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Building mobile and pervasive systems as a selection, composition, adaptation and evolution ofpre-existing software 
entities may arise dynamically and continuously different issues related to inconsistencies, changes or faults. We pro-
pose an approach to detect and handle these issues with the appropriate methodology in every case. This is performed 
by tackling three great challenges in software engineering related to self-adaptive systems: (i) their formalisation, by 
using model-based SOA, which bridge the business and software processes, (ii) their development and maintenance, 
by performing adaptation and/or evolution when inconsistencies or changes occur, and (iii) their monitoring to handle 
faults, by using errorrecovery techniques. We use an example based on an intelligent transportation system to validate 
ourproposal. 

Povzetek: Opisanaje sestava prilagodljivih sistemovna osnovi modela. 

1 Introduction 
The increased usage of mobile and portable devices has 
given rise over the last few years to a new market of mo-
bile and pervasive applications. These applications may be 
executed on either mobile computers (laptops, tabletPCs, 
etc.), or wireless hand-held devices (PDAs, smart phones, 
etc.), or embedded systems (PDAs, on-board computer, in-
telligent transportation or buildings systems, etc.), or even 
use sensors or RFID tags. Their main goal is to provide 
connectivity and services at any time, adapting and moni-
toring when required and improving the user experience. 
These systems are different to the traditional distributed 
computing systems. On one hand, a mobile system is able 
to change location allowing the communication via mo-
bile devices. On the other hand, a pervasive application 
attempts to create an ambient intelligence environment to 
make the computing part of it and its enabling technolo-
gies essentially transparent. This results in some new is-
sues related to inconsistencies, changes or faults, which 
arise dynamically and continuously whilst composing ser-
vices in these systems, and which have to be detected and 
handled. These issues can be classified into four main cat-
egories [23]: (i) mismatch problems, (ii) requirement and 
configuration changes (iii) network and remote system fail-
ures, and (iv) internal service errors. The first refers to 
the problems that may appear at different interoperabil-
ity levels (i.e., signature, behavioural or protocol, qual-
ity of service and semantic or conceptual levels), and the 
Software Adaptation paradigm tackles these problems in 
a non-intrusive way [8].The second is prompted by con-
tinuous changes over time (new requirements or services 
fully created at run-time), and Software Evolution (or Soft-
ware Maintenance) focuses on solving them in an intrusive-
way [19]. The third and fourth are related to networks (net-

work connection break-off or remote host unavailable) and 
services (suspension of services during the execution or 
system run-time error) failures respectively, that are both 
addressed by Fault Tolerance (or Error Recovery) mecha-
nisms [24]. Developing real-world mobile and pervasive 
systems handling all these faults is extremely complex and 
error-prone. Therefore, it is essential to determine an effec-
tive methodology to develop this kind of system. 

Self-adaptive software provides a broadly inclusive 
adaptation methodology that spans a wide range of adap-
tive behaviours [22]. One of the key aspects of self-
adaptive software is that it supports both software adapta-
tion and evolution, by addressing mismatch problems and 
requirement or configuration changes. Another advantage 
of self-adaptive systems is that they adapt the software sys-
tems to changing operational contexts and environments, 
thereby reducing human effort in the human-computer in-
teraction. Context-awareness provides the most relevant 
information (location, identity, time and activity) to users 
and stakeholders, adapting themselves to their changing sit-
uation, preferences and requirements, and optimising the 
quality of service [12]. Therefore, context information 
plays an important role in software adaptation and evolu-
tion to control the scope of change. However, current pro-
gramming technology offers only very weak support for 
developing context-aware applications, and new research 
is urgently needed to develop novel Context-Oriented Pro-
gramming (COP) mechanisms [21]. As regards failures 
related to networks and services, fault tolerance mecha-
nisms to be exploited for the development of dependable 
systems allow the handling of exceptions raised by adaptive 
demand, returning back the self-adaptive system to any ear-
lier stable state. The choice of fault tolerance mechanisms 
depends on the fault assumptions and on the system's char-
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acteristics and requirements. There are two main classes 
of error recovery [24]:backward and forward error recov-
ery. The former is based on rolling services back to the 
previous correct state in the presence of failure. The latter 
involves transforming the system services into any correct 
state, and relies on an exception handling mechanism. 

Self-adaptive systems requires high reusability, depend-
ability, robustness, adaptability, and availability. In order to 
reduce efforts and costs, these systems may be developed 
using existing Commercial-Off-The-Shelf (COTS) compo-
nents or (Web) services. In contrast to the traditional ap-
proach in which software systems are implemented from 
scratch, COTS and services can be developed by different 
vendors using different languages and different computer 
platforms. Although the reuse of software has matured 
and has overcome some of the previously mentioned prob-
lems, it has not become standard practice yet, since reusing 
components or services requires the selection, composi-
tion, adaptation and evolution of prefabricated software 
parts, by means of their public interfaces, in order to solve 
different problems. Thus, it is desired to reduce the ef-
fort of adapting and maintaining existing services in or-
der to achieve a cost-effective and dependable development 
of self-adaptive systems. Component-Based Software En-
gineering (CBSE) [25] and Service-Oriented Architecture 
(SOA) [13] promote software reuse by selecting and assem-
bling pre-existing software entities (COTS and services, re-
spectively)1. These software development paradigms al-
low the building of fully working systems as efficiently as 
possible in order to improve the level of self-adaptive soft-
ware reusability, dependability and adaptability [8]. On 
one hand, current industrial platforms using CBSE provide 
only some of the means to describe components at their 
signature level (e.g., CORBA's IDL2). On the other hand, 
one way to implement SOA is using WSDL for describ-
ing services, SOAP3 for communication, UDDI for service 
registry and discovery, and BPEL [1] for service orchestra-
tion. However, BPEL is not yet widely considered in cur-
rent XML-based industrial service technology, which, in 
addition, only supports queries based on keywords and cat-
egories. This may bring about erroneous executions and/or 
low-precision results in realistic and complex applications, 
as it neither handles the order in which the service mes-
sages are exchanged with its environment, nor is it able 
to discover semantic capabilities of services (functionality) 
nor can it be adapted to a changing environment without 
human intervention. Therefore, behavioural descriptions, 
and multiple context and semantic (e.g., by means of on-
tologies) information must be specified and managed in 
real-world services to avoid undesirable situations during 
their interaction, such as deadlocks or livelocks, and to im-
prove their features (such as QoS). In this sense, our pro-
posal tackles the need to support the variability of the adap-
tation process in self-adaptive systems by using context-

1In the sequel, we use service to refer both terms. 
2 www.omg.org/technology/documents/formal/components.htm 
3http://www.w3.org/TR/soap/ 

aware, semantic-based, model-based adaptation, and de-
pendency analysis mechanisms. 

Approach and Contributions. We propose an approach to 
detect and handle the different inconsistencies, changes or 
faults arisen in self-adaptive systems. This is performed 
by tackling three great challenges in software engineer-
ing related to self-adaptive systems: (i) their formalisation, 
by using model-based SOA, which bridges the business 
and software processes, (ii) their development and main-
tenance, by performing adaptation and/or evolution when 
required, and (iii) their monitoring to handle faults, by us-
ing error recovery techniques. 

In order to achieve these goals, we make the following 
contributions. Firstly (i) we develop a model transforma-
tion process to allow us the discovery, composition, adapta-
tion and maintenance of services. This process, according 
to the Model-Driven Architecture (MDA)4, takes a source 
model (BPEL or WF [10], both implemented as SOAs) and 
produces a target model (in our case transition systems), 
and vice versa. Secondly, (ii) we use software adaptation 
and evolution concern respectively with adapting or chang-
ing the software during its execution. Both paradigms typi-
cally tackle the adapting and the evolving of software sepa-
rately depending on the changes being made. However, we 
propose a model-based approach using self-adaptive tech-
niques through both paradigms to reduce the effort and cost 
of modifying the system. In this way, our approach will as-
sist respectively to the application developers and software 
designers to first apply software adaptation (non-intrusive 
way) when that paradigm may solve the problem, and only 
in the case it is not enough, software evolution (intrusive 
way) will be used. Finally, (iii) we combine both backward 
and forward error recovery techniques to maintain consis-
tency, correctness, and coordination of changes, and to han-
dle errors in self-adaptive systems. We have developed a 
prototype tool on Python, which implements our approach, 
integrated inside the toolbox ITACA [7]. ITACA5 (Inte-
grated Toolbox for the Automatic Composition and Adap-
tation of Web Services) is a toolbox under implementation 
at the University of Málaga for the automatic composi-
tion and adaptation of services accessed through their in-
terfaces. The toolbox fully covers an adaptation process 
which goes from behavioural model extraction from exist-
ing service interface descriptions, to the final adaptor im-
plementation. 

Figure 1 is an overview of our approach, which focuses 
on systems made up of a service repository, clients (con-
sidered as services as well), and a shared domain ontol-
ogy. When a user performs a request, e.g., from a mo-
bile device, our process is executed. First, (1) abstract in-
terface specifications (Context-Aware Symbolic Transition 
Systems, CA-STSs, presented in Section 3.1) are extracted 
from the BPEL or WF services, by means of our model 
transformation process (Section 3.2). Then, (2) a discov-

4http://www.omg.org/docs/omg/03-06-01.pdf 
5Accesible at http://itaca.gisum.uma.es 
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ery process based on semantic and compatibility mecha-
nisms finds the services satisfying that request, and iden-
tifies possible mismatches and changes that will determine 
whether the services involved need adaptation and/or evo-
lution (Section 4.1). If mismatches or changes occur, then 
(3) observation planning will determine when, where, what, 
and how [6] to perform adaptation and/or evolution depend-
ing on whether the changes are related to anticipated or 
unanticipated adaptation, respectively. Next, (4.a) in the 
case that adaptation is required, a CA-STS adaptor will be 
generated in a non-intrusive way (Section 4.1), and (4.b) 
if evolution is needed, then first the designer will have 
to modify the system in an intrusive way, and second the 
adaptor will be generated (Section 4.1). Then, (5) from the 
CA-STS adaptor, the corresponding BPEL or WF adaptor 
service is generated using our model transformation pro-
cess (Section 4.1), and the whole system is deployed, al-
lowing the BPEL or WF services to interact via the BPEL 
or WF adaptor. Finally, (6) a fault tolerance process han-
dles exceptions raised by adaptive demand, returning back 
the system to any earlier stable situation, by using error re-
covery techniques (Section 4.2). 
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Figure 1: Overview of our proposal 

Outline. The remainder of this article is structured as fol-
lows. In Section 2, we introduce a case study which will be 
used throughout this article for illustrative purposes. Sec-
tion 3 presents our model-based SOA approach. In Sec-
tion 4.1 the dependable composition process is described. 
Sections 5 presents works related to model-based transfor-
mation, and self-adaptive and error recovery techniques. 
Finally, Section 6 ends the article with a discussion about 
the evaluation of our approach and some concluding re-
marks. 

2 Motivating example: ITS 
To illustrate our proposal, we describe a case study in 
which services connected to an Intelligent Transportation 
System (ITS) require and provide context-aware trans-
portation facilities. We consider different scenarios where 
city users of transport (passengers or drivers) are interested 
in planning their route on their hand-held devices (mobile 
phones or onboard computer), by receiving data from a 

Route service. In addition to the Route service, a Map ser-
vice may also reply the user's requests as the Route service 
is not available anymore. We consider two kind of users: 
1) bus/metro passenger, and 2) drivers. The latter have two 
different profiles: driving a private vehicle (car), or a taxi. 
Users receive different results of their route, depending on 
their profiles. We assume services can respond to the users' 
requests, but issues related to inconsistencies, changes or 
faults may arise at run-time, making it necessary to detect 
and handle them. 

Passenger scenario. A passenger communicates with the 
system to obtain the best itinerary to a destination by 
bus/metro. The Route service response depends on certain 
context information, i.e., the passenger location and desti-
nation, as well as the traffic or transport timetable, so the 
result may vary frequently. 

Driver scenario. Let us imagine the Route service typi-
cally calculates a route requested by drivers based on traf-
fic congestion (considering vehicles that enter and leave an 
area). In a normal situation, a car/taxi driver can change the 
route dynamically on being advised by the ITS of rerouting 
alternatives. In this scenario, we describe three different 
cases: 

- A) Drivers request that the Route service considers the 
context information related to the weather as a new require-
ment to calculate the rerouting. 

- B) From the previous case, vehicles driving in a spe-
cific area discover a new Car Parking service provided by 
the context of the new environment, but not considered ini-
tially by the system. Drivers would like to request this new 
service, so the ITS should include that service into the sys-
tem. 

- C) Considering the requirements of the two previous 
cases, we imagine that in a certain moment the connection 
with the Route service is lost. This service will be replaced 
automatically and quickly at run-time by another service 
with similar functions and considered at design-time by the 
system, i.e., the Map service, which will also help to guide 
the driver. 

This case study presents a service-oriented pervasive 
system with context-awareness features. Self-adaptive 
software, in addition to tackle different adaptive be-
haviours, is useful for dealing with all forms of embedded 
or pervasive software. We use a structured modelling ap-
proach to specify service-oriented architectures, because it 
is easier to determine when a new service is needed, as 
well as when it is more cost-effective and efficient to al-
ter an existing service, develop a new one, or acquire a 
third-party service, and to manage fault tolerance mecha-
nisms. Since models tend to be represented using a graphi-
cal notation, the model-based methodology involves using 
visual-modeling languages. We adopt an expressive and 
user-friendly graphical notation based on transition sys-
tems, which reduces the complexity of modelling services, 
as we will show in the next section. 
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3 Model-based SOA 
In this section, we describe our formal model to specify 
services using Context-Aware Symbolic Transition Sys-
tems (CA-STS). Different automata-based or Petri net-
based models can be used to describe behavioural inter-
faces. We have chosen CA-STS, which is based on transi-
tion systems, because it is simple, graphical, and provides 
a good level of abstraction to tackle discovery, verification, 
composition, or adaptation issues [14, 15]. Furthermore, 
any formalism to describe dynamic behaviour may be ex-
pressed in terms of a transition system [14]. Thus, our 
approach becomes general enough to be applied in other 
applications. In addition, we relate our interface model to 
implementation platforms. There exists several platforms 
or languages that can be used to develop services, such as 
UML6, BPEL or WF. First, we present the syntax and op-
erational semantics of our interface model. Second, we de-
scribe a textual grammar to abstract implementation details 
of WF activities, and define our transformation process to 
extract CA-STS specifications from WF services. 

3.1 CA-STS Interface Model 
We consider systems consisting of context-aware clients 
and services. We assume both client and service inter-
faces are specified using context profiles, signatures and 
protocols. Context profiles define information which may 
change according to the client preferences and service en-
vironment. Signatures correspond to operations profiles. 
Protocols are represented using transition systems. Client 
and services interact according to the operational semantics 
we will define later. 

Context Profile, Signature and Protocol. 
A context is defined as "the information that can be used 
to characterise the situation of an entity. An entity is a 
person, place, or object that is considered relevant to in-
teraction between a user and an application including the 
user and application themselves" [12]. Context informa-
tion can be represented in different ways and can be clas-
sified in four main categories [17]: (i) user context: role, 
preferences, language, calendar, social situation or privi-
leges, (ii) device/computing context: network connectivity, 
device capabilities or server load, (iii) time context: current 
time, day, year, month or season, and (iv) physical context: 
location, weather or temperature. For our purpose, we only 
need a simple representation where contexts in both clients 
and services are defined by context attributes with asso-
ciated values. In addition, we differentiate between static 
context attributes (e.g., role, day, ...) and dynamic ones 
(e.g., network connectivity, current time, location,...). Dy-
namic attributes can change continuously at run-time, so 
they have to be dynamically evaluated during the service 
composition. Finally, both clients and services are char-
acterised by public (e.g., weather, temperature, season, ...) 
and private (e.g., personal data, local resources,...) context 
attributes. Thus, we represent and gather the service con-

6http://www.omg.org/technology/documents/formal/uml.htm 

text information by using a context profile, which is a set of 
tuples (CA, CV, CK, CT), where: CA is a context attribute 
(or simply context) with its corresponding value CV, CK 
determines if CA is static or dynamic, and CT indicates if 
CA is public or private. For instance, (user, driver, static, 
public), indicates that user is a public and static context 
which corresponds to the user profile driver as value. 

A signature corresponds to a set of operation profiles. 
This set is a disjoint union of provided and required oper-
ations. An operation profile is the name of an operation, 
together with its argument types (input/output parameters) 
and its return type. 

A protocol is represented using a Symbolic Transi-
tion Graph (STG) [16] extended with value passing, con-
text variables and conditions, that we call Context-Aware 
Symbolic Transition System (CA-STS). Conditions spec-
ify how applications should react (e.g., to context changes). 
We take advantage of using ontologies described in a spe-
cific domain to capture and manage the semantic informa-
tion of the services in a system by comparing concepts, 
such as context information, operation names, arguments 
and types. In this way, we can determine the relationship 
between the different concepts that belong to that domain. 

Let us introduce the notion of variable, expression, and 
label required by our CA-STS protocol. We consider two 
kinds of variables, those representing regular variables or 
static context attributes, and those corresponding to dy-
namic context attributes (named context variables). In or-
der to distinguish between them, we will mark the context 
variables with the symbol over the specific variable. 
An expression is defined as a variable or a term constructed 
with a function symbol f (an identifier) applied to a se-
quence of expressions, i e f (F1,...,Fn), F being expres-
sions. 

Definition 1 (CA-STS label). A label corresponding to a 
transition of a CA-STS is either an internal action T (tau) 
or a tuple (B, M, D, F) representing an event, where: B is 
a condition (boolean expression that manages both con-
ditional choices and context changes), M is the operation 
name, D is the direction of operations (! and ? represent 
emission and reception, respectively), andF is a list of ex-
pressions if the operation corresponds to an emission, or a 
list of variables if the operation is a reception. 

Definition 2 (CA-STS Protocol). A Context-Aware Sym-
bolic Transition System (CA-STS) Protocol is a tuple 
(A, S,I,Fc, T), where: A is an alphabet which corresponds 
to the set of CA-STS labels associated to transitions, S is 
a set of states, I e S is the initial state, Fc C S are correct 
final states (deadlock-free), and T C S x A x S is the tran-
sition function whose elements (si,a,s2) e T are usually 
denoted by s1 s2. 

Finally, a CA-STS interface is constituted by a tuple 
(CP, SI, P), where: CP is a context profile, and SI is the 
signature of the CA-STS protocol P. Both client and ser-
vices consist of a set of interfaces. For instance, let us 
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focus on the client shown in Figure 6. It has an inter-
face (CPU, SIU, Pu ), where CPu refers to the context in-
formation related to the user location (dynamic context 
attribute loc), user profile and device used by the client 
of the user (static context attributes user and dev respec-
tively), SIu is formed by all the operation profiles, such 
as lUl = reqRldest, loc, user, and Pu is the protocol which 
indicates the CA-STS behaviour. For example, lUl means 
that a client with the context information loc and user is-
sues an emission looking for a route from his/her location 
to a destination, and then this client receives a possible 
route lu2 = getRlroute, and so on. Note we have left out 
the return types of the arguments to simplify the notation. 
Initial and final states are depicted in CA-STSs using bul-
let arrows and hollow states, respectively. Our proposal 
is suitable for synchronous systems where clients interact 
with services, such as mobile systems. We adopt a syn-
chronous and binary communication model (explained in 
next section, Figure 3). Clients can execute several proto-
cols simultaneously, i.e., concurrent interactions (in a bi-
nary model). Client and service protocols can be instanti-
ated several times. 

At the user level, client and service interfaces can be 
specified by using: (i) context information into XML 
files for context profiles, (ii) WSDL for signatures, and 
(iii) business processes defined in industrial platforms, 
such as Abstract BPEL (ABPEL) [1] or WF workflows 
(AWF) [10], for protocols. We assume context information 
is inferred from the client requests (HTTP header of SOAP 
messages), thereby as a change occurs the new value of the 
context attribute is automatically sent to the corresponding 
service (controlled in rules presented in Figure 2). We also 
consider processes (clients and services) implemented as 
business processes which provide the WSDL and protocol 
descriptions. 

Next, we define the CA-STS operational semantics. 

Operational Semantics of CA-STS. 
We formalise first the operational semantics for one CA-
STS service, and second for the composition of n CA-STS 
services. In the following, we use a pair (s, E) to represent 
an active state s G S and an environment E. An environ-
ment is a set of pairs (x, v) where x is a variable, and v 
is the corresponding value of x (it can be also represented 
by E(x)). The function type returns the type of a variable. 
We use boolean expressions b to describe CA-STS condi-
tions. Regular and context variables are evaluated in emis-
sions and receptions (by considering the current value of 
the context, e.g., the current date), respectively. Therefore, 
two evaluation functions are used to compute expressions 
in an environment: (i) ev evaluates regular variables or ex-
pressions, and (ii) evc evaluates context variables changing 
dynamically. We define ev as follows: 

ev(E,x) = 
I E (x) i f x is a regular variable 
I x i f x is a context variable 

Function evc is defined in a similar way to ev, only con-
sidering context variables, since we first apply ev to eval-
uate the regular variables: evc(E,x) = E(x), where x is a 
context variable. We also define an environment overload-
ing operation "0" in such a way that given an environment 
E, E 0 (x, v) denotes a new environment, where the value 
corresponding to x is v. 

We present in Figure 2 the semantics of a CA-STS (Ao), 
with three rules that formalise the meaning of each kind of 
CA-STS label: internal actions T (INT), emissions (EM), 
and receptions (REC); and one rule to simulate the dynamic 
update of the environment according to the context changes 
at run-time (DYN). Note that according to Definition 1, 
b G B is a condition, a G M is an operation name, and x G F 
and v G F correspond to a list of variables and expressions, 
respectively. A condition b may contain regular and/or con-
text variables and both of them must be evaluated in the 
environment of the source service (sender), because the de-
cision is taken in the sender. However, evaluation of ex-
pressions v only affects regular variables (rule EM), since 
context variables will be evaluated in the target service (re-
ceiver) to consider the context values when the message 
is received (see rule COM in Figure 3). We assume that 
the dynamic modification of the environment will be de-
termined by different external elements depending on the 
type of the context (e.g., user intervention, location update 
by means of a GPS, time or temperature update, and so on). 
Then, we model this situation by assuming a transition re-
lation which indicates the environment update as a change 
occurs, denoted by E ^ dE', where E' (x) = E (x) only if x 
is a dynamic context variable, and in which case the new 
value of x is automatically sent to the corresponding ser-

vice. 

(s ——̂  s') e T evc(ev(E,b), 

(s, E) A o (s', E) 

-- t rue 

(s b,a.x si) g T evc(ev(E,b),b) = t rue 

(s, E) . o (s', E) 

(s s') G T evc(ev(E,b),b) = t rue v' = ev(E,v) 

(s, E) —Uo (s', E) 
E ^ dE' 

(INT) 

(REC) 

(EM) 

(DYN) 

ev(E, f (vi,..Vn)) = f (ev(E, vi),..., ev(E, Vn)) 

(s, E) -Uo (s, E') 

Figure 2: Operational Semantics of one CA-STS 

The operational semantics of n (n > 1) CA-STSs ( u c ) 
is formalised using two rules: a first synchronous commu-
nication rule (COM, Figure 3) in which value-passing and 
variable substitutions rely on a late binding semantics [20] 
and where the environment E is updated; and a second in-
dependent evolution rule (INET, Figure 3). A list of pairs 
(si,Ei) is represented by [as1,...,asn]. Rule COM uses 
the function evc to evaluate dynamically in the receiver the 
context changes related to the dynamic context attributes 
of the sender. Regular variables have been evaluated previ-
ously in the rule EM when the message is emitted. This dy-
namic evaluation handled in the operational semantics al-
lows the modelling of service protocols depending on con-
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text changes. Rule INET is executed in the case of an in-
ternal service propagation that gives rise to either a state 
(related to the rule INT) or an environment (rule DYN) 
change. Thus, transitions — d o not distinguish between 
internal evolutions coming from either internal actions in 
services or dynamic updates in the environment. 

i, j e^-.n} i = j type(x) = type(v) (si,Ei) • (s[, Ei) 

( S j , E j ) — o • S , E j ) Ej = Ej 0(x, eVc(Ej,v)) 

nj r c 

n ] 

[asi,..., (si, E i ) , . . . , ( s j , Ej ),..., asn] 

[asi,..., ( s ' , E i ) , . . . , ( S j , E j ) , . . . , a 

i e{1..n} (Si,Ei) —^o (Sj,E') 

[ a s i , . . . , (si, E i ) , . . . , asn] —^c [ a s i , . . . , (si, E'),..., asn] 

(COM) 

(INET) 

Figure 3: Operational Semantics of n CA-STSs 

Following, we present our model transformation process 
by using WF services as illustration purpose. 

3.2 Model Transformation Process 
To perform the service discovery, composition, adaptation 
and maintenance, we first need to define a textual notation 
to abstract and formalise services implemented in the WF 
platform. Second, we define our model transformation pro-
cess. 

Abstraction of WF Workflows. 
To relate our model transformation process with realistic 
and complex examples, we use the WF platform, which be-
longs to the .NET Framework 3.5 and is supported by Vi-
sual Studio 2008. We have chosen WF because it makes the 
implementation of services easier thanks to its workflow-
based graphical support and the automation of the code 
generation, and it is an useful and interesting alternative 
compared to the well-know BPEL. Nevertheless, we have 
also validated our proposal using BPEL as shown in [7]. 
In addition, the .NET Framework is widely used in many 
companies, and WF is increasingly prevalent in the soft-
ware engineering community [26]. 

In order to illustrate the motivating example presented 
in Section 2, we use a representative kernel of the 
WF activities, namely Code, Sequence, Terminate, 
Receive, Send, IfElse, While, and Listen with 
EventDriven activities, that are general enough to de-
scribe any service. 

In Table 1, we formalise the textual grammar (left hand-
side) defined for the WF activities considered (on the 
right hand-side the informal meaning of these activities is 
provided), which abstracts several implementation details. 
Our grammar considers as input textual workflows (defined 
in XML files) corresponding to the graphical description of 
the WF workflows, with WF activities A , where C, Q are 
boolean conditions, I, Ii (inputs), O, Oi (outputs) are pa-
rameters of activities, and Id are service identifiers. 

The WF platform is capable of developing workflows in 
different scenarios, from simple sequential ones to realistic 
and complex state machine-based workflows involving hu-
man interaction. The programming languages available in 

stf ::= Code executes code 
Terminate endsWF 
Rece ive (Icl,0p[,0,I\ I,,]) receives msg 
Send (Id,Op[,Oi 0„,IJ) sends msg 
Sequence (¿yj,¿as ) executes , 
I f E l s e ((Ci.M) (C„,.&„),.&) if C] or si 
While (C,a ) a while C 

| L i s t e n (i?i E„) fires one Ej 
E ::= EventDriven(Receive (Id,Op[,Ij]i ,£>Q a when Id 

Table 1: Grammar for the WF abstract notation 

the platform are Visual Basic and C#. Our examples have 
been implemented in C#. 

Example. We have designed WF workflows for the User 
Route request, and for the Route and Map services. WF 
provides a WSDL description for each WF workflow. For 
space reasons, in Figure 4 only the WF workflow that rep-
resents the behaviour of the User Route request is shown. 

Sequential Workflow WF User 

I 

& send_reqR 

i 
Lj code_reqR 

a receive_getR 

J j code_getR 

% send_showR 

S code_showR 

E receive_ackR 
m 

y? code_ackR 

+ 
I 

a 

Figure 4: WF workflow of the User's request 

Next, we present how we extract CA-STS specifications 
from WF services. 

From WF to CA-STSs. 
CA-STSs are used as an abstraction to focus on behavioural 
composition issues by describing service interfaces in a 
standard notation. These CA-STSs are automatically gen-
erated from WF services. For each WF service, our model 
transformation process parses the three XML files corre-
sponding to its context information, WSDL description, 
and WF workflow. A new XML file containing the in-
formation about its context profile, signature, and CA-
STS protocol is automatically generated. This XML corre-
sponds to the behavioural interface of a CA-STS specifica-
tion. This process has been implemented following the pat-
terns of our transformation process presented in Figure 5. 

We have developed an ad-hoc transformation language 
to translate WF activities (WF workflows defined in XML 
files) in CA-STS elements (XML files represented in a 
graphical notation by means of transition systems) and vice 
versa. The extracted CA-STS specifications must preserve 
the semantics of workflows as encoded in the WF platform. 
A formal proof of semantics preservation between both lev-
els has not been achieved yet since the WF formal seman-
tics is not rigorously documented. Our encoding has been 
deduced from our experiments using the WF platform. The 
main ideas of the CA-STS specification obtained from ab-
stract description of workflow constructs are the following: 
(i) Code is an internal transition, (ii) Terminate corre-
sponds to a final state, (iii) Receive and Send are re-
ception and emission, respectively, (iv) Sequence must 

o 
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Figure 5: Patterns of our model transformation process 
from WF to CA-STS and vice versa 

preserve the activities' order, (v) ifElse corresponds to 
an internal choice, (vi) While is translated as a looping 
behaviour, and Listen corresponds to an external choice. 
Initial and final states in the CA-STS come respectively 
from the initial and final states that appear in the workflow. 
There is a single initial state that corresponds to the begin-
ning of the workflow. Final states correspond either to a 
Terminate or to the end of the workflow, so several final 
states may appear in the CA-STS because several branches 
in the workflow may lead to a final state. 

Example. We apply the model transformation process to 
the WF services of our case study in order to obtain the cor-
responding CA-STS specifications. Figure 6 shows the in-
terfaces of the User (passenger or driver) and the Route and 
Map services modelled using our CA-STS interface model. 
Each interface has a context profile, a signature and a CA-
STS protocol. 

User \ 

User's 
Protocol (U) 

• - X u o 
lui=reqR!\ 

dest,löc,uwr 

Context 
Profile 

loc (dyn) 
user (stat ic) 
dev (static) 

lu2=getR ?route 

U2 
lu3=show R!route, 

dëv 
3) 
<R? 

u 
lu4=ac 

R!route, 
dëv 

3) 
<R? 

U4 

Route Service Map Service 
Route Service 
Protocol (R) 

• - K r c 
lri=setR?dest, 

loCHuser 
( r i ) 

lr2=sendR!route 

Context 
Profile 

loc (dyn) 
user (stat ic) 
traffic (dyn) 
dev (stat ic) 

/ 

ir3=dispfiyR?route, 
dev 

r3 
lr4=cohfirmR! 

Map Service 
Protocol (M) 

mo 
lmi=setM?dest, 

loc, user 

)m2fsendM! 
route_map 

lm3=displayM? 
routej_map,dev 

lm4=confirmM! 

Figure 6: CA-STS of User and Route and Map services 

4 Dependable composition of 
self-adaptive SOA 

This section presents our approach to tackle self-adaptive 
systems changing dynamically over time and must con-
tinue offering services as inconsistencies, changes or faults 
occur. We aim to combine self-adaptive composition and 
error recovery techniques to perform adaptation and evolu-
tion strategies and to handle errors, respectively. 

4.1 Self-Adaptive Composition 
Composing services relates to dealing with assembly of au-
tonomous services given their interfaces. We need to ad-
dress the specification of the composition, and to ensure 
the services are composed in a consistent way. 

Firstly, our discovery process (SDP module in Figure 1) 
finds the most appropriate services for a user's request. To 
do that, it is based on semantic matchmaking and protocol 
compatibility techniques [9]. The first is used to establish 
a ranked list of the services that better match the user's re-
quest, by comparing the semantic matching of the context 
profiles and all the operation profiles (names, arguments 
and types) w.r.t. an ontology defined in the ITS domain. 
The second checks if the services selected are compati-
ble with the user at the protocol level. There exists dif-
ferent notions of compatibility in synchronous communi-
cation, such as opposite behaviours, unspecified reception, 
and deadlock-freeness [4]. We have chosen the deadlock-
freeness notion to illustrate our proposal, but other defi-
nitions could also be used. This compatibility definition 
guarantees that all the interactions between two services 
are performed in a satisfactory way, leading to a correct 
final state. 

Secondly, once our approach discovers services, changes 
during the service composition may occur in many differ-
ent ways. On one hand, when adaptability is anticipated 
and limited to some variation points (e.g., software product 
line), the different changes to be adapted at run-time are 
known at design-time. On the other hand, in the unantici-
pated adaption, the possible variations are recognised and 
computed at run-time, being, for instance, new services dis-
covered and assembled dynamically using self-awareness 
and environmental context information by means of plan-
ning techniques. Planning (SPP module in Figure 1) is a 
key feature for self-adaptive systems. Observation plan-
ning determines when, where, what, and how [6] to perform 
adaptation and/or evolution to solve faults. Adaptation 
planning aims to prepare the system to be adapted by using 
an adaptation contract. Software adaptation covers all the 
changes related to the anticipated adaptation. In addition, 
it is also characterised by highly dynamic run-time proce-
dures that occur as devices and applications move from net-
work to network, changing their contexts, and enhancing 
the flexibility and maintainability of systems. Therefore, 
software adaptation can also address these cases of unan-
ticipated adaptation. Software evolution refers to the con-
tinuous changes over time, tackling other cases of unan-

Ai.A2 

so 
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ticipated adaptation, such as new requirements or services 
fully created at run-time. 

Then, self-adaptive techniques by combining both adap-
tation and evolution paradigms (SCP module in Figure 1) 
supposes a contribution of the approach presented in this 
work, where the actors are the application developers and 
the software designers, respectively. We have made the 
distinction between software adaptation, where application 
developers generate third-party adaptors (using the adap-
tation contract) in a non-intrusive way, and software evo-
lution, where software designers modify the software enti-
ties in an intrusive way and then an adaptor is generated. 
To perform this, we follow a two-process methodology, by 
modeling self-adaptive systems with a combination of an-
ticipated and unanticipated adaptation. First, the applica-
tion developers, who do not have knowledge of the source 
code and documentation, take advantage of adaptors to au-
tomatically adapt software when it is not necessary to mod-
ify the code. When the first process is not enough to adapt 
the system to the new situation because changes in the re-
quirements or an addition/removal of a service occur, then 
our approach help the software designers to perform evo-
lution. Therefore, they select a minimal set of changes to 
adapt software, as they are familiar with such software sys-
tem. Note that this intrusive way of adapting the system 
requires that the designer has knowledge not only about 
the system, but also about our approach. 

From the (matching) tuples of sets of correspondences 
obtained in the discovery process, we can automatically 
generate an adaptation contract when any fault or change 
occurs during the service interaction. Moreover, we also 
want composition to distinguish between the available con-
texts when translating the messages among services. Using 
a non-contextual approach, message correspondences are 
fixed. This prevents inconsistencies or changes in these 
connections being taken into account, and motivates the 
need for the new capabilities that our approach provides 
in order to achieve message translation depending on con-
texts. Therefore, we define the adaptation contract between 
events in the CA-STS protocols by means of vectors ex-
pressing interactions among service messages to specify 
the evolution of every service depending on its contexts. 
These interactions denote a service communication and are 
formalised through synchronisation vectors [2], which al-
low messages with different names and even different num-
bers of parameters to be synchronised. Each event appear-
ing in one vector is executed by one service, and the over-
all result corresponds to a synchronisation between all the 
services involved. A vector may involve any number of 
services. 

Definition 3 (Synchronisation Vector). A synchronisation 
vector (or vector for short) for a set of protocols Pi = 
(Ai,Si,Ii,Fa,Ti), i e {1,.. ,n}, is a tuple (v1,...,vn) with 
vi e Ai U {e}, e meaning that a service does not participate 
in a synchronisation. 

However, vectors are not sufficient to support more 
advanced adaptation scenarios such as contextual rules, 

choice between vectors or, more generally, ordering (e.g., 
when one message in some service corresponds to several 
in another service, which requires the application of sev-
eral vectors). The order in which vectors have to be ap-
plied can be specified using different notations such as reg-
ular expressions, Labelled Transition Systems (LTSs), or 
(Hierarchical) Message Sequence Charts (MSCs). Due to 
their readability and user friendliness, we chose to spec-
ify adaptation contracts using LTSs whose labels are tu-
ples. This tuple-LTS is made up of a set of tuples (v,a), 
where v is a vector on transitions and a indicates if v 
has been executed, interrupted or not executed (values 
can be successful_execution, int_execution 
or not_executed represented with S, I and N, respec-
tively). Therefore, this tuple-LTS is essential in some situa-
tions in which faults, such as deadlocks or livelocks, can be 
avoided by applying some vectors in a specific order. If the 
order among correspondences between services does not 
matter, the tuple-LTS contains one state with all transitions 
looping on it. 

Next, we introduce the formal notion of adaptation con-
tract, which is used to model the composition of services 
making use of vectors and tuple-LTS. 
Definition 4 (Adaptation Contract). An adaptation con-
tract for a set of services Wsit i e 1,..., n, is defined as a 
couple (VWsi, Tlts), where VWsi is a set of vectors for ser-
vices Wsi, and Tlts is a tuple-LTS that indicates the interac-
tion order of the vectors VWsi-

Finally, by using the adaptation contract and CA-STS 
services, we generate a third-party CA-STS adaptor, that is 
in charge of coordinating the services in the system w.r.t. 
the set of interactions defined in the contract (according to 
the rule COM, Figure 3). For limitations of space and since 
it is not a new contribution of this article, the adaptor gen-
eration is detailed in our previous works [7,10]. Adaptor is 
platform independent, and it can be refined w.r.t. a specific 
platform, such as the WF platform (using our transforma-
tion process, Figure 5). 

Next, we describe our fault tolerance process, which 
handles exceptions by using error recovery technique. 

4.2 Error Recovery Mechanism 
Monitoring (SMP module in Figure 1) is necessary to 
maintain consistency, correctness, and coordination of 
changes, as well as to handle errors. We focus on atomic 
actions, that allow programmers to apply both backward 
and forward error recovery. These techniques use appro-
priate exception handling mechanisms, which enable deal-
ing with dependability of composed services. Exception 
handling is the method of building a system to detect and 
recover from exceptional conditions (unexpected occur-
rences). Protecting a system from the effects of excep-
tional conditions is a difficult task, since all unexpected 
occurrences can not be anticipated easily while designing 
the system. It is necessary to build exception handlers in 
order to detect and handle these exception conditions by 
avoiding application failures. We perform fault tolerance 
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mechanisms to handle exceptions raised by adaptive de-
mand, returning back the system to any earlier stable state. 
To do that, we define an error recovery algorithm based 
on backward and forward error recovery, handling possible 
failures. 

First, we need to define a data structure, called vector 
dependency, to track dependencies among the synchroni-
sation vectors of an adaptation contract. We base this on 
the tuple-LTS previously generated to obtain the vector de-
pendencies, since the tuple-LTS indicates the order of in-
teractions of the vectors. 

Definition 5 (Vector dependency). A vector dependency 
between two vectors vi and v2 is a link relationship such 

p 
as v1 —> v2, where P can define both either functional or 
non-functional properties (such as temporal requirements 
or resources), and it must always be true to move from v1 

to v2. 
Then, we define an interaction set, which is generated 

as a set of vector dependencies. This set is used to handle 
failures, by identifying all the vectors affected by these fail-
ures. Thus, an interaction set contains all the vectors in the 
adaptation contract of the communication between services 
involved in the interaction. 

Our algorithm is executed when any failure related to 
networks or services occurs, by performing the following 
steps: (1) identify the last vector to be executed in the inter-
action set where the fail occurred, (2) change the status of 
all vectors of that interaction set whose events are directly 
involved in the error to int_execution, (3) change the 
status of all vectors related to other interaction sets which 
depended on the vectors involved in the failed interaction 
set to int_execution, (4) wait for a timeout if the ser-
vice that provoked the error can be re-established, or swap 
the failed service with another service capable of perform-
ing similar roles, (5) if there are not services to swap, then 
an exception will be triggered to all the vectors involved 
in the error and the execution will stop, otherwise (6) re-
execute all vectors in the interaction set that are labeled as 
int_execution and therefore change the value of those 
vectors to successful_execution. 

Next, we illustrate both self-adaptive and error recovery 
processes by using the different scenarios described in our 
case study. 

Example. Considering the full approach presented above, 
we address the scenarios of our case study ITS. 

Firstly, common to all the scenarios, to illustrate the dis-
covery process, we focus on the user's request (passenger 
or driver). Our process selects Route and Map services in 
that order according to the semantic matchmaking, and two 
(matching) tuples of sets of correspondences between oper-
ation profiles are returned and presented below (labels lu1 , 
l r i , etc., are represented in Figure 6). 

MTU ,R {(lu1 ; lr1 ) ; (lu2 ; lr2 ) ; (lu3 ; lr3 ) ; (lu4 ; lr4 ) } 

MTU ,M — {(lu1 ? lm1 ) ? (lu2 ? lm2 )? (lu3 > lm3 )> (lu4 : lm4 ) } 

Once our process has discovered the services, we need 
to handle the inconsistencies, changes or faults which have 

arisen while composing services in our four scenarios. 
Passenger scenario. In this scenario, our self-adaptive 
process applies software adaptation due to the mismatch 
problems in the behavioural interfaces. An adaptor is gen-
erated by means of the adaptation contract between the 
User (passenger) and the Route service. The contract is 
made up of the set of vectors presented below and the tuple-
LTS depicted in Figure 7. The ITS knows at design-time 
the different contexts considered at run-time in this sce-
nario, so it is enough with anticipated adaptation for the 
response given by the Route service. 
{v1 - (lu1, lr1), v2 - (lu2 , lr2 ), 

v3 - (lu3 , lr3 ), v4 - (lu4, lr4 )} 
s \ 

\ < v „ N> <v, N> <v3,N> < V , N > 

Figure 7: Tuple-LTS indicating the interaction order be-
tween the User and the Route service 

It is worth mentioning that in every tuple (v, a), a is al-
ways initialised to N (not_executed), and during the 
composition process this value will change to either S 
(successful_execution) when the vector vt is ex-
ecuted or to I when it is interrupted (int_execution). 
Driver scenario. Here we have three different cases. 

- A) and - B) Both cases needs unanticipated adaptation 
based on software evolution. Neither the new requirement 
(the context information related to weather) requested by 
drivers to obtain the rerouting, nor the new service (Parking 
service) provided at run-time by the driver location, were 
considered by the ITS at design-time. Therefore, the soft-
ware designer has to modify the code of the Route service 
to include the weather in the context profile, and to incor-
porate the new Car Parking service into the ITS. Our ap-
proach will reconfigure dynamically the new full system 
to allow to the Users (drivers) to carry on communicating 
correctly with the Route service, and to discover the new 
service when they require it. The new CA-STS interfaces 
corresponding to the User and the Route, Map and Parking 
services are shown in Figure 8. 

Note that the modifications are represented by dashed 
lines and bold text (e.g., weather). In addition, conditions 
have been added (e.g., [user - - "passenger"] in lu3) to de-
termine that only user profile driver will request the parking 
service. The designer needs to know about the system and 
our approach to perform these kinds of modifications. 

We continue focusing on the interaction between the 
User and Route service, but now also including the Parking 
service. Then, software adaptation is applied in the new 
service interfaces, by generating a new adaptation contract 
to avoid the new mismatches. Below we present the set of 
vectors (labels lu1, lr1, etc., are represented in Figure 8), 
and the tuple-LTS (Figure 9). 
{v1 - (lu1, lr1), v2 - (lu2 , lr2 ), v3 - (lu3, lr3 ), 

v4 - (lu4 , lr4 ), v5 - (lu5, lp1), v6 - (lu6, lp2 ), 
v7 - (lu7 , lp3 ), v8 - (lu8, lp4 ), v9 - (lu9, lr3 ), 
v 1 0 - ( lu10, l p 5 ) } 
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Figure 9: Tuple-LTS indicating the interaction order be-
tween the User and the Route and Parking services 

Finally, we can generate an adaptor for the interaction 
between the User and Route and Parking services. 

- C) This case considers the modifications performed in 
the previous cases. Our error recovery algorithm is applied 
here, since a suspension of the Route service during the 
service interaction occurred. 

Before performing our algorithm, we generate the vec-
tor dependencies and the interaction sets corresponding to 
the communication between the User and the Route and 
Parking services, by means of the tuple-LTS presented in 
Figure 9. 

We assume properties PVjiVj are defined correctly accord-
ing to the requirements of the user's request. The in-
teraction sets are as follows: Iu,r = {vi,v?,V3,V4,V9} and 
hi,P = {V5,V6,V7,V8,V10}, corresponding to the communi-
cation of the User with the Route service and the User with 
the Parking service, respectively. 

Now, to illustrate the algorithm, we assume that during 
the interaction between the User and the Route and Park-
ing services, a failure occurs in vector V4 (of the previous 
contract) corresponding to the confirmation of the Route 
service, i.e., the correspondence between /„4 = cickR! and 
/,4 = confirmRl). Therefore, our process changes to 
i n t _ e x e c u t i o n all the vectors involved in that error, 

and automatically selects another service previously con-
sidered and discovered, i.e., the Map service, which re-
places the Route service at run-time. This is possible be-
cause the designer developed the ITS to support a possible 
connection loss of the Route service, so a reconfiguration 
of the system is unnecessary, which reduces effort and cost. 

A new adaptation contract (vectors and tuple-LTS), with 
its corresponding adaptor, is generated to solve the new 
mismatch problems in the interaction of the User and the 
Map and Parking services. 
{Vl = (J 11 -11111 / - V'2 = (/«2 , lm2 ) ? V3 = (Ju{ -1m {) • 

V4 = (hi4 , lm4 ), V5 = (hi5 ,lpi), V6 = (lu6, lp2 }; 
V7 = (h,7 ,1 Pi ) > VS = (k,s, lP4 ), V9 = (lug, lm3 ), 
VIO = {hno,lP5)} 
The corresponding tuple-LTS is equivalent to that pre-

sented in Figure 9, but replacing the synchronisation vec-
tors V1,V2,V3,V4,V9 of the previous contract (with Route 
service) with the vectors vi, v?, V3, V4,vg related to the new 
contract (with Map service). 

5 Related work 
This section compares our approach with related works 
in software composition, especially those which focus on 
model-based transformation, software adaptation and/or 
evolution, and error recovery. 

With respect to the relationship between existing pro-
gramming languages and platforms, the work presented 
in [5] outlines a methodology for the automated genera-
tion of adaptors capable of solving behavioural mismatches 
between BPEL processes (some interaction scenarios can-
not be resolved). In [3], the authors present techniques to 
provide semi-automated support for identification and res-
olution of mismatches between service interfaces and pro-
tocols, and generate adaptation behavioural specifications 
based on SCA architecture. Compared to these works, we 
generate WF adaptor services that consider not only signa-
ture and protocol mismatches, but also context-aware and 
semantic issues. In addition, our approach is able to re-
order messages among services when required, since our 
discovery process allows this facility automatically. This 
is necessary to ensure correct interaction in the case where 
communicating entities have messages which are not or-
dered as required. 

Some research works have tackled software adapta-
tion and evolution in an architecture-driven style [22], 
or repair programs by means of recommending adaptive 
changes [11]. Another important dimension is using formal 
methods to describe software systems more formally and to 
understand the cause of changes (domain structure) [8, 21], 
In [19], several approaches for supporting static or dynamic 
adaptability and evolvability by means of a wide diversity 
of research domains (requirements, architecture, data, run-
time and language evolution, SOAs), are presented. In our 
approach, we take advantage of both adaptation and/or evo-
lution, in a model-based approach, depending on the needs 
of anticipated and unanticipated adaptation, and the four 
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categorising features, when, where, what, and how. 
As regards fault tolerance mechanisms, one of the most 

beneficial ways of applying fault tolerance is by associating 
its measures with system structuring units [24]. Structuring 
units, which decrease system complexity and make it easier 
for developers to apply fault tolerance, can be: distributed 
transactions and atomic actions. Distributed transactions 
use backward error recovery [18] as the main fault toler-
ance measure in order to satisfy the ACID (atomicity, con-
sistency, isolation, durability) properties. Transactions sup-
pose a powerful abstraction to address failures occurring in 
closed systems. However, they impose highly severe con-
straints over systems in open environments such as SOA 
(e.g., real-time systems do not have time to go back). In 
our approach, we use atomic actions, that allow program-
mers to apply both backward and forward error recovery to 
satisfy certain properties for composing service as a failure 
occur. Forward error recovery uses appropriate exception 
handling without impacting on the autonomy of services 
whilst exploiting their possible support for dependability. 
In addition, to handle exceptions optimally, our error re-
covery mechanism specifies that services return exceptions 
quickly, since notification delay can affect the SOA perfor-
mance, especially in complex workflow systems. 

Summarising, our approach combines efforts to detect 
and handle the different changes or faults arising in self-
adaptive systems, by modelling SOA, performing adapta-
tion and/or evolution when required, and monitoring fail-
ures with error recovery techniques. 

6 Discussion and conclusions 
Self-adaptive software requires high dependability, robust-
ness, adaptability, and availability. Our approach maintains 
system consistency and integrity by examining each change 
and removing those that render the system inconsistent or 
unsafe. We focus on the development and maintenance 
of reliable software systems through self-adaptive and er-
ror recovery techniques. In addition, we give model-based 
SOA a push showing its usefulness to manage self-adaptive 
systems. 

On one hand, in many occasions, the necessary effort to 
develop and maintain the reliable software intensive sys-
tems can be solved by using third-party services. In fact, 
if we weigh up the cost-effectiveness in terms of the ef-
fort required to adapt the system to changes occurred, the 
best solution is not modifying the code when it is not re-
quired, because an intrusive way always requires a recon-
figuration of the system that is less efficient, w.r.t. time 
required, than fixing mismatch problems between services 
by using an adaptor. Regarding this consideration, our pro-
posal always performs with the least effort possible to adapt 
the system. This is illustrated in our case study, where our 
approach generated an adaptor in all the situations to fix 
mismatches and manage context changes. Only in a 50% 
of cases (driver scenarios A) and B)), our approach needed 
to modify the system and apply reconfiguration. In a 25% 

of cases (driver scenario C)), it was necessary to apply error 
recovery mechanisms. 

On the other hand, the development and maintenance of 
self-adaptive systems using a model-based SOA approach 
turns out cost-effective. First, because our self-adaptive 
system provides dependable services to the user, reduces 
the strong dependence on human resources, and reacts to 
different events more quickly, being capable of changing 
its behavior at run-time depending on the context informa-
tion. Second, due to the model-based SOA facilities, such 
as integration, interoperability, flexibility, and incorporat-
ing of new requirements. Therefore, our model transforma-
tion process provides a level of abstraction to tackle discov-
ery, planning, monitoring, adaptation and evolution issues 
easily and independently of the development platform. Our 
case study consisted of two kinds of users (with two pro-
files) and four services in total, so it was not difficult to 
manage. But, when an organization has a large number of 
services connected, the management of the service network 
can become extremely difficult, since all the services are 
directly connected, which can be unmanageable. In those 
cases, a model-based SOA may be even more beneficial. A 
first evaluation to check the scalability of our approach was 
obtained validating it in several examples with up to 10 ser-
vices (a booking on-line system, a travel agency, an on-line 
computer material store, or the case study presented in this 
work) applied to the dependable composition of services 
implemented using indistinctly BPEL and WF. In a not far 
future, we hope that a wide number of companies adopt 
model-based SOA to definitively bridge the gap between 
business and information technology, by making the devel-
opment and maintenance of large software projects more 
agile. 

As regards future work, we plan to develop a full-scale 
system to check our approach that we successfully applied 
to a small-scale system. We also want to extend our pro-
posal to deal with security properties in the vector depen-
dencies, by improving the exception management in our 
fault tolerance mechanism, and tackling in further depth 
the quality of service. In addition, our approach has some 
limitations, such as the need of studying how to manage the 
complexity of the hand-code in case designers must modify 
the system. 
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