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The development of an effective new numerical method for the simulation of the micromechanics of multi-grain systems in
contact is developed in the present paper. The method is based on the Method of Fundamental Solutions (MFS) for two-dimen-
sional plane strain isotropic elasticity and employs the Kelvin Fundamental Solution (FS). The main drawback of MFS is the
presence of an artificial boundary, outside the physical boundary, for positioning the source points of the FS, which is difficult
or impossible in multi-body problems. In order to remove the singularities of the FS the point sources are replaced by the
distributed sources over circular disks. The values of the distributed sources are calculated in a closed form in the case of the
Dirichlet boundary conditions. In the case of the Neumann boundary conditions the respective values of the derivatives of the FS
are calculated indirectly from the considerations of the solution of simple displacement fields. A problem of two, four and nine
bodies in contact is tackled. The newly developed method is verified based on a comparison with the classic MFS. The nume-
rical method will form a part of the microstructure-deformation model, coupled with the macroscopic thermo-mechanics simu-
lation system for continuous casting, hot rolling and heat treatment.
Keywords: isotropic elasticity, plane strain, Navier’s equation, displacement and traction boundary conditions, non-singular
method of fundamental solutions, Kelvin’s fundamental solution

V ~lanku opisujemo u~inkovito novo numeri~no metodo za simulacijo mikromehanike sistemov z ve~ zrni v stiku. Ta temelji na
metodi fundamentalnih re{itev (MFR) za dvo-dimenzionalne probleme izotropnih elasti~nih ravninskih deformacij in uporablja
Kelvinovo fundamentalno re{itev (FR). Bistvena slabost MFR je prisotnost fiktivnega roba zunaj fizikalnega roba za postavitev
izvirnih to~k FR, kar je te`avno ali nemogo~e pri problemih z ve~ telesi. Z odstranitvijo nesingularnosti FR smo to~kovne izvire
nadomestili s porazdeljenimi izviri po krogih. Vrednosti porazdeljenih izvirov so izra~unane v analiti~ni obliki za Dirichletove
robne pogoje. Pri Neumann-ovih robnih pogojih so vrednosti odvodov FR izra~unane posredno pri upo{tevanju re{itev
preprostih polj premika. Obravnavani so sistemi z dvema, {tirimi in devetimi telesi v stiku. Nova metoda je verificirana na
podlagi primerjave s klasi~no MFR. Uporabljena bo v deformacijskem modelu mikrostukture, povezanim z makroskopskim
termomehanskim sistemom za simulacijo kontinuirnega ulivanja, vro~ega valjanja in toplotne obdelave.
Klju~ne besede: izotropna elasti~nost, ravninska deformacja, Navierove ena~be, robni pogoji premika in vle~enja, nesingularna
metoda fundamentalnih re{itev, Kelvinova fundamentalna re{itev

1 INTRODUCTION

The physical modelling of metallurgical processes1

consists of modelling the relations between the process
parameters and the macroscopic velocity, temperature,
concentration, and stress fields, and the relations bet-
ween these fields and the evolution of the microstructure.
In such multi-scale modelling, the transport phenomena
and solid mechanics on the level of microstructure play
an important role and have to be properly computatio-
nally modelled.2,3 We have, in the recent years, deve-
loped a completely new generation of meshless methods,
based on local collocation with radial basis functions, for
solving these models on different scales. The main
advantage of the method is in their similar structure in 2
and 3D, no need for polygonisation, ease of coding, high
accuracy, robustness and flexibility. The method has
already been developed for modelling very complex

phenomena such as macro-segregation on the macrosco-
pic level4 as well as dendritic growth on the micro-level.5

An extension of the meshless method, based on a
collocation with a fundamental solution (Method of
Fundamental Solutions (MFS)), for the simulation of the
deformation of the multiple grains in an ideal mechanical
contact is presented in the present paper. An extension of
the represented method with anisotropic and plastic
deformation capabilities will be used in our future ther-
mo-mechanical calculations for the microstructure evo-
lution in metallurgical processes.6

The main idea of MFS consists of approximating the
solution of the partial differential equation by a linear
combination of fundamental solutions, defined in source
points. The expansion coefficients are calculated by
collocation or least-squares fit of the boundary condi-
tions. The fundamental solution is usually singular in the

Materiali in tehnologije / Materials and technology 47 (2013) 6, 789–793 789

UDK 519.61/.64:539.3 ISSN 1580-2949
Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 47(6)789(2013)



source points and this is the reason why the source points
are located outside the domain in the MFS. Then, the
original problem is reduced to determining the unknown
coefficients of the fundamental solutions and the coordi-
nates of the source points by requiring the approximation
to satisfy the boundary conditions and hence solving a
non-linear problem. If the source points are a priori
fixed, then the coefficients of the MFS approximation are
determined by solving a linear problem. The MFS has
become very popular in recent years because of its sim-
plicity. Clearly, it is applicable when the fundamental
solution of the partial differential operator of the govern-
ing equation (or of the system of governing equations) of
the problem under consideration is known. The MFS has
been widely used7 for the solution of problems in linear
elasticity.

In the traditional MFS, the fictitious boundary, posi-
tioned outside the problem domain, is required to place
the source points. This is very impractical or even impo-
ssible, particularly when solving muti-body problems. In
recent years, various efforts have been made, aiming to
remove this barrier in the MFS, so that the source points
can be placed directly on the real boundary.8–12 In the
present paper, we use a non-singular MFS based on8 to
deal with the 2D multi-body isotropic elasticity pro-
blems. The application of a non-singular method of
fundamental solutions (NMFS) in two-dimensional
isotropic linear elasticity has been originally developed
in.13 We extend these developments to multi-body pro-
blems in the present paper. We respectively use area-
distributed sources covering the source points to replace
the concentrated point sources. This NMFS approach
also does not require information about the neighbouring
points for each source point, thus it is a truly mesh-free
boundary method. The derivatives of the fundamental
solution in the distributed source points are calculated by
adopting the methodology in9 from the Laplace to Kelvin
fundamental solution.

The rest of the paper is structured as follows. The
solution procedure is given for MFS and NMFS. Nume-
ral results with 1, 4 and 9 bodies in contact are given,
followed by conclusions and further research.

2 GOVERNING EQUATIONS OF ELASTICITY
FOR THE MULTI-BODY PROBLEM

We consider a two-dimensional domain � with the
boundary �, divided into M sub-domains � = �I � �II

� ... � �M with boundaries � = (�I � �II � ... � �M) –
�I-II – ... – �I-M – ... – �(M-I)-M as shown in Figure 1. Each
of the domains is occupied by an isotropic, ideally elastic
material with different material properties, in general.
Let us introduce a two-dimensional Cartesian coordinate
system with orthonormal base vectors ix and iy, and coor-
dinates px and py of point P with the position vector p =
pxix + pyiy. The solid is governed by Navier’s equations
for plane strain problems, which are the conditions for

equilibrium, expressed with the displacement u. The
following governing equations are valid in the sub-
domain �m,m = I, II, ..., M, p � �m:
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where vm represents the Poisson ratio in the subdomain
�m. The boundary � is divided into two not necessarily
connected parts � = �D + �T. On the part �D the displa-
cement (Dirichlet) boundary conditions are given, and
on the part �T the traction (Neumann) boundary condi-
tions are given:
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On the interface between different regions, displace-
ment continuity and traction equilibrium conditions have
been assumed:
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The strains ��	; �, 	 = x, y are related to the displace-
ment gradients by:
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Figure 1: A scheme of the multi-region problem. Each of the sub-
domains can have different elastic properties.
Slika 1: Shema problema z ve~ obmo~ji. Vsako podobmo~je ima
lahko razli~ne elasti~ne lastnosti.



The stress components ��	; �, 	 = x, y are for the plane-
strain cases related to the strains through Hooke’s law:

� � � � � � � ��	 �	 �	m xx yy m( )+ +2 (6)

where μm = Em / 2(1 + vm) is the shear modulus of elasti-
city, Em is a constant, known as the modulus of elasti-
city, or Young’s modulus, �m = 2 vmμm / (1 – 2vm) is the
Lamé constant, and ��	 is the Kronecker delta:
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3 SOLUTION PROCEDURE

The fields on each of the sub-domains are repre-
sented by collocation with fundamental solutions in the
boundary points. The collocation needs to satisfy the
boundary conditions between different regions and outer
boundaries. In a numerical implementation of MFS and
NMFS, we assume that one boundary collocation point
belongs to only two regions at once. In order to keep the
formulation simple we do not put the discretisation
points on the corners that might belong to three or more
regions at once. Explicit expressions for Kelvin’s funda-
mental solution of elastostatics, used in the collocation,
are given14 in a two-dimensional plane-strain situation by:
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where the material properties depend on the position in
a subdomain. U�	 (p,s) represents the displacement in
the � direction at point p due to a unit point force acting
in the 	 direction at point s. r p s p sx x y y= − −( ) +( )2 2

is the distance between the collocation point p and the
source point s.

It can be shown that the following ux and uy satisfy
the governing Eq. (1):
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where �n and �n represent arbitrary constants and �n =
�nm, �n = �nm, N = Nm when p � �m. Nm is the number
of p � �m, m = I, II, ..., M. A(pn,R) (Figure 2)
represents a circle with radius R, centred around pn · pn

= s represents points on the physical boundary. p and pn

belong to the same sub-domain. The quantity U�	 (p,pn)
is singular when p = pn. We use the following de-sin-
gularization technique, proposed by6, for evaluating the
singular values:
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The tractions can be expressed as:
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t� = t�m, T�	 = T�	m, nn� = nn�m, �, 	 = x, y when p � �m.

The coefficients �n and �n are calculated from a sys-
tem of (2NI + 2NII + ... + 2NM) × + (2NI + 2NII + ... +
2NM) algebraic equations, obtained by collocating the
boundary conditions:

Ax = b (13)
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Figure 2: Distributed source on a disk A(pn)
Slika 2: Porazdeljeni izviri na disku A(pn)



where A is composed of
~

( , )U n�� p p and
~

( , )T n�� p p , x is

composed of �n and �n, and b is composed of u�, t� and
0. The explicit form of the elements of the algebraic
equation system (13) can be found in.11

The diagonal terms
~

( , )T l l�� p p , �, � = x, y, l = 1, ...,

NI + ... + NM, in Eq. (13) are determined indirectly for the
collocation points on �T. For this purpose, the method
proposed in7 for potential problems is applied to deter-
mine the diagonal coefficients of Eq. (13). In the
approach, we first assume two simple solutions. The first
simple solution is u p cx x x( )p = + , uy ( )p = 0 everywhere.
The second simple solution is ux ( )p = 0, u p cy y y( )p = +
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By substituting �n
( )1 , �n

( )1 and �n
( )2 , �n

( )2 and Eq. (9)
into Eq. (14), we can obtain the diagonal terms
~

( , )T l�� p pl , �, � = x, y, l = 1, ..., NI + ... + NM. The

constant c should be selected in such a way that all the
points in the upper cases do not move the same distance.
So that the denominators in the upper derivations are not
zero.

By knowing all the elements Aij and bk of the system
(13), we can determine all the values of �n and �n.
Subsequently, we can calculate the displacement for all
the domain points using Eq. (9).

4 NUMERICAL EXAMPLES

We consider a square with side a = 3m centred
around px = 0m, py = 0m for testing the performance of
the method. We distinguish three sub-examples. In the
first one, the whole square is occupied by one material,
with the material properties E = 1N/m2, v = 0.3, in the
second one, the square is split into four parts with the
same material properties as in the first example EI = EII =
... = EIV = 1N/m2 vI = vII = ... = vIV = 0.3, and in the third
one, the square is split into nine parts with the same
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Figure 5: The deformation calculated with MFS and NMFS for a
nine-domain case EI = EII = ... = EIV = 1N/m2, vI = vII = ... = vIV = 0.3
and N = 360 (�: collocation points, �: source points, ×: MFS solution,
�: NMFS solution). The position of the source points in MFS is on
squares around each of the square physical domains.
Slika 5: Deformacija, izra~unana z MFR in NMFR, za primer z
devetimi obmo~ji EI = EII = ... = EIV = 1N/m2, vI = vII = ... = vIV = 0,3
in N = 360 (�: kolokacijske to~ke, �: izvirne to~ke, ×: MFR-re{itev,
�: NMFR-re{itev). Pozicija izvirnih to~k je na kvadratih okoli
vsakega od {tirih kvadratnih domen.

Figure 3: The deformation calculated with MFS and NMFS for a
one-domain case with E = 1N/m2, v = 0.3 and N = 120 (�: collocation
points, �: source points, ×: MFS solution, �: NMFS solution)
Slika 3: Deformacija, izra~unana z MFR in NMFR, za primer z enim
obmo~jem z E = 1N/m2, v = 0,3 in N = 120 (�: kolokacijska to~ka, �:
izvirna to~ka, ×: MFR-re{itev, �: NMFR-re{itev)

Figure 4: The deformation calculated with MFS and NMFS for a
four-domain case EI = EII = ... = EIV = 1N/m2, vI = vII = ... = vIV = 0.3
and N = 240 (�: collocation points, �: source points, ×: MFS solution,
�: NMFS solution). The position of the source points in MFS is on
squares around each of the square physical domains.
Slika 4: Deformacja, izra~unanana z MFR in NMFR, za primer s
{tirimi obmo~ji EI = EII = ... = EIV = 1N/m2, vI = vII = ... = vIV = 0,3 in
N = 240 (�: kolokacijska to~ka, �: izvirna to~ka, ×: MFR-re{itev, �:
NMFR-re{itev). Pozicija izvirnih to~k je na kvadratih okoli vsakega
od {tirih kvadratnih domen.



material properties as in the first example EI = EII = ... =
EIX = 1N/m2 vI = vII = ... = vIX = 0.3. We considered the
solution of the Navier equations in this square subject to
the boundary conditions ux = 0m, uy = −01. m on the points
of the north side with py = 1.5m; ux = 0m, uy = 01. m on
the south side with py = –1.5m and on the east px = 1.5m
and west px = –1.5m sides t /x = 0N m2 , t /y = 0N m2 is set.
A plot of the deformation, calculated with the defined
three sub-examples is shown in Figures 3, 4 and 5,
respectively. The following parameters were used R =
d/5, RI = dI/5, ..., RIX = dIX/5, where d, dm, m = I, II, ..., IX
are the smallest distances between two nodes on the
boundary, Rm is the radius of the circle centred the point
pn � �m, cx = cy = cxI = cyI = L = cxIX = cyIX = 4. The dist-
ance of the fictitious boundary from the true boundary
for the MFS is set to RM = 5d, RMI = 5dI, ..., RMIX = 5dIX.

Figures 3, 4 and 5 show good agreement between the
solution for a one-domain region and a solution recalcu-
lated with the four and nine regions in ideal mechanical
contact and with the same material properties. The
maximum absolute difference in displacements between
the values in Figures 3 and 4 at the outer boundary are
�ux = 0.0417m, �uy = 0.0886m, and between Figures 3
and 5 �ux = 0.0017m, �uy = 0.0012m, respectively.

5 CONCLUSION

A new, non-singular method of fundamental
solutions13 is extended in the present paper to solve
multi-dimensional linear elasticity problems. In this
approach, the singular values of the fundamental solution
are integrated over small circular discs, so that the
coefficients in the system of equations can be evaluated
analytically and consistently, leading to an extremely
simple computer implementation of this method. The
method essentially gives the same results as the classic
MFS. It has the advantage that the artificial boundary is
not present; however, at the expense of solving three
times the systems of algebraic equations in comparison
with only one solution in MFS. The main advantage of
the method is that the discretisation is performed only on
the boundary of the domain and no polygonisation is
needed, like in the finite-element method. The NMFS
method, presented in this paper, can be adapted or
extended to handle many related problems, such as
three-dimensional elasticity, anisotropic elasticity, and
multi-body problems, which all represent directions for

our further investigations. The advantage of not having
to generate the artificial boundary is particularly
welcome in these types of problems. The method will be
used in the future for the calculation of multigrain
deformation problems in steel and aluminium alloys,
with realistic grain shapes, obtained from the microscope
images. The developed method is believed to represent a
most simple state-of-the-art way to numerically cope
with these types of problems.
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