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Abstract

Symmetric graphs of valencies 3, 4 and 5 and square-free order have been classified in
the literature. In this paper, we will present a complete classification of symmetric graphs
of square-free order and any prime valency which admit a soluble arc-transitive group, and
a complete classification of 7-valent symmetric graphs of square-free order.

Keywords: Symmetric graph, normal quotient graph, automorphism group.

Math. Subj. Class.: 20B15, 20B30, 05C25

1 Introduction
Throughout the paper, graphs considered are assumed to be undirected and simple with
valency at least three.

For a graph Γ , denote by V Γ andAΓ the vertex set and arc set of Γ respectively, denote
by AutΓ the full automorphism group of Γ , and denote by Γ (α) the set of neighbors of a
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vertex α in Γ . Then Γ is calledX-vertex-transitive orX-arc-transitive, withX ≤ AutΓ , if
X is transitive on V Γ orAΓ respectively. An arc-transitive graph is also called a symmetric
graph. In particular, Γ is called arc-regular if AutΓ is regular on AΓ .

For a positive integer s, an s-arc of a graph Γ is a sequence v0, v1, . . . , vs of s + 1
vertices such that vi−1, vi are adjacent for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i ≤ s − 1.
If Γ has an s-arc and X ≤ AutΓ is transitive on the set of s-arcs of Γ , then Γ is called
(X, s)-arc-transitive. If Γ is (AutΓ , s)-arc-transitive but not (AutΓ , s+ 1)-arc-transitive,
then Γ is simply called s-transitive.

Characterizing symmetric graphs was initiated by a nice result of Tutte (1949) which
says that there exists no s-arc-transitive cubic graph with s ≥ 6. This result was generalized
by Weiss [27] who proved that there is no s-arc-transitive graph with s ≥ 8 of valency at
least 3. Since then, studying transitive graphs has been one of the main topics in algebraic
graph theory, and numerous results have been obtained. In particular, transitive graphs
of square-free order (not divisible by the square of a prime) have received considerable
attention; for example, symmetric graphs of valencies 3, 4 and 5 and square-free order
have been classified by [16, 17] and [6] respectively, and arc-regular graphs of square-free
order and prime valency have been determined by [9]. The main purpose of this paper
is to give a complete classification of symmetric graphs of square-free order and prime
valency admitting a soluble arc-transitive group, and a complete classification of 7-valent
symmetric graphs of square-free order.

The terminology and notation used in this paper are standard. For example, we denote
by J1 the Janko simple group, by HS the Higman-Sims simple group, and by Mn, with
n = 11, 12, 22, 23, 24, the five Mathieu simple groups. For a positive integer m, denote
by Am and Sm the alternating group and symmetric group of degree m, and by Zm,Fm
and Dm (with m even) the cyclic group, Frobenius group and dihedral group of order m
respectively. Given two groups N and H , denote by N × H the direct product of N and
H , by N.H an extension of N by H , and if such an extension is split, then we write N :H
instead of N.H .

A graph Γ is called a Cayley graph if there exists a group G and a subset S ⊆ G \ {1}
with S = S−1: = {s−1 | s ∈ S} such that the vertex set V Γ = G and a vertex x is adjacent
to a vertex y if and only if yx−1 ∈ S. This Cayley graph is denoted by Cay(G,S). The
following Cayley graphs of dihedral groups give rise to an infinite family of prime-valent
symmetric graphs, where the first two letters ‘CD’ of the name of the graph CD2m,p,k

stand for ‘Cayley graph of a dihedral group’.

Example 1.1. Let G = 〈a, b | am = b2 = 1, ab = a−1〉 ∼= D2m with m a positive integer,
and let p be an odd prime and k a solution of the equation

xp−1 + xp−2 + · · ·+ x+ 1 ≡ 0 (mod m).

Set
CD2m,p,k = Cay(G, {b, ab, ak+1b, . . . , ak

p−2+kp−3+···+k+1b}).

The following theorem determines the prime-valent symmetric graphs of square-free
order which admit a soluble arc-transitive automorphism group. We remark that cubic
graphs which admit a soluble edge-transitive or arc-transitive automorphism group have
been characterized by [20] and [8], respectively.
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Theorem 1.2. Let Γ be a connected p-valent symmetric graph of square-free order n with
p an odd prime, and suppose that Γ admits a soluble arc-transitive automorphism group
G. Then either

(1) Γ ∼= Kp,p, and G ∼= (((Zp : Zl1)× (Zp : Zl2)).Zr).Z2 ≤ Sp o Z2, where lir | p− 1
for i = 1, 2; or

(2) Γ ∼= CDn,p,k, n = 2 · psp1p2 · · · pt and G = AutΓ ∼= Dn:Zp, where 0 ≤ s ≤ 1,
t ≥ 1, and p1, p2, . . . , pt are distinct primes such that p | pi − 1 for i = 1, 2, . . . , t.
Further, there are exactly (p− 1)t−1 non-isomorphic such graphs of order n.

The next theorem present a complete classification of 7-valent symmetric graphs of
square-free order, where the graph C330 in Table 1 is introduced in Example 3.2 for conve-
nience.

Theorem 1.3. Let Γ be a connected 7-valent symmetric graph of square-free order n. Then
one of the following statements holds.

(1) Γ ∼= CDn,7,k, and the tuple (n,AutΓ ) is as in part (2) of Theorem 1.2 with p = 7.

(2) The triple (Γ , n,AutΓ ) lies in Table 1.

(3) AutΓ ∼= PSL(2, p) or PGL(2, p), where p ≥ 13 is a prime such that p(p2 − 1) |
225 · 34 · 52 · 7n.

Table 1: Two ‘sporadic’ 7-valent symmetric graphs

Row Γ n AutΓ (AutΓ )α Transitivity Remark

1 K7,7 14 S7 o Z2 S7.S6 3-transitive bipartite
2 C330 330 M22.Z2 Z4

2 : SL(3, 2) 2-transitive not bipartite

Remark 1.4. Graphs appearing in part (3) of Theorem 1.3 can be expressed as coset graphs
of PSL(2, p) or PGL(2, p) (refer to [10] for the definition of the coset graph). However,
it seems infeasible to determine all the possible values of p (and so the corresponding
symmetric graphs Γ ) for general square-free integer n.

2 Preliminaries
In this section, we introduce some preliminary results that will be used later.

For a group G with a subgroup H , let CG(H) and NG(H) denote the centralizer and
normalizer of H in G, respectively.

Lemma 2.1 ([14, Ch. I, Lemma 4.5]). Let G be a group and H a subgroup of G. Then
NG(H)/CG(H) . Aut(H).

For a groupG, the largest nilpotent normal subgroup ofG is called the Fitting subgroup
of G. Clearly, the Fitting subgroup is a characteristic subgroup. The next lemma gives a
property of the Fitting subgroup of soluble groups.

Lemma 2.2 ([26, P. 30, Corollary]). Let F be the Fitting subgroup of a soluble group G.
Then F 6= 1 and CG(F ) ≤ F .
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The maximal subgroups of the simple group PSL(2, q) are known, see [5, Section 239].

Lemma 2.3. Let T = PSL(2, q), where q = pn ≥ 5 with p a prime. Then a maximal
subgroup of T is isomorphic to one of the following groups, where d = (2, p− 1).

(1) D 2(q−1)
d

, where q 6= 5, 7, 9, 11;

(2) D 2(q+1)
d

, where q 6= 7, 9;

(3) Znp : Z q−1
d

;

(4) A4, where q = 5, or q = p ≡ 3, 13, 27, 37 (mod 40);

(5) S4, where q = p ≡ ±1 (mod 8);

(6) A5, where q = p ≡ ±1 (mod 5), or q = p2 ≡ −1 (mod 5) with p an odd prime;

(7) PSL(2, r), where q = rm with m an odd prime;

(8) PGL(2, r), where q = r2.

By [2, Theorem 2], one may easily derive the maximal subgroups of PGL(2, p).

Lemma 2.4. Let T = PGL(2, p) with p ≥ 5 a prime. Then a maximal subgroup of T is
isomorphic to one of the following groups:

(1) Zp : Zp−1;

(2) D2(p+1);

(3) D2(p−1), where p ≥ 7;

(4) S4, where p ≡ ±3 (mod 8);

(5) PSL(2, p).

A group G is called perfect if G = G′, the commutator subgroup; and an extension
G = N.H is called a central extension if N ⊆ Z(G), the center of G. If a group G is
perfect and G/Z(G) is isomorphic to a simple group T , then G is called a covering group
of T . Schur [25] showed that a simple (and, more generally, perfect) group T possesses a
universal covering groupGwith the property that every covering group of T is a homomor-
phic image of G, in this case, the center Z(G) is called the Schur multiplier of T , denoted
by Mult(T ), see [12, P. 43]. The Schur multipliers of nonabelian simple groups are known
(see [12, P. 302]), and the following lemma is easy to prove (see [23, Lemma 2.11]).

Lemma 2.5. LetG = N.T , whereN is a cyclic group and T is a nonabelian simple group.
Then G = N.T is a central extension. Further, G = NG′ and G′ = M.T , where M is
contained in G′ ∩N and is isomorphic to a subgroup of Mult(T ).

The following lemma characterizes the vertex stabilizers of 7-valent symmetric graphs,
see [13, Theorem 1.1].

Lemma 2.6. Let Γ be a connected 7-valent (X, s)-arc-transitive graph, whereX ≤ AutΓ
and s ≥ 1. Then one of the following holds, where α ∈ V Γ .

(1) If Xα is soluble, then s ≤ 3 and |Xα| | 252. Further, the couple (s,Xα) is listed in
Table 2.
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Table 2: Soluble vertex-stabilizers of 7-valent-symmetric graphs.

s 1 2 3

Xα Z7,D14,F21,D14 × Z2, AGL(1, 7),AGL(1, 7)× Z2, AGL(1, 7)× Z6

F21 × Z3 AGL(1, 7)× Z3

Table 3: Insoluble vertex-stabilizers of 7-valent symmetric graphs.

s 2 3

Xα PSL(3, 2),ASL(3, 2), PSL(3, 2)×S4,A7×A6,

ASL(3, 2)×Z2,A7,S7 S7×S6, (A7×A6):Z2,

Z6
2:(SL(2, 2)×SL(3, 2)),

Z20
2 :(SL(2, 2)×SL(3, 2))

|Xα| 23·3·7, 26·3·7, 26·32·7, 26·34·52·7,
27·3·7, 23·32·5·7, 24·32·5·7 28·34·52·7, 27·34·52·7,

210·32·7, 224·32·7

(2) If Xα is insoluble, then |Xα| | 224 · 34 · 52 · 7. Further, the couple (s,Xα) lies in
Table 3.

Analyzing a graph in terms of its normal quotients is a typical method for studying
vertex-transitive graphs. Let Γ be an X-vertex-transitive graph with X ≤ AutΓ , and
suppose that X has a normal subgroup N which is intransitive on V Γ . Denote by V ΓN
the set of all N -orbits on V Γ . Then the normal quotient graph ΓN of Γ induced by N
is defined as the graph with vertex set V ΓN , and B is adjacent to C in ΓN if and only if
there exist vertices β ∈ B and γ ∈ C such that β is adjacent to γ in Γ . In particular, if for
any adjacent vertices B and C in V ΓN , the induced subgraph [B,C] ∼= mK2 is a perfect
matching, wherem = |B| = |C|, then Γ is called a regular cover (or normal cover) of ΓN .

The following theorem gives a basic reduction method for studying vertex-transitive
locally primitive graphs (see [18, Lemma 2.5]), which slightly improves a nice result of
Praeger [24, Theorem 4.1]. Recall that, a graph Γ is calledX-locally primitive if the vertex
stabilizer Xα acts primitively on the neighbour set Γ (α) for each α ∈ V Γ . Obviously,
symmetric graphs with odd prime valency are locally primitive.

Theorem 2.7. Let Γ be an X-vertex-transitive locally primitive graph, where X ≤ AutΓ ,
and let N CX have at least three orbits on V Γ . Then the following statements hold.

(i) N is semi-regular on V Γ , X/N ≤ AutΓN , and Γ is a regular N -cover of ΓN ;

(ii) Xα
∼= (X/N)γ , where α ∈ V Γ and γ ∈ V ΓN ;

(iii) Γ is (X, s)-arc-transitive if and only if ΓN is (X/N, s)-arc-transitive, where
1 ≤ s ≤ 5 or s = 7.

Symmetric graphs of prime-valency and order twice a prime are known, see [3].

Lemma 2.8. Let Γ be a connected symmetric graph of odd prime valency p and order 2r
with r a prime. Then one of the following statements holds.
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(1) Γ ∼= O2 and AutΓ ∼= S5;

(2) Γ ∼= K2r with p = 2r − 1, and AutΓ ∼= S2r;

(3) Γ ∼= Kr,r with p = r, and AutΓ ∼= Sr o S2;

(4) Γ ∼= CD2r,p,k (which, up to isomorphism, is independent of the choice of k in this
case), where p | r − 1, and one of the following statements holds.

(i) (r, p) = (7, 3) and AutΓ ∼= PGL(2, 7);
(ii) (r, p) = (11, 5) and AutΓ ∼= PGL(2, 11);

(iii) (r, p) 6= (7, 3) and (11, 5), and AutΓ ∼= D2r : Zp.

Lemma 2.9 ([19, Theorem 1.1]). Let Γ be a connected 7-valent symmetric graph of order
2pq with p > q odd primes. Then one of the following holds:

(1) AutΓ ∼= PSL(2, p) with p ≥ 13;

(2) q = 7 or 7 | p− 1, 7 | q − 1, and Γ ∼= CD2pq,7,k (as in Example 1.1).

3 A lemma and an example
In this section, we give a technical lemma and introduce an example appearing in Theo-
rem 1.3.

The following is an assertion regarding simple groups, its proof depends on the classi-
fication of simple groups, see [12, P. 134-136].

Lemma 3.1. Let m be an odd square-free integer with at least three prime factors, and let
T be a nonabelian simple group such that 28m | |T | and |T | | 225 · 34 · 52 · 7m. Then the
couple (T, |T |) is listed in Table 4, where p in part 4 is the largest prime factor of m and
p ≥ 13.

Proof. If T is a sporadic simple group, by [12, P. 135-136], T = M22, M23, M24, J1, HS
or Ru, as in part 1 of Table 4. If T = An is an alternating group, since 36 does not divide
|T | and 36 | |A15|, we have n ≤ 14, it then easily follows that T = A11, A12, A13 or A14,
as in part 2 of Table 4.

Now, suppose that T is a simple group of Lie type defined on the re-elements field
GF(re), where r is a prime. If T is of exceptional Lie type, by [12, P. 135], T ∼= Sz(512)
or 3D4(2), as listed in part 3 of Table 4. Consider the case where T is of classical Lie type.
Since re | |T |, we have that e = 1 if r > 7, and e ≤ 2 if r = 7, by [12, P. 135], which
give rise to examples T = PSL(2, p) with p ≥ 13 a prime (noting that PSL(2, p) with
p = 5, 7, 11 does not satisfy the hypothesis of Lemma 3.1) and T = PSL(2, 49). If r = 5,
as 54 6 | |T |, we conclude from [12, P. 135] that T = PSL(2, 125). For the case where r ≤ 3,
since 36, 54 and 73 do not divide |T |, by [12, P. 135] and with the help of Magma [1], we
conclude that T is isomorphic to one of the groups listed in part 4 of Table 4.

Given a permutation group G, a direct computation by Magma program [1] can deter-
mine all orbital graphs of G (see [7, P. 66] for the definition of orbital graph), or in other
words, can determine all symmetric graphs which admit G as an arc-transitive automor-
phism group. It is then easy to have the following example.

Example 3.2. There is a unique connected 7-valent symmetric graph of order 330, denoted
by C330, which admits M22 or M22.Z2 as an arc-transitive automorphism group. The graph
C330 satisfies the conditions in Row 2 of Table 1.
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Table 4: Nonabelian simple groups T with 28m | |T | and |T | | 225 · 34 · 52 · 7m.

Part T |T |
1 M22 27·32·5·7·11

M23 27·32·5·7·11·23
M24 210·33·5·7·11·23
J1 23·3·5·7·11·19
HS 29·32·53·7·11
Ru 214·33·53·7·13·29

2 A11 27·34·52·7·11
A12 29·35·52·7·11
A13 29·35·52·7·11·13
A14 210·35·52·72·11·13

3 Sz(512) 218·5·7·13·37·73·109
3D4(2) 212·34·72·13

4 PSL(2, p) p(p2 − 1)/2

PSL(2, 49) 24·3·52·72
PSL(2, 125) 22·32·53·7·31
PSL(2, 26) 26·32·5·7·13
PSL(2, 29) 29·33·7·19·73
PSL(2, 212) 212·32·5·7·13·17·241
PSL(2, 215) 215·32·7·11·31·151·331
PSL(2, 218) 218·33·5·7·13·19·37·73·109
PSL(2, 221) 221·32·72·43·127·337·5419
PSL(2, 224) 224·32·5·7·13·17·97·241·257·673
PSL(3, 8) 29·32·72·73
PSL(3, 16) 212·32·52·7·13·17
PSL(3, 64) 218·34·5·72·13·19·73
PSL(4, 4) 212·34·52·7·17
PSL(5, 2) 210·32·5·7·31
PSL(5, 4) 220·35·52·7·11·17·31
PSL(6, 2) 215·34·5·72·31
PSL(7, 2) 221·34·5·72·31·127
PSp(6, 4) 218·34·53·7·13·17
PSp(8, 2) 216·35·52·7·17
PSp(4, 8) 212·34·5·72·13
PΩ(7, 4) 218·34·53·7·13·17
PΩ(9, 2) 216·35·52·7·17
PΩ+(10, 2) 220·35·52·7·17·31
PΩ−(8, 2) 212·34·5·7·17
PΩ−(8, 4) 224·34·53·7·13·17·257
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4 Proof of Theorem 1.2
In this section, we prove Theorem 1.2 which in particular gives a partial proof of Theo-
rem 1.3.

Let Γ be a connected symmetric graph of odd prime valency p and square-free order n,
and let G be a soluble arc-transitive automorphism group of Γ . Since Γ is of odd valency,
n is even. Set n = 2p1p2 · · · pt, with p1, p2, . . . , pt distinct odd primes.

If t = 1, by Lemma 2.8, Γ ∼= CD2p1,p,k (as in part (2) of Theorem 1.2) or Γ ∼= Kp,p.
If Γ ∼= Kp,p, then G ≤ AutΓ ∼= Sp o Z2, as G is arc-transitive on Γ , Z2

p CG and G 6⊆S2
p, it

is then routine to show that G ∼= (((Zp : Zl1)× (Zp : Zl2)).Zr).Z2, where lir | p− 1 for
i = 1, 2, as in part (1) of Theorem 1.2.

Suppose t ≥ 2 in the following. Let F be the Fitting subgroup of G. By Lemma 2.2,
F 6= 1. As |V Γ | = 2p1p2 · · · pt, G has no nontrivial normal Sylow a-subgroup, where
a 6∈ {2, p1, p2, . . . , pt} is a prime, hence

F = O2(G)×Op1(G)× · · · ×Opt(G),

where O2(G) and Opi(G) with i = 1, 2, . . . , t denote the largest normal 2- and pi-
subgroups of G, respectively.

For each prime q ∈ {2, p1, p2, . . . , pt}, since t ≥ 2, Oq(G) has at least six orbits on
V Γ , by Theorem 2.7, Oq(G) is semi-regular on V Γ , so is F and Oq(G) ≤ Zq . Hence
F ≤ Zn is cyclic and CG(F ) = F by Lemma 2.2.

If F is transitive on V Γ , then F ∼= Zn is regular on V Γ and Γ is a Cayley graph of F .
Set Γ = Cay(F, S), where S = S−1 ⊆ F \ {1} with size |S| = p. Since F C G, by [11,
Lemma 2.9], G ≤ F :Aut(F, S), so G1 ≤ Aut(F, S) ≤ Aut(F ) is transitive on Γ (1) = S,
where 1 denotes the vertex of Γ corresponding to the identity element of F , thus elements
in S have the same order, say h. Clearly, h 6= 2 as F has a unique involution. If h > 2, as
S = S−1, |S| is even, which is a contradiction.

If F has at least three orbits on V Γ , then Theorem 2.7 implies that the normal quotient
graph ΓF is G/F -arc-transitive; however, by Lemma 2.2, G/F = G/CG(F ) ≤ Aut(F )
is abelian, it forces that G/F is regular on V ΓF , and so G/F is not transitive on AΓ , also
yielding a contradiction.

Thus, F has exactly two orbits on V Γ , and F ∼= Zn
2

. Because t ≥ 2, F has a nontrivial
normal subgroup K ∼= Zp2p3...pt . Since K C G has 2p1 orbits on V Γ , by Theorem 2.7,
ΓK is a G/K-arc-transitive graph of valency p and order 2p1, and Γ is a regular K-cover
of ΓK . Such covers have been classified by [21, Theorem 1.1], hence the triple (Γ ,K,ΓK)
(as (Γ ,Zn,Σ ) there) satisfies parts (1)–(5) of [21, Theorem 1.1]. Since |K| 6= 2, parts
(1)–(3) are impossible. For part (4), since n is square-free, p1 6 | |K|, by [22, Theorem
1.1], Γ ∼= CDn,p,k. For part (5), noting that p1 6 | |K|, part (5)(ii) is not possible, we also
have Γ ∼= CDn,p,k. Finally, the last statement in part (2) of Theorem 1.2 is true by [9,
Theorem 3.1]. This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3
We will prove Theorem 1.3 in this final section.

Let Γ be a connected 7-valent symmetric graph of square-free order n. Since Γ is of
odd valency, n is even, so we may write

n := 2m = 2p1p2 . . . pt,
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where p1, p2, . . . , pt are distinct odd primes. Let A = AutΓ .

Lemma 5.1. If t ≤ 2, then Theorem 1.3 is true.

Proof. If t = 1, by Lemma 2.8, Γ ∼= CD2p1,7,k (as in part (1) of Theorem 1.3), or Γ ∼=
K7,7 (as in Row 1 of Table 1).

If t = 2, by Lemma 2.9, Γ ∼= CD2p1p2,7,k (as in part (1) of Theorem 1.3), or A ∼=
PSL(2, p) or PGL(2, p) with p ≥ 13 a prime, satisfying part (3) of Theorem 1.3.

Thus, assume t ≥ 3 in the following, and assume inductively that Theorem 1.3 is
true for the graph which satisfies assumption of Theorem 1.3 and is of order less than n.
Let α ∈ V Γ . By Lemma 2.6, |Aα| | 224 · 34 · 52 · 7, hence |A| = |Aα||V Γ | divides
225 · 34 · 52 · 7m. Let R be the soluble radical of A, that is, the largest soluble normal
subgroup of A. Obviously, the soluble radical of A/R equals 1.

The next lemma treats the case R = 1.

Lemma 5.2. Suppose R = 1 and t ≥ 3. Then either AutΓ ∼= PSL(2, p) or PGL(2, p) with
p ≥ 13 a prime such that p(p2 − 1) | 225 · 34 · 52 · 7n, as in part (2) of Theorem 1.3; or
Γ ∼= C330 and AutΓ ∼= M22.2, as in Row 2 of Table 1.

Proof. Let N be a minimal normal subgroup of A, and let C = CA(N). Since R = 1,
N = T d and |N | = |T |d divides 225 · 34 · 52 · 7m, where T is a nonabelian simple group
and d ≥ 1.

Claim 1. C = 1.
Assume, on the contrary, C 6= 1. Then C is insoluble asR = 1. If C is semi-regular on

V Γ , then |C| | n, so C is of square-free order and hence soluble, which is a contradiction.
Thus Cα 6= 1. Since Γ is connected and C C A, we have 1 6= C

Γ(α)
α C A

Γ(α)
α , so 7 | |Cα|.

Arguing similarly, one may have 7 | |Nα|. Now, since N ∩C = 1, 〈N,C〉 = N ×C C A,
so Nα × Cα C Aα, hence 72 | |Aα|, which is a contradiction by Lemma 2.6. Therefore,
C = 1.

Claim 2. A is almost simple and the tuple (T, |T |) is listed in Table 4.
As discussed above, 7 | |Nα|. Then by Theorem 2.7, N has at most two orbits on V Γ ,

hence m divides |N : Nα|, we further conclude that 7m | |N |, 7 | |T | and m | |T |.
Without a loss of generality, let pt be the largest prime dividing n. As t ≥ 3, pt ≥ 7,

and as md = (p1p2 · · · pt)d divides 225 · 34 · 52 · 7p1p2 · · · pt, we have d ≤ 2. If d = 2, the
only possibility is t = 3 andm = 3 ·5 ·7, so |T |2 | 225 ·35 ·53 ·72, hence |T | | 212 ·32 ·5 ·7;
recall that m | |T |, by [15, Theorem III], T ∼= Al with l = 7 or 8, and N ∼= A2

l . By
Claim 1, C = 1, then Lemma 2.1 implies A = A/C . Aut(N) ∼= Sl o Z2, and as N ∼= A2

l

is a minimal normal subgroup of A, we conclude that A ∼= Al o Z2, (Al o Z2).Z2 or Sl o Z2.
Since |Aα| = |A|

210 , a direct computation by Magma [1] shows that no graph Γ exists in this
case, a contradiction. Thus, d = 1 and N = T , and by Lemma 2.1, A ≤ Aut(T ) is almost
simple. Recall that |T | divides 225 · 34 · 52 · 7m and 7m divides |T |, and noting that 4 | |T |
as T is nonabelian simple, we have 28m | |T |. By Lemma 3.1, the couple (T, |T |) is listed
in Table 4.

Now, we will analyse all the candidates of T in Table 4, thus proving Lemma 5.2.
Recall that n = 2m and |T : Tα| = m or 2m. Denote by Out(T ) the outer automorphism
group of T .
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Assume T ∼= PSL(2, p) with p ≥ 13 a prime. Then p(p2− 1) | 225 · 34 · 52 · 7n, and as
Out(T ) ∼= Z2 (see [12, P. 135]), we have A ∼= PSL(2, p) or PGL(2, p), the lemma is true.

Assume T ∼= M22. Then m = 3 · 5 · 11 = 165 and n = 330. Since Out(M22) ∼= Z2,
A ∼= M22 or M22.Z2. By Example 3.2, Γ ∼= C330, satisfying the conditions in Row 2 of
Table 1.

Assume T ∼= M23. Thenm = 3 ·11 ·23, 5 ·11 ·23 or 3 ·5 ·11 ·23. Since Out(M23) = 1,
A = T ∼= M23 and so |T : Tα| = 2m = 1518, 2530 or 7590. However, by [4], M23 has no
subgroup with index 1518, 2530 or 7590, a contradiction.

Assume T ∼= J1. Then m = 627, 1045 or 3135. Since Out(J1) = 1, we have A = T
and |T : Tα| = 2m = 1254, 2090 or 6270. By [4], J1 has no subgroup with index
1254, 2090 or 6270, which is a contradiction.

Suppose T ∼= A12. Then m = 165 and |T : Tα| = 165 or 330. By [4], A12 has no
subgroup with index 165 or 330, yielding a contradiction.

Suppose T ∼= PSL(2, 49). Then m = 105 and |T : Tα| = 105 or 210, it follows
|Tα| = 560 or 280 respectively. By Lemma 2.3, PSL(2, 49) has no subgroup with order
560 or 280, a contradiction.

Suppose T ∼= PSL(2, 224). Then Out(T ) ∼= Z24 by [12, P. 135], it follows A ∼=
PSL(2, 224).Zr with r | 24, and |A| = 224·32·5·7·13·17·97·241·257·673r. Hence m =
3·13·17·97·241·257·673, 5·13·17·97·241·257·673 or 3·5·13·17·97·241·257·673. For the
first case, |Aα| = 223·3·5·7r, which is impossible by Lemma 2.6. For the second case,
|Aα| = 223·32·7r, by Lemma 2.6, the only possibility is r = 2 and Aα ∼= Z20

2 : (SL(2, 2)×
SL(3, 2)); for the last case, we have |Aα| = 223·3·7r, by Lemma 2.6, the only possibility is
r = 6 and Aα ∼= Z20

2 : (SL(2, 2)×SL(3, 2)). However, by Lemma 2.3, both PSL(2, 224).Z2

and PSL(2, 224).Z6 have no subgroup isomorphic to Z20
2 : (SL(2, 2)× SL(3, 2)), which is

a contradiction.
Suppose T ∼= 3D4(2). Since Out(T ) ∼= Z3 (see [4]), A ∼= 3D4(2) or 3D4(2).Z3,

and so |A| = 212·34·72·13 or 212·35·72·13 respectively, implying m = 3·7·13. Now,
|Aα| = |A|

2m = 211·33·7 or 211·34·7, which is impossible by Lemma 2.6.
Arguing similarly as above, one may prove that no graph Γ exists for all other candi-

dates for T in Table 4 (the results have been checked by Magma [1]).

We finally consider the case where A is insoluble and R 6= 1 by the following lemma.

Lemma 5.3. Suppose that A is insoluble, R 6= 1 and t ≥ 3. Then no graph Γ exists.

Proof. Let M be a minimal soluble normal subgroup of A. Then M ∼= Zdr , where r is
a prime and d ≥ 1. Since t ≥ 3, M has at least 2 · 3 · 5 = 30 orbits on V Γ , so, by
Theorem 2.7, M is semi-regular on V Γ (so d = 1 and r ∈ {2, p1, p2, . . . , pt}), ΓM is a
7-valent A/M -arc-transitive graph of order 2m

r , and Γ is an arc-transitive regular Zr-cover
of ΓM .

If r = 2, then ΓM is arc-transitive of odd order m and odd valency 7, which is impos-
sible.

Thus, r = pi with i ∈ {1, 2, . . . , t}, and ΓM is a 7-valent A/M -arc-transitive graph of
order 2m

pi
. Recall that we assume by inductive hypothesis that Theorem 1.3 is true for all

graphs which satisfy the assumptions of Theorem 1.3 and are of order less than n, so ΓM
satisfies Theorem 1.3. Noting that A is insoluble and M is soluble, A/M is insoluble, so is
Aut(ΓM ). Then, checking the graphs in Theorem 1.3, we conclude that the soluble radical
of Aut(ΓM ) equals 1, and one of the following holds:
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(1) ΓM ∼= C330 and Aut(ΓM ) ∼= M22.Z2;

(2) Aut(ΓM ) ∼= PSL(2, p) or PGL(2, p) with p ≥ 13 a prime and t ≥ 3.

Since A/M acts arc-transitively on ΓM , we have 7|V ΓM | divides |A/M |.
For case (1), then |V ΓM | = 330, and 7 · 330 = 2310 divides |A/M |, since A/M ≤

M22.Z2, by [4], we have A/M ∼= M22 or M22.Z2. Let X be a normal subgroup of A such
that X ∼= M.M22

∼= Zr.M22. Since (r, |V ΓM |) = (r, 330) = 1, we have r 6= 2 and 3.
Then, as |Mult(M22)| = 12 (see [4]), Lemma 2.5 implies X ∼= Zr ×M22 and X ′ ∼= M22.
Since |X ′| = |M22| does not divide |V Γ |, X ′ C A is not semi-regular on V Γ , and X ′ has
at most two orbits on V Γ by Theorem 2.7. Because Γ is connected and 1 6= X ′α C Aα,
1 6= (X ′α)

Γ(α) C A
Γ(α)
α , it follows 7 | |X ′α|. Hence r divides |X

′|
7 = 27 · 32 · 5 · 11, which

is a contradiction as (r, |V ΓM |) = (r, 330) = 1.
We next consider case (2). Since A/M is insoluble and 7 | |A/M |, by Lemma 2.4,

A/M ∼= PSL(2, p) or PGL(2, p). Let B/M C A/M such that B/M ∼= PSL(2, p). Since
Mult(PSL(2, p)) ∼= Z2 (see [12, P. 302]) and r ≥ 3, Lemma 2.5 implies that B′ ∼=
PSL(2, p) and B = M × B′. Since B,B′ C A are insoluble, both B and B′ have at
most two orbits on V Γ . In particular, m divides |B′|.

If r > 7, since |A| divides 225 · 34 · 52 · 7m, and |B| = |M ×B′| = r|B′| divides |A|,
we have r 6 | |B′|, which is a contradiction to m dividing |B′|.

Assume r = 7. Since Γ is connected and 1 6= B′α C Aα, we have 7 | |B′α|. Then,
as |B′:B′α| = m or 2m is divisible by 7, we further conclude that 72 divides |B′| =
|B/M |. However, since |B/M :(B/M)δ| = m

7 or 2m
7 , which is not divisible by 7, we have

72 | |(B/M)δ|, so 72 | |(A/M)δ|, which is a contradiction by Lemma 2.6.
Assume finally r = 3 or 5. Since B/M ∼= B′ has at most two orbits on V ΓN , and B′

has at most two orbits on V Γ , we have |B/M :(B/M)δ| = m
r or 2m

r , and |B′:B′α| = m or
2m. It follows that r | |(B/M)δ| and so r | |(A/M)δ|. Also, as A/M acts arc-transitively
on ΓM , 7 | |(A/M)δ|, hence 7r | |(A/M)δ|. Suppose r = 3. If (A/M)δ is soluble, then
(A/M)δ is listed in part (1) of Lemma 2.6, and as 21 | |(A/M)δ|, we have (A/M)δ ≥ F21;
however, since A/M ≤ PGL(2, p) and p 6= 7, by Lemma 2.4, PGL(2, p) has no soluble
subgroup containing a subgroup isomorphic to F21, a contradiction. If (A/M)δ is insoluble,
noting that A/M ≤ PGL(2, p), we have (A/M)δ ∼= PSL(2, p) or A5. For the first case,
|V ΓM | = |A/M :(A/M)δ| = 2, which is impossible. For the latter case, 76 | |(A/M)δ|,
also a contradiction. Suppose now r = 5. Then 35 | |(A/M)δ|, and Lemma 2.6 implies
that (A/M)δ is insoluble, so (A/M)δ ∼= PSL(2, p) or A5 as A/M ≤ PGL(2, p). Now, the
same arguments as above draw a contradiction.

Theorem 1.3 now follows directly from Theorem 1.2 and Lemmas 5.1–5.3.
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