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ON THE CENTRE-FOCUS PROBLEM
IN SOME LIENARD SYSTEMS

O PROBLEMU CENTRA IN FOKUSA
V NEKATERIH LIENARDOVIH SISTEMIH
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Abstract

A large family of planar systems of ODEs arising from Liénard equations is considered. A Liénard
equation ¥ + f(x)x + g(x) =0 is commonly used in practical problems, in particular in
(electro)mechanics. It is well-known that a Liénard equation can be transformed into an
autonomous planar system of ODEs of the form x' =y — F(x), y' = —g(x), where F'(x) =
£(x). In this paper f(x) = 2a,x + 3azx? + 4a,x® and g(x) = c;x + c3x° + csx° + ¢;x7. In
the parameter space (a,,as, a,, 1, C3,Cs,C;) € R”7 we consider the center-focus problem and
find necessary conditions for the corresponding system having a center at the origin. In the
parameter space (a,, s, a4, ¢4, C3, Cs, C;) € R7 an example with a possible limit cycle and some
examples with other complex dynamic behavior are presented.
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Povzetek

Obravnavana je velika druZina ravninskih sistemov navadnih diferencialnih enacb (NDE), ki izhaja
iz Liénardove enacbe. Liénardova enacba X + f(x)x + g(x) = 0 se uporablja v prakti¢nih
problemih, Se zlasti v (elektro)mehaniki. Znano je, da se Liénardova enacba lahko preoblikuje v
avtonomni ravninski sistem NDE oblike x' =y — F(x), y' = —g(x), kjer je F'(x) = f(x).V tem
¢anku sta f(x) = 2a,x + 3azx? + 4a,x3 in g(x) = c1x + ¢c3x3 + cgx® + ¢;x7. V prostoru
parametrov (a,, s, a4, ¢4, C3,Cs, C;) € R7 obravnavamo problem centra in fokusa in pois¢emo
potrebne pogoje, da ima ustrezen sistem center v izhodis¢u. Prav tako v prostoru parametrov
(ay, as, a4, ¢4, ¢3,Cs, ¢7) € R7 predstavimo primer z moznim limitnim ciklom in nekatere primere
z drugimi kompleksnimi dinamic¢nimi pojavi.

1 INTRODUCTION

A great number of mathematical models of physical systems give rise to differential equations of
the type

X+ fx)x+gx)=0 (1.1)

which is called a Liénard equation. From the mechanical point of view, equation (1.1) can be
interpreted as the generalization of the mass-spring-damper system, where f (x)x is the damping
term and g(x) represents the (nonlinear) spring term. Applications of equation (1.1) can be found
in many important examples including chemical reactions, predator-prey models, vibration
analysis, etc.

Two famous examples of a Liénard equation are the Van der Pol equation and Duffing’s equation.
The Van der Pol equation

i+te@x?—1Dx+x=0, >0

describes the circuit of a vacuum tube, whilst Duffing’s equation

¥+ 6x + ax + Bx = ycos(wt),

aims to model certain nonlinearly damped/driven oscillators (i.e. a spring pendulum whose
spring’s stiffness does not exactly obey Hooke’s law). Here x = x(t) represents the displacement
of the (pendulum) bob at time t, X represents the first derivative of x with respect to time t, and
X is the second time-derivative of x. Parameters «, 5,y, 8 and w > 0 are given (real) constants
(case f = § = 0 corresponds to simple harmonic motion).

There are two conventional transitions from homogeneous ODE (1.1) to a planar dynamical
system of ODEs. Namely, setting y = x we obtain

x'=y, ¥y =—fy-gk. (1.2)

In (1.1) another approach is possible via the so-called Liénard coordinates. Substituting y = x +
F(x), where f(x) = F'(x), one obtains
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x'=y—F), y' =-gkX). (1.3)

Both systems (1.2) and (1.3) are special cases of (continuous) dynamic system called autonomous
systems of ODEs, which generally takes the form

x'=Plxy), y =Qy). (1.4)

Even in planar dynamics, there are several open problems: among them the problem of finding
the position and the number of limit cycles bifurcating from a non-hyperbolic singular point,
which is a part of famous Hilbert’s 16th problem. Most real-life problems are related to the
centre-focus problem: this is of distinguishing between a centre, where all orbits in the
neighbourhood of the singular point are periodic, and a focus, where all orbits are spiralling away
or towards to the singular point/origin (for more details see e.g. [1]). Autonomous systems (1.4)
cannot contain chaotic dynamics (according to the Poincaré-Bendixon theorem). However, note
that Duffing’s equation (which is a nonhomogeneous ODE of order two) corresponding to a non-
autonomous system x’ = P(x,y,t), y' = Q(x,y,t)) is an example of a dynamical system that
exhibits chaotic behaviour. In contrast Duffing’s equation is also a classic example of a dynamical
system with a limit cycle, [2,3]. For example, for f(x) = £(x? — 1) and g(x) = x we obtain

! x3 !
xX'=y-—e|lg-x) y' =-x

which readily contains periodic solutions for x(t) and y(t). In Figs.1-3, there is an example for
& = 1.2 with initial conditions x(0) = —0.4, y(0) = 0.3. In Fig. 4, the corresponding stream-line
plot with a clearly visible limit cycle is presented.
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Figure 1: Initial value solution x = x(t) to Duffing’s equation for ¢ = 1.2; x(0) = —0.4, y(0) =0.3
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Figure 2: Initial value solution y = y(t) to Duffing’s equation: € = 1.2; x(0) = —0.4, y(0) = 0.3

Figure 3: A solution tending to limit cycle of Duffing’s equation: € = 1.2 and x(0) = —0.4, y(0) = 0.3
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Figure 4: Streamline-plot (Mathematica) of Duffing’s equation for € = 1.2 containing a limit cycle
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Usually for systems (1.4) and, consequently, also for systems (1.2) and (1.3) singular points X,
are hyperbolic; this means that no eigenvalue of the Jacobian matrix

oP 0P
N2
J(Xo) = 20 29| where ¥ = (x,)
dx Jdy

evaluated at X, has the real part equal to zero. In this case the linearized system ¥’ = J(X,) may
(locally — near singular point X, = (x,,y,)) be used to approximate the original system (1.4).
More precisely, the approximation is in terms of a continuous invertible map, which locally (near
singularity) takes parametrized solutions of the linearized system X’ = J(X,) to the parametrized
solutions of the original system (1.4). This is the statement of the Hartman—Grobman theorem
[4]. For any singular point X, of system (1.4) one of the following five »generic cases«, according
to the Jordan canonical form of J (¥,), appears

0 [’})1 fz],al_z +0 (i) [_Ow “], i[9 8],(w) [8 “lw%0 [8 8 .

None, except the first one, are within the scope of the Hartman—Grobman theorem (for any w #
0) and must be considered case by case/separately. Systems corresponding to the Jacobian
matrix of the form (ii) are the most studied planar systems. The addition of nonlinear terms may
result either in centre or in focus. In this paper, we will consider a special case of (1.2) of the form

x' =y, y' = —(2ayx + 3a3x% + 4a,x®)y — (c1x + c3x° + x5 + ¢;x7),  (1.5)

where a,, as, a,, ¢1, 3, Cs, ¢; € R, and analyse the stability for the whole family (1.5).

2 THE ANALYSIS OF SYSTEM (1.5)

21 Casec; >0

If ¢; > 0 introducing new coordinates X = ¢;x,Y = c¢;y one can obtain system X' =Y, Y' =
—(2a,X + 3a3X? + 4a,X3)Y — (X + c3X3 + csX° + ¢;X7). The corresponding Jacobian at
singular point (0,0) is

0 1

-1 0

which yields a centre or focus at the origin. In Fig. 5 there is a stream-line plot of a centre.

J(0,0) =
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Figure 5: Centre for system (5), witha, = a3 = 0, a, = %, ¢ =1c3=¢c5=0,c;, =2

Note that the complete analysis of case ¢c; > 0 is done in a separate section in the sequel; it will
be seen that a; = 0 is the sufficient condition to obtain a centre in system (1.5). However,
distinguishing between a centre and a focus just from a streamline plot (e.g. in Mathematica) is
impossible and much too inaccurate (since the stream-plot of a focus is too similar to the stream-
plot of a centre). In the case of a focus, it is much more convenient to consider a single solution,
like in Figs. 6-7 in which graphs of x = x(t) and y = y(t) are shown. In Fig. 8, the parametric
solution (x(t), y(t)) is shown in the phase plane (x, ).
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Figure 6: Particular solution x = x(t) of (1.5)witha, =a, =0, a3 =c; =1,c3=2,c5=¢c;, =0
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Figure 7: Particular solution’y = y(t) of (1.5)witha, = a, =0, a3z =¢;, =1,c3=2,c5=¢;, =0

Figure 8: Trajectory (x(t), y(t)) of (1.5)witha, =a, =0, a3 =1,¢c;, =1,¢c3=2,cs =¢c; =0

22 Casec; <0

If ¢; < 0 introducing new coordinates X = ¢;x,Y = ¢,y one yields X' =Y, Y' = —(2a,X +
3asX? + 4a,X3)Y — (=X + c3X3 + ¢csX® + ¢;X7). The corresponding Jacobian matrix at a
singular point (0,0) is
_[0 1
jo0=[2
The eigenvalues of J(0,0) are 4, , = *1, yielding a hyperbolic singular point: a saddle with an
unstable singularity. The dynamics near the origin (according to the Hartman—Grobman
theorem) are topologically conjugate to the linear system X' =Y, Y’ = X (see Fig. 9), and no
further analysis is needed in this case.
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Figure 9: Phase portrait of a saddle for (1.5); a, = a4, =0, a3 =1,¢; = —1,c3=¢5 =0,¢c;, =1

23 Casec; =0

If c; = 0, the system takesthe formx’ =y, y' = —(2a,x + 3azx? + 4a,x%)y —(c3x° + csx® +
c;x7), and (0,0) is a non-elementary (nilpotent) singular point if type (iv), since the
corresponding Jacobian at singular point (0,0) is

0 1
J00 = o

The blow-up desingularization gives rise to the type of stability in this case (see [5,6] for details).

. .
Note that the case (v) can never appear for Lienard systems since é =1=+0.

3 THE CENTRE-FOCUS ANALYSIS

In order to consider the centre-focus problem, we briefly recall an approach [1] for studying the
problem for planar polynomial systems (1.4), where P(x,y) =y + h.o.t. and Q(x,y) = —x +
h.o.t.Here h.o.t.stands for X} ;_, P; jx'y’, and X7 j_, Q; jx"y/, respectively. Note that via the
(reverse) time transformation T = —t this is equivalent to P(x,y) =y + h.o.t. and Q(x,y) =
—x + h.o.t., therefore we make no difference between these two cases. Here P(x,y) and
Q(x,y) are polynomials of degree at most n without constant and linear terms. It is convenient
to introduce the polar coordinates u = r cos ¢, v = r sin ¢ and consider the so-called Poincaré
return map R(r). Introducing the polar coordinates into (1.4) with P(x,y) = y + h.o.t. and
Q(x,y) = —x + h.o.t. yields the equation of the trajectories

dr  1%F(r,cos@,singp)

—= = R(r, ).
dp 1+4+7rG(r,,cose,sing) . ¢)
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Obviously, r = 0 is a solution to Z—; = R(r, ), since R(0, ¢) = 0. The function R(r, @) is periodic

(with the least period 27 in variable ¢) and analytic for (small enough) |r| < r* (and all ¢). Thus,
R(r, @) can be expanded in a convergent power series in 1 to obtain
dr (3.1)
do r?Ry (@) + 1Ry () + -

The continuous dependence on the initial conditions and the fact that » = 0 is a solution for all
@ € [0,27] yield that every solution to the above equation in a sufficiently small neighbourhood
of the origin intersects every ray ¢=¢,, ¢, € [0,2r]. This means that without loss of generality
one can choose the line segment X = {(u,v); v = 0,0 < u < r* }, wherer™ is chosen to be small
enough.

Next, we consider the solution of (3.1) with the initial condition (¢ = 0) = ry and expand it into
a power series in 1, to obtain

(@, 19) = wy (@)1g + wo(@)r§ + w3 (@)rg + - (3.2)
which is also convergent for all ¢ € [0,27] and all [ro| < r*. The r(¢) from (3.2) is a solution of
(3.1) and inserting (¢, 7o) into (3.2) yields recurrence differential equations for functions w;(¢)
(see [1] for more details). We consider one revolution of r = r(¢, 7o) beginning on ry € X where
@ is assumed to be 0 and study the return to X' (which occurs at ¢ = 2m, that is, after one
revolution). Thus, the Poincaré return map R(r) is defined by

R(ry) =721, 1) =19 + W, 2m)1E + w3 2m)1 + -

The coefficients n;:= w;(2m) for j > 1, defined in the above equation are called Lyapunov
numbers.

From the definition of polar coordinates, we readily conclude that the zeros of the difference
function R(ro) — o correspond to closed orbits. In particular, isolated zeros correspond to limit
cycles, and if R(ro) — 1o = 0, the system has a centre at the origin, which means that for all j >
1 the Lyapunov numbers 17; must vanish.

However, computing Lyapunov numbers requires the integration of trigonometric functions,
which can be very difficult problems for some cases. Poincare and Lyapunov proved that system
(1.4) with P(x,y) =y + h.o.t. and Q(x,y) = —x + h.o.t. has centre at the origin if it admits
the first integral of the form

S y) =x2+y 4 Y vyxiy) (3:3)
i+j=3
which is an analytic function in a neighbourhood of the origin (0,0). By definition, & is a first
integral of system (1.4) if ® is a solution to the following PDE

0P (x,y)
0x

(3.4)

g = ad>(gx, V) 0

P(x,y) + (x,y) =0.
In agreement with formula (3.4), equation ¥ = 0 can be solved only on some special variety (set
of zeros) in the (affine) space of parameters a;, b;; defined by coefficients of P(x,y) and Q(x, y).
Generally, from (3.4) using step-by-step process of equating the proper coefficients of ¥ to zero
we obtain
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W = gy(a;, bij)(x* + y*)? + gﬁ(aij: bij)(xz +y2)° + gs(aijvbij)(xz +yH) 4+
yielding ¥ = 0 if and only if
9a(aij, bij) = ge(aij bij) = -+ = gax(aij, bij) =+ =0 (3.5)

for all k = 2. The numbers (polynomials) g2k(aij, bl-j) are called focus quantities [1]. Finally, the
centre-focus problem reduces to find the conditions for vanishing all focus quantities

9ax(aij bij).

For case (1.5), we computed the first several polynomials ng(aU, bl-]-) using and obtained

3
g4 = ___%%
Jo = :—;(76a§ + 21c3),
gs = — -2 (33834a% + 19736a2c; + 9(133aZ + 229¢2 — 216¢5) — 15728a,a,),

3072
as

910 = = (15467244a$ — 11734288a3a, + 10684399ajc; — 2776152a,a,4¢; —

3a2(484752a2 — 789569¢% + 559144c,) — 3a2(484752a2 — 789569c +
559144c¢5)+9(52064a2 + 5(4929a3c; + 2901c3 — 6164c5cs + 2568c5))), etc.

The expressions for the other focus quantities are too long to be presented here, but can easily
be computed using Mathematica or any other appropriate computer algebra system. Obviously,
the condition a; = 0 is necessary for (3.5), since a; is a cofactor of ng(ai]-, bl-j) forany k.

This means that system (1.5) for a; =0 and c¢; > 0 has centre at the origin for arbitrary
a,,ay,C3,Cs5,c; € R and the phase portrait in the neighbourhood of the origin is topologically
equivalent to the phase portrait shown in Fig. 5.

Figure 10: A non-trivial limit cycle for (1.2) of the form x' = y,y' = —(x? — 3)y — 5x3(x? — 5)
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Figure 12: Complex dynamics of x' = y,y’
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Figure 13: Complex dynamics of x' = y,y’
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_ xX3(x*-4)

— —x = 3sin7t: (x(), y(1)

1
Figure 14: Complex dynamics of x' = y,y' = (; —x2)y

x3(x%-4)
16

Figure 15: A single trajectory of x' = y,y' = (% —x¥)y x — 3sin 2t2: (x(t), y(t))

4 CONCLUSIONS

The centre-focus problem for system (1.5) is solved for necessary conditions. It is proven that the
crucial parameter that distinguishes between the centre and focus in (1.5) is a;. The condition
a; # 0yields focus, while a; = 0 defines a centre for any choice of other parameters. Note also
that there are many nontrivial examples of system (1.2) that probably admit limit cycles, for
example system x’ =vy,y’ = —(x% — 3)y — 5x3(x? — 5)) shown in Fig.10. According to the
well-known Liénard theorem, [3], system (1.2) admits a unique stable limit cycle if f and g are
continuously differentiable, g is odd and g(x) >0 for x > 0, f is an even function and
f;f(u) du < 0for0<x<a,and foxf(u) du > 0 and increasing for x > a; forsome a € R,.

Finally, note that a non-autonomous modification of system (1.2): x' =y, y' = —f(x)y —
g(x) + h(t) may exhibit other complex dynamics, as shown in Figs. 11-15.
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