite	desirability	function

Defining	a	fuzzy	model to	maximize the	composite	desirability

Transforming	fuzzy	factor	levels	into	crisp	numbers for	applicable	results	

Obtaining	optimum	fuzzy	factor	levels	by	solving	the	model
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tors	are	chosen	to	maximize	the	overall	desirability	value	using	the	composite	desirability	func‐
tion.	The	value	of	݀௞	increases	as	the	corresponding	response	approaches	its	goal	or	target	[15].	
Reference	[16]	introduced	the	desirability	function	for	The	Larger‐The‐Better,	The	Smaller‐The‐
Better,	Nominal‐The‐Best	responses.		

If	 ሚ݀௞ ൌ ൫݀௞
௟ , 	݀௞

௠, 	݀௞
௨൯ ൌ ݀௞

௟,௠,௨	and	 ෨ܻ௞ ൌ ൫ ௞ܻ
௟, 	 ௞ܻ

௠, 	 ௞ܻ
௨൯ ൌ ௞ܻ

௟,௠,௨	we	have	the	individual	desira‐
bility	functions	as	follows:	

݀௞
௟,௠,௨ ൌ

ە
ۖ
۔

ۖ
ۓ 0, ௞ܻ

௟,௠,௨ ൏ ௟,௠,௨ܮ

ቆ ௞ܻ
௟,௠,௨ െ ௟,௠,௨ܮ

ܷ௟,௠,௨ െ ௟,௠,௨ቇܮ

௦

௟,௠,௨ܮ						, ൑ ௞ܻ
௟,௠,௨ ൑ ܷ௟,௠,௨

1, ௞ܻ
௟,௠,௨ ൐ ܷ௟,௠,௨

	 (4)

	

݀௞
௟,௠,௨ ൌ

ە
ۖ
۔

ۖ
ۓ 1, ௞ܻ

௟,௠,௨ ൏ ௟,௠,௨ܮ

൬
௎೗,೘,ೠି௒ೖ

೗,೘,ೠ

௎೗,೘,ೠି௅೗,೘,ೠ൰
௧

, ௟,௠,௨ܮ ൑ ௞ܻ
௟,௠,௨ ൑ ܷ௟,௠,௨

0, ௞ܻ
௟,௠,௨ ൐ ܷ௟,௠,௨

		 (5)

݀௞
௟,௠,௨ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ 0, ௞ܻ
௟,௠,௨ ൏ ௟,௠,௨ܮ

൬
௒ೖ
೗,೘,ೠି௅೗,೘,ೠ

்೗,೘,ೠି௅೗,೘,ೠ൰
௔

௟,௠,௨ܮ						, ൑ ௞ܻ
௟,௠,௨ ൑ ܶ௟,௠,௨

൬
௎೗,೘,ೠି௒ೖ

೗,೘,ೠ

௎೗,೘,ೠି்೗,೘,ೠ൰
௕

, ܶ௟,௠,௨ ൑ ௞ܻ
௟,௠,௨ ൑ ܷ௟,௠,௨

0, ௞ܻ
௟,௠,௨ ൐ ܷ௟,௠,௨

		 (6)

Step	5:	Derringer	and	Suich	described	the	composite	desirability	function	as:	

஽ௌܦ ൌ ൣ݀ଵ൫ ෠ܻଵ൯ ∗ ݀ଶ൫ ෠ܻଶ൯ ∗ … ∗ ݀௠൫ ෠ܻ௠൯൧
భ
೘		 (7)

where	there	are	m	responses.	References	[17‐19]	introduced	some	weighted	composite	desira‐
bility	 functions.	Beside	 these,	 [20]	 and	 [21]	proposed	a	 ‘Maximin’	 approach	 for	 the	 composite	
desirability	function.	

Step	6:	The	individual	desirability	functions	for	The	Larger‐The‐Better,	The	Smaller‐The‐Better	
and	Nominal‐The‐Best	response	variables	can	be	modelled	respectively	as	follows:	
	

௞݀	ݔܽܯ
௟,௠,௨	

௟,௠,௨ߙ ൌ

൬
௒ೖ
೗,೘,ೠି௅೗,೘,ೠ

௎೗,೘,ೠି௅೗,೘,ೠ൰
௦

  

݀௟,௠,௨ ൑  ௟,௠,௨ߙ
݀௟,௠,௨ ൑ 1 

௟,௠,௨ܮ ൑ ௞ܻ
௟,௠,௨ 

ܺ ∈ ሾെ1, 1ሿ 

(8)

	

ݔܽܯ ݀௞
௟,௠,௨

௟,௠,௨ߙ ൌ

൬
௎೗,೘,ೠି௒ೖ

೗,೘,ೠ

௎೗,೘,ೠି௅೗,೘,ೠ൰
௧

		

݀௟,௠,௨ ൑ 		௟,௠,௨ߙ
݀௟,௠,௨ ൑ 1	

௞ܻ
௟,௠,௨ ൑ ܷ௟,௠,௨		
ܺ ∈ ሾെ1, 1ሿ 

(9)

	

௞݀	ݔܽܯ
௟,௠,௨	

௟,௠,௨ߙ ൌ ቆ ௞ܻ
௟,௠,௨ െ ௟,௠,௨ܮ

௥ܶ െ ௟,௠,௨ܮ ቇ

௔

௟,௠,௨ߚ ൌ ቆ
ܷ௟,௠,௨ െ ௞ܻ

௟,௠,௨

ܷ௟,௠,௨ െ ௥ܶ
ቇ

௕

݀௟,௠,௨ ൑ 	௟,௠,௨ߙ
݀௟,௠,௨ ൑ 	௟,௠,௨ߚ

௟,௠,௨ܮ ൑ ௞ܻ
௟,௠,௨ ൑ ܷ௟,௠,௨	

ܺ ∈ ሾെ1, 1ሿ 

(10)

	

For	the	objective	function	of	the	final	model,	one	of	the	composite	desirability	functions	defined	
above	can	be	used	to	maximize	the	overall	desirability	value.	The	final	model	is	categorized	into	
3	types	of	models	(݈, ݉	and	ݑሻ	and	these	models	are	solved	separately.	

Step	7:	The	optimum	factor	levels	are	obtained	as	 ௟ܺ
∗ ൌ ሺݔଵ

௟∗, ଶݔ
௟∗, … , ௃ݔ

௟∗ሻ,	ܺ௠∗ ൌ ሺݔଵ
௠∗
, ଶݔ

௠∗
, … , ௃ݔ

௠∗
ሻ,	

ܺ௨∗ ൌ ሺݔଵ
௨∗, ଶݔ

௨∗, … , ௃ݔ
௨∗ሻ	where	 J	 is	 the	 number	 of	 factors	 taken	 into	 consideration.	Hence,	 opti‐

mum	fuzzy	factor	levels	are	obtained	as	follows:	
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෨ܺ ∗ ൌ ൫ݔ෤ଵ
∗, ෤ଶݔ	

∗, … , ෤௃ݔ
∗൯ ൌ ቀ൫ݔଵ

௟∗, ଵݔ
௠∗
, ଵݔ

௨∗൯, ൫ݔଶ
௟∗, ଶݔ

௠∗
, ଶݔ

௨∗൯, … , ሺݔ௃
௟∗, ௃ݔ

௠∗
, ௃ݔ

௨∗ሻቁ		 (11)

Step	8:	The	defuzzification	process	can	be	performed	using	many	different	methods	[22].	In	this	
study,	the	center	of	area	which	is	the	most	commonly	used	defuzzification	method	calculates	the	
centroid	of	the	area	under	the	membership	function	[23].	

3. Application 

3.1 Experimental data 

The	proposed	methodology	was	applied	to	the	drilling	process	of	PVC	material	to	determine	the	
optimum	processing	conditions	that	yield	minimum	surface	roughness	for	the	material	and	the	
minimum	radial	forces	for	the	machine	being	used.	

PVC	samples	with	30	mm	diameter	and	15	mm,	30	mm,	45	mm	thickness	were	drilled	in	up‐
right	drill	with	high	speed	steel	drill	bit.	Hardness	of	PVC	is	80	Shore	D	and	its	tensile	strength	is	
52	MPa.	The	cutting	speed	(ݔଵ),	feed	rate	(ݔଶ),	material	thickness	(ݔଷ)	were	independent	factors	
investigated	with	 respect	 to	 surface	 roughness	 ( ଵܻ)	 in	μm	 radial	 force‐X	 ( ଶܻ)	 in	 N,	 and	 radial	
force‐Y	( ଷܻ)	 in	N	as	response	variables.	The	experiments	were	designed	according	 to	 the	Box‐
Behnken	design	with	these	three	factors	each	at	three	different	levels	and	conducted	on	an	au‐
tomatic	drill	machine.		

For	each	factor	combination,	three	replications	were	made	to	take	into	consideration	the	var‐
iation	factor.	Real	factor	levels	and	their	counterpart	coded	levels	which	are	used	for	calculation	
are	given	in	Table	2.	Cutting	parameter	intervals	are	chosen	as	they	are	used	in	polymer	industry.		

Table	2	Factor	levels	and	their	coded	value	

Factors	
Coded	level	value	

Low	(‐1)	 Medium	(0)	 High	(+1)	

Cutting	speed	(ݔଵ)	 360	rev/min	 720	rev/min	 1080	rev/min	
Feed	rate	(ݔଶ)	 0.10	mm	 0.20	mm	 0.30	mm	
Material	thickness	(ݔଷ)	 15	mm	 30	mm	 45	mm	

The	results	of	the	experiments	are	given	in	Table	3.	For	each	response	and	each	replication,	sec‐
ond	order	polynomial	models	were	developed	using	multiple	linear	regression	analysis.	Analysis	
of	variance	(ANOVA)	was	performed	to	check	 the	adequacy	and	accuracy	of	 the	 fitted	models.	
MINITAB	17	software	was	used	for	statistical	analysis.	
	

Table	3	Box‐Behnken	design	with	the	experimental	values	of	the	response	variables	

Run	
order	

Factor	levels	 Surf.	roughness	ሺμmሻ	 Radial	force‐Y	(N)	 Radial	force‐X	(N)	
	ଵݔ 	ଶݔ 	ଷݔ R.	1	 R.	2	 R.	3	 R.	1	 R.	2	 R.	3	 R.	1	 R.	2	 R.	3	

1	 ‐1	 0	 1	 1.8	 			1.83	 1.78	 			4.3	 			4.5	 		4.62	 4.2	 4.4	 4.3	
2	 0	 ‐1	 1	 1.11	 			1.182	 1.08	 			3.4	 			3.75	 		3.65	 3.1	 3.3	 3.22	
3	 ‐1	 ‐1	 0	 1.57	 			1.62	 1.54	 			3.7	 			3.94	 		4.09	 3.3	 3.6	 3.5	
4	 1	 ‐1	 0	 0.87	 			0.92	 0.85	 			3	 			3.3	 		3.45	 3.2	 3.4	 3.3	
5	 0	 0	 0	 1.19	 			1.24	 1.16	 			3.7	 			3.95	 		4.1	 3.8	 4	 3.9	
6	 ‐1	 0	 ‐1	 1.57	 			1.62	 1.54	 			3.8	 			4.1	 		4.25	 3.9	 4.1	 4.15	
7	 ‐1	 1	 0	 2.06	 			2.15	 2.03	 			4.8	 			5.1	 		5.25	 4.9	 5	 5.08	
8	 0	 0	 0	 1.16	 			1.21	 1.13	 			3.4	 			3.8	 		3.95	 3.7	 3.9	 3.8	
9	 1	 0	 ‐1	 0.68	 			0.73	 0.75	 			3.05	 			3.35	 		3.45	 3.4	 3.6	 3.5	
10	 1	 0	 1	 0.96	 			0.95	 0.93	 			3.7	 			4	 		4.15	 3.5	 3.7	 3.6	
11	 0	 1	 ‐1	 1.34	 			1.39	 1.31	 			4.2	 			4.5	 		4.65	 4.1	 4.3	 4.2	
12	 0	 ‐1	 ‐1	 1.09	 			1.14	 1.15	 			3.1	 			3.4	 		3.55	 3	 3.2	 3.1	
13	 0	 1	 1	 1.66	 			1.7	 1.63	 			5.5	 			5.65	 		5.75	 4.3	 4.6	 4.37	
14	 1	 1	 0	 1.04	 			1.09	 1.01	 			4.1	 			4.4	 		4.55	 3.9	 4.15	 4	
15	 0	 0	 0	 1.17	 			1.22	 1.14	 			3.6	 			3.9	 		3.95	 3.8	 4	 3.9	
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For	each	response	variable,	3	response	surface	regressions	based	on	3	replicates	were	obtained	
as	follows:	

ଵܻ
ଵ	ൌ	1.172൅	0.106ݔଷ	–	0.431ݔଵ	൅	0.183ݔଶ ൅ ଵݔଵݔ0.082 ൅ 	ଶݔଷݔ0.075	ଶ൅ݔଶݔ0.130
	ଶݔଵݔ0.080	–

(12)

ଵܻ
ଶ	ൌ	1.156	൅	0.084ݔଷ	–	0.419ݔଵ	൅	0.170ݔଶ ൅	0.084ݔଵݔଵ ൅ ଶݔଶݔ0.127 ൅	0.098ݔଷݔଶ		

	ଶݔଵݔ0.083	–
(13)

Yଵ
ଷ	ൌ	1.213	൅	0.098xଷ	–	0.441xଵ൅	0.184xଶ൅	0.077ݔଵݔଵ ൅	0.147 ଶݔଶݔ ൅	0.067ݔଷݔଶ		
	ଶݔଵݔ0.090	–

(14)

ଶܻ
ଵ	ൌ	3.746	൅	0.088ݔଷ	–	0.288ݔଵ൅	0.575ݔଶ – ଷݔଷݔ0.106 ൅	0.094ݔଵݔଵ – 	ଶݔଵݔ0.225 (15)

ଶܻ
ଶ	ൌ	3.958	൅	0.100ݔଷ–	0.281ݔଵ	൅	0.569ݔଶ – 0.101 ଷݔଷݔ ൅0.087ݔଵݔଵ – 	ଶݔଵݔ0.163 (16)

ଶܻ
ଷ	ൌ	3.848	൅	0.068ݔଷ	–	0.329ݔଵ൅	0.566ݔଶ –	0.111 ଷݔଷݔ ൅0.136ݔଵݔଵ 	ଶݔଵݔ0.220	– (17)

ଷܻ
ଵ	ൌ	3.650	൅	0.344ݔଷ–	0.344ݔଵ൅	0.675ݔଶ ൅	0.325ݔଶݔଶ ൅	0.250ݔଷݔଶ	 (18)

ଷܻ
ଶ	ൌ	3.943	൅	0.319ݔଷ	–	0.324ݔଵ൅ ଶݔ0.658 ൅	0.312ݔଶݔଶ ൅0.200ݔଷݔଶ	 (19)

ଷܻ
ଷ	ൌ	4.067	൅	0.284ݔଷ	–	0.326ݔଵ൅	0.683ݔଶ ൅	0.300ݔଶݔଶ ൅0.250ݔଷݔଶ	 (20)

The	adjusted	R‐Sq	of	these	regression	models	are	99.2	%,	99.1	%,	99.7	%,	98.7	%,	98.1	%,	99.4	%,	
93.1	%,	95.1	%,	95.1	%	respectively.	
	 Applying	the	proposed	procedure	(Step	3)	 to	Eqs.	12	to	20	 fuzzy	response	surface	 for	each	
response	are	obtained	as	follows:	

෨ܻଵ	ൌ	ሺ1.156,	1.180,	1.204ሻ	൅	ሺ0.087,	0.096,	0.105ሻݔଷ ൅	ሺ–0.440,	–0.430,	–0.421ሻݔଵ	൅	
ሺ0.173,	0.179,	0.185ሻݔଶ	൅ሺ0.078,	0.081,	0.084ሻݔଵݔଵ൅ ሺ0.126,	0.135,	0.144ሻݔଶݔଶ	
൅	ሺ0.067,	0.080,	0.093ሻݔଷݔଶ	൅ሺ0.088,	‐0.084,	‐0.080ሻݔଵݔଶ	

(21)

	

෨ܻଶ	ൌ	ሺ3.764,	3.851,	3.937ሻ	൅	ሺ0.072,	0.085,	0,098ሻݔଷ ൅	ሺ–0.320,	–0.299,	–278ሻݔଵ	
൅	ሺ0.566,	0.570,	0,574ሻݔଶ	൅	ሺ–0.110,	–0.106,	–0.102ሻݔଷݔଷ൅ ሺ0.084,	0.106,	0.128ሻݔଵݔଵ
൅	ሺ–0.231,	–0.203,	–0.174ሻ	ݔଵݔଶ	

(22)

	

෨ܻଷ	ൌ	ሺ3.712,	3.887,	4.062ሻ	൅	ሺ0.391,	0.315,	0.340ሻݔଷ ൅ሺ–0.340,	–0.331,	–0.322ሻ	ݔଵ	
൅	ሺ0.661,	0.672,	0.682ሻݔଶ	൅	ሺ0.302,	0.313,	0.323ሻݔଶݔଶ ൅	ሺ0.210,	0.233,	0.257ሻ	ݔଷݔଶ	

(23)
	

Then,	individual	desirability	functions	were	described	for	each	response	variable.	In	this	study,	
since	all	of	 the	response	variables	were	desired	to	be	minimized,	The	Smaller‐The‐Better	 type	
desirability	function	was	used.	So	individual	desirability	functions	were	obtained	as	follows,	

݀ଵ
௟,௠,௨ ൌ

ە
ۖ
۔

ۖ
ۓ 1																								 , ଵܻ

௟,௠,௨ ൏ ሺ0.68, 0.68, 0.68ሻ

ቆ
ሺ2.15, 2.15, 2.15ሻ െ ଵܻ

௟,௠,௨

ሺ2.15, 2.15, 2.15ሻ െ ሺ0.68, 0.68, 0.68ሻ
ቇ , ሺ0.68, 0.68, 0.68ሻ ൑ ଵܻ

௟,௠,௨ ൑ ሺ2.15, 2.15, 2.15ሻ

0																								 , ଵܻ
௟,௠,௨ ൐ ሺ2.15, 2.15, 2.15ሻ

(24)

	

݀ଶ
௟,௠,௨ ൌ

ە
ۖ
۔

ۖ
ۓ 1																					 , ଶܻ

௟,௠,௨ ൏ ሺ3, 3, 3ሻ

ቆ
ሺ5.75, 5.75, 5.75ሻ െ ଶܻ

௟,௠,௨

ሺ5.75, 5.75, 5.75ሻ െ ሺ3, 3, 3ሻ
ቇ , ሺ3, 3, 3ሻ ൑ ଶܻ

௟,௠,௨ ൑ ሺ5.75, 5.75, 5.75ሻ

0																					 , ଶܻ
௟,௠,௨ ൐ ሺ5.75, 5.75, 5.75ሻ

	 (25)

	

݀ଷ
௟,௠,௨ ൌ

ە
ۖ
۔

ۖ
ۓ 1																					 , ଷܻ

௟,௠,௨ ൏ ሺ3, 3, 3ሻ

ቆ
ሺ5.08, 5.08, 5.08ሻ െ ଷܻ

௟,௠,௨

ሺ5.08, 5.08, 5.08ሻ െ ሺ3, 3, 3ሻ
ቇ , ሺ3, 3, 3ሻ ൑ ଷܻ

௟,௠,௨ ൑ ሺ5.08, 5.08, 5.08ሻ

0																					 , ଷܻ
௟,௠,௨ ൐ ሺ5.08, 5.08, 5.08ሻ	

	 (26)
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The	 ‘maximin’	approach	was	used	for	obtaining	the	composite	desirability	value	and	following	
the	fuzzy	model	constructed	for	determining	the	optimum	fuzzy	factor	levels.	
	

	ݔܽܯ ቀ݊݅ܯ ൫݀ଵ
௟,௠,௨, ݀ଶ

௟,௠,௨, ݀ଷ
௟,௠,௨, ൯ቁ

௞ߙ
௟,௠,௨ ൌ ቆ

ܷ௞
௟,௠,௨ െ ௞ܻ

௟,௠,௨

ܷ௞
௟,௠,௨ െ ௞ܮ

௟,௠,௨ ቇ , for	݇ ൌ 1,2,3	

݀௞
௟,௠,௨ ൑ ௞ߙ

௟,௠,௨,								for	݇ ൌ 1,2,3	
݀௞
௟,௠,௨ ൑ 1,																	for	݇ ൌ 1,2,3	

௞ܻ
௟,௠,௨ ൑ ܷ௞

௟,௠,௨, for ݇ ൌ 1,2,3
ܺ ∈ ሾെ1, 1ሿ	

(27)

	

The	 final	 model	 was	 categorized	 into	 3	 types	 of	 models	 ሺ݈,݉	 and	ݑሻ	 and	 these	models	 were	
solved	separately.	

Model	݈:	

	ݔܽܯ ቀ݊݅ܯ ൫݀ଵ
௟ , ݀ଶ

௟ , ݀ଷ
௟ , ൯ቁ

ଵߙ
௟ ൌ ቆ

2.15 െ ଵܻ
௟

2.15	 െ 0.68	
ቇ	

ଶߙ
௟ ൌ ቆ

5.75 െ ଶܻ
௟

5.75 െ 3
ቇ	

ଷߙ
௟ ൌ ቆ

5.08 െ ଷܻ
௟

5.08 െ 3
ቇ	

݀௞
௟ ൑ ௞ߙ

௟ ,										for	݇ ൌ 1,2,3	
݀௞
௟ ൑ 1,												for	݇ ൌ 1,2,3	
ଵܻ
௟ ൑ 2.15	
ଶܻ
௟ ൑ 5.75	
ଷܻ
௟ ൑ 5.08

ܺ ∈ ሾെ1, 1ሿ	

(28)

Model	݉:	

݊݅ܯ൫	ݔܽܯ ሺ݀ଵ
௠, ݀ଶ

௠, ݀ଷ
௠, ሻ൯

ଵߙ
௠ ൌ ቆ

2.15 െ ଵܻ
௠

2.15	 െ 0.68	
ቇ

ଶߙ
௠ ൌ ቆ

5.75 െ ଶܻ
௠

5.75 െ 3
ቇ	

ଷߙ
௠ ൌ ቆ

5.08 െ ଷܻ
௠

5.08 െ 3
ቇ	

݀௞
௠ ൑ ௞ߙ

௠,								for	݇ ൌ 1,2,3	
݀௞
௠ ൑ 1,												for	݇ ൌ 1,2,3	
ଵܻ
௠ ൑ 2.15	
ଶܻ
௠ ൑ 5.75	
ଷܻ
௠ ൑ 5.08

ܺ ∈ ሾെ1, 1ሿ	

(29)

Model	ݑ:	
݊݅ܯ൫	ݔܽܯ ሺ݀ଵ

௨, ݀ଶ
௨, ݀ଷ

௨, ሻ൯

ଵߙ
௨ ൌ ቆ

2.15 െ ଵܻ
௨

2.15	 െ 0.68	
ቇ

ଶߙ
௨ ൌ ቆ

5.75 െ ଶܻ
௨

5.75 െ 3
ቇ

(30)
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ଷߙ
௨ ൌ ቆ

5.08 െ ଷܻ
௨

5.08 െ 3
ቇ

݀௞
௨ ൑ ௞ߙ

௨,						for	݇ ൌ 1,2,3	
݀௞
௨ ൑ 1, for	݇ ൌ 1,2,3	
ଵܻ
௨ ൑ 2.15	
ଶܻ
௨ ൑ 5.75	
ଷܻ
௨ ൑ 5.08

ܺ ∈ ሾെ1, 1ሿ	

3.2 Results and discussion 

After	solving	the	model	developed	in	subsection	3.1	for	݈, ݉	and	ݑ	separately,	the	optimum	fac‐
tor	levels	were	obtained	as:	

௟ܺ
∗ ൌ ሺ0.900, െ0.706,െ0.528ሻ

ܺ௠∗ ൌ ሺ1.00, െ0.887, െ0.159ሻ	
ܺ௨∗ ൌ ሺ1.00, െ0.823,െ1.00ሻ	

(31)

So	the	optimum	fuzzy	factor	levels	in	coded	value	were	calculated	as:	

෨ܺଵ
∗ ൌ ሺ0.900, 1.00, 1.00ሻ	
෨ܺଶ
∗ ൌ ሺെ0.887, െ0.823,െ0.706ሻ	
෨ܺଷ
∗ ൌ ሺെ1.00, െ0.528,െ0.159ሻ	

(32)

After	translating	the	coded	values,	the	real	optimum	fuzzy	factor	levels	were	obtained	as	follows:	

෨ܺଵ
∗ ൌ ሺ1044, 1080, 1080ሻ	
෨ܺଶ
∗ ൌ ሺ0.1113, 0.1177, 0.1294ሻ	
෨ܺଷ
∗ ൌ ሺ15, 22, 27ሻ	

(33)

Applying	Equation	18	to	the	optimum	fuzzy	factor	levels,	optimum	defuzzified	factor	levels	were	
acquired	as	follows:	

ଵܺ
∗ ൌ 1068, ܺଶ

∗ ൌ 0.1195, ܺଷ
∗ ൌ 21.33	 (34)

Contour	plots	for	each	response	variable	with	respect	to	cutting	speed	(CS),	feed	rate	(FR)	and	
material	type	(MT)	are	given	in	Fig.	4,	Fig.	5,	and	Fig.	6	respectively.	

It	can	be	understood	from	Fig.	2	that	the	increase	in	cutting	speed	decreases	surface	rough‐
ness	 strongly	 but	 feed	 rate	 and	 material	 thickness	 have	 a	 straight	 relationship	 with	 surface	
roughness	and	the	degree	of	 these	relationships	 is	not	strong	as	with	cutting	speed.	 It	 is	clear	
from	the	figure	that	the	feed	rate	factor	has	a	stronger	effect	when	the	material	thickness	factor	
value	is	high.	
	

	
Fig.	2	Contour	plots	for	surface	roughness	response	variable

	
Fig.	3	Contour	plots	for	radial	force‐X	response	variable
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Fig.	4	Contour	plots	for	radial	force‐Y	response	variable	

From	Figs.	3	and	4	it	can	be	expressed	that	cutting	speed	has	an	inverse	relationship	with	radial	
forces	X	and	Y	in	the	drilling	process.	It	 is	clear	that	material	thickness	does	not	have	a	strong	
effect	on	radial	 forces	but	 it	 is	 slightly	stronger	 for	affecting	radial	 force‐Y	 than	radial	 force‐X.	
Aside	from	this,	the	middle	level	of	the	material	thickness	resulted	in	less	radial	force‐X.	When	it	
comes	to	the	feed	rate	factor,	it	has	the	same	effect	as	in	the	surface	roughness	response.	The	feed	
rate	factor	has	a	stronger	effect	on	both	responses	when	the	cutting	speed	factor	value	is	low.	

4. Conclusion 

In	this	paper,	a	methodology	was	proposed	for	multi	response	surface	optimization	based	on the	
desirability	 function	 and the	 fuzzy	 approach.	 The	proposed	 approach	 takes	 into	 account	 vari‐
ance	along	with	mean	and	optimizes	both	of	them	simultaneously	by	applying	fuzzy	set	theory	
to	 overcome	 variation	 in	 repetitive	 experiments.	 The	 methodology	 has	 the	 capability	 of	
weighting	response	variables	thanks	to the	composite	desirability	function.	

PVC	is	widely	used	in	polymer	industry.	Optimisation	of	drilling	process	of	PVC	is	quite	im‐
portant.	The	optimization	procedure	was	also	applied	in the	drilling	process	of	PVC	material	to	
determine	optimum	drilling	parameters	 (cutting	speed,	 feed	rate,	material	 thickness)	with	 the	
objective	of	minimizing	material	surface	roughness	and	radial	forces.	For	this	purpose,	a	number	
of	machining	experiments	based	on	the	Box‐Behnken	design	were	carried	out	in	order	to	collect	
surface	roughness	and	radial	forces	values.	For	each	factor	combination,	experiments	were	rep‐
licated	 three	 times	 to	 handle	 variance	 and	 obtain	more	 robust	 results	 by	 using	 the	 fuzzy	 ap‐
proach.	 In	 this	 application	 study,	 second	 order	 response	 surface	 models	 were	 developed	 for	
each	replication	to	predict	surface	roughness	and	radial	forces	values	in	the	drilling	process	of	
PVC	material.	Then,	the	coefficients	of	the	fuzzy	response	surface	model	were	calculated	for	each	
response	 as	 described.	 Finally,	 a	 fuzzy	model	 was	 constructed	 for	 maximizing	 the	 composite	
desirability.	Upon	solving	this	model	and	defuzzifying	the	optimum	fuzzy	factor	levels,	the	opti‐
mum	levels	were	obtained	as	1068	rev/min,	0.1195	mm, 21.33	mm	for	cutting	speed,	feed	rate,	
and	material	thickness	respectively.	The	predicted	optimum	machining	process	conditions	were	
validated	with	an	experimental	measurement.	According	to	experimental	results,	when	cutting	
speed	 increases,	 surface	 roughness	 decreases	 significantly.	 However,	 feed	 rate	 and	 material	
thickness	have	little	effect	on	surface	roughness.	Also,	cutting	speed	has	a	strong	effect	on	radial	
forces	X	and	Y	while	material	thickness	doesn’t	affect	cutting	forces	strongly.	

In	 future	studies,	 the	proposed	methodology	could	be	applied	to	other	machining	problems	
such	as	tool	life,	dimensional	errors,	etc.	as	well.	In	addition	to	this,	other	fuzzy	logic	approaches	
such	as	fuzzy	inference	system	and	fuzzy	multi	criteria	decision	making	could	be	used,	especially	
for	weighting	response	variables	according	to	decision	makers.	
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