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Gábor Gévay*

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, Szeged, 6720 Hungary
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Abstract

In a series of papers and in his 2009 book on configurations Branko Grünbaum de-
scribed a sequence of operations to produce new (n4) configurations from various input
configurations. These operations were later called the “Grünbaum Incidence Calculus”. We
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1 Introduction
In a series of papers and in his 2009 book on configurations [11], Branko Grünbaum de-
scribed a sequence of operations to produce new (n4) configurations from various input
configurations. These operations were later called the “Grünbaum Incidence Calculus” [13,
Section 6.5]. Some of the operations described by Grünbaum are specific to producing 3-
or 4-configurations. Other operations can be generalized in a straightforward way to pro-
duce (nk) configurations from either smaller (mk) configurations with certain properties,
or from (mk−1) configurations. LetNk be the smallest number such that for any n, n ≥ Nk

there exists a geometric (nk) configuration. For k = 2 and k = 3, the exact value of Nk is
known, and for k = 4 it is known that N4 = 20 or 24. We generalize two of the Grünbaum
Calculus operations in order to prove that for any integer k there exists an integer Nk and
we give bounds on Nk for k ≥ 5.

The existence of geometric 2-configurations is easily established. The only (connected)
combinatorial configuration (n2) is an n-lateral. For each n, n ≥ 3, an n-lateral can be
realized as a geometric multilateral (for the definition of a multilateral, see [11]). As a
specific example, an (n2) configuration can be realized as a regular n-gon with sides that
are extended to lines. (For larger values of n it can also be realized as an n-gonal star-
polygon, but the underlying combinatorial structure is the same.) Hence:

Proposition 1.1. A geometric (n2) configuration exists if and only if n ≥ 3. In other
words, N2 = 3.

For 3-configurations, N3 is known to be 9 (see [11, Section 2.1]); for example, Branko
Grünbaum provides a proof (following that of Schröter from 1888, see the discussion in
[11, p. 65]) that the cyclic combinatorial configuration C3(n), which has starting block
[0, 1, 3], can always be realized with straight lines for any n ≥ 9. That is:

Proposition 1.2. A geometric (n3) configuration exists if and only if n ≥ 9. In other
words, N3 = 9.

Note that there exist two combinatorial 3-configurations, namely (73) and (83), that do
not admit a geometric realization.

For k = 4, the problem of parameters for the existence of 4-configurations is much
more complex, and the best boundN4 is still not known. For a number of years, the smallest
known 4-configuration was the (214) configuration which had been studied combinatorially
by Klein and others, and whose geometric realization, first shown in 1990 [12], initiated
the modern study of configurations. In that paper, the authors conjectured that this was the
smallest (n4) configuration. In a series of papers [6, 7, 8, 9] (summarized in [11, Sections
3.1-3.4]), Grünbaum showed thatN4 was finite and less than 43. In 2008, Grünbaum found
a geometrically realizable (204) configuration [10]. In 2013, Jürgen Bokowski and Lars
Schewe [3] showed that geometric (n4) configurations exist for all n ≥ 18 except possibly
n = 19, 22, 23, 26, 37, 43. Subsequently, Bokowski and Pilaud [1] showed that there is
no geometrically realizable (194) configuration, and they found examples of realizable
(374) and (434) configurations [2]. In 2018, Michael Cuntz [5] found realizations of (224)
and (264) configurations. However, the question of whether a geometric (234) geometric
configuration exists is currently still open.

In this paper, N̄k will denote any known upper bound for Nk and NR
k will denote

currently best upper bound for Nk.
Summarizing the above results, we conclude:
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Proposition 1.3. A geometric (n4) configuration exists for n = 18, 20, 21, 22 and n ≥ 24.
Moreover, either N4 = 20 or N4 = 24 (depending on whether or not a (234) configuration
exists). In other words, NR

4 = 24.

The main result of the paper is the following result.

Theorem 1.4. For each integer k ≥ 2 the numbers Nk exist.

To simplify subsequent discussions, we introduce the notion of configuration-realiza-
bility, abbreviated as realizability, of numbers. A number n is k-realizable if and only if
there exists a geometric (nk) configuration. We may rephrase Proposition 1.3 by stating
that the numbers n = 18, 20, 21, 22 and n ≥ 24 are 4-realizable. Also note that the number
9 is 2- and 3-realizable but not k-realizable for any k ≥ 4.

2 Generalizing two constructions from the Grünbaum incidence cal-
culus

In this section, we generalize two constructions of the Grünbaum Incidence Calculus which
we will use to prove the existence of Nk for any k. As input to examples of these construc-
tions, we often will use the standard geometric realization of the (93) Pappus configuration
P , shown in Figure 1.

Figure 1: The standard geometric realization of the (93) Pappus configuration P .

The first, which we call affine replication and denote AR(m, k), generalizes Grün-
baum’s (5m) construction; it takes as input an (mk−1) configuration and produces a
((k + 1)mk) configuration with a pencil of m parallel lines.

The second, which we call affine switch, is analogous to Grünbaum’s (3m+) construc-
tion. It takes as input a single (mk) configuration with a set of p parallel lines in one direc-
tion and a set of q parallel lines in a second direction which are disjoint (in terms of config-
uration points) from the pencil of p lines, and it produces a configuration (((k−1)m+r)k)
for any r with 1 ≤ r ≤ p+ q. Applying a series of affine switches to a single starting (mk)
configuration with a pencil of q parallel lines produces a consecutive sequence (or “band”)
of configurations

(((k − 1)m+ 1)k), . . . , (((k − 1)m+ q)k)

which we will refer to as AS+(m, k, q).
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2.1 Affine replication

Starting from an (mk−1) configuration C we construct a new configuration D which is a
((k + 1)mk) configuration. A sketch of the construction is that k − 1 affine images of C
are carefully constructed so that each point P of C is collinear with the k − 1 images of P ,
and each line of C and its images are concurrent at a single point. Then D consists of the
points and lines of C and its images, the new lines corresponding to the collinearities from
each point P , and the new points of concurrence corresponding to the lines of C and their
images.

The details of the construction are as follows:

(1) Let A be a line that (i) does not pass through the intersection of two lines of C, whether
or not that intersection point is a point of the configuration; (ii) is perpendicular to no
line connecting any two points of C, whether or not that line is a line of the configura-
tion; (iii) intersects all lines of C.

(2) Let α1, α2, . . . , αk−1 be pairwise different orthogonal axial affinities with axisA. Con-
struct copies C1 = α1(C), C2 = α2(C),. . . , Ck−1 = αk−1(C) of C = C0.

(3) Let ` be any line of C. Since A is the common axis of each αi, the point A ∩ ` is fixed
by all these affinities. This means that the k-tuple of lines `, α1(`), . . . , αk−1(`) has a
common point of intersection lying on A. We denote this point by F`. By condition (i)
in (1), for different lines `, `′ ∈ C the points F`, F`′ differ from each other; they also
differ from each point of the configurations Ci (i = 1, 2, . . . , k− 1). We denote the set
{F` : ` ∈ C} of points lying on A by F .

(4) Let P be any point of C. Since the affinities αi are all orthogonal affinities (with the
common axis A), the k-tuple of points P, α1(P ), . . . , αk−1(P ) lies on a line perpen-
dicular to A (and avoids A, by condition (i)). We denote this line by `P . Clearly, we
have altogether m such lines, one for each point of C, with no two of them coinciding,
by condition (ii). We denote this set {`P : P ∈ C} of lines by L.

(5) Put D = C0 ∪ C1 ∪ · · · ∪ Ck−1 ∪ F ∪ L.

The conditions of the construction imply that D is a ((k+ 1)mk) configuration. Moreover,
by construction, D has a pencil of m parallel lines. Figures 2 and 3 show two examples of
affine replication, first starting with a (42) configuration to produce a (163) configuration,
and then starting with the (93) Pappus configuration to produce a (454) configuration.

Remark 2.1. The orthogonal affinities used in the construction are just a particular case
of the axial affinities called strains [4]; they can be replaced by other types of axial affini-
ties, namely, by oblique affinities (each with the same (oblique) direction), and even, by
shears (where the direction of affinity is parallel with the axis) [4], while suitably adjusting
conditions (i–iii) in (1).

We may summarize the above discussion as follows:

Lemma 2.2. If affine replication AR(m, k) is applied to any (mk−1) configuration, the
result is a (((k + 1)m)k) configuration with a pencil of m parallel lines.



L. W. Berman, G. Gévay and T. Pisanski: Connected geometric (nk) configurations 5

Figure 2: Affine replication AR(4, 3) applied to a quadrilateral, i.e. a (42) configuration; it
results in a (163) configuration. The corresponding ordinary quadrangles are shaded (the
starting, hence each of the three quadrangles are parallelograms). The axis A is shown by
a dashed line.

2.2 Affine switch

In our description of this construction, we are inspired by Grünbaum [11, §3.3, pp. 177–
180] but we have chosen a slightly different approach (in particular, we avoid using 3-
space). At the same time, we generalize it from (m4) to (mk).

A sketch of the construction is as follows: Suppose that C is an (mk) configuration that
contains a pencil P of p parallel lines in one direction, and a pencil Q of q parallel lines
in a second direction, where the two pencils share no common configuration points; we
say that the pencils are independent. For each subpencil S of P and T of Q containing s
parallel lines and t parallel lines respectively, with 1 ≤ s ≤ p and 0 ≤ t ≤ q, we form the
subfiguration Ĉ by deleting S and T from C (here we use the term subfiguration in the sense
of Grünbaum [11]). We then carefully construct k−2 affine images of Ĉ in such a way that
for each (deleted) line ` in S and for each point P1, P2, . . . , Pk on `, the collection of lines
through each Pi and its images all intersect in a single point Y`, and simultaneously, for
each line `′ in T and for each point Q1, Q2, . . . , Qk on `′, the collection of lines through
Qi and its images all intersect in a single point X`′ . Let D be the collection of all the
undeleted points and lines of Ĉ and its affine images, and for each of the deleted ` and `′,
the new lines through each point Pi Qi and their images, the points Y`, and the points X`′ ;
then D is a (((k − 1)m+ s+ t)k) configuration.

As a preparation, we need the following two propositions.

Proposition 2.3. Let α be a (non-homothetic) affine transformation that is given by a
diagonal matrix with respect to the standard basis. Note that in this case α can be written
as a (commuting) product of two orthogonal affinities whose axes coincide with the x- and
y-axis, respectively:(

a 0
0 b

)
=

(
a 0
0 1

)(
1 0
0 b

)
=

(
1 0
0 b

)(
a 0
0 1

)
.
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Figure 3: Affine replication AR(9, 4) applied to the (93) Pappus configuration, which
yields a (454) configuration. The starting figure is indicated by thick segments, while
the first image is highlighted by red segments. The axis A is shown by a dashed line. The
construction is chosen so as to exemplify that ordinary mirror reflection can also be used.
Note that the resulting configuration contains a pencil of 9 parallel lines arising from the
construction, shown in green.
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Let P0(x0, 0), P1(x0, y1), . . . , Pk(x0, yk) be a range of k + 1 different points on a line
which is perpendicular to the x-axis and intersects it in P0. Then the k lines connecting
the pairs of points (P1, α(P1)), . . . , (Pk, α(Pk)) form a pencil with centre Cx such that Cx

lies on the x-axis, and its position depends only on α and x0.
Likewise, letQ0(x0, y0), Q1(x1, y0), . . . , Qk(xk, y0) be a range of k+1 different points

on a line which is perpendicular to the y-axis and intersects it in Q0. Then the k lines
connecting the pairs of points (Q1, α(Q1)), . . . , (Qk, α(Qk)) form a pencil with centre Cy

such that Cy lies on the y-axis, and its position depends only on α and y0.

Proof. An elementary calculation shows that

Cx = Cx

(
0,
a− b
b− 1

x0

)
, resp. Cy = Cy

(
0,
b− a
a− 1

y0

)
is the common point of intersection of any two, hence of all the lines in question.

Proposition 2.4. Let h ≥ 3 be a positive integer, and for each j with j = 1, . . . , h− 1, let
the affine transformation αj be given by the matrix

Mj =

 h− j
h

0

0
h+ j

h

 . (2.1)

Then for any point P , the points P, α1(P ), . . . , αh−1(P ) are collinear.

Proof. Choose any j′ and j′′, and form the difference matrices Mj′ − U and Mj′′ − U
with the unit matrix U . Observe that these matrices are such that one is a scalar multiple
of the other. Hence the vectors

−−→
PP ′ and

−−→
PP ′′ are parallel, where P ′ = αj′(P ) and P ′′ =

αj′′(P ). This means that the points P , P ′ and P ′′ lie on the same line.

Now we apply the following construction. Let C be an (mk) configuration such that
it contains a pencil P of p ≥ 1 parallel lines and a pencil Q of q ≥ 1 parallel lines,
too, such that these pencils are perpendicular to each other and are independent. Note
that any configuration containing independent pencils in two different directions can be
converted by a suitable affine transformation to a configuration in which these pencils will
be perpendicular to each other.

Choose a position of C (applying an affine transformation if necessary) such that these
pencils are parallel to the x-axis and y-axis, respectively.

(1) Remove lines `1, . . . , `s (s ≤ p) from the pencil P parallel to the x-axis and `s+1,

. . . , `s+t (0 ≤ t ≤ q) from the pencil Q parallel to the y-axis. Let Ĉ denote the
substructure of C obtained in this way.

(2) Let h be a positive integer (say, some suitable multiple of k), and for each j, j =
1, . . . , k − 2, let αj be an affine transformation defined in Proposition 2.4. Form the
images αj(Ĉ) for all j given here.
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Figure 4: Illustration for Propositions 2.3 and 2.4. Affine transformations with parameters
h = 8 and j = 1, . . . 5 are applied on a square.

(3) Let P be a point of Ĉ that was incident to one of the lines `i removed from C. Take the
images αj(P ) for all j given in (2). By Proposition 2.4, all the k − 1 points P, αj(P )
are collinear. Let ci(P ) denote this line.

(4) Take all the configuration points on `i and repeat (3) for each of them. By Proposi-
tion 2.3, the k-set of lines {ci(P ) : P ∈ `i} form a pencil whose centre lies on the
x-axis or the y-axis according to which axis `i is perpendicular to.

(5) Let r = (s + t) ∈ {1, 2, . . . , p + q} be the number of lines removed from the pencils
of C in the initial step of our construction. Repeat (4) for all these lines. Eventually, we
obtain rk new lines and r new points such that the set of the new lines is partitioned
into r pencils, and the new points are precisely the centres of these pencils (hence they
lie on the coordinate axes). Observe that there are precisely k lines passing through
each of the new points, and likewise there are precisely k points lying on each of the
new lines.

(6) Putting everything together, we form a (((k − 1)m+ r)k) configuration, whose

• points come from the (k − 1)m points of the copies of Ĉ, completed with the r
new points considered in (5).

• lines come from the (k − 1)(m− r) lines of the copies of Ĉ, completed with the
rk new lines considered in (5).

We use the notation AS(m, k, r) to represent the (((k − 1)m + r)k) configuration
described above.

Summarizing the discussion above, we conclude:

Lemma 2.5. Beginning with any (mk) configuration with independent pencils of p ≥ 0 and
q ≥ 1 parallel lines, for each integer r with 1 ≤ r ≤ p + q, the affine switch construction
produces an (nk) configuration, where n = (k − 1)m+ r.
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Note that p+q independent lines in an (mk) configuration covers k(p+q) ≤ m points.
This gives an upper bound p + q ≤ m/k, where the equality is attained only if m divides
k.

In this paper we use the above Lemma 2.5 in connection with Lemma 2.2 only for the
case of a single pencil of parallel lines, such that p = 0.

Corollary 2.6. From any starting (mk) configuration that has a pencil of q parallel lines,
we can apply a sequence of affine switches by removing 1, 2, . . . , q lines in sequence, so as
to construct a sequence of consecutive configurations

[(((k − 1)m+ r)k)]qr=1 = [AS(m, k, r)]qr=1.

This collection of consecutive configurations is represented by the notation AS+(m, k, q).
That is, AS+(m, k, q) = [AS(m, k, r)]qr=1.

Example 2.7. Figure 5 illustrates an application of this construction to the Pappus configu-
rationP (cf. Figure 1). Removing only one line from the horizontal pencil results in a (193)
configuration, shown in Figure 5(a). Removing two or three lines results in a (203) or (213)
configuration, respectively, shown in Figures 5(b) and 5(c). (Observe that since the Pappus
configuration has 9 points, the maximal total number of lines in independent pencils is 3,
since any three disjoint lines in the configuration contain all the points of the configuration.)
Taken together the three configurations, we have: [(193), (203), (213)] = AS+(9, 3, 3).

(a) A (193) configuration (b) A (203) configuration (c) A (213) configuration

Figure 5: Configurations (193), (203), and (213), constructed by applying the affine switch
construction to the realization of the Pappus configuration with a pencil of 3 parallel lines,
shown in Figure 1, by deleting one, two, or three lines respectively. (The vertical axis of
affinity, denoted by dashed line, does not belong to the configuration.)

Since axial affinities play a crucial role in the constructions described above, we recall
a basic property. The proof of the following proposition is constructive, hence it provides
a simple tool for a basically synthetic approach to these constructions, which is especially
useful when using dynamic geometry software to construct these configurations.
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Proposition 2.8. An axial affinity α is determined by its axis and the pair of points (P, P ′),
where P is any point not lying on the axis, and P ′ denotes the image of P , i.e. P ′ = α(P ).

Proof. In what follows, for any point X , we denote its image α(X) by X ′. Let Q be an
arbitrary point not lying on the axis and different from P . Take the line PQ, and assume
that it intersects the axis in a point F (see Figure 6a). Thus PQ = FP . Take now the line
F ′P ′, i.e., the image of FP . Since F is a fixed point, i.e. F ′ = F , we have F ′P ′ = FP ′.
This means that Q′ lies on FP ′, i.e. P ′Q′ = FP ′. To find Q′ on FP ′, we use the basic
property of axial affinities that for all points X not lying on the axis, the lines XX ′ are
parallel with each other (we recall that the direction of these lines is called the direction
of the affinity). Accordingly, a line passing through Q which is parallel with PP ′ will
intersect FP ′ precisely in the desired point Q′.

(a) (b)

Figure 6: Construction of the image of a pont Q under axial affinity; the axis is the vertical
red line, the direction of affinity is given by the blue line. Here we use oblique affinity, but
the construction given in the proof is the same in any other types of axial affinities.

On the other hand, if PQ is parallel with the axis, then clearly so is P ′Q′. In this case
Q′ is obtaned as the fourth vertex of the parallelogram determined by P ′, P and Q (see
Figure 6b).

Remark 2.9. In using integer parameters h and j above, we followed Grünbaum’s original
concept [11] (as mentioned explicitly at the beginning of this subsection). However, the
theory underlying Propositions 2.3 and 2.4 makes possible using continuous parameters
as well, so that the procedure becomes in this way much more flexible. In what follows
we outline such a more general version, restricted to using only one pencil of lines to be
deleted.

Start again with a configuration C, and assume that the pencilP is in horizontal position;
accordingly, the axis that we use is in vertical position (see e.g. Figure 5). Choose a line `
in P , and a configuration point P0 on `; then, remove `. P0 will be the initial point of our
construction (e.g., in Figure 5 the “north-west” (black) point of the starting configuration).
Choose a point C` on the axis such that the line C`P0 is not perpendicular to the axis (in
our example, this is the red point in Figure 5a).

Now let t ∈ R be our continuous parameter. Take the point

P = tC` + (1− t)P0; (2.2)
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thus P is a point on the line C`P0, and as t changes, P slides along this line. Moreover, by
Proposition 2.8 we see that the pair of points (P0, P ) determines two orthogonal affinities
whose axes are perpendicular to each other. In particular, the axes are precisely the coor-
dinate axes. These affinities act simultaneously, i.e. P0 is sent to P by their (commuting)
product. Using coordinates, such as P0(x0, y0) and P (x, y), we also see that the ratio of
these affinities is y/y0 (for that with horizontal axis), respectively x/x0 (for that with ver-
tical axis). (Note that these ratios, using the relation (2.2), can also be expressed by the
parameter t and by the prescribed coordinates of P0 and C`. Furthermore, similarly, the
matrix (2.1) above can also be parametrized by t; we omit the details.)

It is easily checked that both Proposition 2.3 and Proposition 2.4 remains valid with
this continuous parameter t. Hence, for any P , we can construct the corresponding affine
image of C (or its substructures Ĉ with lines of any number r removed), together with the
new lines (which are denoted by red in our example of Figure 5). In particular, in case of
k-configurations, we need to choose altogether k − 2 points on the line C`P0 (note the for
t = 0, the starting copy C returns; for t = 1 the image of C collapses to a segment within
the y-axis, and for a third value depending on the slope of C`P0, it collapses to a segment
within the x-axis; these cases thus are to be avoided).

3 Proof of the main theorem
In this section we prove the main theorem of our paper. For notational convenienence,
given integers a < b, let [a : b] denote the range {a, a + 1, . . . , b}. Similarly, for integer
function f(s) the range {f(a), f(a + 1), . . . , f(b)} will be denoted by [f(s)]bs=a. The
crucial step in the proof will be provided by the following Lemma.

Lemma 3.1. Assume that for some k ≥ 3, Nk−1 exists and that N̄k−1 is any known upper
bound for it. Then Nk exists and: N̄k = (k2 − 1) max(N̄k−1, k

2 − 2) is an upper bound
for it. Moreover, if we have two upper bounds, say N̄k−1 < Ñk−1 for Nk−1, the better one
will produce a better upper bound for Nk.

This Lemma will be proven with the tools from previous section by applying affine
replication and affine switch. More precisely, Lemma 2.2 and Corollary 2.6 will be used.

Proof of Lemma 3.1. Let N̄k−1 denote any known upper bound for Nk−1. By definition,
the sequence of consecutive numbers

a = N̄k−1, a+ 1, . . . , a+ s, . . . (3.1)

are all (k− 1)-realizable; in other words, for each s, s = 0, 1, . . . , there exists a geometric
((a+ s)k−1) configuration (recall the definition of realizability, given in the Introduction).
Apply affine replication to these configurations; by Lemma 2.2, the sequence of numbers

(k + 1)a, (k + 1)(a+ 1), . . . , (k + 1)(a+ s), . . . (3.2)

are all k-realizable. Note that this is an arithmetic sequence with difference (k + 1). Fur-
thermore, observe that for eachX ≥ a, the geometric k-configuration realizing the number
(k + 1)X that was produced by affine replication has X new parallel lines. Hence, we can
apply a sequence of affine switch constructions to each of these configurations ((k+1)Xk).
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By Corollary 2.6, the sequences AS+((k + 1)X, k,X) of configurations is produced. It
follows that the sequences of numbers

[(k − 1)(k + 1)a+ 1 : (k − 1)(k + 1)a+ a],

[(k − 1)(k + 1)(a+ 1) + 1 : (k − 1)(k + 1)(a+ 1) + (a+ 1)],

[(k − 1)(k + 1)(a+ 2) + 1 : (k − 1)(k + 1)(a+ 2) + (a+ 2)], . . . (3.3)

are all k-realizable.
Observe that from the initial outputs of affine replication, n = X(k + 1) is realizable

as long as X ≥ N̄k−1. Thus, every “band” of consecutive configurations produced by
affine switches can be extended back one step, so there exists a band of consecutive k-
configurations

[(k − 1)(k + 1)X : (k − 1)(k + 1)X +X)]

for each initial configuration (Xk−1). Another way to say this is that we can fill a hole of
size 1 between the bands of configurations listed in equation (3.3) using the output of the
initial affine replications, listed in equation (3.2).

To determine when we have either adjacent or overlapping bands, then, it suffices to
determine when the last element of one band is adjacent to the first element of the next
band; that is, when

(k − 1)(k + 1)X +X + 1 ≥ (k − 1)(k + 1)(X + 1).

It follows easily that X ≥ k2 − 2.
Hence, as long as we are guaranteed that a sequence of consecutive configurations

(qk−1), ((q + 1)k−1), . . . exists, it follows that we are guaranteed the existence of consec-
utive k-configurations Qk, (Q + 1)k, . . . , where Q = (k2 − 1)(k2 − 2). However, since
we do not know whether that consecutive sequence exists, in the (extremely common) case
where N̄k−1 > (k2 − 1)(k2 − 2), the best that we can do is to conclude that

Nk ≤ (k2 − 1) max{N̄k−1, k
2 − 2}.

This result gives rise to an elementary proof by induction for the main theorem.

Proof of Theorem 1.4. Let s = 2. The number Ns = N2 = 3 exists. This is the basis of
induction. Now, let s = k − 1. By assumption, Nk−1 exists and some upper bound N̄k−1
is known. By Lemma 3.1, N̄k = (k2 − 1) max(N̂k−1, k

2 − 2) is an upper bound for Nk.
Therefore Nk exists and the induction step is proven.

Recall that we let NR
k denote the best known upper bound for Nk. The same type of

result follows if we start with the best known upper bound NR
s for some s ≥ 2. However,

the specific numbers for upper bounds depend on our starting condition. Table 1 shows the
difference if we start with s = 2, 3, 4. The reason we are using only these three values for
s follows from the fact that only NR

s , 2 ≤ s ≤ 4 have been known so far.
The rightmost column of Table 1 summarises the information given in other columns

by computing the minimum in each row and thereby gives the best bounds that are available
using previous knowledge and direct applications of Lemma 3.1.
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Table 1: Bounds on Nk from iterative applications of Lemma 3.1. Different bounds are
produced if the iteration is started with NR

2 = N2 = 3, NR
3 = N3 = 9 or with NR

4 = 24.
Boldface numbers give best bounds using this method and current knowledge.

k N̄k with NR
2 = 3 N̄k with NR

3 = 9 N̄k with NR
4 = 24 NR

k

2 3 - - 3
3 56 9 - 9
4 840 210 24 24
5 20 160 5 040 576 576
6 705 600 176 400 20 160 20 160
7 33 868 800 8 467 200 967 680 967 680
8 2 133 734 400 533 433 600 60 963 840 60 963 840
9 170 698 752 000 42 674 688 000 4 877 107 200 4 877 107 200
10 16 899 176 448 000 4 224 794 112 000 482 833 612 800 482 833 612 800

If new knowledge about best current values of NR
k for small values of k becomes

available, we may use similar applications of Lemma 3.1 to improve the bounds of the
last column. Since, the values for k = 2 and k = 3 are optimal, the first candidate
for improvement is k = 4. A natural question is what happens if someone finds a geo-
metric (234) configuration. In this case Lemma 3.1 would give us for k = 5 the bound
(k2 − 1) max(NR

k−1, k
2 − 2) = (52 − 1) max(20, 52 − 2) = 24× 23 = 552, an improve-

ment over 576. An alternative feasible attempt to improve the bounds would be to use other
methods in the spirit of Grünbaum calculus to improve the current bound 576 for k = 5.
However, there is another approach that can improve the numbers even without introducing
new methods. It is presented in the next section.

4 Improving the bounds
Recall that NR

3 = N3 = 9, and NR
4 = N4 = 21 or 24, according to whether or

not a (234) configuration exists. If we apply the procedure in Lemma 3.1 using as in-
put information N3 = NR

3 = 9 (that is, beginning with a sequence of 3-configurations
(93), (103), (113) . . .), Lemma 3.1 says that

Nk ≤ (k2 − 1) max{NR
k−1, k

2 − 2} =⇒ N4 ≤ (15) max{9, 14} = 210.

However, we know observationally that N4 = 21 or 24. Thus, we expect that Theo-
rem 1.4 is likely to give us significant overestimates on a bound for Nk for larger k.

For k = 5, the best we can do at this step with these constructions is the bound given
by Lemma 3.1, beginning with the consecutive sequence of 4-configurations ((244), (254),
(264), . . .). In this case, Lemma 3.1 predicts that N5 ≤ (24) max(24, 23) = 576. In a sub-
sequent paper, we will show that this bound can be significantly decreased by incorporating
other Grünbaum-calculus-type constructions and several ad hoc geometric constructions
for 5-configurations.

However, we significantly decrease the bound on Nk for k ≥ 6 by refining the con-
struction sequence given in Lemma 3.1: instead of beginning with NR

k−1 determined by
iterative applications of the sequence in Lemma 3.1, we consider all possible sequences
determined by applying a series of affine replications, followed by a final affine switch.
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First we introduce a functionN(k, t, a, d) with positive integer parameters k, t, a, d and
t < k. Define for t < k − 1:

N(k, t, a, d) := (k2 − 1)

(
k!

(t+ 1)!

)
max

{
a, (k2 − 1)d

}
,

and for t = k − 1:

N(k, k − 1, a, d) := (k2 − 1) max
{
a, (k2 − 1)d− 1

}
.

This value N(k, t, a, d) is precisely the smallest n after which we are guaranteed there
exists a sequence of consecutive k-configurations produced by starting with an initial se-
quence of t-configurations a, a + d, ..., and sequentially applying affine replications fol-
lowed by a final affine switch as described above.

The following Lemma gives us a quite general and powerful tool for bound improve-
ments without making any changes in constructions.

Lemma 4.1. Let t ≥ 2 be an integer and let a, a+d, a+ 2d, . . . be an arithmetic sequence
with integer initial term a and integer difference d such that for each s = 0, 1, . . . geometric
configurations ((a + sd)t) exist. Then for any k > t the value N(k, t, a, d) defined above
is an upper bound for Nk; i.e., N(k, t, a, d) ≥ Nk.

Proof of Lemma 4.1. Beginning with an arithmetic sequence of t-configurations, we con-
struct a consecutive sequence of k-configurations by iteratively applying a sequence of
affine replications to go from t-configurations to (k − 1)-configurations; a final affine
replication to go from (k − 1)-configurations to k-configurations with a known number
of lines in a parallel pencil; and finish by applying affine switch on that final sequence of
k-configurations to produce bands of consecutive configurations. We then analyze at what
point we are guaranteed that the bands either are adjacent or overlap.

Specifically, starting with a sequence of t-realizable numbers a, a + d, a + 2d, . . . we
successively apply k−t affine replications to the corresponding sequence of configurations
to form sequences of s-realizable numbers for t ≤ s ≤ k:

a, a+ d, a+ 2d, . . .
AR(·,t+1)−−−−−−→
(t+1)-cfgs

(t+ 2)a, (t+ 2)(a+ d), (t+ 2)(a+ 2d), . . .

AR(·,t+2)−−−−−−→
(t+2)-cfgs

(t+ 3)(t+ 2)a, (t+ 3)(t+ 2)(a+ d),

(t+ 3)(t+ 2)(a+ 2d), . . .

...

AR(·,k)−−−−−→
k-cfgs

(k + 1)!

(t+ 1)!
a,

(k + 1)!

(t+ 1)!
(a+ d),

(k + 1)!

(t+ 1)!
(a+ 2d), . . .

(4.1)

By Lemma 2.2, each of the k-configurations corresponding to the realizable numbers in
equation (4.1) produced from a starting configuration X has a pencil of k!

(t+1)!X parallel
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lines. To those configurations we apply the affine switch operation:

(k + 1)!

(t+ 1)!
a,

(k + 1)!

(t+ 1)!
(a+ d),

(k + 1)!

(t+ 1)!
(a+ 2d), . . .

AS+(·,k,·)−−−−−−→
k-cfgs

[
(k − 1)

(k + 1)!

(t+ 1)!
a+ 1 : (k − 1)

(k + 1)!

(t+ 1)!
a+

k!

(t+ 1)!
q

]
,[

(k − 1)
(k + 1)!

(t+ 1)!
(a+ d) + 1 : (k − 1)

(k + 1)!

(t+ 1)!
(a+ d) +

k!

(t+ 1)!
(a+ d)

]
, . . . (4.2)

As in the proof of Theorem 1.4, observe that the (nk) configurations described in (4.1)
all have n as a multiple of (k+1)!

(t+1)! . That is, any n divisible by (k+1)!
(t+1)! is k-realizable as long

as when n = (k+1)!
(t+1)!X , X is larger than NR

t . We thus can extend our band of consecutive
realizable configurations back one step, to be of the form[

(k − 1)
(k + 1)!

(t+ 1)!
X : (k − 1)

(k + 1)!

(t+ 1)!
X +

k!

(t+ 1)!
X

]
for a starting t-realizable number X .

Successive bands of this form are guaranteed to either exactly meet or to overlap when
the end of one band, plus one, equals or is greater to the beginning of the next, that is, when

(k − 1)
(k + 1)!

(t+ 1)!
X +

k!

(t+ 1)!
X + 1 ≥ (k − 1)

(k + 1)!

(t+ 1)!
(X + d) =⇒

X ≥ (k2 − 1)d− (t+ 1)!

k!
. (4.3)

When t = k − 1, (t+1)!
k! = 1, while when t < k − 1, (t+1)!

k! < 1, and moreover,
inequality (4.3) holds as long as X is greater than the bound on t-realizable configurations.

We refine and improve the upper bounds of Table 1 with Theorem 4.2. This proof
proceeds by showing, given a starting arithmetic sequence of consecutive t-configurations,
a construction method for producing a sequence of consecutive k-configurations.

Theorem 4.2. Recursively define

N̂k = (k2 − 1) min
3≤t<k

{N(k, t, N̂t, 1)}

with N̂3 = N3 = 9 and N̂4 = NR
4 = 24. Then N̂k is an upper bound for Nk.

Proof. Observe that by unwinding definitions,

N̂k = (k2 − 1) min
3≤t≤k−1

{
k!

(t+ 1)!
max

{
N̂t, k

2 − 1
}}

.

By construction, since for each N̂k we have shown there exists consecutive k-configu-
rations for each n ≥ N̂k, it follows that Nk ≤ N̂k, and the result follows.



16 Art Discrete Appl. Math. 4 (2021) #P3.14

Table 2: Bounds on Nk produced from Theorem 4.2. The values for NR
k given in this table

agree with the record values listed in Table 1 for all k ≤ 5 (boldface), and are strictly better
for k ≥ 6.

k N̂k = NR
k formula initial sequence

4 24 - -
5 576 (52 − 1)2 t = 4
6 7 350 6(62 − 1)2 t = 4
7 96 768 7 · 6 · (72 − 1)2 t = 4
8 1 333 584 8!

5! (8
2 − 1)2 t = 4

9 19 353 600 9!
5! (9

2 − 1)2 t = 4
10 287 400 960 10!

6! · 576 · (102 − 1) t = 5
11 3 832 012 800 11!

6! · 576 · (112 − 1) t = 5
...

24 ≈ 2.85× 1026 24!
6! · 576 · (242 − 1) t = 5

25 ≈ 8.39× 1027 25!
6! · (25

2 − 1)2 t = 5
26 ≈ 8.02× 1030 26!

6! · (262 − 1)2 t = 5
...

32 ≈ 3.82× 1038 32!
6! · (322 − 1)2 t = 5

33 ≈ 1.38× 1040 33!
7! · 7350 · (332 − 1) t = 6

...
85 ≈ 2.97× 10132 85!

7! · 7350 · (852 − 1) t = 6
86 ≈ 2.63× 10134 86!

7! · (86
2 − 1)2 t = 6

...
109 ≈ 4.04× 10180 109!

7! (1092 − 1)2 t = 6
110 ≈ 4.61× 10182 110!

8! ·
7!
5! · (7

2 − 1)2 · (1102 − 1) t = 7

Applying Theorem 4.2 results in the bounds for Nk are shown in Table 2.
There are some interesting things to notice about the bounds from Theorem 4.2 shown

in Table 2. First, note that t = 3 is never used in determining N̂k. Second, for example,
the bound N̂10 uses an initial sequence of 5-configurations, rather than starting with 4-
configurations. To understand why, observe that

N̂10 = (k2 − 1) min
3≤t≤9

{N(k, t, N̂t, 1)}

= 99 min

{
10!

4!
max{N̂3 = 9, 99}, 10!

5!
max{N̂4 = 24, 99}, 10!

6!
max{N̂5 = 576, 99},

10!

7!
max{N̂6 = 7350, 99}, . . . , 10!

10!
max{N̂9, 99}

}
= 99 min

{
10!

4!
99,

10!

5!
99,

10!

6!
576,

10!

7!
N̂6, . . . , N̂9

}
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Since 6 · 99 > 576 (and the values N̂t for 6 ≤ t ≤ 9 much larger than either), the min-
imum of that list is actually 10!

6! 576, and the computation for N̂10 starts with the sequence
of consecutive 5-configurations (5765), (5775), . . . rather than with (244), (254), . . .. Se-
quences with t = 5 begin to dominate when 6(k2 − 1) > 576 = (52 − 1)2; that is,
when k ≥ d

√
97e = 10. Sequences with t = 6 begin to dominate when 7(k2 − 1) >

6(62 − 1)2 = 7350, or k ≥
⌈√

1051
⌉

= 33. Sequences with t = 7 will dominate when
8(k2 − 1) > 7 · 6 · (72 − 1)2, that is k ≥ d

√
12097e = 110. However, note that these

bounds are absurdly large; N̂110 ≈ 4.6× 10182.

In addition, observe that since k = 25 is the smallest positive integer satisfying k2−1 >
576, the bounds for N̂25 use the 252−1 choice rather than N̂5 in taking the maximum, even
though both N̂24 and N̂25 are starting with the same initial sequence of 5-configurations,
and there is a similar transition again at k = 86, when the function is using 6-configurations
to produce the maximum. At this position, since 852−1 = 7224 and 862−1 = 7395, N̂85

uses N̂6 = 7350, but N̂86 transitions to using 862 − 1 to compute the maximum.

5 Future work

With better boundsNR
t developed experimentally for small values of t, in the same way that

NR
4 = 24 has been determined experimentally, we anticipate significantly better bounds

NR
k , for k > t, without changing the methods for obtaining the bounds.

One obvious approach is to improve the bookkeeping even further. For instance, in
Theorem 4.2 we only used arithmetic sequences with d = 1 in N(k, t, a, d) and ignoring
any existing configuration (mt) for m < Nt. In particular, for t = 4, we could have
used N(k, 4, 18, 2) since 18, 20, 22, 24, . . . form an arithmetic sequence of 4-realizable
numbers. Our experiments indicate that this particular sequence has no impact in improving
the bounds. However, by carefully keeping track of the existing t-configurations belowNR

t ,
other more productive arithmetic sequences may appear.

Another approach is to sharpen the bounds for Nk, for general k. This can be achieved,
for instance, by generalizing some other “Grünbaum Calculus” operations, which we plan
for a subsequent paper. We also plan to apply several ad hoc constructions for 5- and 6-
configurations to further sharpen the bound for N5 and N6, which will, in turn, lead to
significantly better bounds for Nk for higher values of k. However, based on the work in-
volved in bounding N4 and the fact that N4 is not currently known (and on how hard it was
to show the nonexistence of an (194) configuration), we anticipate that even determining
N5 exactly is an extremely challenging problem.

Finally, very little is known about existence results on unbalanced configurations, that
is, configurations (pq, nk) where q 6= k. While some examples and families are known,
it would be interesting to know any bounds or general results on the existence of such
configurations.
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Gábor Gévay https://orcid.org/0000-0002-5469-5165
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