151 Key words: Caryophyllaceae, Iran, ecology, phenotypic plasticity, Canonical Correspondence Analysis. Ključne besede: Caryophyllaceae, Iran, ekologija, fenotipska plastičnost, kanonična korelacijska analiza. Corresponding author: Iraj Mehregan E-mail: iraj@daad-alumni.de Received: 12. 6. 2022 Accepted: 26. 6. 2023 Genetic diversity and morphological variability of Iranian Silene aucheriana populations inferred from nrDNA ITS sequences and morphological analysis Abstract We conducted a comprehensive study on the diversity of Silene aucheriana Boiss. populations by analyzing both morphological data and nrDNA ITS sequences. Maximum parsimony and Bayesian methods on representative material from 15 populations throughout Iran demonstrated that they did not form a monophyletic group. Strong positive correlation occurred between epipetalous filaments length to claw (EFLC), basal leaf length (BLL), basal leaf width (BLW), and plant height (PLH) with elevation. While negative correlation achieved between anthophore length (AnL) with the average air temperature and rainfall. Canonical Correspondence Analysis (CCA) showed that most morphological traits were more correlated to elevation than to average rainfall and temperature. Multivariate analysis of morphological traits with ITS analysis displayed a slight divergence between two types of regions based on their elevation. Izvleček Izvedli smo celovito študijo o raznolikosti populacij vrste Silene aucheriana Boiss. z analizo morfoloških meritev in zaporedij ITS nrDNA. Največja parsimonija in statistične metode po Bayesu na reprezentativnem materialu iz 15 populacij po vsem Iranu so pokazale, da ne tvorijo monofiletične skupine. Ugotovili smo močno pozitivno korelacijo med dolžino epipetalnih filamentov in žebice (EFLC), dolžino spodnjih listov (BLL), širino spodnjih listov (BLW) in višino rastline (PLH) z nadmorsko višino. Negativno korelacijo smo ugotovili med dolžino antofore (AnL) in povprečno temperaturo zraka ter količino padavin. Kanonična korespondenčna analiza (CCA) je pokazala, da je večina morfoloških lastnosti bolj povezana z nadmorsko višino, kot pa s povprečno količino padavin in temperaturo. Multivariatna analiza morfoloških lastnosti z analizo ITS je pokazala rahlo odstopanje med dvema skupinama regij glede na njihovo nadmorsko višino. Masoumeh Safaeishakib1, Mostafa Assadi2, Shahina A. Ghazanfar3 & Iraj Mehregan1 1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. 2 Department of Botany, Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran. 3 Royal Botanic Gardens Kew, Richmond, Surrey, UK. DOI: 10.2478/hacq-2023-000123/1 • 2024, 151–163 23/1 • 2024, 151–163 152 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations Introduction Silene aucheriana Boiss. is in the Caryophyllaceae subge- nus Silene, section Auriculatae (Boiss.) Schischk. (Mel- zheimer, 1988; Oxelman & Lidén, 1995). This species is found in Anatolia, Iraq, Turcomania and it is wide- spread in Iran (Melzheimer, 1988). Genetic diversity is traditionally explored via analysis of morphological traits (Rautenberg et al., 2012). This approach includes some restrictions like the effect of environmental factors, giv- ing outputs that present just a fraction of total genetic variability (Živković et al., 2012). Applying an approach integrating morphological and genetic data is generally necessary to unravel species delimitation (Duminil & Di Michele, 2009; Heinrichs et al., 2009). Regarding genus Silene, Oxelman (1996) used morphological and molecular markers including Internal Transcribed Spacer DNA (ITS) to study the species relationships in the sect. Sedoides. Populations of S. aucheriana are widely distrib- uted in different regions of Iran with different ecologi- cal conditions and therefore, it is expected to show some morphological variation (Safaeishakib et al., 2023). The genetic structure based on ISSR data of these studied populations was previously reported by Safaeishakib et al. (2023), which revealed that genetic divergence among populations most likely reflects their climatic conditions. The current morphometric data and internal transcribed spacer (ITS) sequences were performed from two differ- ent types of geographical regions. With these data, the aims of the present study are a) to examine the morpho- logical variation in different populations of S. aucheriana, b) to investigate the correlation between quantitative morphological traits and some meteorological data, and c) to evaluate which morphological features are more sig- nificantly impacted by environmental factors. Materials and methods Plant material and Morphological studies Five samples (for morphological analysis) from each of the fifteen S. aucheriana populations were collected from May to early July 2017 from two types of regions with dif- ferent average temperatures, elevations, and rainfall. For better comprehension, 15 populations were divided into two groups according to their elevation (Table 1, Figure 1). Populations with an elevation cut-off limit higher than 2800 m (mountainous area and dry cold) in one group and those with an elevation cut-off limit lower than 1800 m (semi-arid, and sub-humid) placed in another group. These cut-off limits were based on the mean eleva- tions of localities (Safaeishakib et al., 2023). The assess- ment of these climate differences and classification was based on the Köppen-Geiger (KG) climate classification scheme (Hijmans et al., 2005; Peel et al., 2007; Fick and Hijmans, 2017), www.WorldClim.org, and www.weath- erunderground.com definitions. Meteorological data on localities including average temperature and rainfall were obtained from www.en.climate-data.org (O’Donnell & Ignizio, 2012; Safaeishakib et al. 2023). Voucher speci- mens are deposited at the Islamic Azad University Her- barium (IAUH) (Table 1, Figure 1). Seventeen morpho- logical characteristic were measured for each individual material (see Table 2 for characters used). These charac- ters have been used by various authorities in identifying Silene species (Chowdhuri, 1957; Coode & Cullen, 1967; Ghazanfar, 1984; Firat & Yıldız, 2016; Townsend et al., 2016). All measurements were done by using a Stereo Microscope (NTB-3A). Statistical analysis Statistical analysis was made using software package SPSS 18.0 for Windows (SPSS Inc. Chicago, USA). Morpho- logical results are shown as mean ± standard error obser- vations (mean ± SE). Duncan’s test followed by a Bonfer- roni correction (ɑ'=ɑ/k and ɑ=0.05) was used to detect possible differences in the studied populations (Rice, 1989). Differences among mean values obtained were determined at p<0.05 by Duncan’s test. The relationship between populations and environmental variation was assessed using canonical correspondence analysis (CCA) (Ter Braak, 1986). Clustering was performed according to the method of Ward with PAST software version 4.06b based on 1000 bootstrap replicates to explore relation- ships among samples with high variability where data and grouping are unclear (Hammer et al., 2001). Principal Component Analysis (PCA) was constructed using Vari- max rotation to obtain variation in morphological traits (Safaei et al., 2016). Pearson’s correlation coefficient was analyzed by using GraphPad Prism version 6.04 for Win- dows (GraphPad Software, La Jolla California USA), to identify the relationships between the seventeen morpho- logical traits and the environmental variables. Genomic DNA extraction and amplification Total genomic DNA was extracted from silica gel dried leaves following the protocol Nucleo Spin™ Plants Kits (Machery-Nagel, Germany) (Doyle & Doyle, 1987). The quality of the extracted DNA was evaluated on a 1% aga- 23/1 • 2024, 151–163 153 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations rose gel. The concentration of DNA was also estimated through Nano-Drop™ 2020 (Thermo Fisher Scientific, USA) at 260 nm. Amplification of ITS region was carried out by using forward primer AB101 (5’-ACG AAT TCA TGG TCC GGT GAA GTG TTC G-3’) and reverse primer AB102 (5’-TAG AAT TCC CCG GTT CGC TCG CCG TTAC-3’) (Douzery et al., 1999). The ampli- fication was gained by 35 cycles of 1 min, denaturation (94 °C), 1 min annealing (54 °C), and 2 min, 30-second elongation (72 °C), (Oxelman & Lidén, 1995). Finally, PCR products were evaluated qualitatively by electro- phoresis on 1% agarose gel. The concentration of DNA was also estimated through Nano-Drop™ 2020 (Thermo Fisher Scientific, USA) at 260 nm. Sequencing of am- plicons was performed on an ABI 3730 DNA Analyzer (Hitachi-Applied Biosystems, Waltham, Massachusetts, USA). Sequences of the ITS regions for 15 populations were submitted to GenBank (http://www.ncbi.nim.nih. gov/genbank/). In addition to these newly generated se- quences, ITS sequences of 37 accessions of other Silene species from Safaeishakib et al. (2020) were added to analysis for further comparison (see Table1). Sequence editing and phylogenetic analysis Sequences were visually checked and edited with the software tool Sequencher* version 5.4.6. (Gene Codes Corporation, Ann Arbor, Michigan, USA). New data- set was aligned using the software tool MacClade 4.08 Figure 1: Geographic distribution of S. aucheriana populations used in this study. Blue-colored circles reflect elevation cut-off limit higher than 2800 m, lower average temperature, and less rainfall (8.66 °C, 566.34 mm), whereas brown-colored circles show different climate conditions with an elevation cut-off limit lower than 1800 m, higher average temperature, more average rainfall, (15.57 °C, 600 mm). Local names are presented in Table 1. (Map designed using Arc GIS 10.2). Slika 1: Geografska razširjenost populacij vrste S. aucheriana uporabljenih v študiji. Modra barva odraža nadmorsko višinsko mejo nad 2800 m, nižjo povprečno temperaturo in manj padavin (8,66 °C, 566,34 mm), rjava barva pa drugačne podnebne razmere nadmorsko višinsko mejo nižjo od 1800 m, višje povprečje temperatura, več povprečne količine padavin, (15,57 °C, 600 mm). Krajevna imena so predstavljena v tabeli 1. (Zem- ljevid je bil izdelan z Arc GIS 10.2). 23/1 • 2024, 151–163 154 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations (Maddison & Maddison, 2000). Phylogenetic analyses were carried out with PAUP v. 4.0b10 (Swofford, 2003). The consistency index (CI) and retention index (RI) were estimated to assess the amount of homoplasy present in the data. Maximum parsimony (MP) analyses was per- formed using the heuristic search option with 1000 ran- dom taxon additions and tree bisection and reconnection (TBR) as the branch swapping algorithm (Felsenstein, 1985). The model of molecular evolution for each data- set was selected using the Akaike Information Criterion (AIC) in MrModeltest v. 2.3 (Posada & Crandall, 1998). A Markov Chain Monte Carlo (MCMC) sampling was performed for 4,000,000 generations with sampling oc- curring at every 100 generations. The posterior probabil- ity (PP) values were calculated using MrBayes version. 3.1.2 (Ronquist & Huelsenbeck, 2003). Twenty-five per- cent of the initial trees was discarded, and the remaining sampled trees were combined into a 50% majority rule consensus tree. Results Nuclear ribosomal DNA ITS The ITS region varied in length from 650 to 840 bp and parsimony-informative characters gained 52. The shortest trees found by PAUP* had 231 steps resulted in CI=0.77, RI=0.65. The (GTR+I+G) was selected as the best-fit model by MrModeltest. The frequencies of nucleotides were estimated as following: A=0.2182, C=0.2955, G=0.2883 and T=0.1980). The majority-rule consensus tree generated via Bayesian inference analysis and is highly consistent with the strict consensus tree inferred from MP analysis. Therefore, only the Bayesian tree is shown. Posterior Probabilities (PP) are indicated by numbers above each branch. Bootstrap supports for this branch retrieved in the Maximum Parsimony (MP) assessment were displayed by the numbers below each branch. The phylogenetic analysis revealed that Tarom (Pop 13) and Silvana (Pop 7) populations are well sup- ported (PP=0.95); furthermore, Dona (Pop 11), Qoshchi (Pop 5) and Heydareh (Pop 3) populations showed close affinity to each other (populations belonging to elevation cut-off limit lower than 1800 m). On the other hand, four populations such as Emamzadeh Hashem (Pop 1), Gaduk (Pop 8), HezarMasjed (Pop 15), and Rineh (Pop 10), belong to elevation cut-off limit higher than 2800 m, and were separately placed close to each other. Other val- ues of posterior probability (PP) and maximum parsi- mony bootstrap (MP) were achieved from other species of sect. Auriculatae like S. bornmuelleri and S. sisianica (PP=1, PB=90%) (Figure 2). Figure 2: Bayesian majority-rule consensus tree derived from nuclear ribosomal DNA internal transcribed spacer sequences (ITS). Posterior probability (≥ 0.90) and MP bootstrap support (≥70%) values are presented on above and below branches. Blue color reflects elevation cut-off limit higher than 2800 m, lower average temperature, and less rainfall (8.66 °C, 566.34 mm), whereas brown color shows different climate conditions with an elevation cut-off limit lower than 1800 m, higher average temperature, more average rainfall (15.57 °C, 600 mm). Local names are presented in Table 1. Slika 2: Konsenzno drevo Bayesovega večinskega pravila, izpeljano iz regije ITS jedrne ribosomalne DNK. Vrednosti posteriorne verjetnosti (≥0,90) in podpora s samovzorčenjem analize MP (≥70%) so predstav- ljene na zgornjih in spodnjih vejah. Modra barva odraža nadmorsko višinsko mejo nad 2800 m, nižjo povprečno temperaturo in manj padavin (8,66 °C, 566,34 mm), rjava barva pa drugačne podnebne razmere z nadmorsko višinsko mejo nižjo od 1800 m, višje povprečje temperature, večjo povprečno količine padavin (15,57 °C, 600 mm). Krajevna imena so predstavljena v tabeli 1. 0.951 90 0.95 0.87 0.82 82 S. bornmuelleri S. sisianica S. aucheriana (Pop 8) S. aucheriana (Pop 1) S. aucheriana (Pop 15) S. aucheriana (Pop 10) S. aucheriana (Pop 13) S. aucheriana (Pop 7) S. aucheriana (Pop 4) S. aucheriana (Pop 14) S. aucheriana (Pop 6) S. aucheriana (Pop 2) S. aucheriana (Pop 9) S. aucheriana (Pop 12) S. aucheriana (Pop 11) S. aucheriana (Pop 3) S. aucheriana (Pop 5) S. mishudaghensis S. albescens S. tragacantha S. geriraudiae S. breviauriculata S. pravitziana S. eriocalycina S. pseudomurensis S. gynodioica S. hirticalyx S. indeprensa S. oligophylla S. gynodioica S. ecrispans S. alymaitica S. erysimifolia S. daenensis S. palinotricha S. oxelmanii S. microphylla S. persica S. meyeri S. nurensis S. commelinifolia S. araratica S. perepolitana S. dschuparensis S. cephalantha S. prilipkoana S. brahuica S. spergulifolia S. virgata S. muradica S. montbretiana S. goniucaula 0,0 100.0 23/1 • 2024, 151–163 155 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations Statistical analysis Correlation coefficients demonstrated that correlations were mostly either non-significant or null. However, sig- nificant correlations in some relations were observed, for example, a strong positive correlation occurred between epipetalous filaments length to claw (EFLC), basal leaf length (BLL), basal leaf width (BLW), and plant height (PLH) with elevation. Similarly, positive correlation be- tween seed width (SEW) and average air temperature was also obtained. The correlations between anthophore length (AnL) with the average air temperature and rain- fall were mainly negative and non-significant at p<0.05 level respectively (Figure 3). Although no significant dif- ferences in a single trait were observed in all populations, basal leaf width (BLW) in Silvana (Pop 7) displayed a noteworthy variation compared to the other populations. Moreover, basal leaf length (BLL) trait in Qoshchi (Pop 5), petal limb length (PLL) in HezarMasjed and Klishom (Pop 15, Pop 9), petal limb division length (PLDL) in Klishom (Pop 9), epipetalous filaments length to claw (EFLC) in Tochal (Pop 12), and capsule length (CAPL) in Golestan Kooh (Pop 4) revealed a significant differ- ence among the studied populations. Noticeably, mete- orological data exhibited significant differences with all quantitative traits (Table 3). Cluster analysis and principal component analysis of morphological traits Morphological variation in 17 studied traits (using PCA) showed populations from Zangoleh (Pop 6), Emamzadeh Hashem (Pop 1), Rineh (Pop 10), Gaduk (Pop 8) were clustered at the first component while the second compo- nent clustered populations from Tarom (Pop 13), Silvana (Pop 7), Qoshchi (Pop 5), Heydareh (Pop 3), Tochal (Pop 12), Dona (Pop 11), Golestan Kooh (Pop 4), Gorsfid (Pop 2). The populations of Dizin (Pop 14), HezarMasjed (Pop 15), and Klishom (Pop 9) were positioned in the third dimension (Figure 4). Cluster analysis based on Ward’s method showed that populations of Rineh (Pop10), Zangoleh (Pop 6), Emamzadeh Hashem (Pop 1), were placed together with similar environmental conditions while populations from Silvana (Pop 7), Qoshchi (Pop 5), Heydareh (Pop 3), Dona (Pop 11), and Tochal (Pop 12) were located at close distance (Figure 5). These results were in agreement with the PCA plot result. In order to estimate the relative im- portance of each eco-geographical trait populations dis- tribution, CCA was used, and showed that most of the evaluated traits are influenced by elevation (Figure 6). Figure 3: Correlation analysis between eco-geographical variables and morphological traits achieved from populations of S. aucheriana. The abbreviations of traits are presented in Table 2. Note: Ave t: average temperature; RF: rainfall; Alt: Altitude. Slika 3: Korelacijska analiza med ekološko-geografskimi spremenljivkami in morfološkimi znaki, pridobljenimi iz populacij vrste S. aucheriana. Okrajšave znakov so predstavljene v tabeli 2. Opomba: Ave t: povprečna temperatura; RF: padavine; Alt: nadmorska višina. Alt Ave t RF PLH BLL PLW SLL SLW APL CL CTL PCL PLL PLDL ESA EFLC CAPL AnL SEL SEW 1 0.8 0.6 0.4 0.2 0 –0.2 –0.4 –0.6 –0.8 –1.0 Al t Av e t R F PL H BL L PL W SL L SL W AP L C L C TL PC L PL L PL D L ES A EF LC C AP L An L SE L SE W 23/1 • 2024, 151–163 156 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations                                         Discussion Cluster analysis and PCA based on morphological traits indicated Klishom’s population (Pop 9) is close to Dizin (Pop 14), and HezarMasjed (Pop 15) populations be- longing to elevation cut-off limit higher than 2800 m. While the genetic structure study among 15 populations of S. aucheriana (Safaeishakib et al., 2023) showed slight gene flow has occurred in Klishom’s population (Pop 9) and revealed that this population is grouped with po- pulations at elevation cut-off limit lower than 1800 m, more average rainfall, and higher average temperature (600 mm, 15.57 °C). From the morphological point of view and based on the results of the sequence, we found that the population of Tochal (Pop 12) (belong- ing to the elevation cut-off limit higher than 2800 m) is placed close to the populations from the elevation cut-off limit lower than 1800 m. However, this result was not obtained based on ISSR sequencing (Safaeishakib et al., 2023). In this study, the molecular data achieved from S. aucheriana populations exhibited an almost consistent pattern that nearly aligned with the results obtained from the morphological analysis. Taxonomically, S. aucheriana Figure 4: Principal component analysis (PCA) of the morphometric data. Blue-colored circles reflect elevation cut-off limit higher than 2800 m, lower average temperature, and less rainfall (8.66 °C, 566.34 mm), whereas brown-colored circles show different climate conditions with an elevation cut-off limit lower than 1800 m, higher average temperature, more average rainfall, (15.57 °C, 600 mm). Slika 4: Analiza glavnih komponent (PCA) morfometričnih podatkov. Modro obarvani krogi odražajo mejno nadmorsko višino nad 2800 m, nižjo povprečno temperaturo in manj padavin (8,66 °C, 566,34 mm), medtem ko rjavi krogi prikazujejo različne podnebne razmere z mejno nadmorsko višino, nižjo od 1800 m, višjo povprečno temperaturo, večjo povprečno količino padavin (15,57 °C, 600 mm). Figure 5: Canonical correspondence analysis (CCA) was carried out with seventeen morphological data and three geographical traits of fifteen accessions of S. aucheriana collected from different locations. The abbreviation of traits is presented in Table 2. Note: AVE t: average temperature; RF: rainfall; ALT: Altitude Slika 5: V kanonično korespondenčno analizo smo vključili sedem- najst morfoloških in tri geografske znake petnajstih nabirkov vrste S. aucheriana, nabranih na različnih nahajališčih. Okrajšave znakov so predstavljene v tabeli 2. Opomba: AVE t: povprečna temperatura; RF: količina padavin; ALT: nadmorska višina. is distinct from S. montbretiana, while they have been treated synonymous in Flora of Turkey and Flora of Iraq (Coode & Cullen 1967; Townsend et al., 2016). Mel-                                                                               23/1 • 2024, 151–163 157 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations and alar pedicel length traits affected by average tempera- ture. Additionally, stem leaf width, stem leaf length and basal leaf width appear to be strongly affected by rainfall. While other traits such as epipetalous filaments length to claw, seed length, anthophore length, seed width, calyx tooth length, calyx length, plant height, petal limb di- vision length, capsule length, and epipetalous stamens are affected mainly by elevation. Additionally, based on the morphological observations in the collected samples of S. aucheriana populations, we noticed two traits of basal leaf width and calyx length are more variable than other traits. Some studies have shown that genetic diver- sity in Silene species is more representative of geography and climate than taxonomy; for example, in S. latifolia, divergence of populations showed that two kinds of cli- mate regions were involved that resulted in variation of morphological characters (Brothers et al., 2016; Durović et al., 2017; Del Valle et al., 2019). Similarly, the study conducted by Karrenberg et al. (2018) utilized environ- mental data consisting of 19 bioclimatic variables to ana- lyze populations of S. dioica and S. latifolia. The findings suggest that speciation has been driven by ecological di- vergence. Conclusions The present study intended to examine the genetic and morphological diversity of two different groups of S. aucheriana populations, with a focus on elevation cut-off limits above 2800 m and below 1800 m. Cluster analysis of molecular data was shown to be similar to morphological traits results. Accordingly, Emamzadeh Hashem (Pop 1), Gaduk (Pop 8), Zangoleh (Pop  6), and Rineh (Pop 10) populations belong to elevation cut-off limit higher than 2800 m, and were separately placed close to each other. Subsequently Silvana (Pop 7), Qoshchi (Pop 5), Heydareh (Pop 3), and Dona (Pop 11) populations were located in another group (elevation cut-off limit lower than 1800 m) at close distance. The phylogenetic results of nrDNA ITS revealed that the two populations of Tarom (Pop 13), and Silvana (Pop 7) formed a well-supported branch as a monophyletic group (PP=0.95). Similarly, in terms of morphological analyses, apart from the Tochal (Pop 12) and Klishom (Pop 9), other populations were placed together based on their elevation grouping. Having such a relatively clear-cut grouping from both methods could suggest the existence of a genetic background supporting morphological di- versity. Some morphological variables such as basal leaf length, and alar pedicel length showed a positive corre- lation with average air temperature while negative cor- Figure 6: Cluster analysis of S. aucheriana populations using Ward’s linkage based on morphological data. Blue color reflects elevation cut-off limit higher than 2800 m, lower average temperature, and less rainfall (8.66 °C, 566.34 mm), whereas brown color shows dif- ferent climate conditions with an elevation cut-off limit lower than 1800 m, higher average temperature, more average rainfall, (15.57 °C, 600 mm). Slika 6: Klastrska analiza populacij vrste S. aucheriana z Wardovo metodo povezovanja na osnovi morfoloških podatkov. Modra barva odraža nadmorsko višinsko mejo nad 2800 m, nižjo povprečno temperaturo in manj padavin (8,66 °C, 566,34 mm), rjava barva pa drugačne podnebne razmere z nadmorsko višinsko mejo, nižjo od 1800 m, višjo povprečno temperaturo, večjo povprečno količino padavin (15,57 °C, 600 mm). zheimer (1988) has separated Iranian S. aucheriana from the Turkish S. montbretiana on the basis of leaf characters (Ghazanfar & Edmondson, 2013). Differences in habitat can be reflected in morphologi- cal features, so different environmental conditions cannot be ignored in population diversity studies (Thorpe, 1987; Peppe et al., 2011). Elevation is one of the important environmental factors that affect population differentia- tion and genetic diversity. High elevation, especially in alpine regions, has significant effect on plants. Recently, plant-based ecology studies have raised many fundamen- tal questions of morphological variation as populations have obvious adaptation strategies by changing their mor- phological and physiological characteristics (Royer et al., 2005; Verheijen et al., 2013). The ordination techniques are useful in the elucidation of cluster pattern as well as in the detection of the eco-geographical variation (Mu- cino, 1982). In this regard, CCA showed basal leaf length Qoshchi (Pop 5) Heydareh (Pop 3) Silvana (Pop 7) Dona (Pop 11) Dizin (Pop 14) Hezar Mas (Pop 15) Klishom (Pop 9) Tochal (Pop 12) Gorsfid (Pop 2) Gol-kooh (Pop 4) Tarom (Pop13) Gaduk (Pop 8) Em-Hash (Pop 1) Zangoleh (Pop 6) Rineh (Pop 10) 200 150 100Distance 50100 23/1 • 2024, 151–163 158 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations relation was seen between capsule length, and petal limb division length with elevation. The evaluation conducted by CCA demonstrated that elevation had a stronger cor- relation with most of the morphological traits as com- pared to average rainfall and temperature. Among all in- vestigated traits, only basal leaf length (BLL), basal leaf width (BLW), petal limb length (PLL) and epipetalous filaments length to claw (EFLC), and capsule length (CAPL) displayed a significant difference among the studied populations. Two quantitative traits, basal leaf width and calyx length, were variable compared to sev- enteen other quantitative traits. Acknowledgments The authors would like to thank Dr. Abbas Gholipour for his help in confirmation of our species identification. Funding Present work is supported by the Science and Research Branch, Islamic Azad University, Tehran, Iran Masoumeh Safaeishakib  https://orcid.org/0000-0002-3557-0287 Mostafa Assadi  https://orcid.org/0000-0001-9014-585X Shahina A. Ghazanfar  https://orcid.org/0000-0002-0482-2023 Iraj Mehregan  https://orcid.org/0000-0002-5108-2558 References Brothers, A., Weingartner, L., & Delph, L. (2016). Genetically based population divergence of Silene latifolia from two climate regions. Evolutionary ecology research, 17, 637–650. Chowdhuri, P. K. (1957). Studies in the genus Silene. Notes from the Royal Botanic Garden, Edinburgh, 22, 221–278. Coode, M. J., & Cullen, J. (1967). Silene L. In P. H. Davis (Ed.), Flora of Turkey and the East Aegean Islands (pp. 179-242). Edinburgh University Press. Del Valle, J. C., Soriguer, I., Buide, M., Narbona, E., & Whittall, J. B. (2019). Whole plastome sequencing within Silene section Psammophilae reveals mainland hybridization and divergence with the Balearic Island populations. Frontiers in Plant Science, 10, 1466. https://doi.org/10.3389/fpls.2019.01466 Douzery, E. P., Pridgeon, A. M., Kores, P., Linder, H. P., Kurzwell, H., & Chase, M. (1999). Molecular phylogenetics of Diseae (Orchidaceae) a contribution from nuclear ribosomal ITS sequences. American Journal of Botany, 86(6), 887–899. https://doi.org/10.2307/2656709 Doyle, J., & Doyle, L. (1990). Isolation of Plant DNA from Fresh Tissue. Focus, 12(1), 13-15. Duminil, J. Di., & Michele, M. (2009). Plant species delimitation a comparison of morphological and molecular markers. Plant Biosystems, 143, 528–542. https://doi.org/10.1080/11263500902722964 Durović, S., Schönswetter, P., Niketić, M., Tomović, G., & Frajman, B. (2017). Disentangling relationships among the members of the Silene saxifraga alliance (Caryophyllaceae) Phylogenetic structure is geographically rather than axonomically segregated. Taxon, 66, 343–364. https://doi.org/10.12705/662.4 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas: New climate surfaces for global land areas. The International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 Firat, M., & Yıldız, K. (2016). Silene konuralpii (Sect. Spergulifoliae, Caryophyllaceae), a new species from eastern Anatolia. Phytotaxa, 288, 214–226. Ghazanfar, S. A. (1984). Pollen morphology of the genus Silene L. (Caryophyllaceae) sections Siphonomorpha otth and Auriculatae (boiss) schischk. New Phytologist, 98, 683–690. Ghazanfar, S. A., & Edmondson, J. R. (2013). Flora of Iraq. Vol. 5(2). Ministry of Agriculture & Kew Publishing. Hammer, O., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 1–9. Heinrichs, J., Klugmann, F., Hentschel, J., & Schneider, H. (2009). DNA taxonomy, cryptic speciation and diversification of the Neotropical African liverwort, Marchesinia brachiata (Lejeuneaceae, Porellales). Molecular Biology and Evolution, 53, 113–121. https://doi. org/10.1016/j.ympev.2009.05.032 Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution nterpolated climate surfaces for global land areas. The International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276 Karrenberg, S., Liu, X., Hallander, E., Favre, A., Herforth-Rahmé, J., & Widmer, A. (2018). Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). International Journal of Organic Evolution, 73, 245–261. https://doi. org/10.1111/evo.13652 Maddison, D. R., & Maddison, W. P. (2000). MacClade 4. Sunderland Sinauer Associates. Published at http://macclade.org Melzheimer, V. (1988). Silene L. In K. Rechinger (Ed.), Flora des iranischen hochlandes und der umrahmenden Gerbirge (Persien, Afghanistan, Teile von West-Pakistan, Nord-Iraq, Azerbaidjan, Turkmenistan). Akademische Druck- u. Verlagsanstalt. Mucina, L. (1982). Numerical classification and ordination of ruderal plant communities (Sisymbrietalia, nopordetalia) in the western part of Slovakia. Plant Ecology, 48, 267–275. https://doi.org/10.1007/ BF00055270 O’Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series, 691(10), 1–10. Oxelman, B. (1996). RAPD patterns, nrDNA ITS sequences and morphologi-cal patterns in Silene section Sedoideae (Caryophyllaceae). Plant Systematics and Evolution, 201, 93–116. Oxelman, B., & Lidén, M. (1995). Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. Taxon, 44, 525–542. https://doi.org/10.2307/1223498 Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644. 23/1 • 2024, 151–163 159 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations Peppe, D., Royer, D., Cariglino, B., Oliver, S., Newman, S., Leight, E., Enikolopov, G., Fernandez Burgos, M., Herrera, F., & Adams, J. (2011). Sensitivity of leaf size and shape to climate global patterns and paleoclimatic applications. New Phytologist, 190, 724–739. https://doi. org/10.1111/j.1469-8137.2010.03615.x Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818. Rautenberg, A., Sloan, D. B., Alden, V., & Oxelman, B. (2012). Phylogenetic relationships of Silene multinervia and Silene section Conoimorpha (Caryophyllaceae). Systematic Botany, 37(1), 226–237. https://doi.org/10.1600/036364412X616792 Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43, 223–225. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3 Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572– 574. https://doi.org/10.1093/bioinformatics/btg180 Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., & Dilcher, D. L. (2005). Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 92(7), 1141–1151. https://doi.org/10.3732/ajb.92.7.1141 Safaei, M., Sheidai, M., Alijanpour, B., & Noormohammadi, Z. (2016). Species delimitation and genetic diversity analysis in Salvia with the use of ISSR molecular markers. Acta Botanica Croatica, 75(1), 45–52. https:// doi. org/ 10. 1515/ botcro-2016-0005 Safaeishakib, M., Assadi, M., Mehregan, I., & Ghazanfar, S. (2020). Phylogenetic study of Silene sections Auriculatae, Spergulifoliae, Ampullatae, and Lasiocalycinae in Iran. Phytotaxa, 472(2), 169–183. https://doi.org/10.11646/phytotaxa.472.2.7 Safaeishakib, M., Assadi, M., Mehregan, I., & Ghazanfar, S. (2023). Cryptic Molecular- Geographical Divergence among Silene aucheriana Populations Report by ISSR Data. Biologia, 78(4). https://doi. org/10.1007/s11756-023-01390-x Sheidai, M., Gholipour, A., & Noormohammadi, Z. (2010). Species relationship in the genus Silene L. Section Auriculatae (Caryophyllaceae) Based on morphology and RAPD analysis. Acta Biologica Szegediensis, 54(1), 25–31. Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (and other methods) 4.0b10. Sunderland, Massachusetts. Sinauer Associates. Ter Braak, C. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Journal of Ecology, 67, 1167–79. https://doi.org/10.2307/1938672 Thorpe, R. (1987). Geographic variation: a synthesis of cause, data, pattern and congruence in relation to subspecies, multivariate analysis and phylogenesis. Italian Journal of Zoology, 54, 3–11. Townsend, C., Melzheimer, V., Kandemir, A., Ghazanfar, S. A., & Haloob, A. (2016). Caryophyllaceae. In S. A. Ghazanfar, & J. R. Edmondson (Eds.), Flora of Iraq, vol. 5(2) (pp. 6–123). Ministry of Agriculture of the Republic of Iraq. Verheijen, L. M., Brovkin, V., Aerts, R., & Bönisch, G. (2013). Impacts of trait variation through observed trait climate relationships on performance of an earth system model: a conceptual analysis. Biogeosciences, 10, 5497–5515. https://doi.org/10.5194/bg- 10- 5497-2013 Živković, B., Radović, J., Sokolović, D., Šiler, B., Banjanac, T. & Štrbanović, R. (2012). Assessment of genetic diversity among alfalfa (Medicago sativa L.) genotypes by morphometry, seed storage proteins and RAPD analysis. Industrial Crops and Products, 40, 285–291. https://doi.org/10.1016/j.indcrop.2012.03.027 23/1 • 2024, 151–163 160 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations Sp ec ie s/ Po pu la tio ns Lo ca lit y Lo ng itu de / La tit ud e El ev at io n cu t- off li m its (m ) El ev at io n (m et er ) Av er ag e te m p (°C ) Av er ag e ra in fa ll (m m ) Vo uc he r N o. G en Ba nk N o. (I T S) (S af ae ish ak ib e t a l. 20 20 ) S. a uc he ria na (P op 1 ) H ar az -E m am za de h H as he m m ou nt ai n (E m -h a) 52 ° 0 2' 0 8" E 35 ° 5 0' 0 4" N > 28 00 30 50 6. 8 37 4 IA U H 00 00 15 35 7 O L6 62 94 2 S. a uc he ria na (P op 2 ) Se m na n- Fi ro oz ko oh to S or kh eh , G or sfi d 53 ° 3 1' 5 9" E 35 ° 1 5' 1 9" N < 18 00 12 51 17 .4 0 10 3 IA U H 00 00 15 35 8 O L6 62 98 8 S. a uc he ria na (P op 3 ) H am ed an -H ey da re h 48 ° 2 7' 4 5" E 34 ° 4 6' 4 1" N < 18 00 11 15 13 .3 2 44 3 IA U H 00 00 15 35 9 O L6 62 99 0 S. a uc he ria na (P op 4 ) Es fa ha n- K ha ns ar , G ol es ta n K oo h 50 ° 2 7' 1 2" E 33 ° 0 7' 3 5" N < 18 00 17 23 13 .5 2 22 2 IA U H 00 00 15 36 0 O L6 62 99 5 S. a uc he ria na (P op 5 ) W -A ze rb ai ja n, Q os hc hi (t o Sa lm as ) 45 ° 0 3' 3 2" E 37 ° 5 9' 3 8" N < 18 00 17 80 15 .8 0 32 1 IA U H 00 00 15 36 1 O L6 63 83 7 S. a uc he ria na (P op 6 ) C ha lo us -Z an go le h pa ss 51 ° 0 7' 0 6" E 36 ° 2 8' 1 5" N > 28 00 28 40 6. 5 16 60 IA U H 00 00 15 36 2 O L6 63 84 7 S. a uc he ria na (P op 7 ) W -A ze rb ai ja n- Si lv an a 44 ° 5 1' 0 2" E 37 ° 2 3' 5 7" N < 18 00 17 20 19 .4 9 98 2 IA U H 00 00 15 36 3 O L6 63 85 0 S. a uc he ria na (P op 8 ) Fi ro oz ko oh -G ad uk p as s 52 ° 5 5' 0 5" E 35 ° 4 9' 2 9" N > 28 00 28 40 8. 5 53 0 IA U H 00 00 15 36 4 O L6 81 87 8 S. a uc he ria na (P op 9 ) Ru db ar -K lis ho m v ill ag e 49 ° 2 5' 2 7" E 36 ° 4 6' 3 2" N < 18 00 17 80 12 .9 90 7 IA U H 00 00 15 36 5 O L6 63 85 1 S. a uc he ria na (P op 1 0) La rij an -R in eh 52 ° 1 0' 0 7" E 35 ° 5 2' 5 2" N > 28 00 28 89 11 .8 2 10 44 IA U H 00 00 15 36 6 O L6 64 06 2 S. a uc he ria na (P op 1 1) C ha lo us ro ad -D on a vi lla ge 51 ° 2 2' 0 9" E 36 ° 1 1' 4 6" N < 18 00 17 90 16 .7 3 14 40 IA U H 00 00 15 36 7 O L6 64 56 3 S. a uc he ria na (P op 1 2) Te hr an -T oc ha l 51 ° 2 4' 2 0" E 35 ° 4 9' 1 2" N > 28 00 30 10 9. 38 42 9 IA U H 00 00 15 36 8 O L6 64 57 8 S. a uc he ria na (P op 1 3) Za nj an -T ar om 48 ° 4 9' 1 8" E 36 ° 3 9' 2 9" N < 18 00 10 10 15 .4 5 38 6 IA U H 00 00 15 36 9 O L6 65 11 8 S. a uc he ria na (P op 1 4) Te hr an -D izi n 51 ° 2 5' 0 2" E 36 ° 0 2' 5 7" N > 28 00 28 23 7. 33 59 1 IA U H 00 00 15 37 0 O L6 65 14 5 S. a uc he ria na (P op 1 5) K ho ra sa n R az av i - H ez ar M as je d m ou nt ai n 60 ° 3 8' 2 1" E 36 ° 0 4' 2 3" N > 28 00 29 50 10 .3 37 0 IA U H 00 00 15 37 1 M K 58 75 12 Ta bl e 1: L oc al iti es , c lim at ic d et ai ls, a nd v ou ch er sp ec im en s o f S . a uc he ria na p op ul at io ns b as ed o n nr D N A IT S da ta u se d fo r t hi s s tu dy . I n di ffe re nt re gi on s, G PS w as u se d to de te rm in e th e lo ca tio n (lo ng itu de , l at itu de , a nd e le va tio n) . A ve ra ge ra in fa ll an d te m pe ra tu re w er e ob ta in ed fr om w w w. en .c lim at e- da ta .o rg . O th er ta xa (n on h ig hl ig ht ed c el ls) o f se ct . A ur icu la ta e a re li ste d fo r c om pa ris on . Ta be la 1 : N ah aj al išč a, p od ne bn e la stn os ti in v av če rs ki v zo rc i p op ul ac ij vr ste S . a uc he ria ne n a os no vi p od at ko v re gi je IT S nr D N A, u po ra bl je ni h v te j š tu di ji. V ra zli čn ih re gi ja h sm o za d ol oč an je lo ka ci je (z em lje pi sn a do lži na , š iri na in n ad m or sk a vi šin a) u po ra bi li G PS . P ov pr eč no k ol ič in o pa da vi n in te m pe ra tu ro sm o pr id ob ili iz w w w. en .c lim at e- da ta .o rg . D ru gi ta ks on i ( ne os en če ne c el ic e) iz se kc ije A ur icu la ta e s o na ve de ni za p rim er ja vo . 23/1 • 2024, 151–163 161 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations S. a lb esc en s B oi ss Fa re s, N ur ab ad to k ur ka n 18 00 TA R I 4 59 40 M K 58 75 06 S. a ra ra tic a Sc hi sc hk . W . A za rb ai ja n, R az i v ill ag e 25 00 TA R I 6 88 55 M K 58 34 48 S. b or nm ue lle ri Fr ey n. E. Az ar ba ija n, A ra sb ar an 11 04 TA R I 1 25 M K 88 36 01 S. b re vi au ric ul at a G ha zn . N .K ho ra sa n, Ja ja rm 10 10 IA U H 1 46 08 M K 58 35 10 S. b ra hu ica B oi ss . Za he da n, N ik sh ah r, 55 2 TA R I 4 30 57 M K 58 09 74 S. ce ph al an th a Bo iss . E. Az ar ba ija n , S ab al an 31 60 TA R I 3 97 M K 58 09 73 S. co m m eli ni fo lia B oi ss . Te hr an ,T oc ha l 19 14 IA U H 0 05 1 M K 58 34 67 S. cr isp an s L itw . G or ga n, M ar av eh et ap eh 98 0 TA R I 5 55 49 M K 58 34 46 S. d sch up ar en sis B or nm . K er m an , R ay en 32 00 IA U H 1 24 56 M K 60 16 78 S. d ae ne ns is M el zh . K er m an ,R ay en , B ab Z an gi 44 00 IA U H 5 95 M K 58 09 80 S. er io ca lyc in a Bo iss . Lo re sta n, N oz hi an w at er fa ll 13 97 IA U H 0 05 3 M K 58 75 09 S. er ys im ifo lia S ta pf . Ar ak , 2 0k m sa ve h 17 50 TA R I 8 22 7 M K 58 34 71 S. el ym ai tic a Bo rn m . Se m na n, H irk uh 27 00 TA R I 4 06 71 M K 58 34 62 S. g er tra ud ia e M el zh . R .K ho ra sa n To rb at se fid 17 00 TA R I 2 35 28 M K 58 09 78 S. g on io ca ul a Bo iss . H am ed an , A lv an d m ou nt 33 00 IA U H 0 05 2 M K 60 16 77 S. g yn od io ica G ha za nf ar . Za nj an , G hy ed ar ro ad 22 03 IA U H 0 05 4 M K 58 35 14 S. h irt ica lyx B oi ss & H au ss kn . K er m an sh ah , P av eh 10 00 TA R I 8 61 01 M K 58 75 07 S. in de pr en sa S ch isc hk . N . K ho ra sa n, S ha h Ja ha n 14 00 TA R I 4 86 22 M K 58 06 41 S. m ish ud ag he ns is. G ho & P ar sa . E. Az ar ba ija n, M ish ud ag hi 19 00 TA R I 7 30 34 M K 60 52 50 S. m icr op hy lla B oi ss . Ya zd , S hi rk oo h 19 78 IA U H 0 34 94 M K 58 10 21 S. m on tb re tia na B oi ss . Lo re sta n, N oo ra ba d 19 00 TA R I 6 43 98 M K 60 16 80 S. m ur ad ica S ch isc hk . W . A ze rb ai ja n, R az i v ill ag e 20 20 TA R I 9 92 0 M K 88 36 02 S. m ey er i F en zl. G or ga n, T ila ba d 10 00 TA R I 4 92 53 M K 58 34 66 S. n ur en sis M el zh . Sh ah r- e K or d, S ab zk oh 28 20 TA R I 4 92 54 M K 58 75 14 S. o lig op hy lla M el zh . W . A ze rb ai ja n, F iro uz ab ad 11 80 TA R I 3 42 62 M K 58 75 16 S. o xe lm an ii G ho lip ou r. Lo re sta n, D re ht ak ht v ill ag e 25 00 IA U H 0 05 4 M K 58 34 60 S. p al in ot ric ha F en zl ex B oi ss . Se m na n, S ha pe sa nd 19 50 TA R I 2 96 71 M K 58 35 12 S. p ra vi tz ia na R ec h. Is fa ha n, 3 0 km fr om A rd es ta n 85 0 TA R I 1 15 31 M K 58 75 13 S. p er sep ol ita na M el zh . Fa ris , F iru za ba d 20 00 TA R I 4 12 96 M K 58 06 37 S. p er sic a Bo iss . Sh ah re ko rd , M ou nt k al ar 34 00 TA R I 5 73 95 M K 58 75 10 S. p ril ip ko an a Sc hi sc hk . W .A za rb ai ja n, M ak u 13 80 TA R I 7 51 5 M K 58 75 11 S. p seu do nu re ns is M el zh . Te hr an , G ar m da rr eh 17 00 TA R I 3 33 52 M K 58 75 15 S. sp er gu lif ol ia W ill d. W A za rb ai ja n, S ilv an a, K ha lil ko oh 23 00 IA U H 0 05 6 M K 58 06 21 S. si sia ni ca B oi ss . W . A za rb ai ja n, K ho i 21 50 TA R I 3 02 55 M K 58 34 49 S. so ja ki i M el zh . Se m na n, T ila ba d 10 00 TA R I 2 95 81 M K 58 06 20 S. tr ag ac an th a Fe nz l e x Bo iss . Is fa ha n, S am er om 30 00 TA R I 3 16 97 M K 58 75 08 S. v irg at a St ap f. Sa na nd aj , B av an eh v ill ag e 17 20 TA R I 7 88 12 M K 58 34 68 23/1 • 2024, 151–163 162 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations Table 3: The Duncan’s means of the traits, assessed from fifteen populations of S. aucheriana. Note: The data are reported as Mean ± SD (Standard deviation). Mean values with the same letters are not significantly different at (p < 0.05) according to Duncan’s test followed by Bonferroni’s correction (ɑ'=ɑ/k, ɑ=0.05). The abbreviation of traits is presented in Table 2. AvgT: average temperature; RF: rainfall; Sig: significance level. Highlighted cells show significant differences. Tabela 3: Duncanove povprečne vrednosti znakov, ocenjenih iz petnajstih populacij vrste S. aucheriana. Opomba: podatki so navedeni kot povprečje ± SD (standardni odklon). Srednje vrednosti z istimi črkami se statistično značilno ne razlikujejo (p < 0,05) glede na Duncanov test, ki mu sledi Bonferronijeva korekcija (ɑ'=ɑ/k, ɑ=0,05). Okrajšave znakov so predstavljene v tabeli 2. AvgT: povprečna temperatura; RF: padavine; Sig: stopnja statistične značilnosti. Osenčene celice kažejo statistično značilne razlike. Table 2: The morphological characters used for morphometric analyses among populations of S. aucheriana (description of each character is given separately in the Results). Tabela 2: Morfološki znaki, uporabljeni za morfometrične analize med populacijami vrste S. aucheriana (opis vsakega od znakov je podan posebej v Rezultatih). No Quantitative morphological characters 1 Plant height (PLH; cm) 2 Basal leaf length (BLL; mm) 3 Basal leaf width (BLW; mm) 4 Stem leaf length (SLL; mm) 5 Stem leaf width (SLW; mm) 6 Alar pedicel length (APL; mm) 7 Calyx length (CL; mm) 8 Calyx tooth length (CTL; mm) 9 Petal claw length (PCL; mm) No Quantitative morphological characters 10 Petal limb length (PLL; mm) 11 Petal limb division length (PLDL; mm) 12 Epipetalous stamens to alternate (ESA; mm) 13 Epipetalous filaments length to claw (EFLC; mm) 14 Capsule length (CAPL; mm) 15 Anthophore length (AnL; mm) 16 Seed length (SEL; mm) 17 Seed width (SEW; mm) Pop SLL Sig. SLW Sig. APL Sig. CL Sig. CTL Sig. PCL Sig. 1 22.8±8.90d,f,g 0.57 0.725±0.43g,f 0.34 9.97±6.11b,c,d 0.81 10.55±1.75g 0.37 0.42±0.29d 0.35 6±2.00f 0.34 2 14.2±7.70e,f,g, 0.44 1.37±0.89d,e,f 1 7.25±5.53c,d,e,f 0.86 12.75±2.33d,e,f 0.66 1.05±0.58b,c 0.80 6.17±1.11e,f 0.37 3 18.45±5.83e,f 0.62 2.13±1.03d 0.54 5.96±5.36d 0.74 9.8±3.03g 0.27 1.11±0.76b,c 0.87 6.42±1.94e,f 0.47 4 15.2±7.50e,f,g 0.47 2.96±1.31c 0.45 7.27±5.30c,d,e 0.93 15.12±0.47a,b,c 0.59 0.85±2.31b,c 0.93 8±2.31b,c,e 0.77 5 36.35±1.65a 0.25 3.95±1.01a 0.32 17.35±1.59a,c,e,f 0.45 11.6±3.45c,e,f,g 0.61 1.1±0.57b,c 0.87 8.57±2.93a,b,c 0.72 6 32.4±1.37a,b 0.83 3.37±1.27a,b,c 0.34 13.05±6.41a,b 0.55 16.55±3.10a 0.28 0.89±0.64b,c 0.93 9.92±1.64a 0.42 7 34.8±8.10a 0.37 3.45±1.07a,b,c 0.33 10.65±5.41a,c,d,e,f 0.78 11.65±2.65e,f,g 0.21 1±0.75b,c 0.87 6.92±1.11d,e,f 0.54 8 10.95±4.46f,g 0.77 1.15±0.92e,g,f 1.04 5.87±3.35c,d,e 0.73 13.5±2.62c,d,e 0.66 1.72±0.82a 0.12 9.35±1.51a,b 0.55 9 27.6±1.23b,c 0.53 3.8±2.39a,b 1 11.97±8.43b,c 1.35 15.9±0.52a,b 0.43 0.89±0.52b,c 0.93 9.47±2.45a 0.54 10 26.2±1.09b,c,d,e 0.52 1.79±0.82d,e 0.45 4.6±4.64e 0.65 16.55±3.03a 0.28 1.17±0.65b,c 0.88 7.97±1.55b,c,d 0.77 11 19.42±1.08d,e 0.65 1.75±1.02d,e 0.45 7.15±4.42c,d,e 0.12 14.55±2.53b,c,d 0.61 1.2±0.50b, 0.90 8.7±2.27a,b,c 0.69 12 26.5±9.80a,b,c 0.53 1.95±1.11d,e 0.48 12.65±1.16b,d,c 0.59 13.77±2.63d 0.34 1.18±0.55b,c 0.89 8.97±1.80a,b 0.66 13 30±1.14a,b,c 0.47 3.05±1.30b,c 0.43 6±4.82d,c,e,f 0.75 11.4±2.98f,g 0.59 0.82±0.42b,c 0.93 9.35±1.70a,b 0.55 14 14.15±8.27e,f,g,e 0.44 1.57±1.23d,e 0.49 4.2±4.49d,c,e,f 0.63 13.37±3.25c,d,e,f 0.65 1.12±0.49b,c 0.87 7.42±1.70c,d,e 0.69 15 12±3.20f,g, 0.45 0.48±0.28g 0.23 2.63±2.16d,c,e,f 0.54 13.15±1.92c,d,e,f 0.64 0.76±0.41d 0.93 7.36±1.87c,d,e 0.67 23/1 • 2024, 151–163 163 Safaeishakib et al. Evaluation of genetic and morphological diversity in Iranian Silene aucheriana populations Pop Elevation Sig. AveT Sig. RF Sig. PLH Sig. BLL Sig. BLW Sig. 1 2.715±00 .000 11.69±00i .000 12.91±00m .000 180.5±40d,e,f 0.75 22.45±7.86c,d,e,f 0.78 0.56±0.33d 0.85 2 1.31±00 .000 17.4±00b .000 10.75±00o .000 226±40.70c,d,e 0.86 15.05±5.18g,h 0.52 0.75±0.46c,d 0.93 3 3.3±00 .000 11.32±00j .000 32±00e .000 283±0.58a,b,c 0.66 24.75±8.15b,d,e 0.63 1.96±1.37b,c,d 0.93 4 2.46±00 .000 10.52±00k .000 16.66±00j .000 247.5±52.8a,b,c,d 0.85 19.1±7.83e,f,g 0.67 2.47±1.33a,b,c,d 0.93 5 2.1±00g .000 51.8±00a .000 31±00f .000 268.5±53.24a,b,c 0.75 37.25±8.96a 0.03 3.47±1.16b 1.00 6 2.32±00 .000 15.2±00f .000 90.41±00a .000 191±40.89d,e,c 1.64 26.5±1.22b,d 0.52 2.04±1.39b,c,d 0.93 7 2.3±00k .000 9.49±00m .000 39.83±00d .000 283.5±62.68a,b 0.65 28.3±6.38b,c 0.42 7.85±1.25a 0.00 8 2.22±00 .000 12.81±00g .000 11.31±00n .000 199±55.71c,d,e 0.86 11.55±5.79h 0.38 0.72±0.45c,d 0.93 9 1.94±00 .000 10.4±00l .000 25±00g .000 158.5±37.17e,f 1.33 29.1±1.28b 0.42 3.25±2.08b,c 0.93 10 2.01±00 .000 11.82±00h .000 13.66±00l .000 195±53.90c,d,e 0.85 18.9±7.69e,f,g 1.32 1.32±1.05b,c,d 0.93 11 2.51±00 .000 15.73±00d .000 90.08±00b .000 313.75±6.51a 0.47 16.62±0.36f,g,h 0.56 1.36±0.77b,c,d 0.93 12 1.91±00 .000 16.38±00c .000 18.33±00i .000 231±57.93d,e,c 0.93 27.15±9.72b,d 0.46 1.36±1.19b,d 0.93 13 2.1±00 .000 15.45±00e .000 56.41±00c .000 227.5±51.79d,e 0.93 22±8.98d,e,f 0.85 1.7±0.86b,c,d 0.93 14 2.72±00 .000 7.33±00n .000 16.25±00k .000 168±44.79e,f 0.67 15.2±1.12g,h 0.53 1.79±1.48b,c,d 0.93 15 2.91±00 .000 11.8±00i .000 21.25±00h .000 110.5±22.35f 0.40 18.25±8.18f,g 0.63 0.53±0.27d 0.84 Pop PLL Sig. PLDL Sig. ESA Sig. EFLC Sig. 1 4.47±1.22e,f 0.73 1.25±0.61f,g 0.82 4.47±0.73d 0.57 1.25±0.61b,c 0.93 2 4.77±2.01d,e 0.61 1.91±1.20f 0.68 4.7±0.86d 0.58 0.53±30b,c 0.93 3 4.87±1.38d,e 0.63 1.95±0.63f 0.68 3.7±0.42e 0.75 0.5±0.30b,c 0.93 4 5.78±1.28b,c,d 0.70 2.46±1.01d,e 0.69 6.31±1.37b 1.88 0.84±0.50b,c 0.93 5 3.75±0.85f 0.47 2.65±1.08c,d,e 0.68 5±1.71c,d 0.56 0.81±0.32b,c 0.93 6 6.27±1.95b,c 0.37 2.65±1.08c,d,e 0.68 7.52±3.04a 0.56 0.76±0.41b,c 0.93 7 4.75±0.76d,e 0.61 2.52±0.96d,e 0.68 5.4±0.78b,c,d 0.51 1.05±0.75b 0.93 8 5.32±2.02d,e 0.73 2.92±1.57c,d 0.72 7.9±2.01a 0.2 0.94±0.41b,c 0.93 9 7.82±1.87a 0.04 5.21±0.88a 0.03 7.44±2.22a 0.29 0.68±0.30b,c 0.93 10 6.5±1.51b,c 0.77 4.02±1.62a 0.16 5.9±1.35b,c 0.48 0.32±0.18c 0.93 11 4.92±1.26d,e 0.65 2.46±0.69d,e 0.69 5.05±0.87c,d 0.54 0.55±0.27b,c 0.93 12 6.29±1.26b,c 0.06 3.5±1.04a,c 0.49 7.87±1.57a 0.21 2.33±3.26a 0.002 13 4.59±1.14e,f 0.6 2.26±0.81d,e 0.68 3.34±1.33e 0.15 0.52±0.45b,c 0.93 14 4.97±1.37d,e 0.66 2.08±0.81d,e,f 0.67 5.9±1.72b,c 0.48 1.07±0.76b 0.93 15 2.24±0.86g 0.008 0.65±0.28g 0.10 3.6±1.16e 0.32 1.02±0.64b,c 0.93