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Abstract

Problems of representing curved surfaces on the plane are
discussed. From a sét of captured points, a wire frame of the
surface can be created using the Delaunay triangulation. In
this way, the curved surface is approximated by small planar
facets.

A method of stretching of the wire frame of the surface onto
a plane is presented. The stretching is performed in such a
manner that the sum of squares of linear distortions
throughout the frame, as a whole, reaches a minimum value.
The idea comes from the Airy’s criterion for the projection of
minimal distortions.
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1 INTRODUCTION

'he first cartographic representations of the Earth were made in good faith that it
is a flat and disk-shaped form. The beginning of the second step in the
development of cartography dates back in the antiquity, the Pythagorean era (6t
century BC) when the notion of Earth as a curved surface had begun to ripen.
Evidence arose proving the Earth is a sphere. The consequence of this was the
appearance of first cartographic projections (Jovanovié, 1983). However, problems
arising from the projection of surfaces do not occur in cartography only. Such needs
also exist in the conservation of cultural heritage (e.g. restoration of frescos and
ornaments), medicine and elsewhere. It has become obvious that the mapping of
surfaces, which cannot be predefined, represents a serious problem. The purpose of
this paper is to illustrate the problems arising in projecting curved surfaces onto a
plane. Its aim is also to present one of the applicable solutions used in
non-cartographic purposes.

2 REPRESENTING CURVED SURFACES ON A PLANE

et us recall some of the basic characteristics of smooth curved surfaces (e.g.
Jovanovi¢, 1983). The sections with planes including a normal onto the surface at
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the given point are called normal sections. At the given points, the normal sections
may have different radii of curvature. The two normal sections, the one with the
highest and the one with the lowest radius of curvature, are always mutually
perpendicular. They are called principal normal sections. The corresponding radii of
curvature are designated as Ry and R, and are called principal radii of curvature at a
given point. By using the two radii we may define the full or the Gaussian curvature
of a surface at a given point:

K = (R, 'RZ}",

A specific group o surfaces consists of those surfaces that can be generated though
moving a straight line in space. These are called ruled surfaces; at least one straight
line lying wholly in the plane can be placed through each point of such a surface.
However, this is not a sufficient condition allowing us to unroll the surface onto a
plane. For example, a onesheet hyperboloid is also a ruled surface (Figure 1, left). A
surface that can be unrolled onto a plane without any distortions is called a
developable surface. For each point lying on such a surface, the Gaussian curvature
equals 0.
K=0

Figure 1: Onesheet hyperboloid (left) and conical surface {right),
both surfaces are ruled surfaces, the conical surface is also developable one

Developable surfaces are generated by moving a straight line along a curve
(directrix). Provided the straight line is moved parallel to itself in the given direction,
a cylindrical surface is obtained. However, provided the straight line has a fixed point
or vertex, a conical surface is obtained (Figure 1, right). Only with such surfaces it is
possible to speak about unrolling or unfolding onto a plane. All other surfaces are
impossible to project onto a plane without deforming the content (Jovanovié, 1983},
Now, we are facing the basic problem in mathematical cartography: how to project a
curved surface and its elements onto a plane by reducing the deformation of the
content to a minimum level. A projection of a surface onto a plane without
deformation would mean the lengths of all linear elements as well as the angles and
areas have been preserved.

he procedure bringing us to the desired result is called projecting or mapping of

a curved surface onto o plane. Both terms are usually taken to be synonymous,
although in a narrow sense, projecting denotes a geometrical procedure where
relations between points in a given surface and their corresponding points in an
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auxiliary ruled surface (e.g. curved surface of a cylinder or cone) or directly in a
plane are set up with a central or parallel bundle of straight lines. The term mapping
denotes the mathematical connection between points on a surface and the
corresponding points (image) in a plane. There are few cartographic projections that
can actually be treated in terms of geometric projecting; names of individual
projections (e.g. conical, cylindrical, horizontal) indicating the type serve merely in
didactic purposes (Jovanovic, 1983). In literature we may encounter the division of
cartographic projections into geometrical and mathematical.

3 DEFORMATIONS IN CURVED SURFACE MAPPING

77 'he extent of the deformation in a mapped point (in a plane) is denoted with the
1L linear or particular scale. This is a ration between an infinitesimal linear element
(a straight line) in the projection plane and the corresponding linear element in the
surface. Therefore,
h TR 1
c, = lim A5 , 31
o0 B»A AB

where AB stand for the arc length in a plane and A'B’ for the length of the image of
the former in the plane (Maling, 1973, Jovanovi¢, 1983). The linear scale should not
be mistaken for the principal scale or the stated scale of the map. This is a reduction
of the map content which can be performed prior to or after the mapping into a
plane. The reduction has no effect on the deformation of the content. Technically
speaking, the linear scale is related to a specifically defined direction in a given point,
for it depends on the direction from which the point B in the equation 3.1 is neared
to the point A. This relation is shown in the following equation:c, = ¢,{a) .

" he ratios between the linear elements on the surface and their respective images
. 1n the plane need to be preserved to the highest extent possible. The deviations
of the linear scale from the principal unit

g, = l—c¢, 3.2

A

is called linear distortion. Linear distortion may be either positive or negative,
depending on whether the lincar element is contracted or extended.

4 SELECTING OPTIMAL CURVED SURFACE PROJECTIONS

Fﬁ%ﬂhe question imposing itself is how to select the optimal projection. A random
number of different conformal as well as equal-area projections can be
constructed for each surface. However, this is not possible for surfaces not being
developable for the projection into a plane cannot be conformal and equal-area at
the same time. The selection of the optimal projection is dictated by the shape and
size of the mapped region, and by the shape of the surface that is being mapped or
from which it is being mapped, as well as by our intentions. For the purposes of
various cartometric tasks (angle or direction measurement, measurement of area,
measurement of length), projections are selected according to the type and the
nature of distortions (Maling, 1989). When the mapped region is defined or properly
outlined as well, beside the surface being mapped into the plane, we may speak about
an optimal projection. On the whole, this is a projection containing minimal
distortion. What we have here is the Airy’s criterion requiring the sum of squared
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the entire mapped area to be minimal (Maling, 1973). The

istortions alon
ati he criterion 1s as follows:

cal form of
2
J{ {oc) dS = min,

where e(o) denotes linear distortion in a given point and direction, and S denoctes the
mapped area.
%ﬂhe pr o;ecﬁo& conforming to the abovementioned criterion is called the
projection of minimal distortions.

T beside the projection of (absolutely) minimal distortions, we may also speak about

14 conformal projection of minimal distortions as well as about a equal-area
projection of minimal distortions. The condition stands for the two projections as
well. However, they also need to comply with the conformity and the equal-area
condition. The derivation of such optimal projections is usually too demanding and a
fask imposgibic to perform analytically even for relatively simple surfaces and
mapped regions with simple definitions. The conformal projection of minimal
distortions for the mapping of an area of an ellipsoid bound with a closed polygon
was introduced only recently (MNestorov, 1997). In practice, the projection can be
performed only through numerical methods.

5 NON-CARTOGRAPHIC PROJECTIONS OF CURYVED SURFACES

T *he procedures of mapping the earth’s surface into a plane are a subject of

L. mathematical cartography. The procedures are based upon the fact that we have
to @@ai with a relatively simple surface: sphere or a ellipsoid of revolution (spheroid).
MNotwithstanding, the derivation of cartographic projections — as we have seen — can
be often a rather demanding task. If we do not limit our deliberations to a sphere or
ellipsoid but start dealing with surfaces in general, we encounter complex problems.
Fach even slightly more complex surface becomes in practice analytically insuperable
for the point of view of mapping into a plane. This means that the effort needed for
the derivation of corresponding projection equations, probably would not pay off.
However, if we desire to solve the problem analytically, we need to approximate the
surface in question to such a surface for which corresponding projection equations
have already been derived. One of the solutions to the problem in which we
renounce the analytical approach shall be described in the text that follows.

6 FORMATION OF WIRE FRAMES OF CURVED SURFACE

7T he metric analysis of a surface first requires the determination of a sufficient

L number of appropriately distributed points on the surface. The density of points
depends on the curvature of the surface in the given region and on the required
accuracy. Usually, well-definable points of details on the surface are selected. The
coordinates of these points (%, v, z) can be determined, for example, with procedures
found in stereophotogrammetry, An arbitrary (local) rectangular coordinate system is
applied in the procedure. Now, the surface can be defined analytically (as an
approximation surface of a specific type) or presented in the form of a triangular
irregular network — TIN. The letter is defined as a mesh of adjacent planar triangles
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1 he procedure described above of siretching into a plane has been developed and
L used for the planar presentation o f escos in the church o f St. Mary of Aliete in
Izola. Beside other products, the commissioner, the Municipality of Izola, the
Intermunicipial Institute for the Preservation of the Environment and Cultural
Heritage Piran, ordered the production of eight photographs of frescoes stretched
into a plane for the purposes of restoration works. The contractor implementing the
project was the Institute of Geodesy, Cartography and Photogrammetry FGG (Oven,
Berk, 1998). Nowadays, metric do wmemmp of cultural heritage objects is based
upon three-dimensional models of objects forming wire frames of individual lateral
sides (Kosmatin Fras et al., 1998). Therefore, all phases of acquisition and
presentation of such surfaces are a maiter of routine. The results of acquisition and
processing one of the frescoes are presented in this paper. The presented fresco is
located on a semicircular arch on the church ceiling.
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Figure 2: Photograph of the fresco
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9 CONCLUSION

i enerally, the presentation of curved surfaces in a plane is not feasible without
any distortions of content. A wide array of cartographic projections, enabling us
to mmml the distortions, is available for dealing ww,: simpie surfaces (the ﬁ/@d
surface of the sphere or the eHips@id Of r@voh@ti@ﬁ) W@V@f winen m comny

closely. TO dcnve the cerwsp@nmng O[(}]PCDOY for zbe mwfmca in awstmﬂ is all bu

an easy task. The paper laid out the possibility in which we renounce the analyiical

solution. Each surface can be approximated to planar triangular facets on the basis of

a set of random points on these surfaces. The optimal approximation is achieved

through Delaunay triangulation. The sides of obtained triangles form a surface wire

frame which is stretched into a plane keeping the distortions as minimal as possible.

Such stretching represents a very favorable approximation of the opmﬁaﬁ projection

of a surface into a plane. The described procedure can be translated into the

adjustment of a corresponding trilateral network by changing the roles of individual

- values. Existing software packages for the adjustment of g@@éehf networks can be

applied for stretching. The surface wire frame stretched into a plane than serves as a

basis for the planar presentation of the surface content.
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