
Elektrotehniški vestnik 77(1): 69–74, 2010
Electrotechnical Review, Ljubljana, Slovenija

Robot Grasping Using an ArToolKit Library

Bojan Nemec
Institut Jožef Stefan, Department for Automatics, biocybernetics and robotics, Jamova cesta 39, 1000 Ljubljana,
Slovenija
E-mail: bojan.nemec@ijs.si

Abstract. The paper describes an efficient approach to robot grasping of randomly positioned and oriented
objects by using a single camera. For object location and orientation estimation, an open source ArTool Kit library
was used. A miniature camera was mounted at the robot gripper and an appropriate gripping pose was achieved by
using visual servoing, thus eliminating the tedious calibration procedures. The overall control scheme was
implemented in Matlab/Simulink using a newly developed robot programming language MatRol (Matlab Robot
Language). An illustrative example is shown consisting of sorting randomly scattered cubes on the table by using
a vision-controlled robot.

Key words: robotics, robot vision, visual tracking, robot programming

Robotsko prijemanje objektov z uporabo ArToolKit knjižnice

Povzetek. V prispevku opisujemo učinkovit način prijemanja
naključno pozicioniranih in orientiranih objektov v prostoru z
uporabo ene same kamere. To je mogoče samo v primeru, če
natančno poznamo obliko in velikost predmeta ter na podlagi
slike sklepamo o legi in orientaciji. To možnost nam omogoča
javno dostopna knjižnica ArToolKit. Da bi se izognili zamud-
nim postopkom kalibracije, smo kamero namestili v robotsko
prijemalo in problem reševali s kamero v povratni zanki (vi-
sual servoing). Celotno regulacijsko shemo smo implemetirali
v programskem okolju Matlab/Simulink. Razvili smo tudi nov
robotski programski jezik MatRoL (Matlab Robot Language), ki
je zelo učinkovit pri raziskovalnem delu na področju robotike.
Opisali smo ilustartiven primer sestavljanja napisa s pomočjo
raztresenih kock na mizi, kjer pokažemo, kako lahko enostavno
rešimo sicer za robota zahtevno nalogo.

Ključne besede: robotika, umetni vid, programiranje robotov

1 Introduction

In robotics, we are very often faced with the problem of
determination of the pose (position and orientation) of
an object in the environment to be used for robot ma-
nipulation. To determine the pose of an object, we use
various senors, either CCD cameras, laser scanners, RF
tags or special markers. The most universal sensors are
CCD cameras but they require more sophisticated algo-
rithms for object determination and recognition. In de-
termination of the location of an object in a 3D-space,
the most common solution are stereo cameras, since it is
well known that it is not possible to estimate the position

Received 29 September 2009
Accepted 11 January 2010

of a point in a 3D-space using a single camera. On the
other hand, we know that humans can grasp and manipu-
late with objects using only one eye. This is possible be-
cause humans know the objects and gather from their size
and appearance to the pose. Also when handling with un-
known objects, we can successfully manipulate with them
if we can compare their appearance with known objects in
the neighborhood, e.g. unknown, previously unseen ob-
ject placed on a table. This ability can be imitated also
with computer vision. If we know the appearance of the
object and have seen it from different angles, we can esti-
mate its pose using a single camera. If we have a complete
geometric presentation of the object, the pose can be also
analytically calculated using a single image. The most
simple case is a square. If we know the position of the
corners in the image, we can exactly calculate the pose of
the square in the space assuming that the camera is cali-
brated. This functionality is offered also by the ArToolKit
library [3, 1]. In the paper, we show how a single camera
can be used in robotic applications for manipulation with
objects. We used a Mitsubishi Pa10 robot. The camera
was fitted inside its gripper. In order to avoid calibration
and to enhance the performance, accuracy and reliability
of the system, we used visual servoing. The overall con-
trol scheme was realized in the Matlab/Simulink environ-
ment. The developed framework enables to control both
the real and simulated robot without any modification of
the program code [8, 9]. To describe the complex robot
tasks, we developed a new robot programming language
MatRoL in the Matlab/Simulink environment. Namely, it
turned out that the standard Simulink blocks can generate
an arbitrary trajectory, but can not provide all the flexi-



70 Nemec

bility needed for the complex robot tasks, especially for
experimental work.

2 ArToolKit library

ARToolKit is a software library for building Augmented
Reality (AR) applications [2]. These applications allow
overlaying virtual imagery on the real world. The poses
of virtual objects in the captured camera images are deter-
mined by the marker poses. ArToolKit recognizes multi-
ple markers in the scene, usually composed of a pattern
in a black square. For example, Fig. 1 shows a dinosaur’s
skeleton standing on a real card. When the user moves
the card, the virtual character moves with it and appears
attached to the real object.

Some of the features of ARToolKit include:

• Single-camera position/orientation tracking.

• Tracking code that uses simple black squares.

• Ability to use any square marker patterns.

• Easy camera calibration code.

• Simple graphic library (based on GLUT).

• Fast rendering based on OpenGL.

• 3D VRML support.

• Simple and modular API (in C).

• Other language support (JAVA, Matlab).

• SGI IRIX, Linux, MacOS and Windows OS distri-
butions.

• Complete source-code distribution.

The block scheme of the ArToolKit library is pre-
sented in Fig 1. The main benefit from using the Ar-
ToolKit Library in robotic applications is the ability to
trace the marker pose using a single camera. The abili-
ty to overlay an object over a recognized marker helps to
visualize the estimated orientation of the object to be ma-
nipulated with robot.

3 Visual servoing using kinematically
redundant robots

Let us consider n degrees of freedom (DOF) of kinemat-
ically redundant serial manipulators, having more DOF
than needed to accomplish the task, i.e. the dimension
of joint space n exceeds the dimension of task space m,
n > m and r = n − m denotes the degree of redun-
dancy. Joint positions of the manipulator are described
with n dimensional vector q and the end effector position
(and orientation) is described with m-dimensional vector

Figure 1. ArToolKit block scheme

x. The relation between the joints and the task velocities
is given by the following well known expression

ẋ = Jq̇ (1)

where J is the m×n manipulator Jacobian matrix. The
solution of the above equation for q̇ can be given as a
sum of a particular and homogeneous solution

q̇ = J̄ẋ + Nξ (2)

where
J̄ = W−1JT (JW−1JT )−1. (3)

Here, J̄ is the weighted generalized-inverse of J, W is
the weighting matrix, N = (I − J̄J) is an n×n matrix
representing the projection into the null space of J, and ξ
is an arbitrary n dimensional vector. We will denote this
solution as the generalized-inverse based redundancy re-
solution at the velocity level [4]. The homogenous part



Robot Garsping using ArToolKit library 71

of the solution belongs to the null-space of the Jacobian
matrix.

The control law for the velocity-controlled robots can
be derived from Eq. 2 by assigning

ẋ = Kp(xd − x) + ẋd + Kf (f − fd) (4)

and
ξ = Knq. (5)

Eq. 4 represents control law P in the task space with the
velocity compensation and force control term, and Eq. 5
describes the null space control [5]. Vectors xd and ẋd are
the desired task position and velocities of the robot, fd is
the desired task force and f is the force measured from
the force sensor mounted in the robot wrist. Kp,Kf and
Kn are appropriate positive definite matrices representing
the position, force and null-space control gains. In our
case, we chose the most simple null-space control law,
which simply preserves the joints of the robot as close as
possible to 0. Null space control is required in order to
assure conservative motion of the redundant robot during
manipulation and depends on the current configuration of
the environment. Obviously, we can not restrict all joints
to be zero. In our case it is preferable to keep only the first
joint close to zero and therefore matrix Kn has the form

Kn =


kn1 0 .. 0

0 0 .. 0

.. .. .. ..

0 0 .. 0

.

Note that the control law (4) feeds the desired velo-
cities to the control unit of the Pa 10 robot which already
incorporates velocity control. Therefore, Eq. 4 does not
incorporate velocity control.

Visual tracking control is implemented as a pose con-
trol with appropriate xd and ẋd. We will describe posi-
tions and rotations using homogenous matrices,

T =

[
R p

0 1

]
,

where R is a 3 × 3 dimensional rotation matrix and p
is a 3-dimensional position vector. Obviously, in order
to grasp the desired object, robot-gripper homogenous
transformation matrix Tr has to be aligned with desired
transformation matrix Td which defines the object grip-
ping pose (Fig. 2). Assuming that the camera was in
the gripper, the transformation required to align current
robot pose Tr with desired pose Td is the transforma-
tion among the camera transformation Tc and the desired
transformation Td. Hence, visual control law is

Tx = TrKgTcT
−1
d , (6)

where Kg is a positive definite diagonal matrix of the
video feedback gain and Tx is a new reference trans-
formation. For the control purpose, orientations are de-
scribed with quaternions in order to avoid singularity of
the roll-pitch-yaw angles. In this case, the control law (4)
has the form [6, 7]

ẋ = Kp

[
px − p

QxQ
−1

]
+ ẋd + Kf (f − fd), (7)

where Q and Qx denote the corresponding quaternion re-
presentation of rotation R and Rx, respectively. Note that
only the vector part of quaternion product QxQ

−1 is used
in the control law (7) while the scalar part of the product
is omitted.

Figure 2. Coordinate systems in visual tracing

4 Experimental setup

The experimental setup consists of a 7-DOF robot arm
Mitsubishi PA10, robot hand Barret Hand, inexpensive
Logitech USB camera and PC computer [9]. The PC com-
puter communicates with the robot power electronics us-
ing ArcNet with the frequency of 700Hz. ArToolKit was
modified in order to communicate with Matlab/Simulink
via the UDP protocol. The basic communication proto-
col between ArToolKit and Matlab/Simulink consists of
commands for selecting the observed object and data with
the position and rotation matrix of the detected object.
The communication speed between ArTollKit and the
Simulink is determined with the maximal camera frame
rate, which in our case was 30Hz. Note that the UDP
protocol permits to implement vision system on a sepa-
rate computer as well as on the computer used in robot
control. In our case, a Laptop computer with a Pentium
dual-core 1.833 Mhz processor was fast enough to han-
dle both tasks on a single computer. Figure 3 shows a



72 Nemec

Figure 4. Simulink control scheme

Figure 3. Block scheme of the experimental setup

block scheme of the whole setup. The control scheme
implemented in Simulink is shown in Fig 4. Note that
the basic position and force control were implemented in
Simulink (Quaternion Task Controller block), while the
visual tracking algorithm was implemented in MatRoL
due to the low camera frame rate (Task Scheduler block).
Signals from the ArToolKit (ArToolKit block) block were
fed to the MatRoL using global variables (SaveRot and
SavePoint Matlab function blocks).

5 Robot programming language MatRoL

When designing and testing complex robot tasks, it turned
out that standard Simulink blocks, which can generate
an arbitrary trajectory, can not provide all the flexibili-
ty needed for complex robot tasks, especially for expe-
rimental work in service and humanoid robotics where
the desired motion depends on the system/environment
states. A commonly used solution for the definition of
robot tasks are robot languages. Therefore, we developed
a MATLAB/Simulink block which can interpret the robot

language. Included in the simulation it serves as a robot
motion generator and supervisor. The developed inter-
preter module for the Matlab Robot Language (MatRoL)
is BASIC like programming language extended with spe-
cial commands for the robot control and supports all the
Matlab interpreter commands. In this way we took ad-
vantage of the simple robot task definition and benefits of
Matlab computation capabilities. The usage of the robot
language is also advantageous for the educational pur-
poses. Students can learn and accomplish their laboratory
exercises much faster by using a robot language and the
integrated environment allows safe testing of their algo-
rithms on models and final tests on the real robots [8].

MatRoL is entirely written in Matlab. It has common
instructions for the program flow (IF THEN ELSE,
FOR NEXT, REPEAT UNTIL, GOTO <label>,
GOSUB <procedure name> RETURN) and special
commands for the robot control (FRAME, MOVE,
APPROACH, DEPART, SPEED, ACCELERATION,
FORCE, NULLMOVE, TRAJECTORY). Also, all the
Matlab commands can be executed within a MatRoL
program as an instruction. In this way we can use
the powerful Matlab matrix computation capability for
controlling the robot pose and for complex computa-
tion generally needed when vision and force sensors
are applied. MatRoL supports various interpolation
modes in the Cartesian and task space, and supports
also redundant robot systems, e.g. a special command
NULLMOVE is used to define a self movement when
kinematically-redundant mechanisms are used. It
supports also multi-robot systems. Each robot in the
simulation environment has its own MatRoL block, i.e.
a special program. Program synchronization is done by
assigning global variables. These can be signals, vectors,
frames, or others. MatRoL supports the frame orientation
definition in roll-pitch-yaw angles, Euler angles and
quaternions, while the interpolation is accomplished
using the quaternions.



Robot Garsping using ArToolKit library 73

6 Experimental results

In order to verify the efficiency of the proposed approach,
the robot was assigned a task of sorting randomly scat-
tered cubes marked with letters. The robot was ordered
to compose the desired string. It started from the pose
where it was able to see all cubes and check which cubes
were visible. Then it grasped the randomly positioned
and oriented cubes and composed the desired inscription
string. During grasping the robot controlled also the wrist
forces when an undesired collisions with the environment
occurred. Figure 6 shows the robot performing the task.
To allow for simplicity, only the part of the program in
which the robot grasped and sorted one cube is presented
here (Fig. 5). It is shown how easy complex tasks can be
programmed. Figure 7 shows the time plot of the position
and orientation error during visual servoing. The error
decay is determined primarily by the camera frame rate.
It can be seen that the robot reaches the desired position
accuracy of 5 mm and the desired orientation accuracy of
6 degrees within the second, which is quite fast. Further
improvements in the orientation accuracy can not be ob-
tained since ArToolKit orientation estimation chatters for
values around the unity rotation matrix. Note that in this
experiment we have applied ordinary cheap web camera
with a 30 Hz frame rate. Although this experiment serves
only as a demonstration, it can be easily adopted for may
industrial application, for example collecting randomly
scattered object from the conveyer belt. Note also that this
experiment is very robust regarding lighting conditions of
the environment.

7 Conclusion

In the paper we propose an ArToolKit library interface
for single camera object tracking in robotics. We show
how to implement an efficient visual-servoing algorithm.
We developed a new powerful framework for robot pro-
gramming and control, which is especially convenient for
research and educational work in robotics. We describe
an illustrative example demonstrating the capabilities of
the proposed setup. The proposed visual servoing algo-
rithm can be implemented in the majority of the industrial
robots enabling the real time trajectory control in the task
space. Hence, the algorithm is very convenient also for
the low-cost industry automation.

8 References
[1] E. Woods, P. Mason, M. Billinghurst. MagicMouse: an

Inexpensive 6-Degree-of-Freedom Mouse. Proceedings
of Graphite 2003, Feb 11th-13th, 2003, Melbourne.

[2] Billinghurst, M., Kato, H., Poupyrev, I. (2001) The Mag-
icBook: A Transitional AR Interface. Computers and
Graphics, November 2001, pp. 745-753.

[3] H. Kato, M. Billinghurst. Marker Tracking and HMD
Calibration for a video-based Augmented Reality Confer-

% VISUAL SERVO EXAMPLE - MatRol 2.0
%
GLOBAL ex ey atk_pos atk_rot %define variables
% scene observation frame and release frame
FRAME 1 = [0.0,0.0,1.1,0.707,0,0.707,0]’;
FRAME 2 = [-0.393,0.0,0.85,0.707,0,0.707,0]’;
! atks(’A’); %track pattern with letter A
SPEED 0.5; %define robot speed
ACC 0.5; %define robot acceleration
GRIP 1; %open the gripper
move 1; %move to the observation frame
GOSUB vservo %execute visual servoing
GOSUB grasp %grasp the object
GOSUB put %move it
STOP
%
% -----------------------------------------
LABEL vservo
% -----------------------------------------
% visual servoing script vsm_Rot (Matlab)
REPEAT

! [xc,ex,ey] = vsm_Rot(atk_pos,atk_rot);
UNTIL (ex < 0.005) && (ey < 0.06);
RETURN
%
% -----------------------------------------
LABEL grasp
% -----------------------------------------
SPEED 0.1; %set grasping speed
FORCE 1,[0 0 0 0 0 0];%turn force control on
TDEPART [0 0 0.15]; %approach the object
DELAY 0.5;
GRIP 0; %grasp it
DELAY 0.5;
TDEPART [0 0 -0.1] %depart Z in tool c.s.
FORCE 0; %turn force control off
RETURN
%
% -----------------------------------------
LABEL put
% -----------------------------------------
SPEED 1;
APPRO 2 + [0.05 0 0 0 0 0 0]
SPEED 0.1;
move 2;
DELAY 0.5;
GRIP 1; %release the object
TDEPART [0 0 -0.1]
RETURN
END

Figure 5. MatRoL program for visual servoing

encing System. In Proceedings of the 2nd International
Workshop on Augmented Reality (IWAR 99). October
(1999), San Francisco, USA.

[4] D. N. Nenchev. Redundancy resolution through local op-
timization: A review. J. of Robotic Systems, 6(6):769 –
798, (1989).

[5] B. Nemec, L. Zlajpah, and D. Omrcen. Comparison of
null-space and minimal null-space control algorithms. In
Robotica, 2007, 25(5):511–520,(2007).

[6] L. Sciavicco, B. Siciliano. Modeling and Control of
Robot Manipulator McGraw-Hill, New York 1996

[7] S. Chiaverini, B. Siciliano. The Unit Quaternion: A Use-
full Tool for Inverse Kinematics of Robot Manipulator
System Analysis, Modelling and Simulation, 35(35):45–
60, 1999



Figure 6. Robot during visual servoing

Figure 7. Tracking errors during visual servoing

[8] L. Žlajpah. Simulation in robotics. Mathematics an com-
puters in simulation, 79(4):879–897, 2008

[9] L. Žlajpah, B. Nemec, D. Omrcen. MATLAB based robot
control design environment for research and education. In
MATHMOD Vienna 09 proceedings,304–315, 2009.

Bojan Nemec is a Senior Research Associate at the Dep-
tartement of Automatics, Biocybernetics and Robotics at
the Jožef Stefan Institute. He received B.Sc, M.Sc and
Ph.D degrees from the University of Ljubljana in 1979,
1982 and 1988, respectively. In 1993 he spent his sabbat-
ical leave at the Institute for Real-Time Computer Sys-
tems and Robotics, University of Karlsruhe. His research
interests include robot control, robot simulation, sensor-
guided control, service robots and biomechanical mea-
surements in sport. Between 2002 and 2005 he was a task
leader of the largest NAS European project EUROShoE.
He has published over 100 conference and journal papers
and is author of a patent, and co-author of a book.


