UDKB621.3:(53+54+621+8686), ISSN0352-9045 Informacije MIDEM 39(2009)1, Ljubljana

A TOP DOWN APPROACH TO TEACHING EMBEDDED
SYSTEMS PROGRAMMING*

|. Fajfar, T. Tuma, A. Blirmen, J. Puhan

Fakulteta za elektrotehniko, Ljubljana

Key words: embedded systems, higher education, computer programming, higher programming languages

Abstract: Over last decades we have been witnessing an ever faster technological development in the area of embedded systems. At the same time
advances in IT and transition to mass higher education worldwide significantly changed the social and cultural environment in which we teach. We had to
respond to these changes with updating the courses and making the teaching of embedded systems more efficient, attractive, and affordable.

The classical approach started with computer architecture combined with assembler. Higher level languages were taught independently. From a motiva-
tional point of view this has become questionable, since the gap between the assembler and students’ pre-university computer experiences, which are
mainly Windows-like applications and Internet, was getting too wide.

Our new curriculum starts with JavaScript, which resembles C, runs in environment familiar to any student, needs no additional software, and motivation-
ally proved a success. Transition to embedded C is now much less painful. The assembler level is left for specialised courses in later semesters.

For the purpose of embedded C courses we developed special hardware platform. Each student can purchase their own professional system, at an
affordable price. To achieve that, we needed a support from sponsors. Most courses related to embedded systems now use the same platform with only
different add-on boards, which further reduces the price and getting-started overhead. That way students needn’t spend too much time with unnecessary
technicalies and can focus more on the subject. As a result, after only three years we have already received some quite positive feedback.

Pristop k u¢enju programiranja vgrajenih sistemov z vrha
navzdol

Kjuéne besede: vgrajeni sistemi, visoko izobrazevanje, racunalnisko programiranje, visji programski jeziki

Izvledek: V zadnjih desetletjih smo prica vse hitrejSemu razvoju na podroc¢ju vgrajenih sistemov. Obenem je tehnoloski napredek in mnozicno visoko
izobrazevanje v svetovnem merilu drasti¢no spremenil socialno in kulturno okolje, v katerem ucimo. Na te spremembe smo se morali odzvati s prenovo
uénega pristopa in narediti Studij vgrajenih sistemov ucinkovitejsi, priviatnejsi in bolj dostopen.

Klasi¢en pristop za¢enja z opisom ra¢unalniske arhitekture v povezavi z zbirnikom. Vi§ji programski jeziki, kot na primer C, se poucujejo neodvisno. Z
motivacijskega stalisc¢a je postal tak pristop vprasljiv zaradi vse veéjega razmika med zbirnikom in izkudnjami, ki jih imajo Studentje z racunalniki pred
vpisom v visoko $olo. Te izku$nje zajemajo predvsem uporabo spieta in okenskih programov.

Nas$ nov pristop zacenja z jezikom JavaScript. Ta je podoben jeziku C, deluje v okolju, ki je domace vsakemu Studentu, ne zahteva dodatne programske
opreme ter se je z motivacijskega stalidca izkazal za zelo uspesnega. Naslednji korak je vgrajen C. Prehod na ta jezik je sedaj veliko enostavnejsi. Zbirnik
smo prepustili specializiranim predmetom v vigjih letnikih.

V namen poucevanja vgrajenega Ceja smo razvili posebno strojno opremo. Vsak student lahko kupi svoj lasten profesionalen razvojni sistem, Cigar cena
ne presega cene povprecnega ucbenika. Cilj smo dosegli s sredstvi, ki so jih prispevali sponzorji. Vedina predmetov sedaj uporablia enotno ucno okolje,
kar dodatno zniZuje ceno in zmanjsuje koli¢ino uvajainega dela. Vse to osvobaja Studenta nepotrebnega poglabljanja v razli¢ne tehni¢ne posebnosti in mu
daje ved Gasa za ukvarjanje z vsebino. Tri leta po vpeljavi novega pristopa smo Ze opazili nekaj zelo vzpodbudnih odzivov.

of thousands lines of code, and handcrafted approaches
to developing small microcontroller applications of the past

1. Introduction

An embedded system is a non-general computing system
which comprises a microcontroller to implement some of
its functionality. The area of embedded systems has un-
dergone tremendous advances over the last few decades.
Microcontrollers are getting cheaper and more powerful
and are practically everywhere. It has been estimated that
an average American came into contact with more than
100 microprocessors per day already a decade ago /1/,
and this number is constantly growing. Apart from that,
systems have become more sophisticated, running tens

are no longer successful. More structured design meth-
odology has become a must. All this rapid changes has
made our embedded system curriculum dangerously out-
dated.

But before we plunge into designing a new curriculum we
must not ignore the social and cultural changes, whose
understanding is crucial to developing a successful edu-
cational programme. A higher education worldwide is fac-
ing a problem of transition from elitism to mass education

* Part of this research was presented at the 7th International Conference on Information Technology Based Higher Education and
Training, held from 10th to 13th July, 2008, in Sydney, Australia

53

Informacije MIDEM 39(2009)1, str. 53-60

I. Fajfar, T. Tuma, A. Blirmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

/2, 3, 4/. In Europe a significant growth of mass higher
education has been observed over the past few decades,
and Slovenia is no exception /5/. From the increased num-
bers stem many problems, like that of funding, organiza-
tion, and of much changed conditions of teaching students
with guite different motivation and academic talents.

Still another problem observed in all advanced societies is
brought about by immense advances in IT development
and extensive use of all kinds of multimedia technologies,
especially TVs and computers, already from early child-
hood. These new video generations are less able to read,
concentrate, and memorize /4/, which further influences
the capacity of coping with abstract mathematical nota-
tions that university lecturers traditionally use to model real
life systems. New means of communication has changed
the very way information is absorbed and processed in stu-
dents’ heads, which is another challenge for traditional
university teaching methods.

Paradoxically, already much increased number of students
has at the same time intensified a struggle to attract more and
more students to engineering sciences. Especially in west-
ern societies these sciences are amongst less popular, which
too calls for an urgent change in teaching fo attract women as
well as some other underrepresented groups /6/.

All these changes are very hard to follow, in some part due
to the inflexible European university systems. Most univer-
sities in the EU are state funded and consequently their
curricula need to be government approved. This ensures
a certain quality level and maintains compatibility. The down
side, however, are relatively rigid curricula, since any ma-
jor change needs to pass tedious bureaucratic procedures.
During the past decade the contents of many courses were
extended by microcontroller related topics. However, this
was done by individual teachers without an overall con-
cept, and only within the approved curriculum structure.
The result was a patchwork of different microcontroller re-
lated courses on different levels. Accordingly, laboratories
were based on all sorts of hardware platforms, so students
had a lot of learning overhead to switch back and forth
between different microcontrollers, compilers and languag-
es. Furthermore, the lack of coordination necessarily led
to overlapping course contents which further reduced the
teaching efficiency. There was also a traditionally disjoined
relation between teaching general purpose programming
languages, which are considered hardware independent,
and hardware specific embedded system topics.

Alongside a major restructure according to the Bologna proc-
ess the Faculty of electrical engineering at the University of
Ljubljana decided to carry out some needed reforms regard-
ing the embedded system curriculum. Our ambition was to
significantly increase the teaching efficiency in this field and
remedy as much of the above mentioned shortcomings as
possible. This may seem rather ambitious, but due to the
rigid nature of our curriculum structure it was now or never.
Once the enforced Bologna changes are clad in stone, there
will be no more room for major restructures.

54

In the paper, we describe the design of new embedded
systems curriculum, trying to cover the advances in the
field itself as well as taking into account changed social
and cultural environment. The course consists of three
parts: introduction to general programming using JavaS-
cript language, introduction to embedded systems using
C language, and subject specific embedded system top-
ics. We give some emphasis on developing embedded
operating systems and the hardware development system
we have developed for the educational purposes. At the
end of the paper we comment some observations and
experiences we have had over the last three years.

2. History, analysis of situation and
preliminary steps

The first microprocessor course at the Faculty of Electri-
cal Engineering in Ljubljana started already in the late 70s,
short after an 8-bit Motorola 6800 was released. Because
the 6800 was relatively simple yet complex enough to dem-
onstrate all the basic principles of the microprocessor ar-
chitecture and programming, and because of it's wide-
spread usage, the 6800 (and some of it's improved ver-
sions like 6802 and HC11) was the core processor in al-
most all of our microprocessor oriented courses. The ex-
ception was an introductory course in the first year, where
a so called hypothetic computer was used. It was an ex-
tremely simplified model of a real microcontroiler using only
14 instructions and existed only as a simulated device run-
ning on a DOS. At that time that was quite a successful
approach through which students got a basic idea of the
happenings in an ALU, hardware registers, memory, and
on a system bus when running a program. Later, this sys-
tem was replaced by a real development board based on
HC11, which was designed at our faculty. Before that, the
same system was already used for sometime in higher lev-
el courses, but soon there emerged a need to replace old
and increasingly uninteresting hypothetical computer. For
that purpose we developed a special 1O hardware and IDE
with a graphical user interface, which enabled 1st year stu-
dents to quickly write, compile, run and debug some sim-
ple programs. The programming language used was with-
out exception assembly language.

There were also some lectures teaching higher languag-
es, mostly C, but that was used for programming main-
frames or PCs and many students saw little if any connec-
tion between both words. It even wasn't very rare that a
student who was quite successful in mastering assembly
language didn’t come even close to passing the exam in C
language and vice versa - that who had no difficulties with
C language, was quite lost with assembler.

Today, the situation has dramatically changed. Modern
microcontrollers are highly sophisticated in design and
functionality. The development systems easily implement
embedded C, or even C++ and compilers with user friend-
ly debugging GU! environments. There is no need to start

|. Fajfar, T. Tuma, A. Biirmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

Informacije MIDEM 39(2009)1, str. 53-60

off on the assembly level. Moreover, it has become ex-
tremely difficult to explain the complex machine level.
Therefore it makes sense to skip the registers and start at
a hardware independent level with a modern C based de-
velopment system. The assembly language approach is
by all means necessary, since this is the only way to show
the students what exactly is happening on the machine
level. Many times critical real time primitives are still coded
in assembly language. However, this is not the approach
for a novice any more. Instead, the assembler language
approach has become a speciality and should be tackled
in later courses. Having this concept in mind, it becomes
also obvious that higher languages are not to be taught
separately any longer.

At first we thought that starting with a high level language
such as C would not be a problem since the accessibility
of computers should have contributed to generally higher
level of computer literacy in students entering the electri-
cal engineering studies. But surprisingly, as many years’
experience with teaching computer languages and archi-
tecture to the first-year students has shown, students show
a considerable “fear” of computers. For many first-year stu-
dents to be, the computer is simply a tool for accessing
the Internet, and playing games. The rest is wrapped in
mystery. It was easier to teach students programming a
decade or two ago from scratch than now when they have
certain (misleading) predispositions about what a compu-
ter is.

Understanding the needs and abilities of students is fun-
damental to designing an efficient learning environment.
Many groups of students find computer science and even
programming obscure and unattractive, and they cannot
see any connection to the real life. It has been shown /5/
that women and other underrepresented groups are more
likely to engage in discipline if they understand its connec-
tion to society. First steps for the student should therefore
be concrete and simple, and they should produce (with as
little effort as possible) quickly observable results the av-
erage student would appreciate. Embedded systems
turned out to be too abstract for many beginners to be
able to see their applicability in real life. We chose the area
of computer engineering all students are familiar with from
the user point of view, that is Internet and web based appli-
cations.

Apart from that, as we have learned, many students were
so much frustrated by the failure at the first unsuccessful
attempt to install an IDE that they gave up on programming
altogether. Some of those that by some lucky coincidence
have no problems installing an IDE were frustrated when,
after first compiling a program, a single missing semicolon
produced the list of error messages longer than a code
itself. For lots of students that was enough to quit the fur-
ther attempts altogether. To start out, we somehow want-
ed to avoid the need of compilers. Ideally, student should
do with software already installed on his/her computer,
e.g. a simple text editor and a browser.

According to those findings we decided to design a curric-
ulum starting from the following prerequisites:

1. Computer architecture and assembly language cours-
es should not be taught independently from the high-
er, general purpose languages.

2. Introductory course should start out with a higher lan-
guage, supported with a lot of simple real-life prob-
lems that students will instantly recognise as familiar
and therefore important.

3. Hardware architecture, programming model, assem-
bly language, and lower software techniques such as
bitwise logical operations or bit masking should be
infroduced gradually in later stages, again supported
with solutions of realistic problems.

3. The curriculum - first year level

3.1. General purpose programming

The main objective of our curriculum is that after the first
year students master basic algorithm development, program-
ming and coding skills, learn the most basic elements of
computer architecture, get some idea of system approach,
and start to appreciate the role and importance of embed-
ded systems in modern society. Apart from those subject-
specific topics, we have made a significant effort to try and
achieve some of the more general teaching goals. Above all
we find it important that a student after a first year should to
the certain extend be able to notice and solve problems, to
think critically and to reflect, develop abstract and system-
based thinking, fo analyse and to draw syntheses, and gain
some self-confidence and spirit of enterprise and activity.

Since our final goal after all is embedded system program-
ming, we need to choose appropriate language to back
that up. C language is definitely one of the most appropri-
ate candidates, if nothing else for its widespread usage. C
and its derivatives are by far the most widely used program-
ming languages today. The most heard argument against
C as ateaching language, that it is ugly - which by the way
it is - can be avoided by following some simple rules like
indenting code and strictly writing curly braces at every
beginning end ending of a block, even when syntactically
that is not required.

We have chosen a language according to the following

criteria:

1. First steps should produce instant results with as little
chance of failure as possible. We wanted to introduce
a concept of “speaking” to a computer in a form of a
simple text. This has proved a very important step for
many students. Without the danger of getting tangied
in different conditional and loop statements, compil-
er warning and error messages, students feel free to
explore the familiar effect of an unfamiliar language.
Even the most unenthusiastic students get some kick
when they produce a first document which actually
shows in a browser without much danger of some-
thing getting terribly wrong.

55

Informacije MIDEM 38(2009)1, str. 53-60

I. Fajfar, T. Tuma, A. Blrmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

A mark-up language such as XHTML proved an ap-
propriate candidate for that stage.

2. Verysoon students have enough nerve to try and trans-
fer to the computer some of the burdens of tedious
typing of XHTML tags. Producing simple tables using
JavaScript code is the next logical step. Unobligatory
details such as declaring variables and putting semi-
colons at the end of statements are required by the
lecturer whereas the computer is more forgiving. It is
a matter of debate whether this is good or bad, but
our experience has shown that the allowed sioppi-
ness enabled a beginning student in general to focus
more on the gist of coding, i.e. “explaining” the well
formed idea to the computer.

3. Also very importantly, our language should resemble
C as closely as possible, to avoid the problem of un-
necessary learning overhead when switching between
languages and make the transition to embedded C as
seamless as possible. Again, JavaScript has proved
the best candidate.

In summary, a combination of elementary XHTML and Java-
Script formed an abstract (in view of embedded C program-
ming) yet practical framework for introducing basic con-
cepts of computer programming.

Having once eliminated as much of problems annoying for
beginners as possible, we can focus on real problems right
away. Motivation too is not an issue anymore, since practi-
cally every student has experience using browser and is
keen to producing his/her own pages. Students quickly
want to write more and more complex web pages and soon
realise why programming is so important. That way, we can
emphasize principles of programming like program devel-
opment and stepwise refinement more efficiently rather
than just present and explain sample programs. Students
become very motivated to further develop programs that
have been devised to certain stage in lectures. For exam-
ple, we can present and demonstrate students a simple
program that moves a window, and then tell them they can
shake a window by multiple moves in different directions in
a for loop. They are bound to try that at home.

As another example let us look at a simple code fragment
producing a series of thumbnails in a browser window:

var i;

for (i = 0; i < num_thumbs; i++)

{
document.write("<img src=""):
document.write(thumblil):
document.write(" />");

}

Since students are familiar with pages displaying thumb-
nails, they in general appreciate and understand the ben-
efits of using the for loop for producing such a page. This
practical understanding motivates students directly for the
deeper study of the logic of for loop itself.

56

Another benefit of using JavaScript is an early need to think
modularly and write appropriate functions. Experiences
have shown that students tend do avoid decomposing prob-
lems in modules and writing functions. Instead they put ail
code in a main() function. There can be up to several hun-
dreds lines of code and they still don't see why this is wrong.

With JavaScript things are different. If one wants to respond
to an event he/she must write a function to do it. It is crys-
tal clear to anyone that trying to put more than a single line
of code in a HTML tag verges on a suicide.

In order to support the XHTML /JavaScript part of the
course we have written an on-line textbook with embed-
ded live examples. A student is encouraged to experiment
with them without a need to copy them elsewhere or even
type them. If something gets wrong, there is a Reset but-
ton, which restores the original exampie. One such exam-
ple is shown in Fig 1. The example demonstrates the use
of a statement continue. Apart from the JavaScript code
there are some instructions for the student as how to ex-
periment with the code. A student is always encouraged
first to try and forecast the effect of the changes to the
code and only then to reload the page to see the actual
output of the program.

Fig. 1: An embedded live exampie in the textbook.

3.2. Transition to embedded C

In the second semester the students plunge into embed-
ded C programming. They are already quite familiar with a
basic syntax, program control structures, concept of call-
ing and defining functions, and devising simple algorithms.
The semester starts with pointing out most important dif-
ferences between the languages JavaScript and C. Those
aren't many since we have “hidden” most of the unneces-
sary parts of JavaScript that are too different from C lan-
guage.

For the purpose of teaching embedded C we use a spe-
cial training hardware platform with very rudimentary input
and output, and without an operating system. We describe
the platform in detalil in section Hardware Platform. The

[. Fajfar, T. Tuma, A. Blirmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

Informacije MIDEM 39(2009)1, str. 53-60

most important difference between C and JavaScript stems
from the lack of the operating system: the hardware units
used need to be initialized and our program must retain
perpetual control over the system. Some other differenc-
es we notice at that stage are the consequence of strict
typing rules of the C language; once we decided that a
variable is of type double, we cannot change itin e.g. string.
This is somewhat a relief to a minor population of students
that already have some programming experiences. These
differences are not very difficult to grasp for the students,
and we guickly move on.

Connecting simple external hardware devices such as keys,
sensors, and stepper motors is the next important step we
take. Apart from some basic physical phenomena like
bouncing, students learn that from the programmers point
of view the problem of controlling such devices is in fact
trivial.

The next example shows, how the problem of rotating a
stepper motor for a certain degree is surprisingly similar to
the problem of displaying an array of thumbnails we met in
previous section:

int i;
for (i = curpos; i < stop; i++)
{
outportb(switchseq[i % 41);
delay(20);
}

One just needs to replace the array of references to thumb-
nails with the array containing a four-step switching se-
guence. Due to the mechanical limitations a small delay
between switches is also required.

Even more control over hardware is possible when we learn
binary coding principles, bitwise logical operations, bit
masking, and direct addressing of the hardware registers.

3.3. Early detection of multitasking and
real-time problems.

A perceptive student will soon realise that the above ex-
ample works good only as long as there are no other con-
current demands on the system apart from rotating a mo-
tor. Consider for example that the motor is driving a ramp.
A closing ramp should stop immediately after a sensor has
sensed an obstacle e.g. a car or person under it. it wouldn't
be healthy if the system detected the obstacle only after
the motor rotating has been completed.

Students learn that a computer can perform multiple tasks
concurrently even if the microcontroller operation is serial
in nature. The concurrency is achieved by simply distrib-
ute a processor time among different tasks that need to be
done. The concept is not very difficult to understand, more
interesting are the consequences. Without a proper guid-
ance students quickly tangle into dead loops waiting for a
key to be pressed, while a system has frozen.

In most cases concurrency alone is not enough to get the
system working. Some tasks have fo be executed in certain
prescribed time span. Writing programs that meet certain
performance deadline is quite different from ordinary, non-
real-time programming that most students are used to. This
concept again is easy to understand but to engineer a real
time application requires a lot of system knowledge that is
beyond the scope of a first-year student. So in first year we
introduce somehow intuitive polling and assume that all par-
tial tasks execute in a time span that is much smaller than
the time available. To meet the timeliness of execution we
constantly read the system clock and when the time is due,
we simply execute what has to be executed. How really to
engineer areal time program to meet performance demands,
how the real time concepts affect the overall system per-
formance, and how it complicates debugging is left for a
later time, although students already get some idea that
things are quite challenging and not so trivial.

4. Advanced Embedded Systems
Programming

The curriculum at the Faculty of Electrical Engineering in
Liubljana, Slovenia, basically consists of four common se-
mesters covering all fundamental EE topics followed by
several specializing curricula branches. The latter can be
roughly divided into four groups: Automatics, Electronics,
Power Engineering and Telecommunications. All four
groups include microcontroller based courses focusing on
specific embedded applications. Typically, these would
involve systems for control in robotics, power transmission,
RF electronics, etc. So the notion of real-time multi-task
programming is introduced at different levels. Either the
courses discuss respective programming techniques or
they build on embedded operating systems like uSmartX,
which was developed by one of our post graduate students,
and is freely available on the web /7/.

Of course all advanced courses engage students in practi-
cal project work. So far these projects have been based on
arbitrary microcontrollers so there always was the typical
getting-started-overhead. Also, the specific expensive equip-
ment required the students to work in the laboratories on
campus. With our new approach, the overhead is almost
nil. Moreover, since the students are able to purchase their
own development boards at affordable price, a considera-
ble part of the project work can be done at home.

However, it is of utmost importance that the development
board be powerful enough and flexible enough to allow
the docking of any advanced hardware boards. This has
been achieved by an inventive concept, as explained in
the following section.

5. Hardware Platform

We are teaching embedded system knowledge in general
but when it comes to giving students practical skills one

57

Informacije MIDEM 39(2009)1, str. 53-60

|. Fajfar, T. Tuma, A. Bdrmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

necessarily needs to resort to one specific microproces-
sor. This is just like getting a driving license. The goal is to
acquire the skill of driving a car, any car. But you have to prac-
tice on one specific model. Although you will drive different
cars in your life, we believe it is inefficient to switch back and
forth between different car models while still in driving school.
With teaching embedded systems it is no different, we need
an affordable and robust workhorse to practice.

In the previous section we have already hinted at the idea
of constructing a common hardware platform for second
and third stage. The design specifications are tough. The
development system obviously needs to be very flexible in
order to accommodate simple user friendly sessions in the
second semester as well as all semi-professional require-
ments of higher level courses.

Above all we wanted students to have an opportunity to
buy their very own development system right from the be-
ginning. Using the comparison to the driving school once
more, it is clear that a student having his/her own car right
from the beginning will be higher motivated, will be able to
work after hours and will keep driving the same car after
passing the license test.

5.1. Development Board

Looking for an all around workhorse between contempo-
rary microcontrollers, we decided to take our chances with
the ARMY core by Philips. We're speculating that this tech-
nology will be around for at least one decade. In order to
keep cost as low as average textbook and still meet pro-
fessional standards we had to get sponsorship backup right
from the beginning. However, in order to attract the atten-
tion of potential sponsors we had to present a faculty wide
support for the project. This was a classic chicken-and-
egg situation since the enthusiasm of participating teach-
ers on the other hand very much depended on the price/
performance of the development tool. After much negotia-
tion on both sides a strong consortium of six companies
was ready to develop and finance our new ARM7 develop-
ment board.

According to the demands identified in previous sections
we designed the basic development module as depicted
in Fig. 2.

The highlight is the integrated on-board debugging hard-
ware linking the ARM7 CPU to the well known profession-
al development environment winIDEA™ by iSystem /8/
which is running on any standard personal computer. The
PC is connected via USB and is providing the necessary
power supply as well.

In this way we can offer full functionality of the entire devel-
opment system to our students. The proprietary software
on the PC is locked to the on-board debugging hardware
in order to prevent unauthorized professional use of the
system. This is an original concept protecting the copy-
right of winIDEA™ and giving the students full development
power at the same time.

58

Advanced Add-On Boards

Embedded.
""""""""""" » Trace Monitor

PG running
SWinlDEA

Fig. 2: ARMY7 Development system overview,

As shown in Fig. 2, the development board has powerful
debugging capabilities but very limited input/output devic-
es. This is because we need to keep the initial costs as low
as possible. Remember, the system is introduced in the
second semester in support of teaching embedded C. It
should provide just basic incentive for novice students. To
this end we have included several very simple /O devices
supported with libraries of (semi}-standard C functions ena-
bling students a quick start. There are four keys, four small
LEDs, a potentiometer connected to one of the A/D inputs,
a general purpose operational amplifier connected to one
of the D/A outputs, a pair of RS232 serial ports, and the
facilities to mount a standard LCD piggyback. That is more
than enough for a beginner course. Advanced level course
on the other hand requires more specific devices.

In order to accommodate these specific needs we have
provided respective connectors to all CPU ports. Any
number of sophisticated add-on boards can be attached
o these connectors. For minimal interference with profes-
sional add-on equipment all on-board /0 devices except
for the serial ports can be disconnected by jumper set-
tings. Individual teachers are designing add-on boards for
their specific needs in smaller quantities. Senior students
are encouraged to experiment with add-ons in their project
work. Many master theses are based on development and
testing add-ons.

Optionally, an external embedded trace monitor can be
connected to a special port, enabling students to trace
their programs in real-time. This, however, requires rela-
tively expensive additional hardware.

From a physical point of view the deveiopment board is
manufactured in SMD technology, based on a four tayer
10 by 10 cm PCB as seen in Fig. 3. In front, the four but-

. Fajfar, T. Tuma, A. Blirmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

Informagije MIDEM 39(2009)1, sir. 53-60

tons and LEDs are visible. All ICs are covered by the blue
plate, which serves for protection and for sporting the spon-
sor logos. The LCD piggyback is mounted over this area
as well.

Fig. 3: Student's ARM7 Development board.

Thanks to our sponsors we are able to offer this board, in-
cluding USB cable and winIDEA™ software to our students
at a price less than 40 EUR. In fact the presented develop-
ment board has become quite popular, so our sponsor iSys-
tem is now offering it world wide as their LPC2138 evaluation
board /8/, demonstrating the capabilities of winlDEA™.

5.2. Integrated Development Environment

As mentioned in previous section, we use winlDEA™ as
an Integrated Development Environment. Since the soft-
ware is locked to the on-board debugger, we are able to
distribute a full version of the environment. It turned out
that students quite appreciate the fact that they can work
on a fully professional system at home. This is a strong
motivational factor for them as well as for sponsors. They
understandably expect that many electrical engineers will
want to use exactly the same software in their professional
life after graduation. This belief is secured by the saying
that old habits die hard.

Fig. 4 shows a running winlDEA™ environment. We can
see some basic elements of the environment such as
source code and watch windows. The execution of the
loaded program has stopped at a breakpoint and the user
is able to observe the value of the variable key. The impor-
tant fact is that the program is running on the target board.
After two single steps through the code one is able to ob-
serve the third LED lighting as the conseguence of the
execution of the statement _setleds(0x4); This is extreme-
ly illustrative for an average first year student who still has
difficulties grasping the sequential cause-and-effect con-
cept of computer programming.

6. Observations

It has been almost three years since we introduced the
approach described in the paper. Nevertheless it is ex-
tremely difficult to give any objective measure of the ap-

Fig. 4: The winIDEA™ integrated development
environment.

proach efficiency. We are aware that many parameters
change each year upon which we have little or no control
and are very difficult to measure. These are the quality of
the students enrolled in the program, dates of examina-
tions of other subjects, changes of teaching stuff, to men-
tion just a few. Some may argue that any conclusions made
can be of a post-hoc-ergo-propter-hoc type. There are
however many indicators, mostly empirical, that make us
believe that the approach presented has been successful
in achieving the intended goal.

The first thing we notice is drastic increase in students’ in-
terest in the subject already during the lectures. All of a sud-
den, out of their own initiative, many students are seeking
further explanations and discussions on the subject even
during the lecture breaks, and further through e-mail and
after-hours. An increased number of students having prob-
lems with software and hardware is a sure indicator, that
they actually try things out at home. Last month a group of
students approached us with a wish that we organize addi-
tional summer classes covering the subject more in depth.

In exams, especially oral, where we test higher levels of
abstraction according to Bloom’s taxonomy, we noticed
drastically raised levels of understanding of basic concepts
that we have been teaching for more than two decades.
This subjective observation was also partially confirmed in
numbers. Fig. 5 shows percentage of students that passed
the exam during the first examination period, i.e. during
the first month after the end of the lectures, over the last
seven years. When we introduced the new concept, a sig-
nificant raise in success rate was observed (year 2005).
The percentage is calculated against the population that
took the exam, and not the total student population.

The resuits, however, are not surprising. Starting out on a
too low level, which over the past years assembly language
definitely has become, gives little motivation to the students.
The gap between their experiences of everyday life and
low level computing has simply become too wide. On the
other hand, many students, already quite familiar with In-
ternet, discover instant application of JavaScript in real life

59

Informacije MIDEM 39(2009)1, str. 53-60

|. Fajfar, T. Tuma, A. Blirmen, J. Puhan:

A Top Down Approach to Teaching Embedded Systems Programming

2001 2002 2003 2004 2005 2006 2007

Fig. 5: Percentage of students passing the exam
during the first examination period.

problems. This motivational factor is strong enough to lead
many students effortlessly through the first, and for many
the most difficult, part of learning computer programming.
The next step, embedded C programming, turned out to
be a natural sequel to the basic JavaScript programming.

7. Conclusion

In the paper we described a recent redesign of embedded
systems curriculum at the University of Ljubljana. The old cur-
riculum became dangerously outdated due to enormous tech-
nical advances accompanied by not neglect able changes in
social and cultural environment through the last decade or two.

We carried out the reorganisation on a three point action
plan. Firstly, we strove for a unified software/hardware plat-
form, which would serve as much microcontroller and pro-
gramming courses as possible. Secondly, we wanted each
student to posses his/her own microcontroller develop-
ment board right from the first year in order to get more
involved and to be able to work more efficiently. Thirdly,
we had to attract industrial partners in the project by using
professional tools and getting respective sponsorships.

The three components mutually depend on each other:
without uniting a critical mass of teachers, no sponsor could
be attracted. Without a generous sponsorship we could
not offer embedded boards for each student. Without stu-
dents having their own board throughout their studies it
was not possible to have a wide cooperation between
teaches, which closes the loop. In fact, the uniqueness of
our new curriculum lies in our ability to break this dead
loop by implementing all three actions simultaneously.

The new curriculum is in effect for only three years so we
don't have any long term feedback yet. The first experi-
ence however, is very encouraging. The only down side
we can see so far is the fact, that our embedded system
curriculum is strategically dependent on a single micro-
processor architecture and a single development system.

8. Acknowledgment

The authors would like to thank the Ministry of Education
Science and Sport (Ministrstvo za $olstvo, Znanost in $port)

60

of the Republic of Slovenia for co-funding our research
work through program P2-02486, Algorithms and Optimi-
zation Methods in Telecommunications.

9. References

/1/ W. Wolf, J. Madsen, Embedded Systems Education for the
future, Proceedings of the IEEE vol. 88, no. 1, January 2000,
pp. 23-30.

/2/ R. J. Wang, From elitism to mass higher education in Taiwan:
The problems faced, Higher Education vol. 46, no. 3, 2003,
pp. 261-287.

/3/ John Sharpham, Managing the transition to mass higher edu-
cation in Australia Long Range Planning, vol. 26, no. 2, April
1993, pp. 51-58.

/4/ Martin A. Trow, From Mass Higher Education to Universal Ac-
cess: The American Advantage (March 1, 2000). Center for Stud-
ies in Higher Education. Paper CSHE1-00. http://
repositories.cdlib.org/cshe/CSHE 1-00

/5/ OECD (2006): Education at a Glance OECD Indicators.

/8/ P. D. Stephenson, J. Peckham, Seeing is Believing: Using Com-
puter Graphics to Enthuse Students, IEEE Computer Graphics
and Applications, vol. 26, no. 6, Nov.-Dec. 2006, pp. 87-91.

/7/ éSmartX, the free real time operating system for the
ARMT7TDMI platform, usmartx.sourceforge.net, 2006.

/8/ iSystem AG www.isystem.com, 2008.

/9/ T. Tuma, |. Fajfar, A new curriculum for teaching embedded
systems at the University of Ljubljana, 7th International Con-
ference on Information Technology Based Higher Education and
Training : July, 2006, Sydney, Australia.

prof.dr. Iztok Fajfar, univ.dipl.ing.el.

Fakulteta za elektrotehniko Univerze v Ljubljani
TrZaska cesta 25, 1000 Ljubljana

tel.: (01) 4768 722, fax: (01) 4264 630
e-posta: iztok.fajfar@fe.uni-lj.si

prof.dr. Tadej Tuma, univ.dipl.ing.el.

Fakulteta za elektrotehniko Univerze v Ljubljani
Trzaska cesta 25, 1000 Ljubljana

tel.: (01) 4768 329, fax: (01) 4264 630
e-posta: tadej.tuma@fe.uni-j.si

doc.dr. Arpad Burmen, univ.dipl.ing.el.
Fakulteta za elektrotehniko Univerze v Ljubljani
TrZaska cesta 25, 1000 Ljubljana

tel.: (01) 4768 322, fax: (01) 4264 630
e-posta: arpad.buermen@fe.uni-lj.si

doc.dr. Janez Puhan, univ.dipl.ing.el.

Fakufteta za elekirotehniko Univerze v Ljubljani
Trzaska cesta 25, 1000 Ljubljana

tel: (01) 4768 322, fax: (01) 4264 630
e-posta: janez.puhan@fe.uni-lj.si

Prispelo (Arrived): 23.07.2008 Sprejeto (Accepted): 19.03.2009

